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The anomalous scaling in the Ginzburg-Landau model for the superconducting phase transition is studied. It
is argued that the negative sign of thexponent is a consequence of a special singular behavior in momentum
space. The negative sign gfcomes from the divergence of the critical correlation function at finite distances.
This behavior implies the existence of a Lifshitz point in the phase diagram. The anomalous scaling of the
vector potential is also discussed. It is shown that the anomalous dimension of the vector pgiental
—d has important consequences for the critical dynamics in superconductors. The frequency-dependent con-
ductivity is shown to obey the scaling(w)~ £~ 2. The predictionz~3.7 is obtained from existing Monte
Carlo data.

[. INTRODUCTION artifact of the approximations used. The situation is, how-
ever, much more subtle. The recent numerical simulations in
The superconducting phase transition has received consithe lattice of Nguyen and Sudbgives »=—0.182° The
erable attention in recent years. All this interest is due in partesults in Ref. 6 are nonperturbative, in contrast to most RG
to the experimentally larger critical region in the high- calculations. In the RG context we can cite the work of
materials'~3 This larger critical region, however, does not Bergerhoffet all” and the 1N expansiort? both nonpertur-
correspond to the inverted 3RY (1XY3 for shord univer-  bative and giving alse;<<0.
sality class' Instead, the observed critical behavior belongs From a thermodynamical point of view, the anomalous
to the ordinary 3DXY (XY; for shor) universality class, dimensionzn, of the vector potential has more far reaching
meaning that the phase transition is governed by the neutrabnsequences. Indeed, it plays an important role in a critical
nontrivial Wilson-Fisher fixed point. Concerning the chargedregime where the magnetic fluctuations are not negligible,
transition(that is, thel XY 5 behavioj, there is some progress such as in thdXY; regime. Gauge invariance allows an
from the theoretical side. Unfortunatly, the correspondingexact determination ok, in 2<d<4 dimensions. Indeed,
critical region remains experimentally out of reach. its value is given simply byy,=4—d. One important con-
Concerning thdX Y5 regime, interesting precise numeri- sequence of this result is the scaling &£,11182124wherex
cal results on the anomalous scaling dimensions have beés the penetration depth aridis the correlation length.
obtained recently by Sudband collaborators’ using a lat- In this paper we will discuss some interesting new aspects
tice version of the Ginzburg-Landd@L) model. Their re-  of the superconducting transition. We will focus the issue of
sults give a strong support to the duality scerfaftid®which  the anomalous dimensions of fields, for both the scalar field
underlies thelXY3 behavior. The aim of this paper is to and the gauge field. Our analysis should be applicable to
provide an analysis of the anomalous scaling dimensionsuperconductors in the type Il regime, where we expect a
from the point of view of field theory. An important issue to second-ordefcharged phase transitioft® In section Il the
be understood is the sign of the order parameter field anomaegativeness ofy will be shown to be a consequence of the
lous dimension,n. As argued in Ref. 11 a negativg, existence of two singularities in the scalar 2-point bare cor-
though fulfilling the inequality»>2—d, would spoil some relation function at the critical poinfCP). One singularity
important properties that must be verified in any legitimatehappens ap=0 while the other one happens at a nonzero
continuum(scaling limit. A fundamental property, the posi- momentump=p’. This second singularity is related to the
tivity of the spectral weight of the Ken-Lehmann(KL)  existence of a first-order phase transition regime. This singu-
spectral representation of the 2-point correlation function, idarity at nonzero momentum is at the origin of the negative
violated if 7<0. Kiometzis and Schakel pointed out also sign of the 7 exponent. Indeedy is negative because the
that unitarity is violated if»<<0. In fact, violation of the order parameter wave function renormalizatiopis greater
unitarity is an immediate consequence of the violation of thehan one and this happens only if the correspondiritical
positivity of the spectral weight. We should note, however,2-point correlation function has a pole at nhonzero momen-
that most renormalization groufRG) calculations give in  tum. We argue that this behavior implies the existence of a
general in the range— 1< <0 (Refs. 13-17,18,19in Lifshitz point induced by gauge field fluctuations.
d=3 (e=1 in the context of thes-expansion The only Another point of view is to study the small fluctuations
exception is the case where a mdBsoca term is added around the Halperin-Lubensky-MaHLM) mean field
explicitly for the gauge field, where the inequaligz=0 is  theory!® This is done in Sec. Ill, where the Gaussian fluc-
satisfiec?® This last situation corresponds just to the case otuations are calculated in order to study the positivity prop-
the continuum dual model where the gauge symmetry ierties of the propagators. It turns out that the propagators are
global®!1?122Sjnce in the RG calculations is only slightly ~ positive definite and no pole gi#0 is found at the CP.
negative we may wonder if such a negativeness is not just amdeed, in order to find out such a pole it is necessary to
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compute the non-Gaussian fluctuations. The analysis of the , oo e HIx-yl
Sec. Il shows that the functional integral has a well defined Z23)(x,y)=c+ Jo d,up(,u)m- 2.7

