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Anomalous dimensions and phase transitions in superconductors
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The anomalous scaling in the Ginzburg-Landau model for the superconducting phase transition is studied. It
is argued that the negative sign of theh exponent is a consequence of a special singular behavior in momentum
space. The negative sign ofh comes from the divergence of the critical correlation function at finite distances.
This behavior implies the existence of a Lifshitz point in the phase diagram. The anomalous scaling of the
vector potential is also discussed. It is shown that the anomalous dimension of the vector potentialhA54
2d has important consequences for the critical dynamics in superconductors. The frequency-dependent con-
ductivity is shown to obey the scalings(v);jz22. The predictionz'3.7 is obtained from existing Monte
Carlo data.
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I. INTRODUCTION

The superconducting phase transition has received con
erable attention in recent years. All this interest is due in p
to the experimentally larger critical region in the high-Tc
materials.1–3 This larger critical region, however, does n
correspond to the inverted 3DXY (IXY3 for short! univer-
sality class.4 Instead, the observed critical behavior belon
to the ordinary 3DXY (XY3 for short! universality class,
meaning that the phase transition is governed by the ne
nontrivial Wilson-Fisher fixed point. Concerning the charg
transition~that is, theIXY3 behavior!, there is some progres
from the theoretical side. Unfortunatly, the correspond
critical region remains experimentally out of reach.

Concerning theIXY3 regime, interesting precise numer
cal results on the anomalous scaling dimensions have b
obtained recently by Sudbo” and collaborators5–7 using a lat-
tice version of the Ginzburg-Landau~GL! model. Their re-
sults give a strong support to the duality scenario4,8–10which
underlies theIXY3 behavior. The aim of this paper is t
provide an analysis of the anomalous scaling dimensi
from the point of view of field theory. An important issue
be understood is the sign of the order parameter field ano
lous dimension,h. As argued in Ref. 11 a negativeh,
though fulfilling the inequalityh.22d, would spoil some
important properties that must be verified in any legitim
continuum~scaling! limit. A fundamental property, the posi
tivity of the spectral weight of the Ka¨llen-Lehmann~KL !
spectral representation of the 2-point correlation function
violated if h,0. Kiometzis and Schakel12 pointed out also
that unitarity is violated ifh,0. In fact, violation of the
unitarity is an immediate consequence of the violation of
positivity of the spectral weight. We should note, howev
that most renormalization group~RG! calculations give in
generalh in the range21,h,0 ~Refs. 13–17,18,19! in
d53 (e51 in the context of thee-expansion!. The only
exception is the case where a mass~Proca! term is added
explicitly for the gauge field, where the inequalityh>0 is
satisfied.20 This last situation corresponds just to the case
the continuum dual model where the gauge symmetry
global.9,11,21,22Since in the RG calculationsh is only slightly
negative we may wonder if such a negativeness is not jus
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artifact of the approximations used. The situation is, ho
ever, much more subtle. The recent numerical simulation
the lattice of Nguyen and Sudbo”

6 gives h520.18.23 The
results in Ref. 6 are nonperturbative, in contrast to most
calculations. In the RG context we can cite the work
Bergerhoffet al.17 and the 1/N expansion,13 both nonpertur-
bative and giving alsoh,0.

From a thermodynamical point of view, the anomalo
dimensionhA of the vector potential has more far reachin
consequences. Indeed, it plays an important role in a crit
regime where the magnetic fluctuations are not negligib
such as in theIXY3 regime. Gauge invariance allows a
exact determination ofhA in 2,d,4 dimensions. Indeed
its value is given simply byhA542d. One important con-
sequence of this result is the scalingl;j,11,18,21,24wherel
is the penetration depth andj is the correlation length.

