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Colossal magnetoresistance using the small polaron picture with finite bandwidth effects
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We present a small polaron picture and show that finite bandwidth effects are important to understand
colossal magnetoresistance. Besides the polaron size parameter, we show that there is another parameter
(adiabaticity parametgtthat is relevant to studying magnetoresistance. We find that for fixed values of the
polaron size parameter an increase in the adiabaticity parameter increases the magnetoresistance. The magnetic
transition is studied within a mean-field approach. We point out important oversights in the literature. We find
that for the reported values of the bandwidbiased on band-structure calculatipasd for experimentally
determined values of activation energy and Debye frequency, the calculated values of the magnetoresistance
compare favorably with experimental ones. We calculate the optical conductivity too and find that there is
reasonable agreement with experiment.

. INTRODUCTION Jaimeet al!! and Worledgeet al1? have demonstrated that
their high-temperature resistivity data fits well to an adia-
Studying perovskite ~manganites of the form batic small polaron model. All in all, there is growing evi-
A;_sBsMnO; (A=La, Pr, Nd, etc.B=Sr, Ca, Ba, et¢.asa dence for a small polaron picture to explain CMR.
function of doping § has lead to a variety of rich In this paper we study CMR phenomena in perovskite
phenomend:® Of these La_ sCa;Mn0O; is perhaps the sim- manganites by considering the carriers as small polarons
plest one because the ionic size difference betweéii bad  whose high-temperature behavior is hopping type and low-
Ce* is less than 3%. In La ;Ca;Mn0;, at low doping, as temperature behavior is metal lik¢Our model includes ef-
temperature is lowered the system undergoes orbital orderingcts due to electron-phonon coupling and on-site Hund’s
and at even lower temperatures a layered antiferromagnetisooupling between itinerant holes and localized electrons. To
is observed. At intermediate doping§~0.2—0.4), simulta-  understand the MI transition we simplify the Hamiltonian by
neous metal-insulataiMI) and paramagnetic-ferromagnetic accounting for the Hund's coupling through the double-
transitions occur in this compound as the temperature is deexchange hopping termBy including finite bandwidth ef-
creased. At even higher dopir(@e., greater than5~0.5)  fects, and using a suggestion by Toyozivae obtain an
charge ordering is realized while at-1 antiferromagnetic expression for the small polaronic wave function. Using this
order results at low temperature3o explain the magnetic nearly small polaronic wave function we obtain the dynamic
ordering at low doping, de Genrfesome time ago had pro- conductivity. We find that in the presence of a magnetic field
posed double-exchange mechanism wherein, on account bbth double exchange and finite bandwidth effects lower the
strong Hund'’s coupling between the spin of a mobile holeresistivity and shift its peak to higher temperatures and thus
and the spin of the localized electrons, the hopping integratan lead to CMR. In our picture the main reason for the
of the itinerant hole is reduced by half of the cosine of theCMR is due to the renormalization of the electron-phonon
angle between the 3/2 spins of the localized electrons oimteraction(or the lattice distortiondue to finite bandwidth
neighboring sites. Furukawa pioneered in demonstrating theffects. One of our important conclusions is that for a fixed
usefulness of the dynamical mean-field theory in understand+alue of the polaron size parameter the magnetoresistance
ing the properties of double-exchange systérhimwever it  increases as the adiabaticity parameter increases.
was recognized by Millisetal! that double-exchange Within a mean-field approach, we calculate the magneti-
mechanism itself is not sufficient to explain colossal magnezation (M) of the localized spins. The magnetizatibhis a
toresistancé CMR). Millis and co-workers have proposed a result of the effective magnetic field generated by the band-
modef which uses Jahn-Teller coupling between electrondike motion of the electrons or in other words, the itinerant
and nuclei. However, this model treats phonons classicallglectrons due to the strong Hund’s coupling polarize the lo-
and does not seem to yield satisfactory results away froncalized spins. We have studied the magnetization for both
half-filling. Furthermore, these authors have studied the phewith and without external magnetic fields and found that our
nomenon using only the polaron size paramdtbe ratio M values are qualitatively in agreement with experimental
between the hopping integral and the binding ener@ijey  results'® Furthermore our magnetoresistance values also
have not studied the effect of another dimensionlessompare favorably with experimental onés.
parameter—the ratio between the hopping integral and the We also calculate the optical conductivity above the
Debye frequencyadiabaticity parametgrRader et al. have  metal-insulator transition temperature. We find that the opti-
also stressed the importance of Jahn-Teller coupling in uneal conductivity scaled by the dc conductivity depends only
derstanding these manganiteisee and Min have also stud- on the renormalized electron-phonon coupling and the Debye
ied polaron transport in manganit®sHowever, these au- frequency. We calculate optical conductivity as a function of
thors do not take into account the renormalization of thefrequency at various temperatures and find reasonable agree-
electron-phonon interaction due to finite bandwidth effectsment with experiment¥®
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Il. BACKGROUND sible the electron becomes localized and propagates by hop-