Gaussian measure.
In Sec. IV we discuss the physical consequences of theet us puty=0 for convenience. Then, when the symmetry

anomalous scaling dimension of the magnetic vector potenis broken, W(?)(x,0)—0 as|x|—%. Therefore, from Egs.

tial. After reviewing some known properties like the scaling (2.2) and(2.7) we obtain thatt=|{ ¢(0))|?> which is differ-

A~ ¢H182L20 e analyze the consequences of the magnetient from zero ifT<T., vanishing otherwise.

fluctuations for the frequency dependent conductivitfy) . Using Eq.(2.6) it follows easily that the Fourier transform

As argueddbg Fisheet al,?® in the XY; regime scales as of the bare truncated 2-point correlation function satisfies the
o(w)~[t["97272 (for the sake of generality we wrote the infrared bound® W(2)(p)<1/p2. Moreover, Griffiths corre-

scaling relation in dimension 2d<4, that is, aXYy re- L L28 T A2) )
gime). However, if the magnetic fluctuations are included '[heIatlon mequahtﬁ implies W=(p)=0. Therefore,

anomalous dimension of the vector potential is no longer
equal to zero. This implies the dimension independent scal-
ing o(w)~|t|*>"2. We point out that the scaling’=»
implied by A~¢& (v' is the penetration depth exponBi®  The jnequality(2.8) has an important consequence for the
3'30 dlcrinensmn Imdfe;:&r:;:lent, n Contras(tdwng);geldlgensmrihfrared behavior. At the CP, the bare correlation function
ependent result of th&Y, regime, v’ = »(d— . In Sec. ~ 5 o .
V we infer from the Monte Carlo data of Lidmat al. that behaves a®V(®)(p) ~1/p*~" as p'—>0 and Eq.(2.8) implies
2~3.7 in theIXY; regime, which is a translation of one therefore t_hatnzo. Note that in the above argument no
unity of the result obtained by these authoes-@.7). This reference is made to the global character of the symmetry
difference is due to the fact that the scaling(w) group. Thus, we may think that the same rulg should apply.to
~[t]"4"2° \was assumed in their Monte Carlo simulation the GL model where the gauge symmetry is local. We will
see that this is not the case. For an alternative discussion,

of the IXY5 regime. Finally, we discuss the relevance of : . .
. . o with emphasis on the geometric meaningzpfsee Ref. 30.
these ideas to the Bose-glass transftiGhin the direction The bare Lagrangian of the GL model is

perpendicular to the columnar defects, where a transverse

() 1
0o=W"¥/(p)= E (2.8

Meissner effect happers.

Il. PHASE TRANSITIONS AND THE ORDER PARAMETER
ANOMALOUS DIMENSION

1
L=2F2+(D,#) (D, 0) + Mg+ o 0l% (2.9

where F? is a short forF#”F#”, F#'=49,A,—d,A,, and

D,=d,+ieA,. At 1-loop, we obtain fod=3, T=T. and

In order to fix the ideas, let us consider first the case of @nﬂthe Coulomb gauge,A,=0,

scalarO(2) invariant field theory with bare Lagrangian

u
L=[0,p2+m?$2+ S| 4" 2.

