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ac resistivity of d-wave ceramic superconductors

Mai Suan Li? and Daniel Dormgue?
Yinstitute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
2Institut fir Theoretische Physik, Universttau Kdn, Zulpicher StraRe 77, D-50937 m Germany
SCentro Afanico Bariloche, 8400 S. C. de Bariloche, Rio Negro, Argentina
(Received 5 April 200D

We modeld-wave ceramic superconductors with a three-dimensional lattice of randomly distributed
Josephson junctions with finite self-inductance. The linear and nonlinear ac resistivity dfviree ceramic
superconductors is obtained as a function of temperature by solving the corresponding Langevin dynamical
equations. We find that the linear ac resistivity remains finite at temperauéere the third harmonics of
resistivity has a peak. The current amplitude dependence of the nonlinear resistivity at the peak position is
found to be a power law. These results agree qualitatively with experiments. We also show that the peak of the
nonlinear resistivity is related to the onset of the paramagnetic Meissner effect which occurs at the crossover
temperaturél ,, which is above the chiral glass transition temperallyg.

I. INTRODUCTION V= pol exit pal 3t - - 1)

The interplay of superconductivity and disorder in granu-"Vhen the sample is driven by an ac currenf(t)
1o sin(wt), one can relate, and p, to the first harmonics

lar superconductors has been of great interest, particularl%;, - Ao )
regarding their magnetic properties and glassy behdvior. V., and third harmonic¥;, in the following way:

Granular superconductors are usually described as a random
network of superconducting grains coupled by Josephson
weak links™ In the last years, there has been a renewed
interest in the study of this problem in high-tempe_rature ce- = VAV n3. V! :ifﬂ V(t)sin(not)d(wt),
ramic superconductordHTCS’s). Several experimental ¢ © 2m) 5
groups have found a paramagnetic Meissner effedE) at 2)
low magnetic fieldS. Sigrist and Ric® proposed that this n=1,3.
effect could be a consequence of the intrinsic unconventional o _ _
pairing symmetry of the HTCS's af,2_2 type’ Depending The key fmdmg of Ref.. 17is thaio does not vanish even
on the relative orientation of the superconducting grains, it i€t and below the intergrain ordering temperaftige. On the
possible to have weak links with negative Josephsomther handp, has a peak near this temperature, which was
coupling®” These negative weak links, which are called found to be negative. In the chiral glass phase the U(1)
junctions, can give rise to the PME according to Refs. 5 an@auge symmetry is not broken and the phase of the conden-
6. In fact, a modet-wave granular superconductor, consist-Sate remains disorderéd* The chiral glass phase, there-
ing of a network of Josephson junctions with a random confore, should not be superconducting but exhibit an Ohmic
centration ofr junctions and inc|uding magnetic Screening, behavior with a finite resistance. Based on these theoretical
has been able to explain the paramagenetic Meissner effeBtedictions Yamaet al'’ speculated that their results give
observed at low fieldAlso in this model, a phase transition further support to the existence of the chiral glass phase, in
to a chiral glass has been predicted for zero magnetic addition to previous results from magnetic susceptibility
fields®2 The frustration effect due to the random distribu- measurements.
tion of 7 junctions leads to a glass state of quenched-in Another interesting result of Yamaet al'” is the power
“chiralities,” which are local loop supercurrents circulating law dependence d¥/3,,(T;)/15)° (or of p,) at its maximum
over grains and carrying a half-quantum of flux. Evidence ofposition T,, on I,: |V§w(Tp)/Ig|~I5“. The experimental
this transition has been related to measurements of the nomalue of the power law exponent was=1.1.!8
linear ac magnetic susceptibility. Moreover, the random The goal of our paper is twofold. First, we try to repro-
m-junction model has also been adequate to explain severduce the experimental resditsusing the model of the Jo-
dynamical phenomena observed in HTC's such as anomaephson junctions betweerwave superconducting grafis
lous microwave absorptiol, the so-called compensation where the screening of the external field by supercurrents is
effect!® and the effect of applied electric fields in the appar-taken into account. Second, we discuss the question if the
ent critical current® temperaturdl, of the nonlinear resistivity peak and the tran-
In recent experiments Yamagt al!” have measured the sition temperaturdl. to the chiral glass phae' are re-
ac linear resistivitypy and the nonlinear resistivity, of the  lated. We calculate the linear and nonlinear ac resistivity by
ceramic superconductor YB@u,Og. Here py and p, are  a Langevin dynamics simulation. In agreement with the ex-
defined as the first and third coefficients of the expansion operimental datd we find thatp, remains finite below and at
the voltageV(t) in terms of the external curremg,(t): the temperaturd, where p, has a peak. Furthermore, the