. ing. The diffusivity is then given byd~a?/r where the
hEarher gn fZen(fﬂ propl\%s}fe? a I\(jlcr)#ble.-exchgge mod fetime 7, for adiabatic transport, is given by the classical

where conduction from a it 7o a viaan O €an resiit 14=wo/(2m)exy —Ea/(ksT)] with the activation en-

be understood in terms of simultaneous transfer of twoergy E, =202 tanHw,/(4ksT)] (see Holstein's artiché for

. . a— 0

electrons—one electron fromeg Min to a neighboring f]f detailg. On the other hand at low temperatures bandlike con-

and another electron from the"Oto a ne|ghbor|,ng MA™. " duction is possible and the diffusivity is given By=(v2)r

De Gennes further realized _that_smce the Hund s coupling igyith o being the velocity and being still given by the above

much larger than the hopping integralthe hopping term 5 :myja. The crossover from bandlike motion to hopping

gets modified to bé cos(@/2) whered is the angle between onqyctivity takes place when the uncertainty in energy

neighboring spins that are treated classically. More recentl #17) is of the order of half the bandwidth. Now, it is im-

it was pointed out that there is a Berry phase factor thaﬁortant to point out that the total mobility is the sum of the

enters the hopping terfd.However, we feel that the geomet- band and hopping mobilitiesee Friedman’s papérfor de-
ric phase will not significantly alter the basic physics behindta”s)_ The total mobility is then given by

CMR. Then to understand propagation of holes, of doping

level &, along a chain of spingall with spin S) coupled _ 2 z 2 Bwg

antiferromagnetically through the coupling parameteme HTotal= £ea 277(1,_0 exy —2gp csc 2

needs to minimize the energyE=—2t5cos@/2)

+|J|S?cos@) to obtain the ground state canting angle " @o _2g2t @

cos@I2)=15/(2||S?). 27 XK T <ot 7
Within a mean-field approach one can approximate#)os . .

to be given by(S /S)-(é»p/ps)z M2/M2 Wherzlr\)/I/M is t:t)a ( whereq is the electronic charge anti=1/(ksT).

Sifs ] sV S . When we include Hund’s coupling,gets modified to be
scaled magnetlgatlon. Thus the hopping term gets modﬁmeﬁ_ Now when a magnetic field gets switched
to be ty(1+M*Mg)/2. However, this double-exchange o, the value of the effective hopping integral increases, the
modification of the hopping integral itself does not explain|ice gets less distorte@ffective g, decreases resistivity
the observed metal-insulator transition in the 'mermed'at%ecreases, and bandlike motion persists lofiger, the peak

doping regime. _ osition of the resistivity shifts to higher temperatir&hus
To unde_rstand the colossal magnetoresistance phenorﬁie system can have a large drop in resistivityr atwhen a
enon we will now use small polaronic picture. First we will magnetic field is applied.

