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Colossal magnetoresistance using the small polaron picture with finite bandwidth effects

Sudhakar Yarlagadda
Saha Institute of Nuclear Physics, Calcutta, India

and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5932
~Received 31 May 2000!

We present a small polaron picture and show that finite bandwidth effects are important to understand
colossal magnetoresistance. Besides the polaron size parameter, we show that there is another parameter
~adiabaticity parameter! that is relevant to studying magnetoresistance. We find that for fixed values of the
polaron size parameter an increase in the adiabaticity parameter increases the magnetoresistance. The magnetic
transition is studied within a mean-field approach. We point out important oversights in the literature. We find
that for the reported values of the bandwidth~based on band-structure calculations! and for experimentally
determined values of activation energy and Debye frequency, the calculated values of the magnetoresistance
compare favorably with experimental ones. We calculate the optical conductivity too and find that there is
reasonable agreement with experiment.
m

-

ri
ti

ic
d

-
nt
ol
r

he
o
th
n

ne
a
n

al
ro
h

es
th

u
-
-
th
ts

t
ia-
i-

ite
ons
w-

d’s
To
y

le-

his
ic

eld
the
hus
he
on

ed
nce

eti-

nd-
nt
lo-
oth
ur
tal
lso

he
pti-
nly
bye
of
ree-
I. INTRODUCTION

Studying perovskite manganites of the for
A12dBdMnO3 (A5La, Pr, Nd, etc.;B5Sr, Ca, Ba, etc.! as a
function of doping d has lead to a variety of rich
phenomena.1–3 Of these La12dCadMnO3 is perhaps the sim
plest one because the ionic size difference between La31 and
Ca21 is less than 3%. In La12dCadMnO3, at low doping, as
temperature is lowered the system undergoes orbital orde
and at even lower temperatures a layered antiferromagne
is observed.4 At intermediate doping (d;0.220.4), simulta-
neous metal-insulator~MI ! and paramagnetic-ferromagnet
transitions occur in this compound as the temperature is
creased. At even higher doping~i.e., greater thand;0.5)
charge ordering is realized while atd;1 antiferromagnetic
order results at low temperatures.1 To explain the magnetic
ordering at low doping, de Gennes5 some time ago had pro
posed double-exchange mechanism wherein, on accou
strong Hund’s coupling between the spin of a mobile h
and the spin of the localized electrons, the hopping integ
of the itinerant hole is reduced by half of the cosine of t
angle between the 3/2 spins of the localized electrons
neighboring sites. Furukawa pioneered in demonstrating
usefulness of the dynamical mean-field theory in understa
ing the properties of double-exchange systems.6 However it
was recognized by Millis et al.7 that double-exchange
mechanism itself is not sufficient to explain colossal mag
toresistance~CMR!. Millis and co-workers have proposed
model8 which uses Jahn-Teller coupling between electro
and nuclei. However, this model treats phonons classic
and does not seem to yield satisfactory results away f
half-filling. Furthermore, these authors have studied the p
nomenon using only the polaron size parameter~the ratio
between the hopping integral and the binding energy!. They
have not studied the effect of another dimensionl
parameter—the ratio between the hopping integral and
Debye frequency~adiabaticity parameter!. Röder et al. have
also stressed the importance of Jahn-Teller coupling in
derstanding these manganites.9 Lee and Min have also stud
ied polaron transport in manganites.10 However, these au
thors do not take into account the renormalization of
electron-phonon interaction due to finite bandwidth effec
PRB 620163-1829/2000/62~22!/14828~9!/$15.00
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Jaimeet al.11 and Worledgeet al.12 have demonstrated tha
their high-temperature resistivity data fits well to an ad
batic small polaron model. All in all, there is growing ev
dence for a small polaron picture to explain CMR.

In this paper we study CMR phenomena in perovsk
manganites by considering the carriers as small polar
whose high-temperature behavior is hopping type and lo
temperature behavior is metal like.13 Our model includes ef-
fects due to electron-phonon coupling and on-site Hun
coupling between itinerant holes and localized electrons.
understand the MI transition we simplify the Hamiltonian b
accounting for the Hund’s coupling through the doub
exchange hopping term.5 By including finite bandwidth ef-
fects, and using a suggestion by Toyozawa14 we obtain an
expression for the small polaronic wave function. Using t
nearlysmall polaronic wave function we obtain the dynam
conductivity. We find that in the presence of a magnetic fi
both double exchange and finite bandwidth effects lower
resistivity and shift its peak to higher temperatures and t
can lead to CMR. In our picture the main reason for t
CMR is due to the renormalization of the electron-phon
interaction~or the lattice distortion! due to finite bandwidth
effects. One of our important conclusions is that for a fix
value of the polaron size parameter the magnetoresista
increases as the adiabaticity parameter increases.