In this paper we will discuss some interesting new aspe
of the superconducting transition. We will focus the issue
the anomalous dimensions of fields, for both the scalar fi
and the gauge field. Our analysis should be applicable
superconductors in the type II regime, where we expec
second-order~charged! phase transition.4,8 In section II the
negativeness ofh will be shown to be a consequence of th
existence of two singularities in the scalar 2-point bare c
relation function at the critical point~CP!. One singularity
happens atp50 while the other one happens at a nonze
momentump5p8. This second singularity is related to th
existence of a first-order phase transition regime. This sin
larity at nonzero momentum is at the origin of the negat
sign of theh exponent. Indeed,h is negative because th
order parameter wave function renormalizationZf is greater
than one and this happens only if the correspondingcritical
2-point correlation function has a pole at nonzero mom
tum. We argue that this behavior implies the existence o
Lifshitz point induced by gauge field fluctuations.

Another point of view is to study the small fluctuation
around the Halperin-Lubensky-Ma~HLM ! mean field
theory.13 This is done in Sec. III, where the Gaussian flu
tuations are calculated in order to study the positivity pro
erties of the propagators. It turns out that the propagators
positive definite and no pole atpÞ0 is found at the CP.
Indeed, in order to find out such a pole it is necessary
14 559 ©2000 The American Physical Society
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14 560 PRB 62FLAVIO S. NOGUEIRA
compute the non-Gaussian fluctuations. The analysis of
Sec. III shows that the functional integral has a well defin
Gaussian measure.

In Sec. IV we discuss the physical consequences of
anomalous scaling dimension of the magnetic vector po
tial. After reviewing some known properties like the scali
l;j,11,18,21,24, we analyze the consequences of the magn
fluctuations for the frequency dependent conductivity,s(v).
As argued by Fisheret al.,25 in the XY3 regime scales as
s(v);utun(d222z) ~for the sake of generality we wrote th
scaling relation in dimension 2,d,4, that is, aXYd re-
gime!. However, if the magnetic fluctuations are included t
anomalous dimension of the vector potential is no lon
equal to zero. This implies the dimension independent s
ing s(v);utun(22z). We point out that the scalingn85n
implied by l;j (n8 is the penetration depth exponent! is
also dimension independent, in contrast with the dimens
dependent result of theXYd regime,n85n(d22)/2. In Sec.
V we infer from the Monte Carlo data of Lidmaret al. that
z'3.7 in the IXY3 regime, which is a translation of on
unity of the result obtained by these authors (z'2.7). This
difference is due to the fact that the scalings(v)
;utun(d222z) was assumed in their Monte Carlo simulatio
of the IXY3 regime. Finally, we discuss the relevance
these ideas to the Bose-glass transition26,27 in the direction
perpendicular to the columnar defects, where a transv
Meissner effect happens.27

II. PHASE TRANSITIONS AND THE ORDER PARAMETER
ANOMALOUS DIMENSION

In order to fix the ideas, let us consider first the case o
scalarO(2) invariant field theory with bare Lagrangian

L5u]mfu21m2ufu21
u

2
ufu4. ~2.1!

Such a theory has a nontrivial infrared stable fixed poin
d53. The 2-point bare truncated correlation function is
agonal in the color indices and is defined by

W(2)~x,y!5Z(2)~x,y!2^f~x!&^f†~y!&, ~2.2!

where

Z(2)~x,y!5^f~x!f†~y!&. ~2.3!

The 2-point functionZ(2) has the Fourier representation

Z(2)~x,y!5E ddp

~2p!d
eip•(x2y)Z̃(2)~p!, ~2.4!

which satisfies the KL spectral representation:28

Z̃(2)~p!5cdd~p!1E
0

`

dm
r~m!

p21m2
, ~2.5!

wherer is the spectral density satisfying

E
0

`

dmr~m!51. ~2.6!

From Eq.~2.5! we obtain
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Z(2)~x,y!5c1E
0

`

dmr~m!
e2mux2yu

4pux2yu
. ~2.7!

Let us puty50 for convenience. Then, when the symme
is broken,W(2)(x,0)→0 as uxu→`. Therefore, from Eqs.
~2.2! and ~2.7! we obtain thatc5u^f(0)&u2 which is differ-
ent from zero ifT,Tc , vanishing otherwise.