Such a theory has a nontrivial infrared stable fixed point atVith the self-energy

d=3. The 2-point bare truncated correlation function is di-

agonal in the color indices and is defined by

WE(x,y)=Z@(x,y) = (p()) o (y)), (2.2

where
ZA(x,y)=(p(x) ' (y)). (2.3
The 2-point functionZz(® has the Fourier representation
Z®(xy)= f T evenzy, 24
L (2/n-)d L

which satisfies the KL spectral representatitn:

p(u)

7@(p)=co%(p) + L”dﬂm, 25

wherep is the spectral density satisfying

fowdupw:l. 2.6

From Eq.(2.5 we obtain

. 1
W) (p)= SV (2.10
pe+m°+3(p)
2 _ m + 2\ _ e2 2_ 2
(p)_ Z(U e) 477|p|(p m)
T p2_m2
X §+arcta W . (2.11

In writing the above equations we have absorbed in the bare
mass a contribution with a linear dependence on the ultravio-
let cutoff A. Thus, m?=t, wheret=(T—T.)/T, is the re-

duced temperature. The correlation functidi®(p) at p
=0 gives the susceptibility. The divergence of the suscep-
tibility at T=T, signals a phase transition. In terms of the
correlation Iength§=mr_1, wherem, is the renormalized
mass, the susceptibility is written a6=Z¢§2, whereZ,, is
the wave-function renormalization. Here is the crucial point.
For the O(2) model, the 2-point correlation function di-
verges aff . only for p=0. The same is not true for the GL
model. In fact, the above 1-loop calculation shows that for
|p|=p’ =€%4 the 2-point correlation function also diverges
at T.. Thus, we can define a second susceptibility

=W®)(p'). The existence of a second poleWf? implies
thatZ,>1. Thus, the infrared bound E¢R.8) des not hold.
If moreover we assume that the phase transitiqn=a0 is of
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second-order, we obtain thgi<0. The same result holds at dimensionless couplingsu(u)=u,(u)/x and €%(u)
2-loops and also in the W/expansion. A negative value of ~ =e’(u)/u, with u, and e, being the renormalized counter-

is also found by means of non-perturbative Rf. 17 and  parts ofu ande. The regions of first- and second-order phase
in a recent Monte Carlo simulatiéhThis strange behavior transition are separated by a line connecting the Gaussian
needs an explanation and an interpretation. Note that ndtxed point and the so called tricritical fixed poitit.This

only the right hand side of Eq2.9) is violated but also its fixed point is infrared stable along the tricritical line and
left hand side. The striking feature of this behavior is thatunstable in the the direction of For momentum scales such
|$(p)|>=0 for all p but W (p)={(|h(p)|>)<0 if 0<|p| that the couplings are at the left of the tricritical line, the
<p'. The average of the everywhere positive operatoPhase transition is of first-order. Concerning the sigmpoit

|(p)|? is not positive everywhere. Thus, it seems that the™ust be observed the following crossovers. The first one

corresponding effective Gaussian measure is not positiveorresponds to zero charge?.=0. In this case the flow is

definite and, as a consequence, the functional integral is né@wards theXY; fixed point and»=0 (=0 at 1-loop.

well defined. Of course, the KL representation cannot holdrhis situation is consistent with the infrared bou@d). The

with a positive measure. other crossover corresponds to the case where the couplings
Let us explain the meaning of the susceptibility. The  are over the ftricritical line. In this situation the flow is to-

fact thatVV(Z)(p’) diverges afl, means that a phase transi- wards the tricritical point. Both crossovers give a critical
C . . . . oy
tion happens at finite distances. This is a typical feature of behavior consistent with a second-order like phase transition.

first-order phase transition. The first- and second-order phadk Must be stressed, however, that tree second-order
transition can be described at a saffe but at different phase transition is governed by the infrared stable fixed

momentum scalesy=0 for the second-order phase transi- point. The described crossovers are infrared stabIAe only
tion and|p|=p’ for the first-order one. This shed new light along the crossover lines, the tricritical line and the lete

in the RG fixed dimension approach at the CP of Refs. 19= 0. The critical regime associated to the tricritical line leads
and 20, where two momentum scales are considered, defit® 7<0, in contrast to theX'Y; crossover.

ing in this way two characteristic lengttisote that forT The singularity a{p| =p’ can be interpreted in terms of
<T, there are two lengths in the problem, namely, the corihe effective action. We will write the effective action in
relation lengthé and the penetration deptt). For T=T., = Mmomentum space rather than in real space. Thysaifida,,

the fixed point structure is such that both phase transitio@re the respective Legendre transformed fieldg @indA,, ,
regimes are contained in the RG flow diagram determined bye havel = [d3p/(2)°T (p), with

T L @)z (02 L@ 073 (013
F(p)=5I(p)ei(p)ei(—p)+ 515 (P)au(P)aL(—p)