Within a mean-field approach, we calculate the magn
zation ~M! of the localized spins. The magnetizationM is a
result of the effective magnetic field generated by the ba
like motion of the electrons or in other words, the itinera
electrons due to the strong Hund’s coupling polarize the
calized spins. We have studied the magnetization for b
with and without external magnetic fields and found that o
M values are qualitatively in agreement with experimen
results.15 Furthermore our magnetoresistance values a
compare favorably with experimental ones.15

We also calculate the optical conductivity above t
metal-insulator transition temperature. We find that the o
cal conductivity scaled by the dc conductivity depends o
on the renormalized electron-phonon coupling and the De
frequency. We calculate optical conductivity as a function
frequency at various temperatures and find reasonable ag
ment with experiments.16
14 828 ©2000 The American Physical Society
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II. BACKGROUND

Earlier on Zener proposed a double-exchange mo
where conduction from a Mn31 to a Mn41 via an O22 can
be understood in terms of simultaneous transfer of t
electrons—one electron from a Mn31 to a neighboring O22

and another electron from the O22 to a neighboring Mn41.
De Gennes further realized that since the Hund’s couplin
much larger than the hopping integralt, the hopping term
gets modified to bet cos(u/2) whereu is the angle between
neighboring spins that are treated classically. More rece
it was pointed out that there is a Berry phase factor t
enters the hopping term.17 However, we feel that the geome
ric phase will not significantly alter the basic physics beh
CMR. Then to understand propagation of holes, of dop
level d, along a chain of spins~all with spin S) coupled
antiferromagnetically through the coupling parameterJ one
needs to minimize the energyE522td cos(u/2)
1uJuS2 cos(u) to obtain the ground state canting ang
cos(u/2)5td/(2uJuS2).

Within a mean-field approach one can approximate cou)
to be given bŷ SW i /S&•^SW j /S&5M2/MS

2 whereM /MS is the
scaled magnetization. Thus the hopping term gets modi
to be tA(11M2/MS

2)/2. However, this double-exchang
modification of the hopping integral itself does not expla
the observed metal-insulator transition in the intermed
doping regime.

To understand the colossal magnetoresistance phen
enon we will now use small polaronic picture. First we w
provide the motivation for this approach. One of the striki
features of a single small polaron is that the shape of
inverse of the mobility as a function of temperature is qu
similar to that of the resistivity observed for the mangan
systems that display colossal magnetoresistance. To un
stand how this comes about we will present our understa
ing of a small polaron first by ignoring spin effects. In sy
tems like the transition-metal oxides the electron couple
the vibrational modes of the host molecule~say the breathing
mode!. Due to strong electron-phonon coupling the molec
lar equilibrium configuration gets distorted. The electron g
bound in the distortion to form a polaron. This compos
entity, i.e., the electron plus distortion, is the polaron. Wh
the distorted region is less than a lattice spacing~i.e., 1/2
bandwidth, binding energy! we have a small polaron. Th
polaron propagates just like an electron. However, the h
ping integral gets modified because one has to take into
count the wave functions of the host molecules which co
spond to displaced simple harmonic oscillators. The ove
between the simple harmonic-oscillator wave functions
tween adjacent sites decreases with increasing temper
because as temperature increases higher eigenfunctions
more nodes come into play. The band energy thus assu
the form ek;22t@cos(kxa)1cos(kya)1•••#exp@2g0

2 coth(v0/
2kBT)# with g0 being proportional to molecular distortio
and v0 being the Debye energy. As can be seen the b
energy at high temperatures decreases exponentially
temperature.

We are dealing with narrow band systems that are non
generate and hence the mobility is given bym5eD/(kBT)
whereD is the diffusivity. At higher temperatures band na
rowing occurs and when coherent motion is no longer p
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sible the electron becomes localized and propagates by
ping. The diffusivity is then given byD;a2/t where the
lifetime t, for adiabatic transport, is given by the classic
result 1/t5v0 /(2p)exp@2Ea /(kBT)# with the activation en-
ergy Ea52g0