Using Eq.~2.6! it follows easily that the Fourier transform
of the bare truncated 2-point correlation function satisfies
infrared bound,29 W̃(2)(p)<1/p2. Moreover, Griffiths corre-
lation inequality28 implies W̃(2)(p)>0. Therefore,

0<W̃(2)~p!<
1

p2
. ~2.8!

The inequality~2.8! has an important consequence for t
infrared behavior. At the CP, the bare correlation functi
behaves asW̃(2)(p);1/p22h asp→0 and Eq.~2.8! implies
therefore thath>0. Note that in the above argument n
reference is made to the global character of the symm
group. Thus, we may think that the same rule should appl
the GL model where the gauge symmetry is local. We w
see that this is not the case. For an alternative discuss
with emphasis on the geometric meaning ofh, see Ref. 30.

The bare Lagrangian of the GL model is

L5
1

4
F21~Dmf!†~Dmf!1m2ufu21

u

2
ufu4, ~2.9!

where F2 is a short forFmnFmn, Fmn5]mAn2]nAm , and
Dm5]m1 ieAm . At 1-loop, we obtain ford53, T>Tc and
in the Coulomb gauge]mAm50,

W̃(2)~p!5
1

p21m21S~p!
, ~2.10!

with the self-energy

S~p!52
m

2p
~u1e2!2

e2

4pupu ~p22m2!

3Fp2 1arctanS p22m2

2mupu D G . ~2.11!

In writing the above equations we have absorbed in the b
mass a contribution with a linear dependence on the ultra
let cutoff L. Thus, m2}t, where t5(T2Tc)/Tc is the re-
duced temperature. The correlation functionW̃(2)(p) at p
50 gives the susceptibilityx. The divergence of the suscep
tibility at T5Tc signals a phase transition. In terms of th
correlation lengthj5mr

21 , where mr is the renormalized
mass, the susceptibility is written asx5Zfj2, whereZf is
the wave-function renormalization. Here is the crucial poi
For the O(2) model, the 2-point correlation function d
verges atTc only for p50. The same is not true for the G
model. In fact, the above 1-loop calculation shows that
upu5p85e2/4 the 2-point correlation function also diverge
at Tc . Thus, we can define a second susceptibilityx8

5W̃(2)(p8). The existence of a second pole inW̃(2) implies
that Zf.1. Thus, the infrared bound Eq.~2.8! des not hold.
If moreover we assume that the phase transition atp50 is of
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second-order, we obtain thath,0. The same result holds a
2-loops and also in the 1/N expansion. A negative value ofh
is also found by means of non-perturbative RG~Ref. 17! and
in a recent Monte Carlo simulation.6 This strange behavio
needs an explanation and an interpretation. Note that
only the right hand side of Eq.~2.8! is violated but also its
left hand side. The striking feature of this behavior is th
uf̃(p)u2>0 for all p but W̃(2)(p)5^uf̃(p)u2&,0 if 0,upu
,p8. The average of the everywhere positive opera
uf̃(p)u2 is not positive everywhere. Thus, it seems that
corresponding effective Gaussian measure is not pos
definite and, as a consequence, the functional integral is
well defined. Of course, the KL representation cannot h
with a positive measure.

Let us explain the meaning of the susceptibilityx8. The
fact thatW̃(2)(p8) diverges atTc means that a phase trans
tion happens at finite distances. This is a typical feature
first-order phase transition. The first- and second-order ph
transition can be described at a sameTc but at different
momentum scales,p50 for the second-order phase tran
tion andupu5p8 for the first-order one. This shed new ligh
in the RG fixed dimension approach at the CP of Refs.
and 20, where two momentum scales are considered, d
ing in this way two characteristic lengths~note that forT
,Tc there are two lengths in the problem, namely, the c
relation lengthj and the penetration depthl). For T5Tc ,
the fixed point structure is such that both phase transi
regimes are contained in the RG flow diagram determined
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dimensionless couplings û(m)5ur(m)/m and ê2(m)
5er

