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Experimental evidence indicates that the superconducting transition inThighprates is an “undressing”
transition. Microscopic mechanisms giving rise to this physics were discussed in the first paper of this series.
Here we discuss the calculation of the single-particle Green’s function and spectral function for Hamiltonians
describing undressing transitions in the normal and superconducting states. A single paYadesteribes the
strength of the undressing process, and drives the transition to superconductivity. In the normal state, the
spectral function evolves from predominantly incoherent to partly coherent as the hole concentration increases.
In the superconducting state, the “normal” Green’s function acquires a contribution from the anomalous
Green’s function wherY is nonzero; the resulting contribution to the spectral functiopdsitivefor hole
extraction, anchegativefor hole injection. It is proposed that these results explain the observation of sharp
quasiparticle states in the superconducting state of cuprates along,edirection, and their absence along
the (wr,7r) direction.

[. INTRODUCTION carriers as the pairing state developsThus it describes
both the kinetic-energy lowering, arising from the low-
Photoemission and optical experiments indicate that irenergy effective Hamiltonian, as well as the high-energy op-
high-T, cuprates a transition from an incoherent state to dical spectral weight transfer, that was also observed
partially coherent state occurs both as the hole doping inexperimentally.? In the first paper of this seri€S(hereafter
creases in the normal state and as the system becomes sugéferred to as)lwe formulated more generally the principles
conducting—* Basovet al* observed a lowering of-axis of superco'nductlv!ty through hole undressmg, and pointed
kinetic energy as the transition to the superconducting stat@Ut that this physics would show up both in the one- and

occurs in several cuprates, especially in the underdoped sit§/0-Particle Green's functions, in qualitative agreement with
ation. It was established, however, that thagnitudeof the the observations reported above. Here we report a calculation

c-axis kinetic-energy lowering detected is far too small toof the single-particle Green’s function and spectral weight in

. . tf}e superconducting state, and discuss the implications for
account for the superconducting condensation energy at Ieaﬁ]e understanding of photoemission experiments
in some cuprated. Ding etal,! Campuzano and co- gorp P '

workers®’ and Fenget al? reported observations of sharp
quasiparticle peaks in the superconducting state in angle-
resolved photoemission emerging from a highly incoherent |n the class of models discussed in I, the wave-function
normal-state background along the,Q) direction, close to renormalization of quasiparticles is a function of the site oc-
the (/a,0) point. Dinget al. interpreted the photoemission cupation in a local representation. The wave-function renor-
peak in terms of an enhanced quasiparticle weiglt the  malization arises from coupling to a local boson degree of
superconducting state, and Feagal? suggested that the freedom. Three examples of specific microscopic Hamiltoni-
peak in photoemission is a signature of the superfluid denans describing this physics were discussed in I. The “coher-
sity. Normarnet al.” analyzed the photoemission observationsent” part of the electron creation operator at siie defined
in terms of a “mode model,” and emphasized the close conby the transformation
nection between their observations and Basbal.s obser- _
vation of kinetic-energy lowering. Furthermore, Basshal. dfl,:[T—(T—S)ﬁdiy,U]dL, (1)
emphasized that kinetic-energy lowering seems to occur only -
when there is a high degree of incoherence in the normaVith 0<=S<T<1. Thed operators in Eq(1) are quasiparti-
state, and appears to vanish as the normal state becomele operators? andny is the electron site occupation. Equa-
more coherenfoverdoped regime® They furthermore pro- tion (1) expresses the fact that the electron becomes less
posed that the photoemission experiments suggest thabherent as more electrons are added to the band. It should
kinetic-energy lowering may also occur planein the cu-  be kept in mind that the coherent part of the electron operator
prates albeit only along then(,0) direction, and for this rea- on the left side of Eq(1) is not the full electron creation
son may be difficult to observe directly. operator, as it does not contain terms that give rise to excited
The model of hole superconductiVity predicted before  states of the boson degree of freedbim.
the experimental observations, that the superconducting con- It will be more useful to use hole operators rather than
densation energy originates in in-plane Kkinetic energyelectron operators throughout this paper; we stress, however,
lowering'® and arises from a process ohdressing of hole that the discussion can be consistently carried out in electron

Il. GENERAL PRINCIPLES
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as well as hole representations. In terms of hole operators,

the coherent part of the hole creation operator is Hiin= —<_2 > [t + At (R _ T _ )BT+ H.c),
],0
Cl=[SHT=9f _,Je,=S1+ YT . @ ®3
Equation (2) expresses the fact that the hole quasiparticle tyy =S5, (8b)
weight will increase with the local hole concentration, from
Sin the regime of low hole concentration Tofor high hole At =Yt (8¢)

cpncentration. The high degree qf in.cohgrence observed iRjnetic energy of the form of Eq(8) is used in the model of
high-T. cuprates for low hole doping implieS<1, and the  pole superconductivity, and leads to pairing and supercon-
fact that coherence is achieved for relatively small values Oauctivity for a low hole concentration in the presence of
hole doping implies that the “undressing parameter” appreciable on-site and nearest-neighbor Coulomb repul-