2 tanh@v0 /(4kBT)# ~see Holstein’s article18 for
details!. On the other hand at low temperatures bandlike c
duction is possible and the diffusivity is given byD}^v2&t
with v being the velocity andt being still given by the above
formula. The crossover from bandlike motion to hoppi
conductivity takes place when the uncertainty in ene
(\/t) is of the order of half the bandwidth. Now, it is im
portant to point out that the total mobility is the sum of th
band and hopping mobilities~see Friedman’s paper19 for de-
tails!. The total mobility is then given by

mTotal5bqea
2H 2p

t2

v0
expF22g0

2 cschS bv0

2 D G
1

v0

2p
expF22g0

2 tanhS bv0

4 D G J , ~1!

whereqe is the electronic charge andb51/(kBT).
When we include Hund’s coupling,t gets modified to be

tA(11M2/MS
2)/2. Now when a magnetic field gets switche

on, the value of the effective hopping integral increases,
lattice gets less distorted~effectiveg0 decreases!, resistivity
decreases, and bandlike motion persists longer~i.e., the peak
position of the resistivity shifts to higher temperatures!. Thus
the system can have a large drop in resistivity atTC when a
magnetic field is applied.

III. ADIABATIC TRANSPORT OF SMALL POLARONS

To study transport we use the double-exchange modifi
tion to include effects due to on-site Hund’s coupling b
tween itinerant holes and localized electrons and take
total Hamiltonian to be

H52tDE(̂
i j &

ci
†cj1(

qW
vqWaqW

†
aqW

1
1

N1/2 (
j ,qW

cj
†cje

iqW •RW jgqWvqW~aqW1a
2qW
†

!, ~2!

wherecj (aqW) is the hole~phonon! destruction operator,̂i j &
corresponds to nearest neighbors,vqW is the optical phonon
frequency (\51), gqvqW is the hole-phonon coupling, an
tDE5tA(11M2/MS

2)/2, M is the magnetization,MS is the
saturated magnetization, andN is the number of sites. Here i
should be mentioned that by allowing only one electron
site the restriction on two electrons of opposite spin to
cupy the same site is equivalent to Pauli blocking and can
more severe than hard core repulsion~i.e., it can lead to
higher energies!. Furthermore the above Hamiltonian corr
sponds to assuming a single orbital per site which on acco
of Jahn-Teller splitting may be justified. Actually, we fe
that only one orbital ought to be involved in the transp
process as tunneling between two similar potential wells
more likely than between two dissimilar potential wells~i.e.,
tunneling between same orbitals is more likely because
resonant tunneling!. Then the electron lowers its energy be
ter through enhanced hopping or lower kinetic energy. F
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thermore, the experiments of Lanzaraet al.20 are in agree-
ment with our claims. We will elaborate on this after w
present our polaronic picture.

We will first outline the procedure for obtaining the res
tivity for the case where the hopping term is small compa
to the binding energy~i.e., the true small polaron case! and
then proceed to incorporate finite bandwidth effects. We w
now perform the so-called Lang-Firsov transformation21 H̃
5eSHe2S to diagonalize the Hamiltonian with

S52(
j ,qW

cj
†cje

iqW •RW j
gqW

N1/2
~aqW2a

2qW
†

!. ~3!

The resulting Hamiltonian is given by

H̃52tDE(̂
i j &

ci
†cjXi

†Xj1(
qW

vqWaqW
†
aqW2(

j ,qW

gqW
2
vqW

N
cj

†cj ,

~4!

where

Xj5expF(
qW

eiqW •RW j
gqW

N1/2
~aqW2a

2qW
†

!G , ~5!

and (qW(gqW
2
vqW /N) is the binding energy. Here it should b

pointed out that to obtain the above transformed Hamilton
we have used the following approximation:

(
j ,k,qW

gqW
2
vqW

N
cj

†cje
iqW •(RW j 2RW k)ck

†ck5(
j ,qW

gqW
2
vqW

N
cj

†cj . ~6!

The above relationship is exact whengqW
2
vqW is independent

of qW .
The single small polaron eigenstate of the Hamiltonian

Eq. ~2! is given by

uc i&5e2Su i &u . . . nqW . . . &5u i &Xi u . . . nqW . . . &, ~7!

where u i & is the molecular orbital eigenstate at sitei and
u . . . nqW . . . & is the product of the eigenstates of the m
ecules at various sites executing simple harmonic mo
with phononic occupation numbernqW . The above wave func
tion is exact in the limit of the ratio of the hopping term
the binding energy being vanishingly small.

In Eq. ~4! the first term involving the hopping term is th
small parameter. If the dominant transport mechanism co
sponds to diagonal processes~i.e., number of phonons in
each stateqW remains unchanged! phase coherence is main
tained when the particle propagates. In fact then the par
moves like a Bloch electron and forms energy bands w
energy being given by the thermal average of the first term
Eq. ~4! ~see Appendix A for details!.