po=V,/lo,
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maximum value of|V§w(Tp)/I8| is found to scale with,  point, it is better to redefine the notation: the site of each
with a power law exponentz=1.1+0.6, which is close to grain is at positionn=(n,,n,,n,) (i.e., i=n), the lattice
the experimental valu¥. However, we find thal , is above  directions areu=x,y,z, the link variables are between sites

the equilibrium chiral glass transition temperatig, . nandn+pu (i.e., link ij= link n,), and the plaquettes

are defined by the sitea and the normal directiop [i.e.,

Il. MODEL plaquettep= plaquetten, uu; for example, the plaquette,z

We neglect the charging effects of the grains and conside centered at position+(x+y)/2]. The currentl ,(n) is
the following Hamiltoniarf*® related to the mesh currerfis,(n) and the external current in

they direction as
1
H:_% J” Cos{ﬁi—ej—Ain—ﬁ% (CI)p—(I)SXt 2, I)\(n)zs)\ﬂ,,A;C,,(n)+b}xyylext, (8)

whereeg, ,, is the Levi—Civit’atensor,A; is the backward
do < 27 (i . . difference operator, C,(n)=C,(n)—C,(n— ), and re-
q’pzﬁ % Aijs Ajj :(Tofi A(r)dr, () peated indices are summed. It is easy to verify that (By.
satisfies current conservation. The magnetic fluxn) and
where#; is the phase of the condensate of the grain attihe the gauge invariant phasés(n)=A 6(n)—A,(n) are re-
site of a simple cubic latticeA is the fluctuating gauge po- lated as
tential at each link of the latticep, denotes the flux quan- @
. i i 0
'Fum, J,J. denotes 'the Josep_hson coupling between tthend ®,(n)=— —SMVA; 6,(n), (9)
jth grains, and’ is the self-inductance of a logan elemen- 2w
tary plaquettg while the mutual inductance between differ-
ent loops is neglected. The first sum is taken over all nearest-
neighbor pairs and the second sum is taken over all
elementary plaguettes on the lattice. Fluctuating variables tP
: : 0
be summed over are the phase varialfleat each site and
the gauge variables;; at each link® , is the total magnetic 4 d6,,(n)

¥yith the forward difference operatakZ&V(n): 0,(n+ u)
0,(n).

Then, from Eqgs(5), (6), (8), and(9) we obtain the fol-
wing dynamical equation:

flux threading through thpth plaquette, Where@SXt is the 5eR _dt ?Jﬂ(n)sin 0,(n) =35, ylext
flux due to an external magnetic applied along thdirec-
tion, A
— 5o AL TA 6, (N =4, 6,(m]= 7,(nb),
o | HS if pisonthe(xy) plane, 2eL . a g
=10 otherwise, @ (10

whereS denotes the area of an elementary plaquette. For thWhiCh represents the RSJ dynamics of a three-dimensional

d-wave superconductors we assudpeto be an independent ?osephson junction array with magnetic screeﬁﬁ]g.
. X , We can also obtain these equations from @y if we add
random variable taking the valudsor —J with equal prob-

. ) R . to H the external current  term: Hi="H
+
?—rbjlttr)mlciigr}]sor bimodal distributioin, each representing 0 and +3,(h126)l 0xif,(n). Then an equation of the Langevin

. form is obtained by taking derivatives with respect to the
In order to study the dynamical response and transport . . . )
auge invariant phase difference:

properties, we model the current flowing between two grainsq
with the resistively shunted junctiofRSJ model>* which iodo.(n)
o [l

. 2e 5HT
gives =—

2eR dt % s0,m) ey

11

(5) leading to the RSJ dynamical equations of Eif). 1
In what follows we will consider currents normalized by
| ;=2eJh, time by 7= ¢y/271 ;R, voltages byR1;, induc-
nce by¢y/2ml;, and temperature by/kg. We consider
open boundary conditions for magnetic fields and currents in
the same way as defined in Refs. 4 and 8.

