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String limit of vortex current algebra
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The Poisson structure generating the Hamiltonian dynamics of string vortices is reconstructed within the
current algebra picture as a limiting case of the standard brackets associated to fluids with a smooth vorticity
field. The approach implemented bypasses the use of Dirac’s procedure. The fine structure of the dynamical
algebra is derived for planar fluids by implementing an appropriate spatial fragmentation of the vorticity field,
and the limit to the point vortex gas is effected. The physical interpretation of the resulting local currents is
provided. Nontrivial differences characterizing the canonical quantization of point vortices and the current
algebra quantization are also illustrated.
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I. INTRODUCTION

The formation of vortices and their interactions in sup
fluid media1 such as4He ~and closely related systems su
as type-II superconductors2! have been detected and tho
oughly studied at the classical level since forty years a
Recent experimental results concerning the Bose-Eins
condensates show the emergence of vortices in
condensates3 thus providing a further scenario in which vo
tices can be investigated. Despite the large number of ph
cal systems exhibiting excited states with vortices, a qu
mild interest has been raised by the study of the quan
aspects inherent in their dynamics that, on the contr
should be relevant both because vortex formation occur
very low temperatures, and because vortex interactions
place on microscopic/mesoscopic spatial scales, where q
tum effects are important.4

Such a situation is probably originated by the great di
culties in formulating, within the quantum field theory o
superfluid media~and closely related systems!, a quantiza-
tion scheme which supplies both an effective representa
of the fluid topological excitations~vortex states!, and a vi-
able approach to investigate the formal aspects of the the
In particular, the dynamical degrees of freedom activated
the vortex emergence exhibit a structural complexity wh
renders dramatically difficult any attempt to construct exp
itly the Hilbert space for the fluid quantum states.5,6 Such a
program is further complicated by the fact that, since vo
ces are extended object equipped with a possibly nontri
topological structure, a consistent quantum description of
fluid should incorporate as well the vortex topology in term
of constant of motions representing generalized circulatio

Such aspects have been thoroughly studied in a serie
paper within the geometric quantization scheme both for
ids with a vorticity field confined on filaments6–8 ~gas of line
vortices!, and for fluids whose state is described by a smo
~extended! vorticity field.9,10 A large amount of work has
been devoted to such two models of fluids in order to rea
the unitary irreducible representations of the field opera
and the ensuing construction of the Hilbert space. Des
the recognition within the geometric scheme of several ba
PRB 620163-1829/2000/62~21!/14547~7!/$15.00
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both group-theoretic and algebraic, features that characte
the fluid structure and its description, almost no attention
been directed to considering how the vortex quantization
influenced by the limiting process which relates the previo
models through the squeezing of the extended vorticity fi
to a set of disjoint lines.

In this paper we start to investigate this limit and t
advantages it entails as to the stringlike-vortex descripti
and try to emphasize some nontrivial aspects concerning
quantization of vorticity fields in the planar case.

One of the first attempts to quantize the vortex dynam
was developed in Ref. 12 for a model of almost parallel li
vortices within the canonical approach based on coordin
and momenta. Its natural extension to planar systems of
perfluids with point vortices raised a certain interest seve
years later mainly in relation to the possibility of observin
fractional statistics. The difficulties inherent in the quantiz
tion process were completely recognized in Ref. 5 where
canonical scheme was employed to construct the quan
field theory of three-dimensional~3D! vortices characterized
by a singular vorticity field

w~x!5k R
G

dx~s!d3
„x2x~s!…, ~1!

with vortex strengthk, where G is a possibly self-knotted
string with any number of components. Such an arbitra
complex object provided a realistic generalization of t
model of parallel vortex lines by introducing explicitly th
topological strucure of line vortices. The componentsxj (s,t)
of the 3D vectorx(s,t) representing the smooth curveG
PR3 ~s is the string parameter onG, and j 51,2,3! supplied
the coordinates at each timet, whereas the canonically con
jugate momenta

Pi~s,t !:5
dL

d~] txi !

were obtained from the Lagrangian functional
14 547 ©2000 The American Physical Society
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Lª2H1
kr