*2

11 d3q d3k ca) - -~ ~
f 3 (P, A, p =K, q+K) (8 i+ i Gy + 6t Sj) @i(P) @ () (P~ K) ¢y (0 + )
(27) (27)

d3k -~ ~ -~ o~
+J AL (p—k,p.k)a,(p—K)ei(p)ea(k)

(2m)?
+1J' d3q d3k 0( —k,q+K) ei(p)ei(qa,p—Ka,g+k) +(h.o.t.) (2.12
2 (277)3 (271_)3 p.q.p e ei(P)ei(d)a,p «(d .0.t.), )

where summation over repeated latin and greek indices B pure scalar models this can happen only if higher deriva-

implied and we have writteng=(¢,+i¢,)/\2. Since tive Gaussian terms are present already at the tree Fevel.
'f(z)(p): 1/\7\/(2)(p) we have that at the CP the first term of Remarkably, in the GL modehe Lifshitz point is induced by

. . . the gauge field fluctuatior™s The existence of a tricritical
the right-hand sidéRHS) of Eq. (2.12) vanishes whenp| point in the GL model was established by Kleiffassing a

=P’ and is negative when Olp|<p’. Of course, when  isorder field theory obtained from duality arguments. In the
T'®)(p) is negative we must have a positiVé*) to ensure disorder field theory scenario, an effective local scalar La-
the stability of the effective action. In this paper we will not grangian with disorder parameter is constructed. It has
enter into the details of the stability conditions with respectbeen shown that the effective quartic coupling in this model
to the 4-point function. changes sign at some point in the coupling space of the origi-
The physical picture that emerges from the behavior ohal model. This characterizes an ordinary tricritical behavior
the 2-point function is that of a tricritical Lifshitz poifit=2*  in the disorder field theory. In the original GL model this
In fact, in scalar models for the Lifshitz points the 2-point tricritical point is of a Lifshitz type and that is the physical
function vanishes at the CP for a nonzero momentum valudnterpretation of the negative sign aof. Note thatzg,, is
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positive in the disorder field theoR:!?In scalar theories of  sign is generated in the free energy. The corresponding phase
the Lifshitz point the sign ofy is negative in dimensions transition is found to be weakly first order. RG calculations
d.—1 whered, is the critical dimension of the model. For using the e-expansion confirms this scenario since no
instance, a fixed dimension calculation in @&léxpansion charged fixed point arises. A stable flow towards the infrared
gives for the isotropic Lifshitz point il=7 (d.=8 in this  happens only at zero charge and X¥; regime follows by
case 7,,~—0.08N.% taking e=1. The XY fixed point is unstable for arbitrarily

A Lifshitz point behavior implies the existence of a small charge. This behavior remains even at 2-loop otter.
modulated regime for the order parameter. This modulate€harged fixed points are obtained only by considering an
regime should correspond to the type Il regime and is analoerder parameter wittN/2 complex components and in the
gous to the helical phase in scalar models of the Lifshitdimit of N sufficiently large. Indeed, at 1-loop order charged
point. The type | regime is analogous to the ferromagnetic ofixed points are obtained N> 365.9. Interestingly, the criti-
uniform order parameter phase in these models, the normahl value ofN decreases considerably already at 2-I3®ps
regime being the analog of the paramagnetic phase. Thand charged fixed points are found fér-36. More recently,
phase diagram should be therefore quite similar to the phadey using Paddorel resummation of the-expansion, Folk
diagram of the RS modél. The phase diagram of the RS and Holovatck® succeeded in obtaining charged fixed points
model is drawn in thd — X plane whereX=S/R is the ratio  for the physical valueN=2.
between the couplingSandR. In this phase diagram the line In this section we will evaluate the Gaussian fluctuations
separating the helical phase from the ferromagnetic phase &ound the HLM mean-field theory. These fluctuations will
a first order line. In the case of superconductors we shouldot suffice for changing the order of the transition, and so it
draw the phase diagram in @—«? plane, wherex?>  will remains first-order. Our interest here is the positivity
=u/2e? is the square of the Ginzburg parameter. The phasegroperties of the 2-point correlation function in this
paramagnetic, ferromagnetic and helical of the RS model arBuctuation-corrected Gaussian approximation. This amounts
replaced respectively by normal, type | and type Il. Experi-in calculating the propagators associated to the HLM mean-
mentally, the modulated nature of the order parameter in théeld solution. Once this is done, the Gaussian measure nec-
type Il regime is seen upon applying an external magnetiessary to compute the non-Gaussian fluctuations is deter-

field and corresponds to the Abrikosov vortex latfige. mined. If this measure is not positive definite, then the
functional integral is not well defined and all the theory is
1. WAVE FUNCTION RENORMALIZATION FROM inconsistent. We will see that this is not the case.
FLUCTUATIONS AROUND THE HALPERIN-LUBENSKY- Let us write ¢=(¢1+i¢2)/\/§. By integrating out ex-
MA MEAN FIELD THEORY actly the gauge field we obtain

