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ac resistivity of d-wave ceramic superconductors
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We modeld-wave ceramic superconductors with a three-dimensional lattice of randomly distributedp
Josephson junctions with finite self-inductance. The linear and nonlinear ac resistivity of thed-wave ceramic
superconductors is obtained as a function of temperature by solving the corresponding Langevin dynamical
equations. We find that the linear ac resistivity remains finite at temperatureTp where the third harmonics of
resistivity has a peak. The current amplitude dependence of the nonlinear resistivity at the peak position is
found to be a power law. These results agree qualitatively with experiments. We also show that the peak of the
nonlinear resistivity is related to the onset of the paramagnetic Meissner effect which occurs at the crossover
temperatureTp , which is above the chiral glass transition temperatureTcg .
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I. INTRODUCTION

The interplay of superconductivity and disorder in gran
lar superconductors has been of great interest, particu
regarding their magnetic properties and glassy behavio1,2

Granular superconductors are usually described as a ran
network of superconducting grains coupled by Joseph
weak links.1–4 In the last years, there has been a renew
interest in the study of this problem in high-temperature
ramic superconductors~HTCS’s!. Several experimenta
groups have found a paramagnetic Meissner effect~PME! at
low magnetic fields.5 Sigrist and Rice6 proposed that this
effect could be a consequence of the intrinsic unconventio
pairing symmetry of the HTCS’s ofdx22y2 type.7 Depending
on the relative orientation of the superconducting grains,
possible to have weak links with negative Joseph
coupling.6,7 These negative weak links, which are calledp
junctions, can give rise to the PME according to Refs. 5 a
6. In fact, a modeld-wave granular superconductor, consi
ing of a network of Josephson junctions with a random c
centration ofp junctions and including magnetic screenin
has been able to explain the paramagenetic Meissner e
observed at low fields.8 Also in this model, a phase transitio
to a chiral glass has been predicted for zero magne
fields.9–12 The frustration effect due to the random distrib
tion of p junctions leads to a glass state of quenched
‘‘chiralities,’’ which are local loop supercurrents circulatin
over grains and carrying a half-quantum of flux. Evidence
this transition has been related to measurements of the
linear ac magnetic susceptibility.13 Moreover, the random
p-junction model has also been adequate to explain sev
dynamical phenomena observed in HTC’s such as ano
lous microwave absorption,14 the so-called compensatio
effect,15 and the effect of applied electric fields in the app
ent critical current.16

In recent experiments Yamaoet al.17 have measured th
ac linear resistivityr0 and the nonlinear resistivityr2 of the
ceramic superconductor YBa2Cu4O8. Here r0 and r2 are
defined as the first and third coefficients of the expansion
the voltageV(t) in terms of the external currentI ext(t):
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V5r0I ext1r2I ext
3 1•••. ~1!

When the sample is driven by an ac currentI ext(t)
5I 0 sin(vt), one can relater0 andr2 to the first harmonics
Vv8 and third harmonicsV3v8 in the following way:

r05Vv8 /I 0 ,

r2524V3v8 /I 0
3 , Vnv8 5

1

2pE2p

p

V~ t !sin~nvt !d~vt !,

~2!
n51,3.

The key finding of Ref. 17 is thatr0 does not vanish even
at and below the intergrain ordering temperatureTc2. On the
other hand,r2 has a peak near this temperature, which w
found to be negative. In the chiral glass phase the U
gauge symmetry is not broken and the phase of the con
sate remains disordered.9–11 The chiral glass phase, there
fore, should not be superconducting but exhibit an Ohm
behavior with a finite resistance. Based on these theore
predictions Yamaoet al.17 speculated that their results giv
further support to the existence of the chiral glass phase
addition to previous results from magnetic susceptibil
measurements.13

Another interesting result of Yamaoet al.17 is the power
law dependence ofuV3v8 (Tp)/I 0)3u ~or of r2) at its maximum
position Tp on I 0 : uV3v8 (Tp)/I 0

3u;I 0
2a . The experimental

value of the power law exponent wasa'1.1.18

The goal of our paper is twofold. First, we try to repr
duce the experimental results17 using the model of the Jo
sephson junctions betweend-wave superconducting grains8,9

where the screening of the external field by supercurrent
taken into account. Second, we discuss the question if
temperatureTp of the nonlinear resistivity peak and the tra
sition temperatureTcg to the chiral glass phase10,11 are re-
lated. We calculate the linear and nonlinear ac resistivity
a Langevin dynamics simulation. In agreement with the
perimental data17 we find thatr0 remains finite below and a
the temperatureTp wherer2 has a peak. Furthermore, th
14 554 ©2000 The American Physical Society
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maximum value ofuV3v8 (Tp)/I 0
3u is found to scale withI 0

with a power law exponenta51.160.6, which is close to
the experimental value.17 However, we find thatTp is above
the equilibrium chiral glass transition temperatureTcg .