3 R
G

dx•S ]x

]t
`xD

~the fluid densityr is assumed to be constant! containing the
ideal fluid energyH @see Eq. ~5! below#. Momenta Pj
entail the dynamical constraintsPi2(rk/3)e i jkxj]sxk50
that revealed the singular character ofL, and showed
how the stringlike vortex dynamics actually takes pla
on a submanifold of the standard phase spaceP
ª$@Pj (s,t),xj (s,t)#%. The price of implementing the ca
nonical picture based on the brackets

$xi~s,t !,Pj~s8,t !%5d~s2s8!d i , j ~2!

was to reconstruct Eq.~2! within the Dirac procedure so as t
incorporate the dynamical constraints. The dynamics w
thus formulated through the Dirac brackets$A,B%*ª$A,B%
1^AuCuB&, where

^AuCuB&[E dsE ds8$A,Fa~s!%Ca,b~s,s8!$Fb~s8!,B%,

$A,B% represents the standard Poisson brackets,Ca,b are el-
ements of the matrixCªuu$Fa ,Fb%uu21 and the functionals
Fa(s), a51,2, of the canonical variables essentially ident
with the components of the part ofP2(rk/3)x`]sx or-
thogonal to the vector fieldx(s,t). The main issue of Dirac’s
formalism was the unexpected coordinate brackets

$xi~s!,xj~s8!%* 5
1

kr
e i jkd~s2s8!]sxk~s! ~3!

showing how coordinatesxj cannot be regarded any long
as independent variables. At the quantum level, Eq.~3! en-
tailed the remarkable effects that the projections ofG on the
planes xi2xj , i , j 51,2,3, are affected manifestly by th
quantum uncertainty, and led to imagineG as a tubular do-
main representing the intrinsically approximate position
the vortex core~see Ref. 13!.

A further observation is suggested by Eq.~3!: in spite of
the local canonical character of coordinates, the algeb
structure exhibited by Eq.~3! is actually nonlocal consisten
with the fact thatG is a true three-dimensional object. In Re
5, this led the authors to construct the algebra of curre
which we review in the sequel, so as to avoid the depende
on local parametrizations as well as on Dirac’s formalism

The first goal of this paper is to show how the algebr
structure involved by the functional picture based
G-dependent currents can be derived in a direct way from
standard Lie-Poisson structure

$F,G%~w!5
1

rE d3xw•S curl
dF

dw
` curl

dG

dwD , ~4!

without implementing Dirac’s procedure. The structure~4!,
that generates the vortex dynamics14 when the vorticity field
w~x! is smooth @namely its components wj (x)PC`(R3)#,
contains as a limiting case the Poisson structure for vorti
fields w collapsed on an array of strings~singular limit!, no
matter how complex the underlying topological structure

The second purpose of the present paper is to conside
effect of the singular limit on the vortex Lie-Poisson~LP!
structure in the two-dimensional case, where the limit c
s
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sists in squeezing the vorticity fields on~a set of! isolated
points of the ambient plane. The resulting point vortex ga
well known to represent the reference model for a numbe
systems with vortex excitations such as superfluid films15 of
4He ~adsorbed both on planar substrates and on porous
terials!, planar superconductors,2 and Josephson junctions
arrays16 ~see also Ref. 17 and references therein!. Our inter-
est in analyzing the 2D singular limit comes from the wish
establishing a clear link between the smooth case and
singular case. More specifically, we aim at unveiling the
gebraic structure of point vortices within the ampler fram
work of the current algebra~CA! of the smooth case.

The point of view adopted here is that in the 2D case
CA contains an explicit many-body structure related to
spatial distribution of positive/negative vorticity which de
serves to be investigated. Such a fine structure ofA ~storing
information on the spatial distribution ofw! paves the way to
the emergence of the canonical Poisson structure that
tomarily characterizes the point vortex dynamics. The
case can be also studied from this viewpoint even if
fragmentation must be developed based on the complex
pological structure ofw. In this respect, however, the Arnol
cells18 should represent the 3D counterpart of 2D fragme
tation. The latter enables us to shed light on certain featu
that characterize, at the quantum level, the construction
the CA of the point vortex model, and unexpectedly preve
it from matching the version of the algebra obtained with
the field theory formalism.

