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The Poisson structure generating the Hamiltonian dynamics of string vortices is reconstructed within the
current algebra picture as a limiting case of the standard brackets associated to fluids with a smooth vorticity
field. The approach implemented bypasses the use of Dirac’s procedure. The fine structure of the dynamical
algebra is derived for planar fluids by implementing an appropriate spatial fragmentation of the vorticity field,
and the limit to the point vortex gas is effected. The physical interpretation of the resulting local currents is
provided. Nontrivial differences characterizing the canonical quantization of point vortices and the current
algebra quantization are also illustrated.

[. INTRODUCTION both group-theoretic and algebraic, features that characterize
the fluid structure and its description, almost no attention has
The formation of vortices and their interactions in super-been directed to considering how the vortex quantization is
fluid medid such as*He (and closely related systems such influenced by the limiting process which relates the previous
as type-ll superconductdyshave been detected and thor- models through the squeezing of the extended vorticity field
oughly studied at the classical level since forty years agot0 @ set of disjoint lines.
Recent experimental results concerning the Bose-Einstein [N this paper we start to investigate this limit and the
condensates show the emergence of vortices in thadvantages it entails as to the stringlike-vortex description,
condensatéshus providing a further scenario in which vor- and try to emphasize some nontrivial aspects concerning the
tices can be investigated. Despite the large number of physfiuantization of vorticity fields in the planar case.
cal systems exhibiting excited states with vortices, a quite One of the first attempts to quantize the vortex dynamics
mild interest has been raised by the study of the quanturas developed in Ref. 12 for a model of almost parallel line
aspects inherent in their dynamics that, on the contraryvortices within the canonical approach based on coordinates
should be relevant both because vortex formation occurs &nd momenta. Its natural extension to planar systems of su-
very low temperatures, and because vortex interactions taikeerfluids with point vortices raised a certain interest several
place on microscopic/mesoscopic spatial scales, where quaears later mainly in relation to the possibility of observing
tum effects are importarit. fractional statistics. The difficulties inherent in the quantiza-
Such a situation is probably originated by the great diffi-tion process were completely recognized in Ref. 5 where the
culties in formulating, within the quantum field theory of canonical scheme was employed to construct the quantum
superfluid mediaand closely related systeinsa quantiza- ~field theory of three-dimension&BD) vortices characterized
tion scheme which supplies both an effective representatioRY @ singular vorticity field
of the fluid topological excitationévortex states and a vi-
able approach to investigate the formal aspects of the theory.
In particular, the dynamical degrees of freedom activated by w(Xx)=k § dx(s) 83(x—x(s)), (§N)
the vortex emergence exhibit a structural complexity which r
renders dramatically difficult any attempt to construct explic-
itly the Hilbert space for the fluid quantum stafésSuch a  with vortex strengthk, whereT is a possibly self-knotted
program is further complicated by the fact that, since vorti-string with any number of components. Such an arbitrarily
ces are extended object equipped with a possibly nontrivisfomplex object provided a realistic generalization of the
topological structure, a consistent quantum description of thehodel of parallel vortex lines by introducing explicitly the
fluid should incorporate as well the vortex topology in termstopological strucure of line vortices. The componeq(s,t)
of constant of motions representing generalized circulation®f the 3D vectorx(s,t) representing the smooth cunié
Such aspects have been thoroughly studied in a series &fR® (sis the string parameter di, andj=1,2,3 supplied
paper within the geometric quantization scheme both for fluthe coordinates at each tintewhereas the canonically con-
ids with a vorticity field confined on filamerft (gas of line  jugate momenta
vortices, and for fluids whose state is described by a smooth
(extendedl vorticity field>° A large amount of work has
been devoted to such two models of fluids in order to realize Pi(s,t):=
the unitary irreducible representations of the field operators QER)
and the ensuing construction of the Hilbert space. Despite
the recognition within the geometric scheme of several basioyere obtained from the Lagrangian functional
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kp IX sists in squeezing the vorticity fields da set of isolated
Li=—H+ 3 fﬁ dx- (EAX) points of the ambient plane. The resulting point vortex gas is
r well known to represent the reference model for a number of
(the fluid densityp is assumed to be constagbntaining the  systems with vortex excitations such as superfluid fithas
ideal fluid energyH [see Eg.(5 below]. Momenta P, “He (adsorbed both on planar substrates and on porous ma-
entail the dynamical constraint®;—(pk/3)e;jkx;dsx,=0  terialg, planar superconductofsand Josephson junctions’
that revealed the singular character 6f and showed arrays® (see also Ref. 17 and references thereur inter-
how the stringlike vortex dynamics actually takes placeestin analyzing the 2D singular limit comes from the wish of
on a submanifold of the standard phase spaBe establishing a clear link between the smooth case and the