2K tDE(̂
i j &

ci
†cjXi

†Xj L
522tDE(

kW
@cos~kxa!1cos~kya!1•••#nkW^Xi

†Xj&

522tDE(
kW

@cos~kxa!1cos~kya!1•••#nkW
d

ll

n

n

n

e-

le
h
in

3exp@2g0
2 coth~bv0/2!#

5(
kW

ekWnkW , ~8!

wherenkW5^ckW
†
ckW& and ^ . . . & corresponds to thermal ave

age.
We will now calculate the conductivity for localize

states, i.e., the hopping conductivity. The polarization ope
tor is given byPW 5( iRW ici

†ci . Then the current operator i
given by

jW5qe

]PW

]t
5

qei

\
@H̃,PW #52

iqetDE

\ (̂
i j &

@RW i2RW j #ci
†cjXi

†Xj .

~9!

Using the above form of the current operator and the ma
body states obtained from the single-particle sta
u i &u . . . nqW . . . & and takingvqW5v0 andgqW5g0, we can ob-
tain the conductivity to be~see Appendix B!

Re~saa!5
12e2bv

2v
E

2`

`

dt eivt^ j a~ t ! j a~0!&

5
ncqe

2a2

kBT

AptDE
2

g0v0Acosechv0b/2
e22g0

2tanh(bv0/4),

~10!

wherenc is the density of carriers. Furthermore, it should
noted that we need 2g0

2 csch(bv0/2)@1 for Eq. ~10! to be
valid. Now the mobility, for a system of nondegenerate el
trons, is given by the Einstein relationm5qeDb whereD is
the diffusivity. In the region of interest, i.e., around th
metal-insulator transition, we expect band narrowing to
sufficiently strong so that the Fermi energy is not mu
larger than the thermal energy. Since the hopping-reg
diffusivity is given byDhop5a2/(6t), we readily obtain the
scattering timet to be

1

6t
5

AptDE
2

g0v0Acosechv0b/2
e22g0

2 tanh(bv0/4). ~11!

The above expression fort corresponds to the nonadiabat
regime~or t!v0). As for the adiabatic case,t is given by

1

6t
5

v0

2p
e22g0

2 tanh(bv0/4), ~12!

which for high temperatures reduces to the classical cas

1

6t
5

v0

2p
e2g0

2v0b/2, ~13!

with g0
2v0/2 corresponding to the activation energy.

The diffusivity for band conduction is given by

Dband5^u¹W EkWu2t&/d52ta2tDE
2 e22g0

2 coth(bv0/2), ~14!

whered is the dimension of the system andt is given by the
same expression as in the hopping case.22
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Then based on Friedman’s work19 we take the total mo-
bility ( mT) to be the sum of the band mobility and the ho
ping mobility and hence the total resistivity (1/r5ncqemT)
to be given by

4p

ncqe
2a2r

5bv0H 8p2

3

t2

v0
2

expF22 u cosechS bv0

2 D G
1S 11

M2

MS
2D expF22 u tanhS bv0

4 D G J , ~15!

where u5g0
2. Here we note that Friedman’s analysis al

accounts for how an electron may seem localized yet it
have translation invariance symmetry intact—the reason
ing that the mobility is the sum of the hopping and bandl
mobilities and hence will always have a component, no m
ter how small, that is metallic.

IV. SMALL POLARON PICTURE WITH FINITE
BANDWIDTH EFFECTS

We will now include finite bandwidth effects in our sma
polaronic picture. However, we will still treat the rati
tDE/2g0

2v0 as small. The polaronic wave function no
spreads and barely extends to the nearest-neighboring
Then the eigenstate of the nearly small polaron is given
~see Toyozawa’s paper also14!

uC i&5(
j

B~ j !u i 2 j &X̃i u . . . nqW . . . &, ~16!

whereX̃i is given by

X̃i5expF(
qW

eiqW •RW iaqW~aqW2a
2qW
†

!G . ~17!