The paper is organized as follows: In Sec. II, after intr
ducing the standard derivation of Euler’s equations by me
of appropriate Lie-Poisson brackets, the CA picture is re
ieved for the 3D case and its relevance for the quantiza
of the vortex dynamics is showed. In Sec. III the CA pictu
is used to perform in a consistent way the string limit
formula ~4! in order to construct the Poisson structure for
gas of stringlike objects~a more formal derivation is fur-
nished in the Appendix based on the Clebsch potential
ture!. Some applications of the brackets thus obtained
illustrated as well. In Sec. IV the many-body structure
vortex dynamics is investigated in the 2D case and the
structure of the CA is evidenced via an appropriate fragm
tation of the vorticity field. The latter is related to the C
reconstructed for 2D point vortices within the canonic
quantization. The CA of the point vortices is compared w
the CA of the smooth case and their inequivalence at
quantum level is proven: a suitable semiclassical limit
shown to reconcile such situations.

II. CURRENT ALGEBRA APPROACH TO VORTEX
DYNAMICS

The classical motion of a perfect fluid with velocity fiel
v, vorticity field w5curlv, and Hamiltonian

H@v#5
r

2ER

3

d3xv2~x!, ~5!

is governed by the Euler equationv̇52v•“v. Observing that
v•“v5v`w2“v2/2, the vorticity equation
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ẇ52curl~v`w!, ~6!

based on representing the fluid state throughw, is easily
obtained from the Euler equation.19 The derivation of both
equations is easily performed by means of the usual L
Poisson~LP! brackets20

$F,G%@v#5
1

rE d3x curl v•S dF

dv
`

dG

dv D , ~7!

whereF andG are functions that depend onv, and the no-
tation *dnx denotes, from now on, the integration on t
whole spaceRn. It is important to observe how a consiste
use of Eq.~6! requires thatv is expressed as a functional o
w. This is achieved by imposing the divergenceless condi
div v50 onv, namely by identifyingv with V~x!5curl U~x!,
where the vector potentialU~x! is defined as

U~x!5E d3yG~x2y!w~y!,

and the Green functionG in 3 and 2 dimensions readsG(x
2y)51/(4pux2yu) and G(x2y)5(1/2p)lnux2yu, respec-
tively.

In the case whenF andG are assumed to depend on t
equivalence class@v#5$v8:v85v1“ f %, the LP brackets
take the form~4! in that dF/dv5curl(dF/dw). Explicitly,
this amounts to assuming thatF andG depend onw namely
on the divergence-free fieldV.

Replacingv with V in H@v# incorporates explicitly the
divergenceless feature in the theory. This leads to the q
dratic form

H@w#[
r

2E d3xE d3yG~x2y!w~x!•w~y!,

which generates Eq.~6! via brackets~4!.
An alternative formulation5 of vortex dynamics can be

given in terms of current algebraA. The latter consists o
functionals of@v# ~the currents! defined as

Ja@v#5rE d3xa•v5rE d3xA•w5JA@w#, ~8!

where a belongs to the algebraG5$a:a5curl A% of
divergence-free vector fields. One can easily check
Ja@v#5Ja@v1“ f #. The algebraic structure ofA shows up
via the equation21

$Ja ,Jb%@v#5J[a,b]@v#, ~9!

where @a,b#5curl(a`b), that is fulfilled by two any cur-
rents ofA. The structure constants ofA are readily worked
out by introducing the subalgebra of the mode currentsAF .
The latter is defined by noting that any currentJA@w# can be
expressed in terms of the Fourier transformA~q! relative to
A as

JA@w#5rE d3xA•w5E d3qA~q!•Jq@w#,

where the mode currentJq@w#ªemJq
m@w# has vector compo-

nents
-

n

a-

at

Jq
m@w#5rE d3xeixqwm~x!. ~10!

Then one can easily show that the basic brackets ofA are
given by

$Jq
m ,Jp

n%@w#52 (
k51

3

Cm,n~q,p!Jq1p
k @w#, ~11!

whereCm,n(q,p)ªek•@(q`em)`(p`en)# are the structure
constants, andek , k51,2,3 are the unit vectors of the 3D
Euclidean basis. The equations of motion of any curr
Jq

m@w# can be easily derived via the brackets~11! onceH@w#
itself has been rewritten as a functional of currentsJq

m@w# by
inverting formula ~10! ~see Ref. 21!. This proves thatAF
indeed furnishes a set of observables which is compl
namelyAF represents an alternative scheme in which rep
senting the fluid dynamics. Brackets~11! also shows how the
subalgebra of mode currents is the most advantageous s
commutators in which implementing the quantization p
cess. Nevertheless, it important to recall that the parent se
commutators~9! indicate that the quantization process
equivalent to construct the unitary irreducible representati
of the group of diffeomorphism which is one of the harde
unsolved problem of the theory of group representations