provide the motivation for this approach. One of the striking

features of a single small polaron is that the shape of the
inverse of the mobility as a function of temperature is quite

similar to that of the resistivity observed for the manganite  To study transport we use the double-exchange modifica-
systems that display colossal magnetoresistance. To undefon to include effects due to on-site Hund’s coupling be-

stand how this comes about we will present our understandween itinerant holes and localized electrons and take the
ing of a small polaron first by ignoring spin effects. In sys- total Hamiltonian to be

tems like the transition-metal oxides the electron couples to

the vibrational modes of the host molec($ay the breathing __ T I

mode. Due to strong electron-phonon coupling the molecu- H tDE(iEJ) € +2;| “a8q%

lar equilibrium configuration gets distorted. The electron gets

bound in the distortion to form a polaron. This composite 1 2

] ) ()

IIl. ADIABATIC TRANSPORT OF SMALL POLARONS

entity, i.e., the electron plus distortion, is the polaron. When N2 <
the distorted region is less than a lattice spading., 1/2 b
bandwidth< binding energywe have a small polaron. The wherec;(a,) is the hole(phonon destruction operatokjj )
polaron propagates just like an electron. However, the hopeorresponds to nearest neighbasg, is the optical phonon
ping integral gets modified because one has to take into adrequency f=1), gqwq is the hole-phonon coupling, and
count the wave functions of the host molecules which corretpe=t\[(1+M?/M?2)/2, M is the magnetizationM g is the
spond to displaced simple harmonic oscillators. The overlagaturated magnetization, ahds the number of sites. Here it
between the simple harmonic-oscillator wave functions beshould be mentioned that by allowing only one electron per
tween adjacent sites decreases with increasing temperatusie the restriction on two electrons of opposite spin to oc-
because as temperature increases higher eigenfunctions withpy the same site is equivalent to Pauli blocking and can be
more nodes come into play. The band energy thus assumesore severe than hard core repulsior., it can lead to
the form ek~—2t[cos(<xa)+cos(<ya)+---]exp:—gé cothwy  higher energies Furthermore the above Hamiltonian corre-
2kgT)] with go being proportional to molecular distortion sponds to assuming a single orbital per site which on account
and wg being the Debye energy. As can be seen the bandf Jahn-Teller splitting may be justified. Actually, we feel
energy at high temperatures decreases exponentially wittihat only one orbital ought to be involved in the transport
temperature. process as tunneling between two similar potential wells is
We are dealing with narrow band systems that are nondemore likely than between two dissimilar potential weile.,
generate and hence the mobility is given foy=eD/(kgT) tunneling between same orbitals is more likely because of
whereD is the diffusivity. At higher temperatures band nar- resonant tunneling Then the electron lowers its energy bet-
rowing occurs and when coherent motion is no longer poster through enhanced hopping or lower kinetic energy. Fur-

PP T - IS, |
cjcje'q ngwq(aq+afa), (2)
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thermore, the experiments of Lanzazaal® are in agree- x exd — g3 coth Bwy/2)]

ment with our claims. We will elaborate on this after we

present our polaronic picture. _2 . ®)
We will first outline the procedure for obtaining the resis- T~ €l

tivity for the case where the hopping term is small compared

to the binding energyi.e., the true small polaron cgsend  where ng:(cEcﬁ) and( ...) corresponds to thermal aver-
then proceed to incorporate finite bandwidth effects. We willage

now perform the so-called Lang-Firsov transformatiod We will now calculate the conductivity for localized
=eSHe S to diagonalize the Hamiltonian with states, i.e., the hopping conductivity. The polarization opera-

o tor is given byP=3,R;c/c;. Then the current operator is

- te.@ld R 29 (g of . iven b
S= 12& c/c;e' JNllz(aq a_g). (3  9wen by
' . P Qd ~ - iget ..
The resulting Hamiltonian is given by j=qu= %[H,P]= — ;iDE ;} [Ri—Rj]cichXiJer .
ij
2
924 ©)

Using the above form of the current operator and the many-
(4) body states obtained from the single-particle states
li)] ...ng...) and takingwg=wo andgg=go, we can ob-