The HLM mean-field theor? neglects the order param- .
eter fluctuations while including the gauge field fluctuations. Z=lim J D ¢1D ¢oexp(— Senr), (3.9
For an uniform order parameter, the gauge field is integrated a-0
out exactly and a term proportional tg|® with negative  where the effective action

1 . 2 .
Seff=§Trln[MW(x—y;a)]—e§f d3XJ A*Y[$1(X) 7}, h2(X) = b2(X) 7, $1(X)]D (X = y; @) $1(Y) I} pa(y)

%¢1(—A+5m2+m2>¢1+ %¢2<—A+6mz+mz>¢2+ s(@re (62

—¢2(Y)33’,¢1(Y)]+J d®x

where we have introduced a mass countertémd, necessary to cancel tadpole divergen@es below. The operatoD is
the inverse oM, the latter being given by

M, (x—y;a) = S (x—y){[ - A+eX(pi+ $3)18,,+(1—1/a)d,d,}, (3.3

wherea is the gauge fixing parameter. In E&.1), the limita— 0 is taken in order to inforce the Coulomb gauge condition.
Now, we consider small fluctuations arougig= v &;1, wherev = const is the solution of

5Seff _
5

In this case it is legitimate to trunca&; up to quadratic order in the fluctuating fieldg, and 6¢,. The result is

0. (3.4

seﬁ=82#“”+% f d f dy{ 81 (X)[(— A+ om?+3m?+m?+€°D,,(0))6%(x—y) ~ 26"M?D,,, (X~ Y) D, (y = X) 1 8¢b1(Y)

+8¢o(X)[ (= A+ dm?*+m?+m?+e?D ,,(0)) 33 (x—y) = M35 D, (x—Y) 18¢2(Y)}, (3.5
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wherem?=uv?/2, M2=¢e?2 and S*:M

HLM mean-field free energ}’ Also,

D (x—y)=f i P D, (p) (3.6
* (2m)3 *
is the operatob for ¢,=5¢,=0. In the Coulomb gauge,
= 1 PPy
D,uv(p): p2+ M2 uv p2 , (37)
which implies
f d3XJ APy LD (X —Y) Bha(X) Spa(y) =0.
(3.9

Now we see that the counterterdm? is necessary in order
to cancel the linear cutoff dependence coming from the tad

pole termeZDM(O). Therefore, theS¢, propagator is

Gu(p)= (3.9

p2+m2+3m2+34(p)
where the self-energ¥ ,,(p) is given by

2 2n 1 2 d3k 3 I3
Z14(p)=e°D,,(0)—2eM f(ZW)BDW(k—p)DW(k)-

(3.10
By evaluating the integrals in E43.10 we obtain

eM M p M? p'+8M*+4M?p?
2uP)=-5 = s 1t >
T T 6p 8mpM
X arctal L —(p2+M2)2"rcta pZ_MZ
2M 8mpM? < 2pM ||
(3.10

The ¢, propagator is given simply by

GoAp)= (3.12

2 .
—. eM
2 2 2
+mP+ml— ——
P 2

Note that the above calculation differs from the usual
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G,,(p) is massless. Then, the fluctuating fieddh, is the
would-be Goldstone boson of the theory. When?
=e®/(87?u) the square root in Eq(3.14 vanishes. This
value ofm? corresponds to a point of nonanalyticity ofas
a function ofm?. Indeed, the derivative af with respect to
m? diverges form?=e%(87%u). Thus, if we expand the
denominator ofG,; for p small we obtain

1

Gu(p)= v

Sy

2 y
— €M
p?+m®+3m’— ——+0(p")

(3.15

and we see that the susceptibilitigs=G;;(0) (i=1,2) di-
verge together itn?=e®/(872u). This singular behavior of
the susceptibilitiess not associated to any phase transition.
It is just an artifact of our fluctuation-corrected Gaussian
approximation. The singularity of; for m?=e®/(872u) is
inherited from the nonanalytic behavior offor this value of

m?2. Once the non-Gaussian fluctuations are taken into ac-
count and a full renormalization of mass and coupling con-
stants is done, this artifact disappears. On the other hand, if
m?<e%/(87?u), x, diverge but noty;. In this fluctuation
induced phase transition scenatie=(¢) is different from
zero at the CP, a typical behavior of a first-order transition,
as we have already discussed in Sec. Il. Note that in this
calculation the correlation functions diverge only @t 0.