2(m)/m, with ur and er being the renormalized counte
parts ofu ande. The regions of first- and second-order pha
transition are separated by a line connecting the Gaus
fixed point and the so called tricritical fixed point.18 This
fixed point is infrared stable along the tricritical line an
unstable in the the direction ofû. For momentum scales suc
that the couplings are at the left of the tricritical line, th
phase transition is of first-order. Concerning the sign ofh, it
must be observed the following crossovers. The first o
corresponds to zero charge,ê250. In this case the flow is
towards theXY3 fixed point andh>0 (h50 at 1-loop!.
This situation is consistent with the infrared bound~2.8!. The
other crossover corresponds to the case where the coup
are over the tricritical line. In this situation the flow is to
wards the tricritical point. Both crossovers give a critic
behavior consistent with a second-order like phase transit
It must be stressed, however, that thetrue second-order
phase transition is governed by the infrared stable fix
point. The described crossovers are infrared stable o
along the crossover lines, the tricritical line and the lineê2

50. The critical regime associated to the tricritical line lea
to h,0, in contrast to theXY3 crossover.

The singularity atupu5p8 can be interpreted in terms o
the effective action. We will write the effective action i
momentum space rather than in real space. Thus, ifw andam
are the respective Legendre transformed fields off andAm ,
we haveG5*d3p/(2p)3G̃(p), with
G̃~p!5
1

2
G̃ (2)~p!w̃ i~p!w̃ i~2p!1

1

2
G̃mn

(2)~p!ãm~p!ãn~2p!

1
1

4E d3q

~2p!3E d3k

~2p!3
G̃ (4)~p,q,p2k,q1k!~d i j dkl1d ikd j l 1d i l d jk!w̃ i~p!w̃ j~q!w̃k~p2k!w̃ l~q1k!

1E d3k

~2p!3
L̃m~p2k,p,k!ãm~p2k!w̃1~p!w̃2~k!

1
1

2E d3q

~2p!3E d3k

~2p!3
Ṽ~p,q,p2k,q1k!w̃ i~p!w̃ i~q!ãm~p2k!ãm~q1k!1~h.o.t.!, ~2.12!
va-
el.

l
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where summation over repeated latin and greek indice
implied and we have writtenw5(w11 iw2)/A2. Since

G̃ (2)(p)51/W̃(2)(p), we have that at the CP the first term
the right-hand side~RHS! of Eq. ~2.12! vanishes whenupu
5p8 and is negative when 0,upu,p8. Of course, when

G̃ (2)(p) is negative we must have a positiveG̃ (4) to ensure
the stability of the effective action. In this paper we will n
enter into the details of the stability conditions with resp
to the 4-point function.

The physical picture that emerges from the behavior
the 2-point function is that of a tricritical Lifshitz point.31–34

In fact, in scalar models for the Lifshitz points the 2-poi
function vanishes at the CP for a nonzero momentum va
is

t

f

e.

In pure scalar models this can happen only if higher deri
tive Gaussian terms are present already at the tree lev31

Remarkably, in the GL modelthe Lifshitz point is induced by
the gauge field fluctuations.35 The existence of a tricritica
point in the GL model was established by Kleinert8 using a
disorder field theory obtained from duality arguments. In t
disorder field theory scenario, an effective local scalar L
grangian with disorder parameterc is constructed. It has
been shown that the effective quartic coupling in this mo
changes sign at some point in the coupling space of the o
nal model. This characterizes an ordinary tricritical behav
in the disorder field theory. In the original GL model th
tricritical point is of a Lifshitz type and that is the physic
interpretation of the negative sign ofh. Note thathdual is
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positive in the disorder field theory.9,11,21In scalar theories of
the Lifshitz point the sign ofh is negative in dimensions
dc21 wheredc is the critical dimension of the model. Fo
instance, a fixed dimension calculation in a 1/N expansion
gives for the isotropic Lifshitz point ind57 (dc58 in this
case! h l4'20.08/N.36

