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Available mathematical results entail the absence of a proper ordering transition taking place at finite
temperature in the cask=1, o=1.1, where the authors of the article commented on find evidence of such a
transition. Moreover, in contrast to the findings of the authors of the article, thedeca8e c=0 entails a
ground-state energy per particle diverging logarithmically with increasing sample size, hence an infinite tran-
sition temperature.

THE SETTING These three models entail a discrete degeneracy of the
ground state(DD models for shojt in contrast to them,
We present here the potential models in a slightly moredther extensively studied models are defined byaG<b or
general way, together with some relevant mathematical rea=Db, i.e., O(m)-invariant interactionsm=2, producing a
sults. Let us consider a classical system, consisting ofontinuously degenerate ground ste@® models for shojt
n-component unit vectorsl, (n=2,3) associated with a among them, let us just define the symipol for n=2, a
d-dimensional latticez?, d=1, 2; letx, denote dimension- =P, planar rotators.
less coordinates of the lattice sites, andugt, denote Car-
tesian spin components with respect to an orthonormal basis
e, . The interaction potential is assumed to be translationally A number of rigorous inequalities have been proven in the
invariant, ferromagneti@M), and, in general, anisotropic in literature, which make it possible to compare correlation

INEQUALITIES

spin space functions of different interaction modelgcorrelation
inequalities’? and others, based on them, mentioned bglow
W=Wj,=—€eW¥(r)Q, some of them involve the three DD models.
(1) The correlation function decreases with increagirig®
ie.,
Q:ijz<51Uj,nuk,n+bE Uj ok o (1)
as<n 0=<Gpg[(d, ¥, T*);r]
r=[x—xJ, W(r)=0, €>0, a=0, b=0, <Gl (d, ¥, T*)ir]
- <Gs[(d, ¥, T*);r]. ()
a’+b">0, maxa,b)=1. @) (2) By Well's inequality and its generalizatiohg®there ex-
Here e is a positive quantity setting energy and temperaturéStS a positive numbey>1 such that
scaleg(i.e., T* =kgT/e€) .and can be_scaled away .from j[he Gis[(d, W, yT*);r]<Gps[(d, ¥, T*);r]
following formulas; ¥ is a dimensionless quantity, with
W(1)=1; finally, let {,=u, 5. The correlation function re- <Gpo[(d, ¥, T%);r]

sulting from a certain model will be denoted by
Ggynl (d,%,T%);r], and its transition temperatufgossibly
zerg by ©(d,¥); heresymis a short-hand symbol tak-
ing into account the angular dependency. Since we shall be
mentioning and comparing different potential models, it is Whend=1, or whend=2 and for CD models, finite-
useful to define a compact notation for their orientationalrange interactions produce orientational disorder at all finite

gGlS[(diqliT*);r]' (4)

EXISTENCE OR ABSENCE OF PHASE TRANSITIONS

terms(Q;,; symbols to be used hereafter are temperatures, in the thermodynamic lithitt?in other words
Is for n=1, Ising model; limy_..F(T*,N)=0, VT*>0, whereF(T*,N) denotes the
A2 forn=2,a>b=0; magnetization per spin for a sample consistinggfarticles.
A3 forn=3,a>b=0. On the other hand, in two dimensions, nearest-neighbor
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(NN) interactions of appropriate anisotroD models and,
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whereas, according to the mentioned mathematical results,

in general,a>b=0) produce an ordering transition taking models defined byl=1,0>1 produce orientational disorder

place at finite temperatuf@MT for shord; A2 andA3 mod-

els in two dimensions and with NN interactions have seldom

at all finite temperatureén the thermodynamic limjt
In some specific cases where the FMT is absent, it has

been studied in the literature; previous simulation estimatefeen possible to show th&(T*,N) decreases so slowly

of their transition temperatures aé,,(d=2, NN)=1.315
+0.015(Ref. 13 and® »3(d=2, NN)=0.88+0.011*

Moreover, FM interactions possessing reflection positivit

with increasing sample size that the absence of order in the
thermodynamic limit becomes compatible with its existence

yfor a finite but macroscopic sampi&;?” which exhibits a

and of sufficiently long randé12'5can produce a FMT even Size-dependent pseudotransition temperature, eventually van-

whend=1; the inverse-power case

W(r)=gy(r)=r"977, (5

has been extensively studiéske, e.g., Refs. 12 and)lbere
the conditiono>0 is needed in order to avoid an infinite
ground-state energy per parti¢fel® and hence an infinite
transition temperature. However, the casel<so<0 has
been studied in connection  with
thermodynamic$®-22

>0

When d=1,2 and for CD models, the system exhibits

orientational disorder at all finite temperature tex=d, and
a FMT for 0<o<d;'? whend=1, the FMT survives up to
o=1 in the Ising casé?

nonextensive

ishing in the thermodynamic limit. Such a behavior has been
shown to occur for pr ind=2 and with NN interaction,
where the BerezinskKosterlitz-Thouless transition is
known to take placé>?"?8This may also be an explanation
for the findings of the authors of the article.

(2) Whend=2,0=0 (see Table lll in the article the
model produces an infinite ground-state energy in the ther-
modynamic limit, and one should expect an infinite transition
temperature, or switch to the framework of nonextensive
thermodynamics.

More precisely, even if one uses the cutoff of the authors
of the article, the ground-state energy per particle diverges
with sample sizd., as can be seen by considering the sum

Whend=1, the above mentioned results entail absence of

a FMT for bothA2 andA3 wheno>1, and existence of a
FMT for bothA2 andA3 when 0<o=<1, as well as rigorous

S<L)=p2 >0 (pP+gd) Y (6)

eZ qeZ

bounds on their transition temperatures; previous simulatiowhere the star means<Q(p®+q®)<L?/4; this becomes as-

estimates of transition temperatures @g,(d=1,0=1)
=1.04+0.02 and® p3(d=1,0=1)=0.735+0.015%3

COMPARISONS AND CONCLUSIONS

ymptotically 27 In(L/2) (see also Refs. 18 and J19n this

case one could expect a sample-size dependent pseudotransi-
tion temperature, now slowly diverging in the thermody-
namic limit. On the other hand, in the framework of nonex-
tensive thermodynamit®$22 the interaction energy to be

Comparison between the results summarized above angsed in simulation for a sample of linear sizeand for the
the article commented dif,leads to the conclusion that some power law considered here can be redefined by

aspects of it are questionable:

(1) The authors of the article find evidence of a FMT

whend=1,0=1.1[see their Eq(1) and Tables | and ]|

1

InL"

H“C(L),Zk LiGr 2, c(L)= @)
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