:={[P;(s,t),x;(s,t)]}. The price of implementing the ca- singular case. More specifically, we aim at unveiling the al-

nonical picture based on the brackets gebraic structure of point vortices within the ampler frame-
work of the current algebréCA) of the smooth case.
{xi(s,1),Pj(s" 1)} =8(s—s")§; (2) The point of view adopted here is that in the 2D case the

CA contains an explicit many-body structure related to the
gpatial distribution of positive/negative vorticity which de-
Serves to be investigated. Such a fine structurd @étoring
information on the spatial distribution @f) paves the way to
the emergence of the canonical Poisson structure that cus-
tomarily characterizes the point vortex dynamics. The 3D
(A|C|B)EJ dsf ds'{A,®,(9)}C, g(s,s" ) {P4(s"),B}, case can be also studied from this viewpoint even if the
fragmentation must be developed based on the complex to-
{A,B} represents the standard Poisson brackgfs; are el-  pological structure oiv. In this respect, however, the Arnold
ements of the matriC:=||[{®,,®g}||~* and the functionals cells® should represent the 3D counterpart of 2D fragmen-
d,(s), a=1,2, of the canonical variables essentially identify tation. The latter enables us to shed light on certain features
with the components of the part d¥— (pk/3)x/\dx or-  that characterize, at the quantum level, the construction of
thogonal to the vector field(s,t). The main issue of Dirac's the CA of the point vortex model, and unexpectedly prevents
formalism was the unexpected coordinate brackets it from matching the version of the algebra obtained within
L the field theory formalism.
, , The paper is organized as follows: In Sec. Il, after intro-
{xi(s).x;(s")} :Eeijk‘s(s_s )IXi(S) 3) ducing tF;lepstandar?j derivation of Euler's equations by means
, . of appropriate Lie-Poisson brackets, the CA picture is rew-
showing how coordinates; cannot be regarded any longer jeyed for the 3D case and its relevance for the quantization
as independent variables. At the quantum level, Baen- o the vortex dynamics is showed. In Sec. Ill the CA picture
tailed the rema_rk_able effects that the prolectl_onfcofn the s used to perform in a consistent way the string limit of
planesx;—x;, i,j=1,2,3, are affected manifestly by the tormula (4) in order to construct the Poisson structure for a
quantum uncertainty, and led to imagifieas a tubular do-  gas of stringlike objectga more formal derivation is fur-
main representing the intrinsically approximate position ofjished in the Appendix based on the Clebsch potential pic-
the vortex coresee Ref. 18 o ture). Some applications of the brackets thus obtained are
A further observation is suggested by E8): in spite of  jjysirated as well. In Sec. IV the many-body structure of
the local canonical character of coordinates, the algebraigytex dynamics is investigated in the 2D case and the fine
structure exhibited by Eq3) is actually nonlocal consistent gy cture of the CA is evidenced via an appropriate fragmen-
with the fact thaf” is a true three-dimensional object. In Ref. tation of the vorticity field. The latter is related to the CA
5, this led the authors to construct the algebra of current§econstructed for 2D point vortices within the canonical
which we review in the sequel, so as to avoid the dependencg,antization. The CA of the point vortices is compared with
on local parametrizations as well as on Dirac’s formalism. ine CA of the smooth case and their inequivalence at the

The first goal of this paper is to show how the algebraicqyantum level is proven: a suitable semiclassical limit is
structure involved by the functional picture based oNnghown to reconcile such situations.