II. MODEL

We neglect the charging effects of the grains and cons
the following Hamiltonian:8,9

H52(̂
i j &

Ji j cos~u i2u j2Ai j !1
1

2L (
p

~Fp2Fp
ext!2,

Fp5
f0

2p (̂
i j &

p

Ai j , Ai j 5
2p

f0
E

i

j

AW ~rW !drW, ~3!

whereu i is the phase of the condensate of the grain at thei th
site of a simple cubic lattice,AW is the fluctuating gauge po
tential at each link of the lattice,f0 denotes the flux quan
tum, Ji j denotes the Josephson coupling between thei th and
j th grains, andL is the self-inductance of a loop~an elemen-
tary plaquette!, while the mutual inductance between diffe
ent loops is neglected. The first sum is taken over all near
neighbor pairs and the second sum is taken over
elementary plaquettes on the lattice. Fluctuating variable
be summed over are the phase variablesu i at each site and
the gauge variablesAi j at each link.Fp is the total magnetic
flux threading through thepth plaquette, whereasFp

ext is the
flux due to an external magnetic applied along thez direc-
tion,

Fp
ext5H HS if p is on thê xy& plane,

0 otherwise,
~4!

whereSdenotes the area of an elementary plaquette. For
d-wave superconductors we assumeJi j to be an independen
random variable taking the valuesJ or 2J with equal prob-
ability (6J or bimodal distribution!, each representing 0 an
p junctions.

In order to study the dynamical response and trans
properties, we model the current flowing between two gra
with the resistively shunted junction~RSJ! model,3,4 which
gives

I i j 5
2e

\
Ji j sin u i j 1

\

2eR

du i j

dt
1h i j ~ t !. ~5!

Here we add to the Josephson current the contribution
dissipative Ohmic current due to an intergrain resistancR
and the Langevin noise currenth i j (t) which has correlations

^h i j ~ t !h i 8 j 8~ t8!&5
2kT

R
d i ,i 8d j , j 8d~ t2t8!. ~6!

The dynamical variable in this case is the gauge invar
phase differenceu i j 5u i2u j2Ai j . The total flux through
each plaquettep depends on the mesh currentCp .

Fp5Fp
ext1LCp ~7!

The mesh currentsCp , the link currentsI i j , and the externa
currentI ext are related through current conservation. At th
er
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s

a

t

point, it is better to redefine the notation: the site of ea
grain is at positionn5(nx ,ny ,nz) ~i.e., i[n), the lattice
directions arem5 x̂,ŷ,ẑ, the link variables are between site
n and n1m ~i.e., link i j [ link n,m), and the plaquettesp
are defined by the siten and the normal directionm @i.e.,
plaquettep[ plaquetten,m; for example, the plaquetten,ẑ
is centered at positionn1( x̂1 ŷ)/2]. The currentI m(n) is
related to the mesh currentsCn(n) and the external current in
the y direction as

I l~n!5«lmnDm
2Cn~n!1dl,yI ext , ~8!

where «lmn is the Levi-Civitá tensor,Dm
2 is the backward

difference operator,Dm
2Cn(n)5Cn(n)2Cn(n2m), and re-

peated indices are summed. It is easy to verify that Eq.~8!
satisfies current conservation. The magnetic fluxFl(n) and
the gauge invariant phasesun(n)5Dn

1u(n)2An(n) are re-
lated as

Fl~n!52
F0

2p
«lmnDm

1un~n!, ~9!

with the forward difference operatorDm
1un(n)5un(n1m)

2un(n).
Then, from Eqs.~5!, ~6!, ~8!, and ~9! we obtain the fol-

lowing dynamical equation:

\

2eR

dum~n!

dt
52

2e

\
Jm~n!sin um~n!2dm,yI ext

2
\

2eLDn
2@Dn

1um~n!2Dm
1un~n!#2hm~n,t !,

~10!

which represents the RSJ dynamics of a three-dimensi
Josephson junction array with magnetic screening.4,8

We can also obtain these equations from Eq.~3! if we add
to H the external current term: HT5H
1(n(\/2e)I extuy(n). Then an equation of the Langevi
form is obtained by taking derivatives with respect to t
gauge invariant phase difference:

\

2eR

dum~n!

dt
52

2e

\

dHT

dum~n!
2hm~n,t !, ~11!

leading to the RSJ dynamical equations of Eq.~10!.19

In what follows we will consider currents normalized b
I J52eJ/\, time by t5f0/2pI JR, voltages byRIJ , induc-
tance byf0/2pI J , and temperature byJ/kB . We consider
open boundary conditions for magnetic fields and current
the same way as defined in Refs. 4 and 8.