In the above equationB( j )50 for uRW j u.a. Furthermore
B( j ) andaqW are to be determined by minimizing the sing
small polaronic energy. Upon taking the expectation value
the Hamiltonian with respect to a small polaron state of m
mentumkW given by uCkW&5( ie

kW•RW iuC i& one gets

2^CkWutDE(̂
i j &

ci
†cj uCkW&'2tDE(

d,i
B~ i !B~ i 2d! ~18!

and

^CkWu(
qW

vqWaqW
†
aqW1

1

N1/2 (
j ,qW

cj
†cje

iqW •RW jgqWvqW~aqW1a
2qW
†

!uCkW&

'(
qW

vqW~NqW1aqW
2
!22N21/2(

qW ,i

aqWvqWgqW

3cos~qW •RW i !B
2~ i !, ~19!

where we have neglected the small valued vibrational ov
lap factors ^ . . . nqW

8 . . . uX̃i
†X̃j u . . . nqW . . . & for iÞ j . Upon

minimizing the polaron energy with respect toaqW one ob-
tains

aqW5N21/2gqWF(
j

B~ j !2 cos~qW •RW j !G . ~20!
n
e-

t-

es.
y

f
-

r-

For small values oftDE/2g0
2v0, on using the constraint tha

( jB
2( j )51, one obtains from the above equationsB(0)

'1 and

B~ j !'
tDE

2N21(
qW

vqWgqW
2
@12cos~qW •RW j !#

, ~21!

for uRW j u5a. The above results are similar to those obtain
by Gosar.23

Using the above eigenstateuC i& for the small polaronic
state and again using the procedure outlined in Appendi
for deriving the conductivity in the localized regime, on
obtains@on neglectingB( j ) for j Þ0 due to its small contri-
bution# the same expression for conductivity but with th
lattice distortiong0

2 renormalized

Re@saa~v!#5
12e2bv

6v

qe
2tDE

2

\2
c~12c!a2

zN

V
Ap/g̃

3e22S̃T1f̃(2 ib/2)1vb/22v2/(4g̃), ~22!

where

S̃T[(
qW

ul̃qW u2

2
coth

bvqW

2
, ~23!

f̃~ t !5(
qW

ul̃qW u2@~NqW11!e2 ivqW t1NqWe
ivqW t#, ~24!

and

g̃5(
qW

ul̃qW u2@NqW~NqW11!#1/2vqW
2 , ~25!

with l̃qW5eiqW •RW j(12eiqW •dW)aqW . Here it should be pointed ou
that the authors of Ref. 10 did not take into account
renormalization oflqW due to the finite bandwidth effects
They also failed to recognize thatg̃b@uekW2epW u, while
evaluating the integral with respect to time in order to obt
the expression for conductivity.

Now, upon takingvqW5v0 and gqW5g0, one obtains the
same expression for the total resistivity given by Eq.~15!
whereu is expressed as follows:

u[g0
2F12

~z11!tDE
2

2g0
4v0

2 G , ~26!

with z being the coordination number.24 Here, it should be
noted that we need 2u csch(bv0/2)@1 for Eq. ~15! to be
valid. Furthermore, the optical conductivity above the met
insulator transition~where only the conductivity due to lo
calized carriers dominates! is given by

Re@saa~v!#

saa~v→0!
5

sinh~bv/2!

bv/2
e2v2/(4g0

˜ ), ~27!

whereg 0̃5uv0
2 cosech(bv0/2). We note, from Eq.~27!, that

the optical conductivity scaled by the dc conductivity d
pends only on the parameterg 0̃.

We will now study the magnetic transition within a mea
field approximation. The magnetization ratioM /MS is not
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14 832 PRB 62SUDHAKAR YARLAGADDA
very sensitive to the type of approximation~see Ref. 25 for a
weak Hund’s coupling treatment of the magnetization pr
lem!. The magnetization ratio is given by

S
M

MS
52

(
Sz

Sz exp@2gmBHe f fSzb#

(
Sz

exp@2gmBHe f fSzb#

, ~28!

with He f f5l(M /MS). On using the condition that asT
→TC we haveM /MS→0, we get forS53/2 the relation
lgmB51.2kBTC . Estimating the transition temperatureTC
with accuracy is difficult and we will only give an order o
magnitude estimate for it and will provide a qualitative fe
for its dependence on various physical parameters of the
tem. Above the transition point the electrons are localiz
and form small ferromagnetic domains~or magnetic pol-
arons! so as to minimize the free energy. At the transiti
point the magnetic polarons align to give a ferromagne
phase whose size is of the order of the size of the system
this point the decrease in kinetic energy because of the e
tronic delocalization is equal to the increase in the entro
contribution to the free energy as given below.26

2Nd6tDEe2u coth(bv0/2)'2NkBTCln 4. ~29!