T sion® The condition for superconductivity to occur is

Y=35-1 3 Y> T+ u)(1rw) -1, 9)

is very large.Y is the parameter that drives the transition toWhere u and w are dimensionless on-site and nearest-

a superconducting state. Note that a laXg@ecessarily im- neighbor Coulomb repulsiorisHence, within this class of
plies S<1, due to the constraifft<1. For the normal state models, superconductivity is intimately tied to increased
Eq. (2) imblies for the hole operator " quasiparticle coherence. Note that in a model with anisotropy

Eq. (8) still implies

CiTa':S 1+2Y ~CiT¢T! (4) ﬂ:Y, (10)
with n the hole concentration per site, and independenbf direction. This assumption was used in our
no2 studies with the model of hole superconductivitand can
n,=41+=Y| fi,,=Z(n)A,, (5) be seen to be a necessary consequence of the fact thit the
2 term in the Hamiltonian arises from quasiparticle undressing.

A necessary consequence of Ef0) is that the supercon-

for the hole number operator, with(n) the hole quasiparti- ducting energy gap function has the férm

cle weight. Equation(5) implies that hole quasiparticles in
the normal state become more coherent as the hole concen- A=A(€), (12)
tration increases. In the lim&— 0, quasiparticles become ) ,

completely incoherent in the normal state for low hole con-2nd hence is constant over the Fermi surfage=(eg), even
centration, and Fermi-liquid theory breaks down. This limitfor an anisotropic band structure. Thus Efjl) can be un-

is also described by the theory; in this limit, the transition toderstood as a direct consequence of the undressing physics.
the superconducting state is a superconductor-insulatdrinally, Eq.(8) Ie(;’;tds to superconductivity through kinetic-
transition!>*® Even though for that particular limiting situa- €N€rgy lowering: Hence, within the undressing scenario
tion Fermi-liquid theory does not describe the normal stateconsidered here, kinetic-energy lowering as the system be-
we stress that our approachrieta “non-Fermi-liquid” ap- ~ COMes superconducting is intimately tiedstvave symmetry
proach, but instead is deeply rooted in Fermi-liquid theory. of the superconducting order parameter as described by Eg.

Consider the bare kinetic energy in a tight-binding model(1D-

in terms of hole operators:
Ill. GREEN'S FUNCTION: COHERENT PART

Hyin= __2 tﬂ(CiTUCij H.c). (6) The single-particle Green’s function is given by a sum of

ij.o coherent and incoherent parts,

Replacement of the bare hole operators by the quasiparticle ¢ (= —(Tc..(mcl (0)) =GN 1) + Ggincoh
operators, using Eq2), yields ro(1)= = (T (151 (0)=Cr (1) + Grs ™), (12)
; with T the time-ordering operator. The coherent part of the
Hiin=— 20 tj(Ci,Cj,+H.c) (78 Green’s function is obtained by replacing the bare fermion
b operators in Eq(12) by its coherent parts, given by E(R)
o102 ~ ~ o o in terms of the quasiparticle operators:
tij =t|]S [1+Y(ni’_0.+ nj’_o.)"'Y ni’_a.nj’_o.]. (7b)
: : : G"(7)=—SXT[1+YHh [
Equation(7) expresses the fact that the hopping amplitude of rs (T) (TI r 1 (1) ]S (7)
a ho_Ie q_ua5|part|cle_ will be increased, and as a consequence X[1+Yﬁs,¢(0)]ElT(0)>- (13
its kinetic energy will be lowered, as the local hole concen- _ _
tration increases; this is a direct consequence of the fact thdihe normal and anomalous Green’s functions for the quasi-
the quasiparticle coherence increases with local hole concefarticle operators
tration, as described by E). For a low hole concentration - _t
we can ignore the last term in E€{b), and obtain Grs(m)=—(TC1(7)C4,(0)), (149
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Frs(7)= (Tt (7)25,(0)) (14D Ze=S LY Joict foYu®, (189
are given in the usual forms and
2 2
= Uy Uk 1 A
= o~ ~ k
Glkion)= o= * o35 (158 fo=(Ci T =1 ; 2 [1721(B0l. (180
1 1

i — . (15b  The quasiparticle weights, andZ, are clearly positive defi-
e D T P =~ nite. Their sum is not conserved as a function of density or

where the coherence factaig andv, and the quasiparticle temperature because of contributions from the incoherent

F(kiog)=—Uwy

energiesE, are given by the usual BCS expressions part of the Green’s function not contained in E@3).
In the absence of undressiny € 0) the coherent Green’s
, 1 €— function[Eqg. (18)] reduces to the usual BCS form except for
Ukzg( 1 E, ) (163 the overall factorS?. In the presence of undressiny 0),

Eqg. (18) shows that the coherent part of the Green'’s function
1 ( € — M) and spectral function will increase with hole dengityboth