2e . h d0”
Iij :7\]” Sin 0” + ERW‘F 7]|J(t)
Here we add to the Josephson current the contribution of
dissipative Ohmic current due to an intergrain resistaRce
and the Langevin noise currenf; (t) which has correlations

2kT
<77ij(t)77i/j'(t')>:?5i,i'5j,j'5(t—t')- (6) Il. RESULTS

. . . . . . . The system of differential equatioii$0) is integrated nu-
The dynamical variable in this case is the gauge mvananFnericall by a second order Runae-Kutta algorithm. We con-
phase differenced;;=6,— 6;—A;;. The total flux through y by 9 9 :

each plaquette depends on the mesh curred sider the system size=8 and the self-inductancé€=1.
plaquetie dep g Depending on values df, and w the number of samples

O =t £C 7) used for the disorder averaging ranges between 15 and 40.
PP P The number of integration steps is chosen to b&—%0
The mesh current§, the link currentd;; , and the external X 10°.
currentl ., are related through current conservation. At this The temperature dependence of the linear resistiwjty
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FIG. 1. (@) Upper panel: the temperature dependenc¥ ol 4 below T, the resistivityp, is current dependent for an inter-
for L=8, £=1 and w=0.001. The open triangles, squares, andmediate range of, and only for very low currentg, be-
hexagons correspond 1g=0.1, 0.05, 0.02, and 0.01. The arrows comes current independent.
correspond toT,=0.8 and T.,=0.286, respectively(b) Lower We identify T, to correspond to the intergrain ordering
panel: the size dependence ¥f/l, for 1,5=0.05, L=1, andw  transition temperature above which the thermoremanent
=0.001. The number of time steps is equal t.10he results are  magnetization disappears in the experiment of Ref.17. In or-
averaged over 15-40 samples. der to verify this, we study in Fig. 3 the magnetization at a

, . . o finite magnetic fieldf=HS/¢$,=0.1. We show both the
=V./lo for different values ofl; is shown in Fig. l(upper  ;ero-field coolingZFC) and field cooling(FC) curvest We
pane). At low temperatures we observe a weak dependencgyp see thaT , is the temperature where there is an onset of
onlo, butfor currents small enougly becomes independent hositive magnetization, i.e., the paramagnetic Meissner ef-
of current. From the lower panel of Fig. 1 it is clear that thefect starts to be observed. On the other hand, the irrevers-
V,/lo becomes size independent for 10. Thus, the linear jpjlity point occurs at temperatures lower thay, and its
resistivity is nonzero for all temperaturds>0 in the ther-  position is dependent on the heating or cooling rate. It should
modynamic limit. This is in good agreement with the resultz|sg be noted that abovE, the real part of the linear mag-
that U(1) symmetry is not broken in the chiral glass st&t€,  netic susceptibility vanishesee Fig. 18 from Ref.)9
and therefore there is no superconductivity for any fifite The results presented in Figs. 1, 2, and 3 are in good
We note that a similar result was obtained for the vortexaggreement with the experimental dafasrom this point of
glass state when the magnetic screening is taken inigiew our findings and the experimental restiitmay seem
account’ . o compatible with the chiral glass pictuté However, T, is

In Fig. 2 we analyze the nonlinear resistiviy=  remarkably higher than the chiral glass temperaftygob-
—4V,,(T)/I3. We find that it has a negative maximum at atajned previouslyfor £=1, T.q=0.286, see Ref. 20Then
temperatureT ;. This characteristic maximum depends onwe conclude that the peak pf has no relation to the chiral
lo, but we can fit its position in temperature &=0.8  glass phase transition. Thu§, just separates the normal-
*0.05 for all values of, presented in Fig. 2. The arrow in state phase from a “chiral paramagnet” where there are lo-
Fig. 1 also indicates the position of the temperaflise We  cal chiral magnetic moments. These local moments can be
see that folT>T, the linear resistivityp, is independent of polarized under an external magnetic field, and therefore one
current for a large range of curreritg On the other hand, can observe the paramagnetic Meissner effect under a low

external field belowr,. At a lower temperature, collective

1 phenomena due to the interactions among the chiral mo-
ments will start to be important, leading to the transition to
the chiral glass state. This last transition should show in the
nonlinear chiral glass susceptibility which should diverge at
Teg- "% The chiral glass transition may also be reflected in
the irreversibility point in the FC and ZFC magnetizations.
Although our model is different from the corresponding
gauge glass modé?,one can expect that here the screening
spoils any glassy phase except the chiral glass. The linear
resistivity is, therefore, nonzero for finite temperatures.