V. RESULTS AND DISCUSSION

In the doping regime where the manganites are insula
~i.e., d;0 or d.0.5), although there is orbital order an
both orbitals enter the Hamiltonian, in the doping regim
0.2,d,0.4 where CMR is observed only one orbital ne
be considered. As described in a recent interesting pape
Khomskii,27 the manganite system tries to lower its over
energy by entering into a ferromagnetic orbitally order
state with the same orbital being occupied at each site.
situation is similar to what is encountered in Nagaoka-ty
ferromagnetism in spin systems. When doped with a f
holes, just as an antiferromagnetic spin state can bec
ferromagnetic so will an orbitally aniferromagnetic state b
come an orbitally ferromagnetic one. In Ref. 27, it is al
pointed out that at sizeable doping a state withdx22y2 or dz2

ordering may have lower energy than the proposed s
where onlydz26 idx22y2 orbitals are occupied.

Based on the experimental results of Lanzaraet al.20 we
will now try to justify that only one of the orbitalsdz2 or
dx22y2 is occupied and that the orbital ordering temperat
is higher than the magnetic transition temperatureTC ~which
is possible because there is no reason to expect coup
between the order parameters for the magnetic transition
the orbital ordering transition!. In Ref. 20, in Fig. 4 we see
that only one type of distortion of the octahedron~the so-
calledQ3 normal mode! seems to be relevant both above a
below TC . However, there are two distortions of this sam
type ~at sites A and B! aboveTC but their degree of distor
tion is different. We think that it indicates that the lattic
distortion is less in the ferromagnetic domains~site A! that
exist even aboveTC and is similar to the distortion~again of
the sameQ3 type! in the ferromagnetic region belowTC at
T,200 K. Moreover, in the paramagnetic regime~site B! the
distortion is expected to be more in our picture because
-

l
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effective hopping integraltDE is smaller in this regime. Fur-
thermore, from Fig. 2 of Ref. 20 we see that even atT
5300 K (.TC5240 K! only Q3 mode exists which prompts
us to conclude that the orbital ordering probably occurs a
fairly higher temperature thanTC . It is also of interest to
note from Fig. 3 of Ref. 20 that extended x-ray absorpt
fine-structure probes instantaneous and local distortions
are larger than the ones observed from diffraction exp
ments. This may explain why other probes~like neutron scat-
tering! do not show noticeable Jahn-Teller distortion at lo
temperatures.

Our magnetization curvesM /MS as a function of the re-
duced temperatureT/TC ~see Fig. 1! are independent of the
values of the various parameters of the system liket, d, v0,
and g0 because of the mean-field nature of the approxim
tion. The qualitative behavior of the experimental curves
mimicked by our calculations but the experimental values
M /MS rise faster withT/TC ~see Ref. 15!.

The peak in the resistivity occurs when the system g
from insulating behavior to a metallic behavior~however, the
peak need not occur exactly when the hopping mobility
comes equal to the band mobility!. When the system be
comes metallic the system also becomes ferromagnetic
cause the itinerant electrons polarize the localized sp
Thus we can take the metal-insulator transition point as a
the magnetic transition point—a fact borne out by expe
ments~see Ref. 15!.

From the expression for the resistivity@see Eq.~15!# it
follows that for a given value oft/v0, the ratiokBTC /v0 is
fixed and one need not treatv0 as a variable when studyin
resistance dependence on various parameters.

We will now discuss the resistivity given by Eq.~15!. The
conduction goes from a hopping type at high temperature
a band type at low temperatures. In Fig. 2 we have shown
dependence of resistivityr on temperature at various mag
netic fields. The values of the hopping integralt are taken
such that the bandwidth lies in the range 1 eV23.5 eV which
is a realistic range based on band-structure calculations.
values ofg0

2 are taken from the experimentally obtainab
activation energy (uv0/2) values corresponding to temper
tures in the range 1000 K22500 K ~see Refs. 1,12!, while

FIG. 1. Plot of the magnetization ratioM /MS versus the re-
duced temperatureT/TC at magnetic fieldsH50 T, H515 T, and
H530 T.
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the chosen value of the Debye temperatureTD5500 K is
realistic, too~see Ref. 1!. The general trend of the resistivit
including the drop at the MI transition atH50 T is similar
to the experimental results.15 On introducing a magnetic field
the system gets magnetized at temperatures higher thaTC
and thus the value ofu is smaller @see Eq.~26!#. Conse-
quently, the resistivity is smaller andTrmax ~the temperature
at which resistivity becomes maximum! increases.

For T>TC , whenDband/Dhop@1 the magnetoresistanc
Dr(H)[@r(0)2r(H)#/r(0) is given by@see Eqs.~15! and
~26!#

Dr~H !'12 expF2
~z11!

2g0
2

t2

v0
2

M2

MS
2

cschS bv0

2 D G , ~30!

and whenDband/Dhop!1 it is given by

Dr~H !'12

expF2
~z11!