As a consequence, the wave function renormalizatitns
<1. By puttingv =€%/(ru) which corresponds tm?=0 in

Eq. (3.15, we obtain

Z ! <1
1= -
1+ iK2

12

(3.19

Therefore, the corresponding Gaussian measure is positive
definite and the non-Gaussian fluctuations can be calculated
by means of this measure. The non-Gaussian fluctuations
will ultimately makeZ,>1, violating again the KL represen-
tation.

IV. THE VECTOR POTENTIAL ANOMALOUS
DIMENSION AND ITS CONSEQUENCES FOR THE
CRITICAL DYNAMICS IN SUPERCONDUCTORS

One important feature of tH& Y3 universality class is the

1-loop result. In an ordinary 1-loop calculation we integratescalingh ~ £,11182'where) and¢ are the penetration depth

out the quadratic fluctuations around the solutios
(—2m?/u)*? corresponding to the tree level witA=0.

Above, we integrated oW first and then we computed the

Gaussian fluctuations around a solutiogiven by Eq.(3.4),
which already contain magnetic fluctuations. E84) have
the following solutions:

v=0,

el ! | eb o2
=_—=+—\/———2unr.
lv] 27U U N g2

Thus, in the ordered phase given by £8.14 we havem?
+m?—e?M/27=0 and therefore thed¢, propagator

(3.13

(3.19

and correlation length, respectively. This scaling contrast
with the XY; behavior, wherex ~ £22124 The reason for
this different behavior comes from the magnetic fluctuations,
which in theXY; universality class play no role. In théY;
regime the magnetic vector potential has no anomalous di-
mension. Concerning the scaling of the penetration depth, it
was argued in Refs. 11 and 18 that the vector potential
anomalous dimension contributes in such a way that we have
in general\ ~ 7479722 Thys, when the magnetic fluctua-
tions are negligeable we havg =0 and\ ~ £¢(4~2"2 imply-

ing in this way a penetration depth exponent=v(d
—2)/2 with v~2/3 whend=3. On the other hand, if we
take into account the magnetic fluctuations, we have that
na=4—d and\~ ¢ implying »' = v. The critical exponent
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v is the same in bothXY; and IXY; universality the perpendicular direction a transverse Meissner effect hap-
classe$!11921222%nd we obtain that’ ~1/3 andv'~2/3  pens, implying in this way a zero field like situation. The
for the XY5 andIXY5 regimes, respectively. Note that only Bose-glass transition is an example which shows that at high
the thermodynamic exponents coincide in these ¥X¥re-  fields the magnetic thermal fluctuations may be experimen-
gimes. As we have already seen, the anomalous dimensiotally important and observable.
are not the same.

The frequency-dependent conductivity(w) scales V. CONCLUSION
differently in a magnetic fluctuation regime. FOK T, we
have thato(w)~e?ps/(—iw), where pg is the superfluid
density. Near a charged fixed point we hafe- £~ 72 and,
therefore,

In this paper we have discussed some new features of the
superconducting phase transition. The important role of the
anomalous dimensions has been emphasized. However, the
critical behavior disussed in this paper is relevant only near a

o(w)~ g2+ 2 (4.1  charged fluctuation critical regime. The relevance of the

ideas discussed here to high-temperature superconductors

where z is the dynamical exponent and we have usedHTSC’s) may be questioned. Usually the HTSC'’s have very
the Josephson relatiqn~ £~ %' Again, by neglecting  high values of, typically in the range 70—100. For this
the magnetic fluctuations we recover the usual sc&fing. reason, it is generally assumed that magnetic fluctuations do
The XY scaling proposed by Fishest al*® was verified not play an important role. This is in fact the case in the
recently by Wickham and Dorséy,who calculateds(w)  extremetype Il limit, that is, x—=. For extreme type I
using the Kubo formula t®©(e€?) in the e=(4—d) expan-  superconductors, the local magnetic induction equals the ap-

sion. plied magnetic field and the constraifitx A=H applies®?
Since in the magnetic fluctuation regimg,=4—d, we |n the presently accessible critical region, the HTSC'’s seem
obtain to be well approximated by an extreme type Il limit. In this
s case theX'Y; regime dominate at zero or low magnetic fields.
o(w)~ &7, (4.2)  The XY, behavior has been probed with considerable confi-