Our calculation of the nonlinear ac resistivjsy is a non-
equilibrium calculation at a finite frequeney and finite ac
current amplitudel 5. Therefore, one should be concerned
about the finitew and finitet effects. In particular, one may
FIG. 2. The same as in Fig. 1 but f3,(T,)/13]. ask if it is possible that the temperatufg of the peak inp,
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FIG. 4. The temperature dependenceVdf,(T)/13. The solid FIG. 6. The dependence of the maximal value$\f,(T,)/15|

triangles, squares, and hexagons correspona+®.001,0.0005, ~on the system size. 1,=0.005,L=1, andw=0.001. The results
and 0.0002, respectively.=8, £=1, andl,=0.1. The results are are averaged over 15-40 samples.
averaged over 15 samples.

a finite-size analysis. Figure 6 shows the dependence of
will tend to T in the limit @—0, 1,—0. We have carefully maxV,/lg on the system sizeL for 1,=0.05 and o
studied this possibility. Figure 4 shows the temperature de=0.001. Clearly, the height of the peak does not diverge as
pendence op, for various values ofv andl,=0.1. From L—>. In other words, the peak in the nonlinear resistivity
Figs. 2 and 4 it is clear that the position Bf depends o,  does not correspond to a phase transition in the thermody-
andw very weakly. It is, therefore, unlikely that, tends to  namic limit.
Teg asw—0 andly—0. Figure 7 shows the log- Iog plot for the dependence of the

n accordance with the experiments of Yanedal,’the ~ maximal values ofV},(T,)/13| onl, for a fixed frequency

negative maximum of\/3w(Tp)/I3 shows up. Furthermore, w=0.001. One can fit mad¥,(T)/Ig~1§ with a=1.1
the height of peaks ofV3,(T,)/I increases with the de- 0.6, giving more weight to small values bf. So within
crease ofw and saturates at small frequenciese Fig. 4  the error bars our estimate afagrees with that obtained by

Such a tendency was also observed experimentally. the experiments’'®
In order to get more insight into the nature@f we have
calculated the specific he&,, which is defined as propor- IV. DISCUSSION
tional to the energy fluctuationsG,={(SE)?)/kgT?. The '
results are shown in Fig. 5. There is a broad pealCjn In Ref. 17 it was argued that the peak of the nonlinear

located afT, and well aboveT,,. Similar to the spin glass resistivity was a signal of the transition to the chiral glass
case Where the peak of specific heat is positioned higher thastate. The value of , obtained in our simulations is, how-
the critical temperature to the glass phasee conclude that  ever, considerably hlgher than the chiral glass transition tem-
T, does not correspond to a phase transition to a long-ranggeratureT .. We conclude that the peak p} is not related
ordered phase. to the transition to the chiral glas$,, is found to coincide

A more convincing conclusion about the nature of thewith the point for the onset of the paramagnetic Meissner
peak in the nonlinear susceptibility should be obtained from
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FIG. 5. The temperature dependenceCgfobtained by Monte FIG. 7. The dependence of the maximal value$\(§fw(TP)/Ig|

Carlo simulations for,=8 and £L=1. The results are averaged onl,. HereL=8, £=1, andw=0.001. The results are averaged
over 20 samples. The error bars are smaller than the symbol sizesver 15-40 samples.
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effect, where the magnetization becomes positive. In this reconductors. Contrary to the speculation of Ref. 17 we expect

spect, our result agrees with the experimental réduitle that T, does not correspond to the chiral glass transition.

interpretT, as the crossover temperature from the normal-

state phase to a “chiral paramagnet” in which there are local

chiral magnetic moments induced by thgunctions. As the ACKNOWLEDGMENTS
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