- t
H=—tpeY, cleXIXj+2 wqagag—2 N CiCi
{ij) q j.q

where tain the conductivity to bésee Appendix B
iq.r Y9q —g Bw
= ig-Rj 29 5. gf . 1-e B _
X ex‘{z SN O R, )= ate ), i)
4 2w —w
andE‘(g%w‘/N) is the binding energy. Here it should be 2.2 \/— 2
R . I Ncgea mihe 2
pointed out that to obtain the above transformed Hamiltonian = e~ 20ptanh(Bwo/4)
we have used the following approximation: keT  gowoy/cosechvyB/2
2 2
giog . - oo - g50q (10
> —qc;rcje'q'(RJ‘Rk)cEck=E q—qcfcj. (6) _ _ _ _
kg N ia N wheren, is the density of carriers. Furthermore, it should be

noted that we needd? csch(Bwy/2)>1 for Eq. (10) to be

. L. 2 ..
The above relationship is exact whefjwg is independent  \51ig. Now the mobility, for a system of nondegenerate elec-

of q. trons, is given by the Einstein relation=q.D 8 whereD is
The single small polaron eigenstate of the Hamiltonian inthe diffusivity. In the region of interest, i.e., around the
Eq. (2) is given by metal-insulator transition, we expect band narrowing to be

g i . i sufficiently strong so that the Fermi energy is not much
lyiy=e7D)[...ng..)=lXi|...ng...), (7 larger than the thermal energy. Since the hopping-regime
diffusivity is given byDy,,= a%/(67), we readily obtain the

where |i) is the molecular orbital eigenstate at siteind ST
scattering timer to be

|...ng...) is the product of the eigenstates of the mol-

ecules at various sites executing simple harmonic motion 1 [t
with phononic occupation numbag . The above wave func- = TIDE e 295 tanh(Bwg/4) (11)
tion is exact in the limit of the ratio of the hopping term to 67  gowgycosechnyB/2

the binding energy being vanishingly small.

In Eq. (4) the first term involving the hopping term is the The above expression far corresponds to the nonadiabatic
small parameter. If the dominant transport mechanism corrg€gime(or t<wg). As for the adiabatic case, is given by
sponds to diagonal processés., number of phonons in 1

0

each stateﬁ remains unchangedghase coherence is main- = _67295 tanh(Bwold) (12)
tained when the particle propagates. In fact then the particle 67 27

moves like a Bloch electron and forms energy bands With
energy being given by the thermal average of the first term in
Eq. (4) (see Appendix A for detai)s 1w

— = _e*ggwoﬁ/{ (13

hich for high temperatures reduces to the classical case

67 2w

with ggwolz corresponding to the activation energy.
The diffusivity for band conduction is given by

= —2tDEZ [cogk,a)+cogk,a)+ - - ~]n|;(X;’XJ-> ) ,

K Dyang=(|VEQ|*7)/d=27a’tpge™ 200 eo?,  (14)

= _ztDEE [cogkea) +cogkya)+ - - - Ing whered is the dimension of the system amds given by the
K same expression as in the hopping cse.
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Then based on Friedman’s wdPkwe take the total mo- For small values otDE/2g§w0, on using the constraint that
bility () to be the sum of the band mobility and the hop-=;B?(j)=1, one obtains from the above equatioB60)
ping mobility and hence the total resistivity pH n.qeu) ~1 and
to be given by

t
4n  [er? ¢ Bwo B(j)~ s @
———=Pwg T;ex —2 fcosec N 2Nflz waga[l—COS(qR,)]
q

ncqgazp 0
ex;{ -2 0tan|‘(@) ] , (15 by Gosar®

Using the above eigenstaf#;) for the small polaronic
where =g2. Here we note that Friedman’s analysis alsostate and again using the procedure outlined in Appendix B
accounts for how an electron may seem localized yet it cafor deriving the conductivity in the localized regime, one
have translation invariance symmetry intact—the reason besbtains[on neglectingB(j) for j# 0 due to its small contri-
ing that the mobility is the sum of the hopping and bandlikebution] the same expression for conductivity but with the
mobilities and hence will always have a component, no matiattice distortiongg renormalized
ter how small, that is metallic.