: ,3,46
a result independent of the dimension. This independence (%‘?”CG in YBaCu;0;_; (YBCO) crystal sampleé™“° For
the dimension in the scaling behavi@t.2) seems to be a 1SRCaCy0g. ; (BSCCO, however, the situation is less

special feature of the charged fixed point. Note that alread lear due to the experimental qiffipulties involved. Specific
in the case of the penetration depth we have obtained eat measurements seem to indicate that the universality
—» instead of the dimension dependent result= v(d class is noiX Y3.*” The apparent failure of theY; scaling in
~2)/2 of theXY regime. The scaling given in E¢.2) has BSCCO seems also to be corroborated by the penetration

been obtained before by M&twho used a completely dif- depth datd” However, inhomogeneities and finite size ef-
ferent argument. Our argument is much more simple an{lﬁas. can play a significant r_ole4én BSCCO and it may happen
follows from theexactvalue of the vector potential anoma- at it obeys also XYj scaling.

lous dimension. However, the dynamical exporeistnot be The IXY, behe_mor, on the other har_1d, seems to be not
the same as in the uncharged model, as was claimed in R resently accessible. In fact, penetration depth data from

- . . . r_ 3
43. The Monte Carlo simulations of Lidmaat al** show BCO fulfill very well the scaling relationv’ = v/2,° agree-

very clearly that this is not the case and that the valugisf "9 With the XY5 behavior. Thus, in order to check the the-
enhanced by magnetic fluctuations. However, Lidregal. ~ Oretical predictions concerning thi; regime, we have to
fitted their Monte Carlo data tor~|t|*(©2-2 instead of compare these _mamly Fo Monte. Carlo simulations. Fo_r in-
using the scaling4.2). Since ya=1 in d=3, we conclude stance, the scaling relatiori = » with v~2/3 was well veri-
that the numerical result of Ref. 44 should be shifted to obfi€d by Olsson and Teitéf. The value~—0.18 was ob-
tain z~ 3.7 instead oz~ 2.7. This surprisingly high value of t@inéd by Nguyen and SUQ?OThe dynamical exponert

z could be, however, a matter of controversy. It may be aV@s studied by Lidmaet al.™ both in theXY; and in the

consequence of the way the authors of Ref. 44 modeled the Y3 regimes. However, as discussed in Sec. IV, they as-
|-V characteristics of théXY regime. For instance, Am- Sumed the same scaling for the frequency dependent conduc-
pare’s law is neglected in their approach. tivity in both regimes. This does not invalidate their data,

From the experimental side, the work of Boathal *® fit which remain useful and lead to the predictioa3.7 instead

reasonably the value=2.7 but they assume also a scaling ©f Z~2.7- While presently there is little hope in checking
with 7,=0. Anyway, in the case of Ref. 45 it is more prob- these predictions in zero field experiments, further Monte

able that the critical region probed does not correspond to &0 simulations can be done in order to obtain a definitive
IXY universality class. In this casg,=0 would be a le- answer. As far as real experiments are concerned, we have

gitimate assumption. pointed out that the scaling given in E@.2) holds for the
The scaling Eq(4.2) is also relevant in other situations. condcutivity perpendicular to the columnar defects in a

For example, in the Bose-glass transition the conductivit))?’os_e'glass transitio??:”Unfortgnately, in this nonzero field
perpendicular to the columnar defects is argued to obey ggime we are unable. to gstlmate the'valuezcyf/lth the .
scaling exactly as in Eq4.2).2%%7 Although Eq.(4.2) is a arguments presented in this paper. It is worth to mention,
zero field scaling, it should apply in the nonzero field situa-however, that an experimental valae-5.3 was probed re-
tion of the Bose-glass transition in the direction perpendicucently by Kleinet al* for the Bose-Glass transition in the
lar to the columnar defects but not in the longitudinal direc-fully isotropic compound (K,Ba)Bi@ with columnar de-
tion. The reason for this behavior comes from the fact that irfects.
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