III. STRING LIMIT OF 3D CURRENT ALGEBRA

Upon performing the limit which confines the vorticit
field on a stringlike domain~that is, on a vortex filament!,
namely considering

w~x!→w* ~x![(
a

ka R
Ga

dya~s!d3
„x2ya~s!… ~12!

the current~8! becomes

JA@w#5r(
a

ka R
Ga

dxa•A~xa!,

whereas the current$JA ,JB%@w# reduces to

$JA ,JB%@w#5r(
a

ka R
Ga

dxa•@a~xa!`b~xa!#.

Therefore the form assumed by Poisson brackets~4! when
limit ~12! is enacted must be consistent with this result. O
serving that

dF
dx~s!

5
] f

]x~s!
2

d

ds

] f

]x
~s! ~13!

for any function F5*dq f@x(q),ẋ(q)#, where ẋ(s)
ªdx(s)/ds, one easily obtains

dJA

dx~s!
5rkẋ~s!`curl A.

This entails, in turn,

t~s!•F dJA

dx~s!
`

dJB

dx~s!G5k2r2t~s!•~a`b!x~s!,
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14 550 PRB 62VITTORIO PENNA AND MAURO SPERA
providedt(s)5 ẋ(s) is a unit vector, i.e., the parameters is
identified with the arc length ofG. This result suggests th
substitution

curl
dF

dw
→ ẋa`

d

dxa

]F

]ka
~14!

as a consequence of limit~12!, where the indexa takes into
account the possible many-component structureG5$Ga% of
the string model. Hence the string LP brackets for a ma
component line vortex turn out to be

$F,G%@w#5(
a

R
Ga

kadxa

r
•S d

dxa

]F

]ka
`

d

dxa

]G

]ka
D .

A simplified version is also available in the form

$F,G%@w#5(
a

1

rka
R

Ga

dxa•S dF

dxa
`

dG

dxa
D , ~15!

which can be used in a consistent way provided bothF and
G have a linear dependence onka’s as the currents ofA.
Another derivation of Eq.~15! is described in Appendix A,
where we reformulate the LP brackets within the Clebs
picture of fluids in such a way that the dependence on
diffeomorphism action is expressed explicitly.

A simple way to test the validity of the brackets just o
tained consists in checking whether they reproduce corre
the equation of motion for the vortex filament by calculati
explicitly the right hand side of] tx5$x,H%. The effect of
limit ~12! on H andU is that of exhibiting them into the form

H@w* #5
r

2 (
a

(
b

kakb R
Ga

R
Gb

dxa•dxb

4puxa2xbu
,

and

U~x!5(
a

ka R
Ga

dxa

4pux2xau
,

respectively. Considering the single string case one finds

$x,H%[
dH

dx~s!
`

ẋ~s!

r
, ~16!

where the functional derivative ofH is given by

dH

dx~s!
52

kr

4p R
G
dy•E

0

L

dr
d

dx~s!

ẋ~r !

ux~r !2yu

5r ẋ~s!`k R
G

@x~s!2y#`dy

4pux~s!2yu3
.

Then, the expected equation of motion

] tx5l~G!ẋ1k R
G

~x2y!`dy

4pux2yu3
5l~G!ẋ2V~x;G!,

with l~G!ªẋ•V~x;G!, is achieved by explicitly calculating
the wedge product in Eq.~16!. Notice that the componen
l(s,G) generates displacements ofG that are parallel toG
itself due to its longitudinal character. The above result e
ily extends to the many-component case.
-

h
e

ly

s-

IV. FINE STRUCTURE OF 2D CURRENT ALGEBRA

For planar vortices the notation of CA formalism can
simplified in view of the fact thatw5we3 , a5curl(Ae3)
5“A`e3 with “5e1]x1

1e2]x2
. In particular, brackets~4!

reduce to

$F,G%@w#5
1

rE d2xw•S“dF

dw
`“

dG

dwD , ~17!

which, upon observing that a generic current is available
the two formsJa@v#5r*d2xa•v5r*d2xAw5JA@w#, pro-
vides the current brackets

$JA ,JB%@w#5rE d2xw•~“A`“B!5J$A,B%@w#,

where$A,B%x5e3•(“A`“B).
The two-dimensional LP structure just worked out can

reformulated in such a way that the partition of the ambi
plane R2 in many subdomains is accounted for explicitl
This is realized through the representation of the unit c
stant function

15(
a

Qa~x! ~18!

in terms of Heaviside functionsQa(x)ªQ(x;Sa) nonvanish-
ing inside the domainSa . The underlying idea is to show
that implementing the fragmentation process within t
brackets formalism leads to recognize the single compon
wa(x) of w ~associated to plane domainsSa) as independen
dynamical degrees of freedom.