2g0
2

t2

v0
2

M2

MS
2

tan hS bv0

4 D G
11~M /MS!2

.

~31!

For bv0/2,1, on taking csch(bv0/2)'2/(bv0) and
tanh(bv0/4)'bv0/4, if ubv0/2.1 the following can be
shown: ~i! Tr

M
max increases asg0

2 decreases~or t2/v0
2 in-

creases!; and ~ii ! for fixed values ofg0
2 and t2/v0

2 and for
large enough

FIG. 2. Plot of the resistivityr in units of 4p/(ncqe
2a2) versus

temperatureT in three dimensions for adiabaticity parametert/v0

56, g0
2512, Debye temperatureTD5500 K, and for the following

magnetic fields:~i! H50 T; ~ii ! H515 T; and~iii ! H530 T.
~z11!

2g0
2

t2

v0
2

,

Trmax increases asM increases. The above observations a
borne out by the numerical results reported in Table I wh
the empty boxes correspond to cases where our approx
tion may not be good. We further note that for the sa
value of the polaron size parametert/(v0g0

2) the magnetore-
sistanceDr(H) increases as the adiabaticity parametert/v0
increases.

In Fig. 3, we plot the scaled optical conductivit

FIG. 3. Plot of the scaled optical conductivity Res(v)/s(0) as
a function of frequency at various values of the renormaliz
electron-phonon coupling parameteru and for: ~a! T5300 K
('TC) and ~b! T5500 K. In Table I, u56.75 corresponds to
t/v056 andg0

2512; u55.89 corresponds tot/v054 andg0
259;

andu54.83 corresponds tot/v052 andg0
256.
TABLE I. Calculated values of the transition temperatureTC and magnetoresistanceDr(H) at TC for
TD5500 K, various values oft/v0 andg0

2, and magnetic fieldsH515 T andH530 T.

g0
256 g0

259 g0
2512

t/v0 Dr(15 T) Dr(30 T) TC Dr(15 T) Dr(30 T) TC Dr(15 T) Dr(30 T) TC

2 37% 49% 297 K 34% 45% 245 K 31% 41% 228 K
3 46% 62% 400 K 48% 62% 264 K 44% 57% 237 K
4 62% 77% 295 K 58% 72% 248 K
6 81% 93% 290 K
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Res(v)/s(0) @given by Eq.~27!# as a function of the fre-
quency at different temperatures. The maximum of the o

cal conductivity occurs atv'g̃0b as expected from the for
mula in Eq. ~27!. We note that as the value of th
renormalized electron-phonon coupling parameteru in-
creases, the optical conductivity curve spreads out more.
also find that, as the temperature increases the value o
scaled optical conductivity decreases. Furthermore, the
culated scaled curves are in qualitative agreement with
periments. In the experimental situation there are two pie
to the conductivity—one coming from transitions with ele
trons parallel to the core spins (v;t) and another at highe
energy (v; twice the Hund’s coupling energy! involving
transitions to states where the electron spins are antipar
to the core spins. However, since we do not allow for dou
occupancy at any site, the second piece of the optical c
ductivity does not appear in our calculated curves.

In conclusion, we say that we showed the importance
finite bandwidth effects in understanding CMR within
small polaron picture. In addition to the polaron size para
eter studied by other authors,8 we have also identified an
other dimensionless parameter~the adiabaticity parameter!
and demonstrated its importance. The values of magnet
sistance calculated by us compare favorably with the exp
mentally reported ones.
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APPENDIX A

In this appendix we will derive the band narrowing due

phonons. The number of phonons in each stateqW remains
unchanged in a diagonal transition. If this is the domin
mechanism, then phase coherence is maintained and the
tron propagates as a bandlike particle. Using the decoup
scheme^ci

†cjXi
†Xj&5^ci

†cj&^Xi
†Xj& one obtains the single

particle energy to be

ekW522tDE@cos~kxa!1cos~kya!1•••#^Xj 1d
† Xj&

522tDE~cos~kxa!1cos~kya!1••• !

3exp@2g0
2 coth~bv0/2!#, ~A1!

where uRW du5a. We will now proceed to derive the abov
expression. Now
i-

e
he
l-

x-
es

lel
e
n-

f

-

re-
ri-

ul

r

t
lec-
g

^Xj 1d
† Xj&5PqW^e

lqWaqW 2l
qW
!
a

qW
†

&, ~A2!

wherelqW5eiqW •RW j(12eiqW •dW)gqW /N1/2. Then the thermal aver
age is given by

^Xj 1d
† Xj&5PqW

(
nqW 50

`

^nqW ue2bnqWvqWe2ulqW u2/2e2l
qW
!
a

qW
†

elqWaqWunqW&

(
nqW 50

`

^nqW ue2bnqWvqWunqW&

.