2

1+ —
2

MS

N for |I52j|=a. The above results are similar to those obtained

1-e Ao gitde ,ZN =
Rqo—aa(w)]_ 6w ﬁz C(l_C)a v 7T/’y

IV. SMALL POLARON PICTURE WITH FINITE
BANDWIDTH EFFECTS

% e—z”sT+Zs(— i12)+ wpBl2— (,)2/(4})' (22)
We will now include finite bandwidth effects in our small
polaronic picture. However, we will still treat the ratio where
tDEIZQSwO as small. The polaronic wave function now .2 .
spreads and barely extends to the nearest-neighboring sites. 3= | ;| cothﬁgq, 23)

Then the eigenstate of the nearly small polaron is given by q
(see Toyozawa’s paper alép

D=2 NGl2A(Ng+ e 'eat+Nge'lea],  (24)

(W) =2 BO)Ii—=HXl...ng...). (16) g
: and
whereX; is given by
- =2 Ngl2ING(Ng+1)]¥20?, (25)
7<i=exr{2 e Ragag—al |- (17) o
a with Xg=e'9"Ri(1—€'9"%) a;. Here it should be pointed out

that the authors of Ref. 10 did not take into account the

B(j) and a; are to be determined by minimizing the single renormalizatio'n of\g due to .the finite bandwidth efffects.
small polaronic energy. Upon taking the expectation value offhey also failed to recognize thags>|ex—eg|, while
the Hamiltonian with respect to a small polaron state of mo£valuating the integral with respect to time in order to obtain
mentumK given by| W) =3,e" & [,) one gets the expression for. conductivity. '
Now, upon takingwg=wo and g3=g,, one obtains the

. same expression for the total resistivity given by ELH)
(P to | We)~ — _ ,

<\I’k|tDE%‘f> Cicj| Wiy~ tDE; B(HB(i—=¢) (18  \wheregis expressed as follows:

In the above equatio(j)=0 for |§j|>a. Furthermore

. (z+ 1)th]’ 6

29505

and
=95

] ot 1 Feo @R et al Al
<‘Pk|% ©q8qBaT (12 % cjcie® Nggwg@gta )IVe iy 5 being the coordination numbé&t.Here, it should be
' noted that we need 2csch(Bwy/2)>1 for Eq. (15) to be
valid. Furthermore, the optical conductivity above the metal-
insulator transition(where only the conductivity due to lo-

calized carriers dominatgs given by

RE0,q(w)]  sinh Bwl2)
where we have neglect§d~the small valued vibrational over- Ty 0—0) - Bwl2
lap factors(...né...lX?X”...na...) for i#j. Upon — 5
minimizing the polaron energy with respect ag; one ob- whereyo= fwy cosechBw/2). We note, from Eq(27), that
tains the optical conductivity scaled by the dc conductivity de-
pends only on the parameteg,.
- N Y2 B(i)2coda-R) . 20 We will now study the magnetic transition within a mean-
“a 0 2,: (1)7cosq-Ry) 20 field approximation. The magnetization ratié/Mg is not

~> wg(Ng+ ag) ~ 2N*1’22 agwidg
q q.!

x cogq-Ry)B(i), (19 _
e~ @l(4y0), (27)
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very sensitive to the type of approximati¢see Ref. 25 for a 1 T I T T T
weak Hund’s coupling treatment of the magnetization prob-
lem). The magnetization ratio is given by

M > S,exd —gusHerS,8]
S
° % exd —gugHet1S,6]

(28)

with Hgii=A(M/Mg). On using the condition that a$
—Tc we haveM/Mg—0, we get forS=3/2 the relation
Ngug=1.2kgT:. Estimating the transition temperatufe
with accuracy is difficult and we will only give an order of
magnitude estimate for it and will provide a qualitative feel
for its dependence on various physical parameters of the sys
tem. Above the transition point the electrons are localized
arons so as to minimize the free energy. At the transitionduced temperaturg/T at magnetic fielddi=0 T, H=15T, and
point the magnetic polarons align to give a ferromagnetid":30 T.