I'-dependent currents can be derived in a direct way from the
standard Lie-Poisson structure

was to reconstruct E@2) within the Dirac procedure so as to
incorporate the dynamical constraints. The dynamics wa
thus formulated through the Dirac brackéss B}, :={A,B}
+(A|C|B), where

Il. CURRENT ALGEBRA APPROACH TO VORTEX
1 3 Sk 9G DYNAMICS
{F,GHw)= ;j d°xw- | curl W/\ curl Swl (4)
The classical motion of a perfect fluid with velocity field

without implementing Dirac’s procedure. The structé v, vorticity field w=curlv, and Hamiltonian
that generates the vortex dynaniftehen the vorticity field
w(x) is smooth[namely its components j(\x)eC‘”(R?’)],
contains as a limiting case the Poisson structure for vorticity P[5,
fields w collapsed on an array of stringsingular limi, no HLv]= EfRd Xve(x), )
matter how complex the underlying topological structure is.
The second purpose of the present paper is to consider the
effect of the singular limit on the vortex Lie-Poiss¢bP) is governed by the Euler equatiors- —v-Vv. Observing that
structure in the two-dimensional case, where the limit conv-Vv=v/A\w—VV?/2, the vorticity equation
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w=—curl(vAw), (6) I w] :pj d3xe™w(X). (10

based on representing the fluid state throwghis easily
obtained from the Euler equatidh.The derivation of both Then one can easily show that the basic bracketsl afre
equations is easily performed by means of the usual Liegiven by

Poisson(LP) bracketé’ .

1 5F 6G {35 .3pHw]== 2 Con(a,p)Igaplwl, (1D
{F,G}[v]z;J' d3x curl v- E/\W , (7) k=1

_ whereC, ,(9,p) =6 [(a/\en)/\(p/\&,)] are the structure
whereF and G are functions that depend an and the no-  constants, ang,, k=1,2,3 are the unit vectors of the 3D
tation [d"x denotes, from now on, the integration on the Euclidean basis. The equations of motion of any current
whole spaceR". It is important to observe how a consistent Jg“[w] can be easily derived via the brackétd) onceH[w]

use of Eq.(6) requires thav is expressed as a functional of jiself has been rewritten as a functional of curretffw] by

w. This is achieved by imposing the divergenceless conditiofyerting formula(10) (see Ref. 2L This proves thatdg

divv=0 onv, namely by identifying with V(x)=curlU(X),  indeed furnishes a set of observables which is complete,
where the vector potentia)(x) is defined as namely Ar represents an alternative scheme in which repre-
senting the fluid dynamics. Bracketkl) also shows how the
U(x)= f d®y G(x—y)w(y), subalgebra of mode currents is the most advantageous set of
commutators in which implementing the quantization pro-

cess. Nevertheless, it important to recall that the parent set of
commutators(9) indicate that the quantization process is
equivalent to construct the unitary irreducible representations
of the group of diffeomorphism which is one of the hardest,
unsolved problem of the theory of group representations.

and the Green functio® in 3 and 2 dimensions read3(x
—y)=1/(4m|x—y|) and G(x—y)=(1/27)In|x—y|, respec-
tively.

In the case whelr and G are assumed to depend on the
equivalence clas$v]={v':v'=v+Vf}, the LP brackets
take the form(4) in that §F/d8v=curl(sF/éw). Explicitly,
this amounts to assuming th&tandG depend orw namely Ill. STRING LIMIT OF 3D CURRENT ALGEBRA

on the divergence-free field. Upon performing the limit which confines the vorticity

_Replacingv with V in H[v] incorporates explicitly the fig|q on a stringlike domairithat is, on a vortex filamept
divergenceless feature in the theory. This leads to the QU3amely considering

dratic form

— = 3(x—
=" [ a5 Gyt wiy, we0 - (9= ks §, dya(s)2°6c (9 (12
, ) the current(8) becomes
which generates Ed6) via bracketg4).