2

k - 1

(16  for positive and negative energies. Furthermore, as the sys-
tem becomes superconducting the on-site pair amplifgde
develops a positive expectation value. From ELp) this

ukvkzi' (160 implies that the coherent spectral weight wdikcreasefor
2Ey positive energies(hole injection, andincreasefor negative
energieghole extractioh The effect on the superconducting
Ev=V(ex— u)?+A2 (16d)  state will be largest for parameters where the on-site pair

) _ ) _ amplitude is large, which corresponds to the short coherence
and the gap functiod is obtained from the BCS solution of |engih achieved in the strong-coupling underdoped redime.
the model of hole superconductivity,e., the kinetic energy tpe magnitude of these effects, both in the normal and su-
[Eq. (8)] supplemented with on-site and nearest-neighboferconducting states depends on the magnitude of the un-
Coulomb repulsion. The single-particle energy in these dressing parameté¥. The total quasiparticle weight
equations is given by, =Z(n)el=S(1+nY)ey, with €2
the bare kinetic energy given by the Fourier transform of Zior=Zo+ Zn=S(1+nY)2+Y2f2] (180
(—t5). o

It can be seen that the extra density operators in(E8). | always increase as superconductivity sets in. We discuss

will modify the normal Green's function, introducing the implications of these results in subsequent sections.
anomalous terms similar to the anomalous terms that occur

when calculating the expectation value of the kinetic energy
[Eq. (7)] that lead to the optical sum rule violatiéh.We IV. RESULTS FOR QUASIPARTICLE WEIGHTS
expand Eq(13), keeping only linear terms in the density 8 14 jjjystrate the behavior emerging from the results of

appropriate to the low hole concentration regime, and us&gc i, we now consider a specific example. The quasipar-
mean-field decoupling for the averages, to obtain ticle Hamiltonian is given by the kinetic enerd§q. (8)]
~ ~ supplemented by on-site and nearest-neighbor Coulomb re-
GEONK,i )= SP[(1+nY)B(K,iwy) + 2fYE(Kiwy)], puf’sﬁ’on: y g
17

with fo=(c; C;;) the on-site pair amplitude in the supercon- B o ~
ducting state. We also performed a space and time Fourier HCOU'_UZ niTnil+V<i2j> nin; - (19
transform. It can be seen that the normal Green’s function
has acquired a contribution from the anomalous Green'she BCS solution of this Hamiltonidryields the quasiparti-
function due to the density-dependent dressing. cle energies

However, the quasiparticle spectral weights derived from
Eqg. (17) are not positive definite, and in fact can become
negative in extreme parameter regimes. To remedy this we
need to include higher-order terms obtained from @8§) by

Ev=1(e— )2+ Af=a%(e,— u—v)2+A5, (208

keeping terms with six fermion operators. Performing a simi- . . €k
lar mean-field decoupling for these, we finally obtain for the A=A(e)=Am| — 55t C], (20b)
Green'’s function,
GCOh(kia) ): Zh i Ze (183) AOZEA(M), (ZOC)
Y iwa—Er o +E] a
with 1A

Zh=S[1+nY Ju—foYv,l? (18b) v=aprto (209
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1
a= ———, (209
Ap\?
1+ —
D/2
with A, and ¢ parameters that depend on temperature and e
doping. The bandwidtiDd in these equations is given by
D=D,(1+nY), (21
with Dy, the bandwidth in the limit of zero hole concentra-
tion. The quasiparticle gap, i.e., the minimum quasiparticle
excitation energy, is given by n
Eg=Ao, (22 20:""""""1""1'
and occurs at momentum defined by
e[ko] =u+v. (23
However, if el”) is below the bottom of the band, which K »

occurs when the chemical potential is sufficiently below the
bottom of the band at low hole concentration, E2p) is not
valid, and instead

2
+A

4
-5 (24)

FIG. 1. Superconducting transition temperature vs hole doping
n, number of holes per planar oxygen, for parameters given by Eq.
25). (b) Minimum quasiparticle excitation energy at low tempera-
res vs doping.

We consider a two-dimensional square lattice with only
nearest-neighbor hopping ang=t, in Eg. (8). The quasi-
particle bandwidth as the hole concentration goes to zero i
Dy=2zt,, with z=4 the number of nearest neighbors to a

site. We choose parameters rier concentration goes to zero, and at high hole doping it

D,=0.2 eV, goes to zero because the coherence length is divetgifg.
a function of temperaturd, behaves approximately like the
U=5eV, gap, going to zero &t as (T,— T)¥2
(25) Next we consider the behavior of the quasiparticle
weightsZ, and Z,, as a function of temperature. Figure 4
V=0.65 eV, shows the results at th@ormal statg Fermi energye,= u
for the optimally doped casen& 0.045). The values are nor-
Y=19.2, malized so thatZ, and Z,, would be 0.5 forY=0. The
which imply At=YD/2z=0.48 eV. For the present pur-

. : 0.0 [
poses we need not specify the magnitude of the parameter : ' ' '