phase whose size is of the order of the size of the system. At ) o ] o ]

this point the decrease in kinetic energy because of the ele&ffective hopping integralpe is smaller in this regime. Fur-
tronic delocalization is equal to the increase in the entropidhermore, from Fig. 2 of Ref. 20 we see that evenTat

contribution to the free energy as given bel8w. =300 K (>T¢=240 K) only Q3 mode exists which prompts
us to conclude that the orbital ordering probably occurs at a

fairly higher temperature thaf.. It is also of interest to
note from Fig. 3 of Ref. 20 that extended x-ray absorption
fine-structure probes instantaneous and local distortions that
are larger than the ones observed from diffraction experi-
In the doping regime where the manganites are insulatingnents. This may explain why other probéke neutron scat-
(i.e., 5~0 or §>0.5), although there is orbital order and tering) do not show noticeable Jahn-Teller distortion at low
both orbitals enter the Hamiltonian, in the doping regimetemperatures.
0.2< 6<0.4 where CMR is observed only one orbital need Our magnetization curvell/Mg as a function of the re-
be considered. As described in a recent interesting paper uced temperaturé/T¢ (see Fig. 1 are independent of the
Khomskii 2’ the manganite system tries to lower its overall values of the various parameters of the systemtjk®& wy,
energy by entering into a ferromagnetic orbitally orderedand gy because of the mean-field nature of the approxima-
state with the same orbital being occupied at each site. Thigon. The qualitative behavior of the experimental curves is
situation is similar to what is encountered in Nagaoka-typemimicked by our calculations but the experimental values of
ferromagnetism in spin systems. When doped with a fewM/Mg rise faster withT/T; (see Ref. 15
holes, just as an antiferromagnetic spin state can become The peak in the resistivity occurs when the system goes
ferromagnetic so will an orbitally aniferromagnetic state be-from insulating behavior to a metallic behavitlowever, the
come an orbitally ferromagnetic one. In Ref. 27, it is alsopeak need not occur exactly when the hopping mobility be-
pointed out that at sizeable doping a state with 2 or d,2 comes equal to the band mobilityWhen the system be-
ordering may have lower energy than the proposed stateomes metallic the system also becomes ferromagnetic be-
where onlyd,2*id,2 2 orbitals are occupied. cause the itinerant electrons polarize the localized spins.
Based on the experimental results of Lanzeral™” we  Thus we can take the metal-insulator transition point as also
will now try to justify that only one of the orbitalsl, or ~ the magnetic transition point—a fact borne out by experi-
dy2_y2 is occupied and that the orbital ordering temperaturements(see Ref. 15
is higher than the magnetic transition temperaffggwhich From the expression for the resistivifgee Eq.(15)] it
is possible because there is no reason to expect couplirfgllows that for a given value doff w, the ratiokgTc/wq is
between the order parameters for the magnetic transition arfiked and one need not treat, as a variable when studying
the orbital ordering transition In Ref. 20, in Fig. 4 we see resistance dependence on various parameters.
that only one type of distortion of the octahedrtihe so- We will now discuss the resistivity given by EA5). The
calledQ3 normal modg seems to be relevant both above andconduction goes from a hopping type at high temperatures to
below T-. However, there are two distortions of this samea band type at low temperatures. In Fig. 2 we have shown the
type (at sites A and BaboveT. but their degree of distor- dependence of resistivity on temperature at various mag-
tion is different. We think that it indicates that the lattice netic fields. The values of the hopping integtadre taken

—N&6tpge ? ohBeo2~ — NkgTcIn 4. (29

V. RESULTS AND DISCUSSION

|20

distortion is less in the ferromagnetic domaiisgte A) that
exist even abov@ and is similar to the distortiofagain of
the sameQ; type) in the ferromagnetic region beloW, at
T<200 K. Moreover, in the paramagnetic regifsée B) the

such that the bandwidth lies in the range 1-€3/5 eV which

is a realistic range based on band-structure calculations. The
values ofgj are taken from the experimentally obtainable
activation energy fw,/2) values corresponding to tempera-

distortion is expected to be more in our picture because thtures in the range 1000 K2500 K (see Refs. 1,12 while
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FIG. 2. Plot of the resistivity in units of 4w/(ncq§a2) versus
temperatureT in three dimensions for adiabaticity parametén,
=6, g5=12, Debye temperaturE,= 500 K, and for the following
magnetic fields(i) H=0 T; (ii)) H=15 T; and(iii) H=30 T.

the chosen value of the Debye temperatilipge=500 K is
realistic, too(see Ref. 1 The general trend of the resistivity
including the drop at the MI transition &=0 T is similar
to the experimental results.On introducing a magnetic field
the system gets magnetized at temperatures higherTthan
and thus the value ob is smaller[see Eq.(26)]. Conse-
quently, the resistivity is smaller arn,max (the temperature
at which resistivity becomes maximyrmcreases.