The rule for selecting such domains is based on separa
the negative islands~where w,0) from the positive ones
~where w.0). Such a situation indeed is usual since t
condition *d2xw(x)50 is customarily assumed to exclud
unphysical vortex configurations whose energy cost is
high. On the other hand, the stable character of such dom
is ensured by the hydrodynamic laws of perfect fluids wh
state the conservation of~the structure of! space patterns~the
partition in positive/negative vorticity domains, in th
present case! when the evolution is driven by area preservi
diffeomorphisms.

Using Eq.~18! any currentJA@w# can be reexpressed i
terms of local currents as

JA@w#5(
a

JA
(a)@w#5(

a
rE

Sa

d2xA~x!w~x!, ~19!

whereJA
(a)@w#5r*d2xA(x)w(x)Qa(x). In this way the ad-

ditional information concerning the spatial distribution
vorticity is explicitly taken into account in the current de
scription of the fluid. At the quantum level, the quanti
JA

(a)@w# with A[1 are expected to represent the quanta
vorticity located inSa . A simple calculation shows that th
LP brackets of local currents are given by

$JA
(a) ,JB

(b)%@w#5dabJ$A,B%
a @w# ~20!
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providedwa(x)50 for xP]Sa . The vanishing ofw on the
boundary separating different confining domains is crucia
eliminate the contributions coming from the divergent ch
acter of

“Qa~x!5 R
]Sa

dy`e3d
2~x2y!

on the boundary ofSa . This fact motivates as well the choic
of the set of plane domainsSa based on distinguishing pos
tive from negative vorticity domains. Furthermore the L
brackets for any two currents can be rewritten by means
the formula

$JA ,JB%@w#5SaE
Sa

d2x

r
wa•S“ dJA

dwa
`“

dJB

dwa
D ~21!

explicitly exhibiting the fine structure of the vorticity do
mains. This also implies that$waªw(x):xPSa% can be con-
sidered as a set of fluid dynamical variables.

It is worth noting how the fragmentation picture just i
troduced allows one to enlarge the set of currents so a
include current whose labelsA not necessarily vanish fo
uxu→`. The case in whichA5x1 , B5x2 is illustrative of
this. From Eq.~20! one readily obtains the canonical coord
natelike brackets

$Jx1

(a) ,Jx2

(b)%@w#5dabJ1
(a)@w#5dabrKa , ~22!

whereKa5*Sa
d2xw(x), that relate the present field-theo

description to the pointlike vortex gas description of t
Helmholtz standard model. The quantum version of Eq.~22!
implies that the information related to the~average! position
of the vortex domainSa on the x1 axis cannot be given
together with that concerning the position on thex2 axis.
This clearly mimics the effects of the canonical quantizat
rule standardly used for point vortices24 as well as the uncer
tainty affecting the position of the string in the 3D case.
nice magnetic-like interpretation ofJx1

(a) , Jx2

(a) is also avail-

able. Rewriting firstx1w(x) @x2w(x)# in Jx1

(a) (Jx2

(a)) as

xrw~x!5v`curl~xre3!2div~xre3`v!, r 51,2,

and using then formulae3 div(A`e3)5curl A one finds
Jx2

(a)[e1•P(a) and2Jx1

(a)[e2•P(a) , where

P(a)[p(a)1 R
ga

~e3`x!~v•dx!,

with p(a)ªr*Sa
d2xv and ga5]Sa . Such an expression

makes visible the structure of generalized magnetic mom
characterizingP(a) in which p(a) represents the total momen
tum pertaining to the domainSa , while the circulation term
can be seen as an effective vector potentialA5Be3`r ,
wherer5^x&5r(dx•v)x/Ka andKa is the magnetic fieldB.
Such a picture matches the magnetic approach to the p
vortex quantization presented in Ref. 17.