S?, which determines the relative weight of coherent and
incoherent contributions to the spectral function.
These parameters yield a maximu versus hole con-

-0.1 K

centration ofTy'®*=94 K, as shown in Fig. (8), for optimal - 0.2 : ]
dopingn~0.045. The minimum quasiparticle excitation en- 2 0.3 3 B

ergy at low temperatures is shown in FigblL At a low hole T ]
concentration it does not go to zero Bsdoes, because the 0.4 . ]
chemical potential falls below the bottom of the band &gd T ]

is determined by Eq(24) rather than by Eq(22). The be- Y S A T I

havior of the chemical potential and the bottom of the band o 0.05 0.1 0.15 0.2

versus hole concentration is shown in Fig. 2. The chemical n

potential crosses the bottom of the bandh&t0.038, andeg FIG. 2. Chemical potential. at low temperatures, and band
[Eg. (23)] crosses the bottom of the bandrat 0.034. bottom (—D/2) vs hole doping for Eq(25). The chemical potential

The on-site pair amplitudé, that enters in the expres- tq)is pelow the bottom of the band for a hole concentration
sions for the quasiparticle weights is shown in Fig. 3. As a-0.038. For a fixed hole concentratipnincreases as the tempera-
function of doping it approximately follows the behavior of ture is lowered abov&,, particularly for a low hole concentration,
the critical temperature and of the gap parametgr(not  and stays approximately constant bel@wfor all hole concentra-
showr). At low hole doping it goes to zero because the car-tions.
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0.04 1 E crease of course depends on the magnitude of the undressing
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I ] smaller values olV', respectively. By adjusting the values of
e ] on-site and nearest-neighbor Coulomb repulsion in the

.02}
0.01 |

0.00 L
0

0.2

0.4 06 0.8
T/T,

model, it would be possible to obtain the same maxiniym
with different values ofY, as discussed in previous wotk.
Nevertheless we believe that the parameters chosen for this
example may be representative of the situation in High-

materials.

Note also that the total weight of the spectral function

Ziot=Zst+ Z,, increases as the temperature is lowered below
T.. This indicates that overall there is more coherence in the
superconducting state than in the normal state, in accordance
] ) with Eqg. (186, and this extra spectral weight is transferred
dashed line shows the value the weights would havef§or - from the high-energy incoherent part of the spectral function
=0: this is temperature independent, and larger than 0.5 beys |l be discussed in Sec. V. However part of the enhance-
cause of the undressing due to the average carrier concentigent ofz, at low temperatures, relative to its valueTatcan

tion n. The effect of the onset of superconductivity is 10 he attributed to spectral weight being transferred from nega-
increaseZ, as the temperature is lowered, and to decreasge to positive energie§i.e., a corresponding depletion of

Zy. This indicates that there is extra amplitude for electronz y iy addition to spectral weight transfer from the incoher-
creation, and less amplitude for hole creation. This may thugt part of the spectral function.

be interpr.eted as a shift_of t.he chemical potential as Super-  gimilarly, Fig. 5 shows the results for an overdoped case,
conductivity sets in, causing increased hole occupation as the_ g 1 with T.=68 K. The behavior is qualitatively similar
temperature is lowered, or equivalently a shrinking of they, that in the optimally doped case: however, the effect of the
electron Fermi sea. This is a surprising result of this calcuynset of superconductivity on the spectral weights is consid-
lation, and its implications will be discussed in subsequengaply smaller because the system is already more coherent
sections. Note that the weigHt increases by almost a factor i, the normal state. This is indicated by the larger values of
of 2 betweenT=T; and T=0. The magnitude of the in- 4| the spectral weights relative to the values of the case
shown in Fig. 4, due to the enhanced coherence arising from

FIG. 3. On-site pair amplitudé, (a) vs hole doping at low
temperatures, an) vs temperature at optimal doping.

2 N N B BRI I I the increased hole concentration. For a much higher hole
2-0: _: ST
[ ] [ Zeot
[ 4 - -0.2 .
o 1B 4f n
w I L
S : C
™ 1.0 | - o 3 -
: ] ® . - Zs ]
0.5 | = N of Zn =
O_O:....I....I....I....I.... k 1:_ .
0 0.2 0.4 0.6 0.8 1.2 : ]
/T, : ]
o....I....I....I....I....I...
0 02 04 08 08 1 L2

FIG. 4. Quasiparticle weights at the Fermi energy={ u) vs
temperature for the optimally doped ca$e=94 K. Z,,; is the sum
of Z, andZ.. The corresponding BCS results are equal to each FIG. 6. Same as Fig. 4 for a highly overdoped case).2, with

other, and are independent of temperatgd@shed ling

T.=2.4K.

T/Te
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FIG. 8. Spectral weights at optimal doping vs temperature for
momentumoutside the electron Fermi surface. The dashed lines
give the BCS values. The upper dashed line correspond%,tend
the lower one tai?.

chemical potential in the superconducting state has changed.
Figure 1b) shows that for,— = 16.1 meV the weights for
electrons and holes coincide at low temperatures; this mo-
mentum then corresponds to the new Fermi momerkfim
the superconducting state. For even larggr Z. becomes
smaller tharZ,, as in the conventional case, as shown in Fig.
7(c).