III. RESULTS

The system of differential equations~10! is integrated nu-
merically by a second order Runge-Kutta algorithm. We co
sider the system sizeL58 and the self-inductanceL51.
Depending on values ofI 0 and v the number of samples
used for the disorder averaging ranges between 15 and
The number of integration steps is chosen to be 105–5
3105.

The temperature dependence of the linear resistivityr0
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5Vv8 /I0 for different values ofI 0 is shown in Fig. 1~upper
panel!. At low temperatures we observe a weak depende
on I 0, but for currents small enoughr0 becomes independen
of current. From the lower panel of Fig. 1 it is clear that t
Vv8 /I 0 becomes size independent forL.10. Thus, the linear
resistivity is nonzero for all temperaturesT.0 in the ther-
modynamic limit. This is in good agreement with the res
that U~1! symmetry is not broken in the chiral glass state,9–11

and therefore there is no superconductivity for any finiteT.
We note that a similar result was obtained for the vor
glass state when the magnetic screening is taken
account.20

In Fig. 2 we analyze the nonlinear resistivityr25
24V3v8 (T)/I0

3 . We find that it has a negative maximum at
temperatureTp . This characteristic maximum depends
I 0, but we can fit its position in temperature atTp50.8
60.05 for all values ofI 0 presented in Fig. 2. The arrow i
Fig. 1 also indicates the position of the temperatureTp . We
see that forT@Tp the linear resistivityr0 is independent of
current for a large range of currentsI 0. On the other hand

FIG. 1. ~a! Upper panel: the temperature dependence ofVv8 /I 0

for L58, L51 and v50.001. The open triangles, squares, a
hexagons correspond toI 050.1, 0.05, 0.02, and 0.01. The arrow
correspond toTp50.8 and Tcg50.286, respectively.~b! Lower
panel: the size dependence ofVv8 /I 0 for I 050.05, L51, and v
50.001. The number of time steps is equal to 105. The results are
averaged over 15–40 samples.

FIG. 2. The same as in Fig. 1 but foruV3v8 (Tp)/I 0
3u.
ce

t

x
to

belowTp the resistivityr0 is current dependent for an inte
mediate range ofI 0 and only for very low currentsr0 be-
comes current independent.

We identify Tp to correspond to the intergrain orderin
transition temperature above which the thermoreman
magnetization disappears in the experiment of Ref.17. In
der to verify this, we study in Fig. 3 the magnetization a
finite magnetic field f 5HS/f050.1. We show both the
zero-field cooling~ZFC! and field cooling~FC! curves.8 We
can see thatTp is the temperature where there is an onset
positive magnetization, i.e., the paramagnetic Meissner
fect, starts to be observed. On the other hand, the irrev
ibility point occurs at temperatures lower thanTp , and its
position is dependent on the heating or cooling rate. It sho
also be noted that aboveTp the real part of the linear mag
netic susceptibility vanishes~see Fig. 18 from Ref. 9!.

The results presented in Figs. 1, 2, and 3 are in go
agreement with the experimental data.17 From this point of
view our findings and the experimental results17 may seem
compatible with the chiral glass picture.11 However,Tp is
remarkably higher than the chiral glass temperatureTcg ob-
tained previously~for L51, Tcg50.286, see Ref. 10!. Then
we conclude that the peak ofr2 has no relation to the chira
glass phase transition. Thus,Tp just separates the norma
state phase from a ‘‘chiral paramagnet’’ where there are
cal chiral magnetic moments. These local moments can
polarized under an external magnetic field, and therefore
can observe the paramagnetic Meissner effect under a
external field belowTp . At a lower temperature, collective
phenomena due to the interactions among the chiral
ments will start to be important, leading to the transition
the chiral glass state. This last transition should show in
nonlinear chiral glass susceptibility which should diverge
Tcg .10,11 The chiral glass transition may also be reflected
the irreversibility point in the FC and ZFC magnetization
Although our model is different from the correspondin
gauge glass model,20 one can expect that here the screen
spoils any glassy phase except the chiral glass. The lin
resistivity is, therefore, nonzero for finite temperatures.