For T=T¢, whenDyanq/Dpop>1 the magnetoresistance
Ap(H)=[p(0)—p(H)]/p(0) is given by[see Eqgs(15) and
(26)]

(z+1) t? M? Bwg
Ap(H)%l— exp — 2 _Z_ZCSC T ,(30)
29, o Mg
and whenDy,nq/Dpop<l it is given by
(z+1) t> M2 r(/}wo)
exg — ——5 — —tanh ——
265 fmE | 4
Ap(H)=1- 5
1+(M/Mg)
(31

For Bwy/2<1, on taking cschBwy/2)~2/(Bw,y) and
tanhBwy/4)~ Bwel4, if 6Bw/2>1 the following can be
shown: (i) T,max increases ag? decreasegor t?/ ] in-
creaseg and (i) for fixed values ofg3 andt?/ w3 and for
large enough
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Re o(w)/c(0)

N
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Re o(w)/c(0)

I
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FIG. 3. Plot of the scaled optical conductivity &R@v)/o(0) as
a function of frequency at various values of the renormalized
electron-phonon coupling paramet@r and for: (&) T=300 K
(=Te) and (b) T=500 K. In Table |, §=6.75 corresponds to
t/wy=6 andgi=12; §=5.89 corresponds tfwo=4 andg3=9;
and #=4.83 corresponds t wy=2 andg§=6.

(z+1) t?
2 2!

29y g
T,max increases adl increases. The above observations are
borne out by the numerical results reported in Table | where
the empty boxes correspond to cases where our approxima-
tion may not be good. We further note that for the same
value of the polaron size parameté(rwogé) the magnetore-
sistanceA p(H) increases as the adiabaticity paraméter,

increases.
In Fig. 3, we plot the scaled optical conductivity

TABLE |. Calculated values of the transition temperatilite and magnetoresistancep(H) at T for
Tp=500 K, various values dff wy and g%, and magnetic fieldsi=15 T andH=30 T.

95=6 95=9 g5=12
tlwg Ap(15T) Ap(30T) Te Ap(15T) Ap(30T) Te Ap(15T) Ap(30T) Te
2 37% 49% 297 K 34% 45% 245 K 31% 41% 228 K
3 46% 62% 400 K 48% 62% 264 K 44% 57% 237 K
4 62% 77% 295 K 58% 72% 248 K
6 81% 93% 290 K
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Re()'(w)IO'(O.) [given by Eq.(27)] as a funct.|on of the fre- _ ()(Jfr+ 5xj>=na<e*daﬁaa§ , (A2)
qguency at different temperatures. The maximum of the opti-
cal conductivity occurs ab~ "y, as expected from the for- o o
mula in Eq. (27). We note that as the value of the Where)\a:eiq'Ri(l—e‘q'ﬁ)ga/Nl/Z. Then the thermal aver-
renormalized electron-phonon coupling parameterin-  age is given by
creases, the optical conductivity curve spreads out more. We
also find that, as the temperature increases the value of the
scaled optical conductivity decreases. Furthermore, the cal- *
culated scaled curves are in qualitative agreement with ex- E (ng
periments. In the experimental situation there are two pieces<xj‘r+ 5Xj>=1'[anq:0 _
to the conductivity—one coming from transitions with elec- )
trons parallel to the core spina(-t) and another at higher 2 {ng
energy @~ twice the Hund’'s coupling energynvolving ‘ (A3)
transitions to states where the electron spins are antiparallel
to the core spins. However, since we do not allow for double )
occupancy at any site, the second piece of the optical corf2n noting that
ductivity does not appear in our calculated curves.