The behavior for negative energgutside of the electron
Fermi seais shown in Fig. 8. Hereg,— w was chosen to be
at the bottom of the hole band in the optimally doped case.
The weight for electron creation is much larger than in the
conventional case. Note also that first decreases and then
increases as the temperature is lowered, ant-a$ it be-
comes even larger than its value in the normal state. Such a
situation, which is never seen in the conventional case, is
possible here due to the nonconservatioZ gf, because of
the transfer of spectral weight from the incoherent part to the
coherent part of the spectral function as the temperature is
lowered.

Figure 9 shows the spectral weights for an overdoped case
n=0.1, for values of the momentum above the electron

FIG. 7. Spectral weights at optimal doping vs temperature forFermi surface, at the Fermi surface, and below the Fermi
momenturrinsidethe electronFermi surface. The dashed lines give surface. The behavior is qualitatively similar to that for the

the BCS value$Eq. (18), with f,=0, u?~Z,,, andv~2Z,]. The

upper dashed line correspondsmi), the lower one to;ﬁ.

concentration, a$. approaches zero, the “gap” betweép

optimally doped case, although the differences between the
conventional case and our case are less pronounced here be-
cause this is a weaker coupling regime. In Fig. 10 we show
the spectral weight for an underdoped case,0.02. Here

andZ, in the superconducting state closes, as shown in Fighe chemical potential is below the bottom of the band, so a

6. It always remains nonzero, however, as lond as non-

situation comparable to Fig. 4 cannot be attained. Figure 10

zero, and there is always some spectral weight transfer frorshows the behavior of the spectral weight &rat its lowest
the incoherent region as long &g is nonzero.
Next we consider the spectral weights for other values ofimilar to other cases whegg is aboveu such as Fig. (&).

momentum. Figure 7 shows results fgr— «>0. Recall that
we are using a hole representation, ge- ©>0 means in-

possible value, the bottom of the band, which is qualitatively

Next we consider the behavior of the quasiparticle
weights at the chemical potential versus doping in Fig. 11.

side the filled Fermi sea for electrons. In the normal stateThe upper dot-dashed line is the total spectral weight in the
Z.=0; since the electron state is full, no new electron can beuperconducting state, and the dotted line below it is the total
created in it. Just as in the conventional BCS case, as supespectral weight in the normal state. The difference between
conductivity sets in the state becomes partially occupied anthe two is the spectral weight transferred from high-energy
Z.#0, andZ, correspondingly decreases. However, unlikeincoherent processes as the system becomes superconduct-
the conventional BCS casg, andZ,, cross in our case, and ing; this difference approaches zero in the overdoped regime.
at low temperatures the weight for creating an electron isThe full lines denote the quasiparticle weights in our case,
larger than that for creating a hole, even though we are insidand the dashed lines the usual BCS resullé:(Zh ,vﬁ

the filled normal-state Fermi sea. Clearly this implies that the=Z.), which increase approximately linearly withdue to
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FIG. 11. Quasiparticle weights vs doping at low temperatures.
The weights are computed at the chemical potential when it is in-
side the band, and at the lower hole band edge in the underdoped
regime when the chemical potential is below the band edge. The
lower dashed line gives the BCS valugsandv? , which are equal
whenu is inside the band, and separate into tithee upper corre-
sponding touﬁ, and the lower twﬁ) when w is below the hole
band edge. The dot-dashed liig,, gives the total weightZ,
+Z., and the dotted line close to it the corresponding BCS total
weight. Note thatZ, rises approximately linearly with doping for
low hole doping, and levels off in the overdoped regime. All results
approach the BCS values for high dopingfggpproaches zero, but
remain different from the BCS values as longTasis honzero.

the normal state increased coherence with doping and are
equal fore,=pu. For low dopings, however, the chemical
potential falls below the bottom of the band, and hence we
take e at the bottom of the band rather tharyatthis is why

the two dashed lines diverge at low dopings. In our case, the
weight for electron creatiofsolid curve labeled,) is seen

to increase rapidly with doping, and then taper off for high
doping; this latter effect is due to the reduction of the on-site
pair amplitudef, for high doping as the coherence length
becomes largd.The quasiparticle weightZ, and Z,, ap-
proach each other and the BCS value for high doping, as
expected. Note also that there is a narrow doping regime
where the electron weighf, is even larger than the total

FIG. 9. Spectral weights vs temperature for an overdoped Cas\‘fveight in the normal statédotted ling. This situation can

n=0.1, and momentunia) outside,(b) at, and(c) inside the elec-

tron Fermi surface.

2.0_--------|----|----

7/82

FIG. 10. Spectral weights vs temperature for an underdoped

never occur in the conventional BCS case.