An alternative formulation of vortex dynamics can be
given in terms of current algebrd. The latter consists of JAWl=p> Ko jg dXa-A(Xy),
functionals of[ v] (the currentsdefined as a Ta
whereas the curredtl, ,Jg}[w] reduces to

Ja[V]pr d3xa~v=pf d3xA-w=J[w], (8)
{3a.Je}lW]=p 2 kaff dXa: [a(Xa)/\D(Xa)].
where a belongs to the algebraG={a:a=curlA} of a Ta
divergence-free vector fields. .One can easily check thafherefore the form assumed by Poisson brackétswhen
Jav]=Jv+VI]. The algebraic structure ofl shows up |imit (12) is enacted must be consistent with this result. Ob-
via the equatioft serving that

{Ja. IpHVI=Ipap V], ©) SF  of d of " 13
—_—_— S
where[a,b]=curl(a/\b), that is fulfilled by two any cur- OX(s) Ix(s) dsgx
rents of A. The structure constants of are readily worked _ _ .
out by introducing the subalgebra of the mode curretgs ~ for any function F=[dqf[x(q),x(q)], where Xx(s)

The latter is defined by noting that any currdpfw] can be  :=dx(s)/ds, one easily obtains
expressed in terms of the Fourier transfoity) relative to
A as O _ kx(s)/\curl A
x(s) '
JA[W]pr d3xA~w=f d3gA(q) - J[w], This entails, in turn,
where the mode curredt[ w] ::emJg"[w] has vector compo- ) 6da 6Jp k2,2 .
nents 7(s) ox(s)” " ox(s) k“p“7(s) (a/\b)x(s),
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provided 7(s) =x(s) is a unit vector, i.e., the parameteis IV. FINE STRUCTURE OF 2D CURRENT ALGEBRA
identified with the arc length of. This result suggests the  rqr planar vortices the notation of CA formalism can be
substitution simplified in view of the fact thatv=we;, a=curl(Aey)
|5F " 5 oF y =VA/\e; with V=elaxl+ €0x,- IN particular, bracket$4)
curl = —Xa %, K, (14)  reduce to
as a consequence of limit2), where the indexa takes into 1 X 5G
account the possible many-component strucire{T",} of {F.G}{w]= ;j dxw- V—/\V 17
the string model. Hence the string LP brackets for a many-
component line vortex turn out to be which, upon observing that a generic current is available in
— (a2 — A2 _ _
K dxa S OF 5 JG the two formsJ[v]=pfd°xa-v=pfdxAw=J, W], pro
{F,G}[w]= E R/ N —— vides the current brackets
OXq IKy 0%y dKy

A simplified version is also available in the form (In ‘]B}[W]:PJ d2xw- (VAAVB)=J;p (W]
oF 5G
(FoIw-3 - §, x| 50

ox. 3% ) 19 \where{A B}, =6y (VAAVB).

The two-dimensional LP structure just worked out can be
which can be used in a consistent way provided Bo#nd  reformulated in such a way that the partition of the ambient
G have a linear dependence &g's as the currents 0fA.  plane R? in many subdomains is accounted for explicitly.
Another derivation of Eq(15) is described in Appendix A, This is realized through the representation of the unit con-
where we reformulate the LP brackets within the Clebschstant function
picture of fluids in such a way that the dependence on the
diffeomorphism action is expressed explicitly.

A simple way to test the validity of the brackets just ob- 1=, ©4(X) (18
tained consists in checking whether they reproduce correctly a
the equation of motion for the vortex filament by calculating
explicitly the right hand side of\x={x,H}. The effect of N terms of Heaviside function® ,(x) :=0®(x;S,) nonvanish-

limit (12) onH andU is that of exhibiting them into the form ing inside the domairg,. The underlying idea is to show
that implementing the fragmentation process within the

dx,- dxy brackets formalism leads to recognize the single components
Hlw, ]= E E Kakp % 4; 477|x —Xp|" w,(x) of w (associated to plane domaiSg) as independent
a b K
dynamical degrees of freedom.
and The rule for selecting such domains is based on separating
the negative islandéwhere w<<0) from the positive ones
U(x)—E K § dx, (wherew>0). Such a situation indeed is usual since the
rA7|X—Xy| condition [d?xw(x)=0 is customarily assumed to exclude
. o _ ) i unphysical vortex configurations whose energy cost is too
respectively. Considering the single string case one finds high “On the other hand, the stable character of such domains
is ensured by the hydrodynamic laws of perfect fluids which
oH A @ (16) state the conservation @he structure ofspace patternéhe
OX(S) p partition in positive/negative vorticity domains, in the
present cagevhen the evolution is driven by area preserving
diffeomorphisms.
Using Eq.(18) any currentJ,[w] can be reexpressed in