Similarly to the 3D case, the Fourier mode algebra
obtained by considering the Fourier decompositionA(x)
5*d2qA(q)eiqx and defining the mode currents
o
-

of

to

n

ts

int

s

Jq@w#5E d2xw~x!eiqx, ~23!

that represent the functionals whereby reconstruct
any current as illustrated by the formulaJA@w#
5r*d2xA(x)w(x)5*d2qA(q)Jq@w#. Moreover, the Pois-
son brackets of theJq@w# ’s are readily derived from Eq.~20!
which provides the formula

$Jq ,Jp%@w#52e3•~q`p!Jq1p@w#,

whereby its quantum mechanical counterpart

@Jq ,Jp#@w#52 i\e3•~q`p!Jq1p~w! ~24!

is derived. The resulting algebra coincides with the w
known algebraW(`) ~see, e.g., Ref. 22!.

Now, going to the case of point vortices, it is interesti
to illustrate the diversity characterizing the scheme based
the canonical variables and the procedure relying on the
Quantizing a classical 2D vortex gas is usually performed
replacing its classical Poisson brackets23 $xa ,yb%5dab /rka
with the commutators@xa ,yb#5 i\dab /rka ~see, e.g., Ref.
24!. The definition of theq currents for a pointlike vorticity
distribution ensues directly from Eq.~23!

Jq~w!5E d2xw~x!eiqx5(
a

kaeiqxa,

where ka5w(xa), and local currents are recognized
have the formJq

a5eiqxa. As a consequence of the Bake

Campbell-Hausdorf formula exp(2 1
2 @Q,P#) expQexpP

5exp(Q1P) it is found that

eiqxaeipxaeiFa(q,p)5ei (pxa1qxa).

The phaseFa(q,p)5(\/2rka)e3•(q`p) is the nontrivial
effect deriving from the canonical quantization. In fac
while the commutator of two any local currents still gene
ates a current@see Eq.~20!# since

@Jq
a ,Jp

b#5dab2ika sin@Fa~q,p!#Jp1q
a , ~25!

the attempt to reconstruct the CA, namely the commuta
~24!, fails due to the nonlinearity of the sine factor arising
Eq. ~25! that prevents the superposition of local currentJp1q

a

with different labela. The usual result is recovered howev
either in the limit \→0 or whenka→`, both entailing a
semiclassical picture of vortices.

On the other hand, writing explicitly the current comm
tator

@Jq ,Jp#52i(
a

ka sin@Fa~q,p!#Jp1q
a

shows the presence of an underlying magnetic-like struc
where two generators of planar displacements~magnetic
translations! commute provided the area element in the mo
spacee3•(q`p) is equal~up to a factorp) to the multiple
fluxon n(2rka /\), nPN. Also, it is worth noting that the
structure~24! is partially recovered, namely

@Jq ,Jp#52ik sin @F~q,p!#(
a

Jp1q
a , ~26!
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when assuming the standard~low temperature! vorticity con-
figuration ukau5k[\/m ~due to the Feynman-Onsager co
dition, wherem is the Helium atomic mass!, for each vortex.
In this case local currents share the same sine factor w
keeps memory of the pointlike form of vortex cores. A sim
lar portrait has been depicted in Refs. 19 and 25 by con
ering certain realizations of the algebra diff(T2) and su~N!
and their link via contraction. More precisely, su~N! has been
shown to be equipped with commutators whose struc
constants have the formNsin@e3•(q`p)/N# which repro-
duces that of diff(T2) for N→`.

V. CONCLUSIONS

Based on a heuristic approach, we have shown in Sec
that the LP structure of string vortices can be evinced
combining the effect of the string limit~12! on currents and
the request that the algebraic structure of CA is preserv
Such a heuristic way bypasses the complexity of Dirac’s f
malism.

A more detailed procedure has been supplied in Appen
A based on the Clebsch potential picture of perfect fluids
the explicit use of diffeomorphisms as the dynamical va
ables in terms of which reformulating the LP brackets.