In conclusion, we say that we showed the importance of
finite bandwidth effects in understanding CMR within a
small polaron picture. In addition to the polaron size param-
eter studied by other authdtsye have also identified an-
other dimensionless parametghe adiabaticity parameter
and demonstrated its importance. The values of magnetoravith
sistance calculated by us compare favorably with the experi-
mentally reported ones.

B I\ T S P N
e~ Bnquge—Ng /2 }\qaqe)\qaqlna>

e ANavdng)

=
e‘“"|n>=|=2O :J—!a'ln), (A4)

112
In—1), (A5)

n!
(n—=1)!

alln)=
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APPENDIX A
) ) ) ) . o [Jul? (z/z—1)]
In this appendix we will derive the band narrowing due to S (|u|2)z'=e (A7)
phonons. The number of phonons in each statemains = 1-z °

unchanged in a diagonal transition. If this is the dominant

mechanism, then phase coherence is maintained and the elec- )

tron propagates as a bandlike particle. Using the decoupling/e obtain from Eqs(A3)—(A7)

scheme(c/c; X X;)=(c/c;)(X{X;) one obtains the single-

particle energy to be » o
(XL(ng):Hae*"‘Q‘ 126~ INgl*Ng

€= — 2tpg[cogk,a) +cogkya) + - - -]<xf+5xj) =ex;{ - (Ing¥2) coth(%”
= —2tpe(cogkea) +cogkya) + - - -) q ’ 2

X exqd — g3 coth Bwy/2)], (A1) =e S, (A8)

where |Rs|=a. We will now proceed to derive the above with Ng being the Bose-Einstein distribution function. Then
expression. Now for wg=wy andgg=go we obtain Eq(Al).
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APPENDIX B

In this appendix we will calculate the conductivity within the small polaron picture in the hopping regime.

1—e Pofe
RAo(0)] =~ | dté"(],(0],(0)

- e’ti 1—e A
%2 6w

P o fﬁmdte“"%cf(t)cj+5(t)c;r,+5,cj/)(XJ-T(t)XJ-+5(t)XjT,+5,Xj,>. (B1)
10,]5)

In the above equation, the dominant contribution is obtained kg and = §’. The first correlation function in the above
equation can be approximated by

1

N & fr(1—fp)ella et (B2)

<CJ'T(t)Cj +5(t)CJT+ 5Cj>:

wherefr; is the Fermi-Dirac distribution function. Now

Tr{e PHeMIXTX , e X, X}
Tr{e A1l

(XT(OX; 1 5OXT, X)) =

I e P 4 let_ wgt 1y -2 _tt cas
2 <”d|e Bngoga gl 2e A 3¢ e Ngage™ qe gl 120 )‘qaqe)‘an|nd)

n
_17-.4
_I]q

> (ngle #avdng)
nd:O

_Hq(l e ,Bwq)e \Aq\z(l e iogl 2 e~ Bngw q<l’] |e)\ a(e""q[ g\ d(e’i“’dtfl)md)

:Hae—\xd|2[(Na+1)(1—e‘iﬂ’&t)+Nd(l—ei“’&‘)]' (B3)
where, to obtain the last line, use has been made of the fact that

©

(1—e P 3 e frava(ngle’"™ e ng) =e~ 1N, (B4)
q

Defining

al?[(Ng+1)e™"ed + Nge'd, (BS)

Ngl2INg(Ng+1)]¥2cogd wg(t+iB/2)] and obtain from Eq(B3)

f_ dte“(c](t) e s(t)e], (X (DX AOX], 5X))= f dte“te 251e?(cf(t)c;, s(t)c], o¢))

1 : o ) ) o
= @eZSTeMIB/Z)JA dtelwtefy(tJrlB/Z)ZZ flz(l_fﬁ)el(ekfep)t
L o

~ Wc(l—c)e’zsﬁ d(—iBI2)+ wBl2— w2/(4y), (B6)

2[Nq(N + 1)]1’2w andc is the number of carriers per unit site. In evaluating the above integral we assumed
that2q|)\q|2[Nq(N +1)]1’2>1 and used the saddle-point approximation. Furthermore, use has been made of the fact that

7:8>|5k Ep| 28
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