{x,H}=

where the functional derivative ¢ is given by

oH x(r
- 3€ f dr——— terms of local currents as
5x(s) 5x(s) [x(r) =yl
—px(e)Ak XYY swl=3 IPw1=3 o [ axacowen, 19
r 4m|x(s) -yl a a5

Then, the expected equation of motion whereJﬁf‘)[w]zpfdzxA(x)w(x)(Ba(x). In this way the ad-
A ditional information concerning the spatial distribution of
ax=\(T)x+k 4; (x—y)/A\dy _ (D)X =V(xT) vorticity is explicitly taken into account in the current de-

t 3 ) . . .
r 4m|x—y| scription of the fluid. At the quantum level, the quantity

Jga)[w] with A=1 are expected to represent the quanta of
vorticity located inS,. A simple calculation shows that the
LP brackets of local currents are given by

with N(I"):=x-V(x;I"), is achieved by explicitly calculating
the wedge product in Eq16). Notice that the component
A(s,I') generates displacements Bfthat are parallel td”
itself due to its longitudinal character. The above result eas- & (b

ily extends to the many-component case. {38, 30 W] = Sapdfa gy[W] (20
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providedw,(x)=0 for xe dS,. The vanishing ofv on the

boundary separating different confining domains is crucial to

eliminate the contributions coming from the divergent char-
acter of

VO,(x)= 3558 dy/\esd?(x—y)

on the boundary o8, . This fact motivates as well the choice
of the set of plane domairfs, based on distinguishing posi-
tive from negative vorticity domains. Furthermore the LP
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Jq[w]=J d?xw(x)e'®, (23
that represent the functionals whereby reconstructing
any current as illustrated by the formulala]w]

= pJd®x A(X)w(x) = fd’qA(q)J[w]. Moreover, the Pois-
son brackets of tha[w]’s are readily derived from Eq20)
which provides the formula

{Jq:JpHW]= —€5-(a/\P) Ig p[ W],
whereby its quantum mechanical counterpart

brackets for any two currents can be rewritten by means of

the formula

8J
OWq

8Jg
oW,

d?x
{JA,JB}[W]ZEafS TWa-(V AV ) (21

explicitly exhibiting the fine structure of the vorticity do-
mains. This also implies thatv,:=w(x):xe S,} can be con-
sidered as a set of fluid dynamical variables.

It is worth noting how the fragmentation picture just in-
troduced allows one to enlarge the set of currents so as
include current whose label& not necessarily vanish for
[X|—. The case in whiclA=x,, B=x, is illustrative of
this. From Eq.20) one readily obtains the canonical coordi-
natelike brackets

{J>(<?) vJﬁg)}[W] = 5abJ(1a)[W] = 6appKa, (22)

where Ka=fsad2xw(x), that relate the present field-theory
description to the pointlike vortex gas description of the
Helmholtz standard model. The quantum version of 28)
implies that the information related to tfi@verage position
of the vortex domainS,; on the x; axis cannot be given
together with that concerning the position on the axis.
This clearly mimics the effects of the canonical quantizatio
rule standardly used for point vorticdss well as the uncer-
tainty affecting the position of the string in the 3D case. A
nice magnetic-like interpretation ak?, J{® is also avail-

able. Rewriting first;w(x) [xaw(x)] in I (3) as

x,w(x)=v/Acurl(x,e3) —div(x,e5/\v), r=1,2,

and using then formulae; div(A/\e;)=curl A one finds
I =e- Py and— I =e, P, where

P@ay=P@*+ 35 (e3/\x)(v-dx),
Ya

with p(a)::pfsadzxv and y,=dS,. Such an expression

n

[Jq.Jpl[W]=—ifies (4/\P)Jg+ p(W) (24)

is derived. The resulting algebra coincides with the well
known algebraN(«) (see, e.g., Ref. 22
Now, going to the case of point vortices, it is interesting

to illustrate the diversity characterizing the scheme based on
the canonical variables and the procedure relying on the CA.
Quantizing a classical 2D vortex gas is usually performed by
replacing its classical Poisson brackdt,,yp} = 8ap/pka
with the commutator$x,,y,]=1% 8,4,/ pk, (See, e.g., Ref.