~A3!

On noting that

euaun&5(
l 50

`
ul

l !
al un&, ~A4!

with

al un&5F n!

~n2 l !! G
1/2

un2 l &, ~A5!

we get the following relationship:

^nue2u!a†
euaun&5(

l 50

n
~2uuu2! l

~ l ! !2 F n!

~n2 l !! G5Ln~ uuu2!,

~A6!

whereLn(x) is the Laguerre polynomial. Since the followin
identity holds:

(
l 50

`

Ln~ uuu2!zl5
e[ uuu2 ~z/z21!]

12z
, ~A7!

we obtain from Eqs.~A3!–~A7!

^Xj 1d
† Xj&5PqWe

2ulqW u2/2e2ulqW u2NqW

5expF2(
qW

~ ulqW u2/2! cothS bvqW

2 D G
[e2ST, ~A8!

with NqW being the Bose-Einstein distribution function. The
for vqW5v0 andgqW5g0 we obtain Eq.~A1!.
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APPENDIX B

In this appendix we will calculate the conductivity within the small polaron picture in the hopping regime.

Re@saa~v!#5
12e2bv

2v E
2`

`

dteivt^ j a~ t ! j a~0!&

5
e2tDE

2

\2

12e2bv

6v (
d,d8, j , j 8

dW •d8E
2`

`

dteivt^cj
†~ t !cj 1d~ t !cj 81d8

† cj 8&^Xj
†~ t !Xj 1d~ t !Xj 81d8

† Xj 8&. ~B1!

In the above equation, the dominant contribution is obtained whenj 5 j 8 andd5d8. The first correlation function in the abov
equation can be approximated by

^cj
†~ t !cj 1d~ t !cj 1d

† cj&5
1

N2 (
kW ,pW

f kW~12 f pW !ei (ekW2epW )t, ~B2!

where f pW is the Fermi-Dirac distribution function. Now

^Xj
†~ t !Xj 1d~ t !Xj 1d

† Xj&5
Tr$e2bH̃eiH̃ tXj

†Xj 1de2 iH̃ tXj 1d
† Xj%

Tr$e2bH̃%

5PqW

(
nqW 50

`

^nqW ue2bnqWvqWe2ulqW u2/2el
qW
!
a

qW
†
eivqW t

e2lqWaqWe2 ivqW t
e2ulqW u2/2e2l

qW
!
a

qW
†

elqWaqWunqW&

(
nqW 50

`

^nqW ue2bnqWvqWunqW&

5PqW~12e2bvqW !e2ulqW u2(12e2 ivqW t) (
nqW 50

`

e2bnqWvqW^nqW uel
qW
!
a

qW
†
(eivqW t21)e2lqWaqW (e2 ivqW t21)unqW&

5PqWe
2ulqW u2[(NqW 11)(12e2 ivqW t)1NqW (12eivqW t)] , ~B3!

where, to obtain the last line, use has been made of the fact that

~12e2bvqW ! (
nqW 50

`

e2bnqWvqW^nqW ueu!a†
e2uaunqW&5e2uuu2NqW. ~B4!

Defining

f~ t !5(
qW

ulqW u2@~NqW11!e2 ivqW t1NqWe
ivqW t#, ~B5!

we havef(t)5(qW2ulqW u2@NqW(NqW11)#1/2cos@vqW(t1ib/2)# and obtain from Eq.~B3!

E
2`

`

dteivt^cj
†~ t !cj 1d~ t !cj 1d

† cj&^Xj
†~ t !Xj 1d~ t !Xj 1d

† Xj&5E
2`

`

dteivte22STef(t)^cj
†~ t !cj 1d~ t !cj 1d

† cj&

5
1

N2
e22STef(2 ib/2)E

2`

`

dteivte2g(t1 ib/2)2(
kW ,pW

f kW~12 f pW !ei (ekW2epW )t

'Ap/gc~12c!e22ST1f(2 ib/2)1vb/22v2/(4g), ~B6!

whereg5(qW ulqW u2@NqW(NqW11)#1/2vqW
2 andc is the number of carriers per unit site. In evaluating the above integral we ass

that (qW ulqW u2@NqW(NqW11)#1/2@1 and used the saddle-point approximation. Furthermore, use has been made of the f
gb@uekW2epW u.
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