The applications of formula~15! are at least twofold. Firs
it is a crucial ingredient in constructing the functional ope
tor form of the currents ofA in the implementation of the
geometric quantization scheme7,9 for string vortices. Second
one can take advantage from formula~15! to study the alge-
braic structure of string functionals such as Chen itera
path integrals26 that represent the higher order topologic
charges of the string.11

The limiting process reveals the possible man
component structure of the string. Such an aspect is f
accounted in the planar vortex case discussed in Sec. IV
is used to make evident the fine structure of the current
gebra. Relying on such a formulation of the dynamical al
bra, we have reconstructed the CA for~planar! point vortices
showing how the canonical quantization process yields a
ferent algebraic structure for the local currents. The diff
ence disappears upon passage to an appropriate semicla
limit.

This effect is of course explainable as the manifestation
the structural inequivalence between a model with a disc
distribution of the vorticity and a~smooth! vorticity field
theory. It might be used in an explicit way to characterize
transition from the~low temperature! rarefied gas of point
vortex pairs to a fluid with many interacting vortices, whic
takes place in planar superfluids when temperature is rai
The many-vortex fluid induces a more intense vortex int
action which possibly requires a fieldlike description capa
of describing vortex cores which are no longer reducible
pointlike objects.
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APPENDIX

The use of diffeomorphismsx→y5h~x! as the dynamical
variables of the system is based on the Clebsch poten
~CP! picture of the vorticity fieldw. Within the CP picture
assigning the fieldv ~or w, i.e., the state of the fluid! is
equivalent to defining the set of CP

$@Uj ,~a j ,b j ,w j !#uø jUj5R3%,

on a suitable covering ofR3, such that v[k(a j“b j
1“w j ) andw[k“a j`“b j in the chartUj ~index j referred
to local charts is dropped in the sequel to simplify formula!.
Triads of CP provide an alternative system of coordina
represented by the map~with its inverse!

@a~x!,b~x!,w~x!#�x5x~a,b,w!,

whose definiteness is ensured by the fact that its Jacobi

I ~x!5“w•~“a`“b!5
v•w

k2
~A1!

is nonvanishing ~namely the topological charge i
nonzero.14! The Jacobian furnishes further geometric info
mation. In particular, a set of six equations can be ea
worked out from Eq.~A1! two of which read

I
]x

]w
5“a`“b,“w5I

]x

]a
`

]x

]b
, ~A2!

while the others are obtained by cyclic permutations ofa, b,
w. Thew can be thought of as the set of itsfibers~that is its
integral curves! filling the whole ambient spaceR3. Fibers
x~a,b,w!, in turn, embody the topological structure ofw and
are homotopic to each other~the extended version of such
review can be found in Ref. 9!.

The time evolution involves the change driven by t
time-dependent diffeomorphismsh

@a~x!,b~x!, f ~x!#→@a~x!,b~x!,w~x!#,

where a(x)ªa@h(x)#, b(x)ªb@h(x)#, w(x)ª f @h(x)#,
and h~x![x at the initial time. This allows one to regar
y5h~x! as a dynamical variable. The kernel of formula~4!
for F5JA , G5JB reduces tow•~a`b! which represents the
result we must reproduce by introducingy-dependent func-
tional derivatives. Upon expressing a current as

JA@w#5krE d3xA~x!•@“a~x!`“b~x!#, ~A3!

wherea, b containh, the functional derivative ofJA can be
written through the formula

dJA

dyk ¹yk5rw~x!`a~x!ªDyJA . ~A4!

The identity w•(a`b)5(w/w2)•@DyJA`DyJB#, where w
5“a(x)`“b(x) must be considered as dependent onyk

5hk(x), is derived from Eq.~A4!. Then the brackets
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$JA ,JB%~w!5
1

rE d3x
w

w2
•@DyJA`DyJB#, ~A5!

can be defined. SinceDyJA is also available in the form

DyJA[rI ~x!
dx

df
`a~x!, ~A6!

one finds that the string limit of Eq.~A5! is well defined in
that the factor 1/w2 generating a divergent contribution
compensated by two factorsI (x) coming from DyJA and
.

v

s

rd
d

s

DyJB . In the string limit, in fact, one can easily show th
the approximationx3.f can be locally implemented aroun
the vortex core as a consequence of the confinement of
ticity inside a thin cylinder. In view of Eq.~A2! this implies
that I (x).uw(x)u. Consequently, one finds

DyJA

ruwu
5

dx

df
`a~x!→FdJA

dx G
G

,

where the subscriptG recalls thatxPG andf identifies with
the arclength in the above expression.
es
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