4). The definition of theg currents for a pointlike vorticity

distribution ensues directly from E¢R3)

Jq(w)=j d2xw(x)e' ™= k,e%a,
a

where k,=w(x,), and local currents are recognized to
have the formJg=€'%a. As a consequence of the Baker-

Campbell-Hausdorf formula exp(3[Q,P]) expQexpP
=exp@+P) it is found that

gl WagiPXag Pa(d,p) = gl (PXa+aXa)

The phase®,(q,p)=(%/2pk,)es- (g/\p) is the nontrivial
effect deriving from the canonical quantization. In fact,
while the commutator of two any local currents still gener-
ates a currentsee Eq.(20)] since

[J2,30]= Bap2iK, s @ 4(q,p)1d

the attempt to reconstruct the CA, namely the commutators
(24), fails due to the nonlinearity of the sine factor arising in
Eq. (25) that prevents the superposition of local curréSuq
with different labela. The usual result is recovered however
either in the limitA—0 or whenk,—o, both entailing a
semiclassical picture of vortices.

On the other hand, writing explicitly the current commu-
tator

a

Yo (29

a

[Jq,Jp]zzig Ka SIM @4(0,p) 193, 4

makes visible the structure of generalized magnetic moments

characterizind® 4 in which p(, represents the total momen-
tum pertaining to the domai,, while the circulation term
can be seen as an effective vector potenfiat Bey/\r,
wherer =(x)=§(dx-v)x/K, andK, is the magnetic field.
Such a picture matches the magnetic approach to the poi
vortex quantization presented in Ref. 17.

shows the presence of an underlying magnetic-like structure
where two generators of planar displacemefitsagnetic
translations commute provided the area element in the mode
spacee;- (g/\p) is equal(up to a factorsr) to the multiple
fluxon n(2pk, /%), neN. Also, it is worth noting that the
structure(24) is partially recovered, namely

Similarly to the 3D case, the Fourier mode algebra is

obtained by considering the Fourier decomposititi(x)
= [d?qA(qg)e'¥ and defining the mode currents

a

p+qr (26)

[Jq,Jp]=2iksin[q>(q,p)]§a‘, J
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when assuming the standgtdw temperaturgvorticity con- ity and for supporting his visit. The IN.F.M. and the
figuration |k,| =k=7/m (due to the Feynman-Onsager con- M.U.R.S.T. (within project Sintesi are also acknowledged
dition, wherem is the Helium atomic magsfor each vortex. for financial support.

In this case local currents share the same sine factor which

keeps memory of the pointlike form of vortex cores. A simi- APPENDIX
lar portrait has been depicted in Refs. 19 and 25 by consid- ] ) }
ering certain realizations of the algebra diff) and suiN) The use of diffeomorphisms—y=7(x) as the dynamical

and their link via contraction. More precisely,(8) has been Variables of the system is based on the Clebsch potentials
shown to be equipped with commutators whose structuréCP) picture of the vorticity fieldw. Within the CP picture

constants have the forMisines- (q/\p)/N] which repro- assigning the fields (or w, i.e., the state of the flu)dis
duces that of difff?) for N— . equivalent to defining the set of CP

{[td; (). B 0 ]|UjU;=R3},
on a suitable covering ofR%, such that v=Kk(a;V B,

Based on a heuristic approach, we have shown in Sec. Iif V¢;) andw=KkV a;/\V g; in the chart/; (index] referred
that the LP structure of string vortices can be evinced by local charts is dropped in the sequel to simplify formulas
combining the effect of the string limitL2) on currents and Triads of CP provide an alternative system of coordinates
the request that the algebraic structure of CA is preservedepresented by the mdpith its inverse
il;clzir;riheunstm way bypasses the complexity of Dirac’s for [a(x). B(X), 0(X)]=xX=xX(at. 5. ),