A Lifshitz point behavior implies the existence of
modulated regime for the order parameter. This modula
regime should correspond to the type II regime and is an
gous to the helical phase in scalar models of the Lifsh
point. The type I regime is analogous to the ferromagnetic
uniform order parameter phase in these models, the no
regime being the analog of the paramagnetic phase.
phase diagram should be therefore quite similar to the ph
diagram of the RS model.37 The phase diagram of the R
model is drawn in theT2X plane whereX5S/R is the ratio
between the couplingsSandR. In this phase diagram the lin
separating the helical phase from the ferromagnetic phas
a first order line. In the case of superconductors we sho
draw the phase diagram in aT2k2 plane, wherek2

5u/2e2 is the square of the Ginzburg parameter. The pha
paramagnetic, ferromagnetic and helical of the RS model
replaced respectively by normal, type I and type II. Expe
mentally, the modulated nature of the order parameter in
type II regime is seen upon applying an external magn
field and corresponds to the Abrikosov vortex lattice.38

III. WAVE FUNCTION RENORMALIZATION FROM
FLUCTUATIONS AROUND THE HALPERIN-LUBENSKY-

MA MEAN FIELD THEORY

The HLM mean-field theory13 neglects the order param
eter fluctuations while including the gauge field fluctuatio
For an uniform order parameter, the gauge field is integra
out exactly and a term proportional toufu3 with negative
d
o-
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r
al
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se
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ld

es
re
-
e

ic

.
d

sign is generated in the free energy. The corresponding p
transition is found to be weakly first order. RG calculatio
using the e-expansion confirms this scenario since
charged fixed point arises. A stable flow towards the infra
happens only at zero charge and theXY3 regime follows by
taking e51. The XY fixed point is unstable for arbitrarily
small charge. This behavior remains even at 2-loop orde39

Charged fixed points are obtained only by considering
order parameter withN/2 complex components and in th
limit of N sufficiently large. Indeed, at 1-loop order charg
fixed points are obtained ifN.365.9. Interestingly, the criti-
cal value ofN decreases considerably already at 2-loop39

and charged fixed points are found forN.36. More recently,
by using Pade´-Borel resummation of thee-expansion, Folk
and Holovatch16 succeeded in obtaining charged fixed poin
for the physical valueN52.

In this section we will evaluate the Gaussian fluctuatio
around the HLM mean-field theory. These fluctuations w
not suffice for changing the order of the transition, and s
will remains first-order. Our interest here is the positivi
properties of the 2-point correlation function in th
fluctuation-corrected Gaussian approximation. This amou
in calculating the propagators associated to the HLM me
field solution. Once this is done, the Gaussian measure
essary to compute the non-Gaussian fluctuations is de
mined. If this measure is not positive definite, then t
functional integral is not well defined and all the theory
inconsistent. We will see that this is not the case.

Let us write f5(f11 if2)/A2. By integrating out ex-
actly the gauge field we obtain

Z5 lim
a→0

E Df1Df2exp~2Seff!, ~3.1!

where the effective action
n.
Seff5
1

2
Tr ln@M̂mn~x2y;a!#2

e2

2 E d3xE d3y@f1~x!]m
x f2~x!2f2~x!]m

x f1~x!#D̂mn~x2y;a!@f1~y!]n
yf2~y!

2f2~y!]n
yf1~y!#1E d3xF1

2
f1~2D1dm21m2!f11

1

2
f2~2D1dm21m2!f21

u

8
~f1

21f2
2!2G , ~3.2!

where we have introduced a mass countertermdm2, necessary to cancel tadpole divergences~see below!. The operatorD̂ is
the inverse ofM̂ , the latter being given by

M̂mn~x2y;a!5d3~x2y!$@2D1e2~f1
21f2

2!#dmn1~121/a!]m]n%, ~3.3!

wherea is the gauge fixing parameter. In Eq.~3.1!, the limit a→0 is taken in order to inforce the Coulomb gauge conditio
Now, we consider small fluctuations aroundf i5vd i1, wherev5const is the solution of

dSeff

df i
50. ~3.4!