We believe the behavior exhibited 1%, in Fig. 11 is
relevant to the understanding of the angle-resolved photo-
emission results discussed by Diagall In their work, the
quasiparticle weight in the superconducting state extracted
from photoemission spectra shows a qualitative behavior
similar to the behavior exhibited b¥, in Fig. 11. We will
discuss the relation betweeh and the experimental quan-
tity in a subsequent section. Dirgg al. also plottedZA, the
product of their extracted quasiparticle weight and the gap
inferred from the photoemission spectra, and pointed out that
its behavior roughly follows the bell-shaped curve Tf.

Our calculation shows a similar behavior, as shown in Fig.
12. Note that the quasiparticle gap itself remains finite in our
calculation as the hole concentration goes to Zef®ig.
1(b)], and also experimental{}.

V. GREEN'S FUNCTION: INCOHERENT PART

casen=0.1, and momentum inside the electron Fermi surface. The

value of ¢,— u=6.5 meV corresponds te, at the bottom of the

hole band.

To calculate the incoherent part of the Green'’s function,
we now consider a specific model: the generalized Holstein
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A7 T | and decouple averages over bosons and fermions, following
i ek b=0 ] Alexandrov and Ranninger. This leads to
> G(M,7) = ao(M, 7){—TCo; (7T (0)) +[(oy(m, 7)
£
5 = oro(m, 1) J[{ = TTio, (7)o} (7)T1y(0))
M‘1> ~ ~
+ (= T ()T (0) i (0)) 1+ [ 05(m, 7)
—20y(M,7)+oo(m,7)]
X (=TT, (7)Toy (T ()i (0)).  (32)
n ) ) The boson Green’s functions are defined as
FIG. 12. Product of electron quasiparticle weightand mini- UH.(m'T):<eg(1—7)i[a$(f)—ao(r)]e—g(1—7)j[a:n(0)—am(0)]>,
mum quasiparticle excitation energy, at low temperatures vs hole ) 33
doping. The dashed line givds vs doping. Note thaf ;X A peaks o o, (33)
at somewhat higher values of hole doping tiandoes. with i,j=0,1. At low temperatures they are given’By

model discussed in I. Our calculation closely follows the — Ta(M,7)=S""“T*[1— ot 5m,oefgz(177)aD(T)],

calculation of Alexandrov and Ranning&rfor the conven- (343
tional Holstein model, and we refer the reader to their semi-
nal work for details which are common to both situations.

coshwgr
The site Hamiltonian for our case is given'By

D(7)=—|e @ll+2 : (34b)

efwo—1

H=fwea'a+ghwg(@’+a)(n;+n —ynn)+Unn,.
(26)
The case of Alexandrov and Ranninger corresponds to
=0. Using a generalized Lang-Firsov transformatidithe

quasiparticle(polaron operatorsc;,, are related to the bare
fermion (hole) operators by

and in frequency space by

o 2lweg?(1—y)«
SnoB+ 0mod, ———5———5—

oMo )=Sz_“T"
( " =1 1 (wi+1%w))

(39
We next decouple the fermion averages with the same mean-
=y field procedure used to calculate the coherent part of the
CIo’ CIO'XIU" (2759 y . .
Green’s function, and calculate the Fourier transform

Xjp= el a) =iy, 27b)

B _
G(K,iw,)= J drelenmy ekmG, (7). (36)
In contrast to Eq(2), the operator;, here is the full hole 0 m

destruction operator, including coherent and incoherenﬁ_

. h mpl reen’s function i
parts. The coherent part results from the expectation value of e complete Green's function is

the X operators in the zero boson subspace, G(K,iwy)=Geon(K,i @n)+ Ginc(K,iwp). (37)
<xi0>:ef(92/2)(17 Mio) (28) For each term of the coherent Green’s functj@&my. (18)],
there is a corresponding term in the incoherent Green'’s func-
and, in particular, tion. All terms in the coherent Green’s function are of the
5 form
Xio’('ﬁi*a'zo):ei(g /2):S1 (293
2 2 as(Kio ):CSZ"'T”‘L (39
XiolTij,=1)=e (@D0-N"=T, (29D cont 21 0, SE’
in accordance with Eq2). with 0<a=<2 ands= +/—1. The corresponding term in the
We wish to calculate the Green'’s function incoherent Green'’s function is
_ T 2l al
G(m, 7)=—(TCo;(7)Chy(0)) S (i) —cg-eTeS) 9 <1“ 7) %
- _<Teg[a$(7)*ao(7')][1*Vﬁol(T)]"COT(T) =1 :
X Tl (0)eSlan(®)~anO)IL—1n (O)])  (30) xS ag N
Kk’ iwn—S(Ek/—IwO)
We expand the exponentials in E@®0) using the operator
relation 1-ny
+ - : (39
Iwn—S(Ek/-l-la)o)

eg(aT*a)(1*7ﬁl):eg(aT*a)+ﬁi(eg(aT*a)(1*3’)_eg(aT*a)),
(31 The spectral function is obtained as usual from