A more detailed procedure has been supplied in Appendixhose definiteness is ensured by the fact that its Jacobian
A based on the Clebsch potential picture of perfect fluids and
the explicit use of diffeomorphisms as the dynamical vari- V-
ables in terms of which reformulating the LP brackets. 1(X)=Ve-(VaAVB)= & (A1)

The applications of formulgl5) are at least twofold. First
it is a crucial ingredient in constructing the functional opera-is nonvanishing (namely the topological charge is
tor form of the currents of4 in the implementation of the nonzerd'%) The Jacobian furnishes further geometric infor-
geometric quantization schefiffor string vortices. Second, mation. In particular, a set of six equations can be easily
one can take advantage from formyl) to study the alge- worked out from Eq(Al) two of which read
braic structure of string functionals such as Chen iterated
path integral®® that represent the higher order topological
charges of the strintf:

The limiting process reveals the possible many- hile the oth btained b i .
component structure of the string. Such an aspect is fully/hile the others are obtained by cyclic permutations:oB,

accounted in the planar vortex case discussed in Sec. IV arft The\I/v can bi.ltlhougr?t Ofﬁsl the ss.t of fibers (t3hat .its) its
is used to make evident the fine structure of the current al"tégral curvekfilling the whole ambient spacR”. Fibers

gebra. Relying on such a formulation of the dynamical alge-x(a’ﬁ"f’)' in turn, embody the topological structurewfand

bra, we have reconstructed the CA fpfanaj point vortices are homotopic to eac_h othéthe extended version of such a
showing how the canonical quantization process yields a diff /€W can be found in Ref.)9 .
ferent algebraic structure for the local currents. The differ- . The time evoll_mon mvones the change driven by the
ence disappears upon passage to an appropriate semiclassft&e-dependent diffeomorphisms
limit.

This effect is of course explainable as the manifestation of [a(x),b(x), F(x)]=La(x), (x), ()],
the structural inequivalence between a model with a discretehere a(x):=a[ (X)], B(X):=b[7(X)], @(X):=f[ n(X)],
distribution of the vorticity and gsmooth vorticity field  and 7(x)=x at the initial time. This allows one to regard
theory. It might be used in an explicit way to characterize they=7(x) as a dynamical variable. The kernel of form@s
transition from the(low temperaturgrarefied gas of point for F=J,, G=Jg reduces tav-(a/\b) which represents the
vortex pairs to a fluid with many interacting vortices, which result we must reproduce by introduciggdependent func-
takes place in planar superfluids when temperature is raisetonal derivatives. Upon expressing a current as
The many-vortex fluid induces a more intense vortex inter-
action which possibly requires a fieldlike description capable _ 3
of describing vortex cores which are no longer reducible to JA[W]_kpj dXAX) [VaAVAX)], - (A3)
pointlike objects.

V. CONCLUSIONS

1 YAV BV o= N
ﬁ_ [e4 ﬂv = @ s

5 M2

wherea, B containy, the functional derivative o3, can be
written through the formula
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1 W D,Jg. In the string limit, in fact, one can easily show that
{Ja,Jdg} (W)= —f d3x—2 -[DyJaADyJg],  (A5)  the approximationx;= ¢ can be locally implemented around
P W the vortex core as a consequence of the confinement of vor-
can be defined. Sind,J, is also available in the form ticity inside a thin cylinder. In view of Eq(AZ) this implies
that 1 (x)=|w(x)|. Consequently, one finds
dx
DyJAEpI(x)ﬂ/\a(x), (A6) %: %
. N . — plw| d¢
one finds that the string limit of EQA5) is well defined in
that the factor M? generating a divergent contribution is where the subscridf recalls thaixeI" and ¢ identifies with
compensated by two factoigx) coming fromD,J, and the arclength in the above expression.
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