In this case it is legitimate to truncateSe f f up to quadratic order in the fluctuating fieldsdf1 anddf2. The result is

Seff5Seff
HLM1

1

2E d3xE d3y$df1~x!@„2D1dm213m̄21m21e2Dmm~0!…d3~x2y!22e2M2Dmn~x2y!Dnm~y2x!#df1~y!

1df2~x!@„2D1dm21m̄21m21e2Dmm~0!…d3~x2y!2M2]m
x ]n

yDmn~x2y!#df2~y!%, ~3.5!
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wherem̄25uv2/2, M25e2v2 and Se f f
HLM corresponds to the

HLM mean-field free energy.13 Also,

Dmn~x2y!5E d3p

~2p!3
eip•(x2y)D̃mn~p! ~3.6!

is the operatorD̂ for df15df250. In the Coulomb gauge

D̃mn~p!5
1

p21M2 S dmn2
pmpn

p2 D , ~3.7!

which implies

E d3xE d3y]m
x ]n

yDmn~x2y!df2~x!df2~y!50.

~3.8!

Now we see that the countertermdm2 is necessary in orde
to cancel the linear cutoff dependence coming from the t
pole terme2Dmm(0). Therefore, thedf1 propagator is

G11~p!5
1

p21m213m̄21S11~p!
, ~3.9!

where the self-energyS11(p) is given by

S11~p!5e2Dmm~0!22e2M2E d3k

~2p!3
D̃mn~k2p!D̃nm~k!.

~3.10!

By evaluating the integrals in Eq.~3.10! we obtain

S11~p!52
e2M

2p
2e2F M

4p
2

p

8
2

M2

16p
1

p418M414M2p2

8ppM2

3arctanS p

2M D2
~p21M2!2

8ppM2
arctanS p22M2

2pM D G .

~3.11!

The df2 propagator is given simply by

G22~p!5
1

p21m21m̄22
e2M

2p

. ~3.12!

Note that the above calculation differs from the usu
1-loop result. In an ordinary 1-loop calculation we integra
out the quadratic fluctuations around the solutionv5
(22m2/u)1/2 corresponding to the tree level withA50.
Above, we integrated outA first and then we computed th
Gaussian fluctuations around a solutionv given by Eq.~3.4!,
which already contain magnetic fluctuations. Eq.~3.4! have
the following solutions:

v50, ~3.13!

uvu5
e3

2pu
6

1

u
A e6

4p2
22um2. ~3.14!

Thus, in the ordered phase given by Eq.~3.14! we havem2

1m̄22e2M /2p50 and therefore thedf2 propagator
-

l

G22(p) is massless. Then, the fluctuating fielddf2 is the
would-be Goldstone boson of the theory. Whenm2

5e6/(8p2u) the square root in Eq.~3.14! vanishes. This
value ofm2 corresponds to a point of nonanalyticity ofv as
a function ofm2. Indeed, the derivative ofv with respect to
m2 diverges form25e6/(8p2u). Thus, if we expand the
denominator ofG11 for p small we obtain

G11~p!5
1

S 11
5

24p

e2

M D p21m213m̄22
e2M

p
1O~p4!

,

~3.15!

and we see that the susceptibilitiesx i5Gii (0) (i 51,2) di-
verge together ifm25e6/(8p2u). This singular behavior of
the susceptibilitiesis not associated to any phase transitio
It is just an artifact of our fluctuation-corrected Gaussi
approximation. The singularity ofx i for m25e6/(8p2u) is
inherited from the nonanalytic behavior ofv for this value of
m2. Once the non-Gaussian fluctuations are taken into
count and a full renormalization of mass and coupling co
stants is done, this artifact disappears. On the other han
m2,e6/(8p2u), x2 diverge but notx1. In this fluctuation
induced phase transition scenariov5^f& is different from
zero at the CP, a typical behavior of a first-order transiti
as we have already discussed in Sec. II. Note that in
calculation the correlation functions diverge only atp50.
As a consequence, the wave function renormalizationsZi
<1. By puttingv5e3/(pu) which corresponds tom250 in
Eq. ~3.15!, we obtain

Z15
1

11
5

12
k2

,1. ~3.16!