14 506 J. E. HIRSCH PRB 62

A(k,w)=—|m G(k,lwnﬂw+l5), (40) 0.0010 '_I ST I_'
and results from Eqg18) and (37)—(39). In particular, the 0 00085_ _
lowest-order normal part of the incoherent spectral function ) - ]
is given b 3 ]

9 y 3 0.0006 E
* g? ) 1 :‘g C ]
Ane(k,©)=8?% 3 S-{1+n[(1- e’ = 1]} = 000041 ‘;
=1 I C ]
0.0002F .
X {uZ[(1—ne) 80—l wo—Ey) 0.0000 F SN L1

K’ -40 -20 0 20

+ nk/ 5(0)+ I wo— Ek’)]
FIG. 13. Coherent part of the spectral function multiplied by the

+vi,[nk/6(w—lwo+ Ev) hole Fermi functionf(w) and broadened by a Gaussian function
[Eq. (43)], with o,=5 meV. The dashed lines give the results at
+(1-ng)d(w+lwotEp)]}, (41) T, the full lines the results at low temperaturd@s<0.1T.). od, op,

and ud denote overdopeah€0.1), optimally doped rf=0.045)

and the lowest-order anomalous contribution by and underdopedni=0.02) regimes

2l 1

Aianc(k,w)=SZ><2f0><|Zl @:—,{1+n[(1—«y)'e7912—1]}N (K, 0) =1 con(K, ) +linc(k, ), (46)

arising from the coherent and incoherent parts of the spectral
function, respectively.
Figure 13 shows results for the coherent spectra at the
Fermi energy for an underdoped=0.02, labeled ug op-
TN S(w+lwg—Ey) =N d(o—lwe+Ey) timally doped ©=0.045, labeled op and overdoped r(
=0.1, labeled opicase for the parameter values used in Sec.
~ (A=) Sl tlogt Be)]. 42y For the underdoped case with a chemical potential below
the bottom of the band, the value gf at the bottom of the
VI. RESULTS FOR THE SPECTRAL FUNCTION band was used. The dashed lines show the spectra in the
The spectral functions for the models considered here ar'élormal state al;, and the ful I_mes in the superconglqctmg
of the forms state aff=0.1T. For each doping, as superconductivity on-
sets, the peaks shift to the left due to the opening of the
AK, ) =Acon(K, )+ Aine(K, @), (439  superconducting gap. Furthermore, the pegikav in mag-
nitude due to the behavior &, discussed in Sec. IV. As a
Acon(K,0)=Z,8(w—Ep) +Zo8(w+E,), (43  function of doping the peaks grow in magnitude both in the
normal and superconducting states, due to the enhanced co-
Aine(K, @)= —1Im Gjo(K, 0 +i8), (430 here_nce with an increasing r_lumb_er of carrier_s. The_ supercon-
ducting peak in the od case is shifted to the right with respect
where the quasiparticle weighfs, andZ,, and the incoher- to the op case, because the superconducting gap is smaller in
ent Green'’s functiorG;,,., were discussed in Secs. IV and that region[Fig. 1(b)].
V. As seen in Sec. IV, the quasiparticle weightacquires a When we include the incoherent part of the spectra, the
positivecontribution from the onset of superconductivity. In smaller normal-state peak can become almost invisible. The
a spectroscopic experiment, usually only one side of theesults will of course depend on the specific parameters cho-
spectral function is sampled, as the other side is suppressasén to describe the incoherent background, and we are not
by the Fermi function. The quantity that will display the suggesting that we are in a position to determine them from
enhanced coherence, due to undressing exhibited,bys first principles. In Fig. 14, we show results for a particular set
of parameters for the generalized Holstein model. In addition
lo(k,@)=A(k,0)f(w), (44  to the parameters already discussed in Sec. 1V, including the

with f the Fermi function. In an experiment there will typi- value of Y, the new parameters needed &% w,, and a

cally be broadening from experimental resolution. which re_broadening factor given in the figure caption. Note that in the
y 9 P ' underdoped cag@) the peak in the normal state has become

X2 (—Upve) X[(1=n) 80—l wp— Ej)
k/

sults in almost invisible, while a sharp peak and a dip are seen in the
superconducting spectrum. The dip arises because the back-
I(k,w)zf do'F(o—o")lyko") (450  ground term arising from the second term in Eg9) for
ay =vi, , S=—1, is pushed to more negative energies as the
being measured, with-(w) a Gaussian with widtho, . superconducting gap opens. As the doping increases the