Our calculation of the nonlinear ac resistivityr2 is a non-
equilibrium calculation at a finite frequencyv and finite ac
current amplitudeI 0. Therefore, one should be concern
about the finite-v and finite-I 0 effects. In particular, one may
ask if it is possible that the temperatureTp of the peak inr2

FIG. 3. The temperature dependence of the magnetizationm in
FC and ZFC regimes for thed-wave superconductors.L58 and
L51. The results are averaged over 25 samples.
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will tend to Tcg in the limit v→0, I 0→0. We have carefully
studied this possibility. Figure 4 shows the temperature
pendence ofr2 for various values ofv and I 050.1. From
Figs. 2 and 4 it is clear that the position ofTp depends onI 0
andv very weakly. It is, therefore, unlikely thatTp tends to
Tcg asv→0 andI 0→0.

In accordance with the experiments of Yamaoet al.,17 the
negative maximum ofV3v8 (Tp)/I 3 shows up. Furthermore
the height of peaks ofuV3v8 (Tp)/I 3u increases with the de
crease ofv and saturates at small frequencies~see Fig. 4!.
Such a tendency was also observed experimentally.17

In order to get more insight into the nature ofTp we have
calculated the specific heatCv , which is defined as propor
tional to the energy fluctuations,Cv5^(dE)2&/kBT2. The
results are shown in Fig. 5. There is a broad peak inCv
located atTp and well aboveTcg . Similar to the spin glass
case where the peak of specific heat is positioned higher
the critical temperature to the glass phase,21 we conclude that
Tp does not correspond to a phase transition to a long-ra
ordered phase.

A more convincing conclusion about the nature of t
peak in the nonlinear susceptibility should be obtained fr

FIG. 4. The temperature dependence ofV3v8 (T)/I 0
3 . The solid

triangles, squares, and hexagons correspond tov50.001,0.0005,
and 0.0002, respectively.L58, L51, andI 050.1. The results are
averaged over 15 samples.

FIG. 5. The temperature dependence ofCv obtained by Monte
Carlo simulations forL58 and L51. The results are average
over 20 samples. The error bars are smaller than the symbol s
e-

an

e-

a finite-size analysis. Figure 6 shows the dependence
maxuV3v8 /I0

3u on the system sizeL for I 050.05 and v
50.001. Clearly, the height of the peak does not diverge
L→`. In other words, the peak in the nonlinear resistiv
does not correspond to a phase transition in the thermo
namic limit.

Figure 7 shows the log-log plot for the dependence of
maximal values ofuV3v8 (Tp)/I 0

3u on I 0 for a fixed frequency
v50.001. One can fit maxuV3v8 (Tp)/I0

3u;I0
a with a51.1

60.6, giving more weight to small values ofI 0. So within
the error bars our estimate ofa agrees with that obtained b
the experiments.17,18

IV. DISCUSSION

In Ref. 17 it was argued that the peak of the nonline
resistivity was a signal of the transition to the chiral gla
state. The value ofTp obtained in our simulations is, how
ever, considerably higher than the chiral glass transition te
peratureTcg . We conclude that the peak ofr2 is not related
to the transition to the chiral glass.Tp is found to coincide
with the point for the onset of the paramagnetic Meiss

es.

FIG. 6. The dependence of the maximal values ofuV3v8 (Tp)/I 0
3u

on the system sizeL. I 050.005,L51, andv50.001. The results
are averaged over 15–40 samples.

FIG. 7. The dependence of the maximal values ofuV3v8 (Tp)/I 0
3u

on I 0. HereL58, L51, andv50.001. The results are average
over 15–40 samples.



r

a
ca

tra
as
r
i

re

ect

.
s-

-

rt

14 558 PRB 62MAI SUAN LI AND DANIEL DOMI´NGUEZ
effect, where the magnetization becomes positive. In this
spect, our result agrees with the experimental result.17 We
interpretTp as the crossover temperature from the norm
state phase to a ‘‘chiral paramagnet’’ in which there are lo
chiral magnetic moments induced by thep junctions. As the
temperature is lowered the system would have a phase
sition from the chiral paramagnetic phase to the chiral gl
state. At this critical pointr2 does not show any particula
feature. Furthermore, we found that the linear resistivity
always finite atT.0 due to screening effects, and therefo
there is no superconductivity in the randomp-junction
model.

In conclusion, the experimental results of Yamaoet al.17

can be reproduced by theXY-like model ford-wave super-
J.
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conductors. Contrary to the speculation of Ref. 17 we exp
that Tp does not correspond to the chiral glass transition.
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