Therefore, the corresponding Gaussian measure is pos
definite and the non-Gaussian fluctuations can be calcul
by means of this measure. The non-Gaussian fluctuat
will ultimately makeZ1.1, violating again the KL represen
tation.

IV. THE VECTOR POTENTIAL ANOMALOUS
DIMENSION AND ITS CONSEQUENCES FOR THE
CRITICAL DYNAMICS IN SUPERCONDUCTORS

One important feature of theIXY3 universality class is the
scalingl;j,11,18,21wherel andj are the penetration dept
and correlation length, respectively. This scaling contr
with the XY3 behavior, wherel;j1/2.21,24 The reason for
this different behavior comes from the magnetic fluctuatio
which in theXY3 universality class play no role. In theXY3
regime the magnetic vector potential has no anomalous
mension. Concerning the scaling of the penetration dept
was argued in Refs. 11 and 18 that the vector poten
anomalous dimension contributes in such a way that we h
in generall;j (hA1d22)/2. Thus, when the magnetic fluctua
tions are negligeable we havehA50 andl;j (d22)/2, imply-
ing in this way a penetration depth exponentn85n(d
22)/2 with n'2/3 whend53. On the other hand, if we
take into account the magnetic fluctuations, we have t
hA542d and l;j implying n85n. The critical exponent
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n is the same in bothXY3 and IXY3 universality
classes9,11,19,21,22,24and we obtain thatn8'1/3 andn8'2/3
for the XY3 and IXY3 regimes, respectively. Note that on
the thermodynamic exponents coincide in these twoXY re-
gimes. As we have already seen, the anomalous dimens
are not the same.

The frequency-dependent conductivitys(v) scales
differently in a magnetic fluctuation regime. ForT,Tc we
have thats(v);e2rs /(2 iv), where rs is the superfluid
density. Near a charged fixed point we havee2;j2hA and,
therefore,

s~v!;j22d1z2hA, ~4.1!

where z is the dynamical exponent and we have us
the Josephson relationrs;j22d.11,40,41Again, by neglecting
the magnetic fluctuations we recover the usual scalin25

The XY scaling proposed by Fisheret al.25 was verified
recently by Wickham and Dorsey,42 who calculateds(v)
using the Kubo formula toO(e2) in the e5(42d) expan-
sion.

Since in the magnetic fluctuation regimehA542d, we
obtain

s~v!;jz22, ~4.2!

a result independent of the dimension. This independenc
the dimension in the scaling behavior~4.2! seems to be a
special feature of the charged fixed point. Note that alre
in the case of the penetration depth we have obtainedn8
5n instead of the dimension dependent resultn85n(d
22)/2 of theXY regime. The scaling given in Eq.~4.2! has
been obtained before by Mou43 who used a completely dif
ferent argument. Our argument is much more simple
follows from theexactvalue of the vector potential anoma
lous dimension. However, the dynamical exponentz is not be
the same as in the uncharged model, as was claimed in
43. The Monte Carlo simulations of Lidmaret al.44 show
very clearly that this is not the case and that the value ofz is
enhanced by magnetic fluctuations. However, Lidmaret al.
fitted their Monte Carlo data tos;utun(d222z) instead of
using the scaling~4.2!. SincehA51 in d53, we conclude
that the numerical result of Ref. 44 should be shifted to
tain z'3.7 instead ofz'2.7. This surprisingly high value o
z could be, however, a matter of controversy. It may be
consequence of the way the authors of Ref. 44 modeled
I -V characteristics of theIXY3 regime. For instance, Am
père’s law is neglected in their approach.

From the experimental side, the work of Boothet al.45 fit
reasonably the valuez52.7 but they assume also a scalin
with hA50. Anyway, in the case of Ref. 45 it is more pro
able that the critical region probed does not correspond
IXY3 universality class. In this casehA50 would be a le-
gitimate assumption.

The scaling Eq.~4.2! is also relevant in other situations
For example, in the Bose-glass transition the conductiv
perpendicular to the columnar defects is argued to obe
scaling exactly as in Eq.~4.2!.26,27 Although Eq.~4.2! is a
zero field scaling, it should apply in the nonzero field situ
tion of the Bose-glass transition in the direction perpendi
lar to the columnar defects but not in the longitudinal dire
tion. The reason for this behavior comes from the fact tha
ns
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the perpendicular direction a transverse Meissner effect h
pens, implying in this way a zero field like situation. Th
Bose-glass transition is an example which shows that at h
fields the magnetic thermal fluctuations may be experim
tally important and observable.

V. CONCLUSION

In this paper we have discussed some new features o
superconducting phase transition. The important role of
anomalous dimensions has been emphasized. However
critical behavior disussed in this paper is relevant only nea
charged fluctuation critical regime. The relevance of t
ideas discussed here to high-temperature supercondu
~HTSC’s! may be questioned. Usually the HTSC’s have ve
high values ofk, typically in the range 70–100. For thi
reason, it is generally assumed that magnetic fluctuation
not play an important role. This is in fact the case in t
extremetype II limit, that is, k→`. For extreme type II
superconductors, the local magnetic induction equals the
plied magnetic field and the constraint¹3A5H applies.22

In the presently accessible critical region, the HTSC’s se
to be well approximated by an extreme type II limit. In th
case theXY3 regime dominate at zero or low magnetic field
The XY3 behavior has been probed with considerable co
dence in YBa2Cu3O72d ~YBCO! crystal samples.2,3,46 For
Bi2Sr2CaCu2O81d ~BSCCO!, however, the situation is les
clear due to the experimental difficulties involved. Speci
heat measurements seem to indicate that the univers
class is notXY3.47 The apparent failure of theXY3 scaling in
BSCCO seems also to be corroborated by the penetra
depth data.48 However, inhomogeneities and finite size e
fects can play a significant role in BSCCO and it may happ
that it obeys also aXY3 scaling.49

The IXY3 behavior, on the other hand, seems to be
presently accessible. In fact, penetration depth data f
YBCO fulfill very well the scaling relationn85n/2,3 agree-
ing with theXY3 behavior. Thus, in order to check the th
oretical predictions concerning theIXY3 regime, we have to
compare these mainly to Monte Carlo simulations. For
stance, the scaling relationn85n with n'2/3 was well veri-
fied by Olsson and Teitel.24 The valueh'20.18 was ob-
tained by Nguyen and Sudbo”.6 The dynamical exponentz
was studied by Lidmaret al.44 both in theXY3 and in the
IXY3 regimes. However, as discussed in Sec. IV, they
sumed the same scaling for the frequency dependent con
tivity in both regimes. This does not invalidate their da
which remain useful and lead to the predictionz'3.7 instead
of z'2.7. While presently there is little hope in checkin
these predictions in zero field experiments, further Mo
Carlo simulations can be done in order to obtain a definit
answer. As far as real experiments are concerned, we h
pointed out that the scaling given in Eq.~4.2! holds for the
condcutivity perpendicular to the columnar defects in
Bose-glass transition.26,27Unfortunately, in this nonzero field
regime we are unable to estimate the value ofz with the
arguments presented in this paper. It is worth to menti
however, that an experimental valuez'5.3 was probed re-
cently by Klein et al.50 for the Bose-Glass transition in th
fully isotropic compound (K,Ba)BiO3 with columnar de-
fects.
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