There could also be other sources of broadening of &¢he normal-state peak becomes more visible, and the overdoped
functions in the expressiofggs.(43)] from lifetime effects. case shows more conventional behavior. Note that the scale
Just like the spectral function, the measured specfiiq  in the figures changes with doping, and the magnitude of the
(45)] will have coherent and incoherent contributions peaks increases with doping.
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i T T ] 0.00125 T T
0.0003 (a) n=0.02 L ]
0.00100 | 4
0.0002f - 0.00075f =
r “\ b [ ]
—_ N — F oy e -
3 \ 3 LA ]
= 4 \ = 0.00050 /7 -
= 0.0001 Vo = 5 ]
I v 0.00025 -
\\ )l r 4
0.0000E 5 b el N ] 0.000000m Lo el Lo
-80 -60 -40 -20 0 20 -80 -60 -40 -20 0 20
® (meV) @ (meV)
T | T | T AN | T ]
L 0.0010 - -
0.0006 . ]
[ 0.0008} .
0.0004f 0.0006F .
3 ' 3 e ]
= i < 0.0004 =
0.0002 ¢ ]
i 0.0002F -
0.0000 b b u i ben s Ny 1L 00000l Lo e e
-80 -60 -40 -20 0 20 -80 -60 -40 -20 0 20
® (meV) @ (meV)
0.00125 P T T T T B FIG. 15. Spectra in the overdoped case0.1 at the chemical
b potential for various temperatures. The dashed, dotted, dot-dashed,
0.00100 [ 3 dotted, and full lines, with the peak moving toward the left, corre-
] spond toT/T.=1, 0.9, 0.8, 0.6, and 0.1 respectively.(b) the cor-
0.00075F 3 responding results for the BCS case, takiige-0 in Eq. (18), are
_ E ] shown. Note that the peaks in the superconducting state are always
_3. 0.00050L h lower than that in the normal state in the BCS case.
0.00025F . moving continuously, a new peak grows in the superconduct-
" . 1 ing state. The presence of two peaks has not been seen ex-
p.00000b b Lo L o k] perimentally in photoemission, to our knowledge, possibly
-80 -0 -40 -20 0 20

because of experimental resolution. For the BCS ¢lasthe

peak in the superconducting state is much smaller than in the
FIG. 14. Results for the full spectf&q. (43)] atT=T, (dashed normal state, while for our cage) the opposite is true. Re-

lines) and at low temperature$,=0.1T (solid lineg. The incoher-  sults for the temperature dependence in the optimally doped

ent part of the spectrum was modeled with a generalized Holsteigase show a behavior intermediate between the overdoped
model with wo=5 meV and Gaussian broadening for thdunc-  and underdoped cases shown.

tionso=15 meV. The band narrowing paramete&fs= 1/500, and

Y =19.2, corresponding tg=2.49 andy=0.45 in Eq.(26). The

momentum is given by the normal-state Fermi momentum for the VIlI. CUPRATES
optimally doped and overdoped cases, and by the momentum cor-

responding to the bottom of the hole band for the underdoped case. W& Saw in previous sections that in systems where super-
conductivity arises from undressing, there is a signature of

Figure 15 shows the temperature dependence of the speile formation of the condensate in the single-particle spectral
tra for the overdoped case. The normal-state peak is pushddnction. Specifically, it arises in Eq17) from the term
back continuously as the superconducting gap opens up. iinvolving f,, the on-site pair amplitude. Dingt al! and
addition, for our caséa) the peak grows in magnitude. To Feng et al,? discussing experimental results of angle-
highlight the difference with conventional BCS theory, in resolved photoemission in cuprates, recently emphasized
Fig. 15b) we show what is obtained with the same param-precisely that feature of the observed spectra, and correlated
eters in the absence of the tefgin Eq. (18). The peak here the growth of the peak in photoemission to quantities related
first becomes lower, and then increases again as the tempeta- the superconducting condensate such as the superfluid
ture is lowered, but it is always lower than or equal to thedensity and the condensation energy. The spectra calculated
normal state peak. It is easily seen from the BCS formulawithin the present theory in Sec. VI resemble in several as-
that this property is generally also true for other values of thepects the experimental observations in photoemission along
momenta. the (w,0) direction.

Similarly, Fig. 16 shows the temperature dependence of Unfortunately, as the alert reader has undoubtedly no-
the spectra in the underdoped case. Here, rather than the peiided, the results presented in Sec. VI, with negativén a

® (meV)
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0.0003 ' N(a) N photon
0.0002 Cutt 0 Cutt
}
T 0.0001 -,
2 Losmoy ] (b)
0.0000 ;|’| T P P P P | W ‘..-.' | .T- _f_
-80 -60 -40 -20 0 20 Cut O Cut
o (meV)
FIG. 17. Schematic proposed explanation of how electron ex-
! ' o ! traction in a photoemission experiment can give rise to hole de-
0_000203 struction in the oxygen band responsible for superconductivity. The
¥ Cu energy level arises from a hybridized @y.,2-O po orbital,
0.00015 | the O energy level corresponds to amp® planar orbital. In(a), an
’ [ electron in the Cud,2.» orbital is knocked out by an incoming
3 L/ photon; the electron from a neighborimg..,> orbital, then falls
E‘" 0.00010 ;" onto the Opr orbital (b), destroying an O hole.
0.00005F .-~ _ o
[ N “fall” onto the O p# orbital because it is Coulomb repelled
0.00000 S D T VR by the electron in the other Cu atom. When a photon comes
80 60 -40 20 0 20 in and knocks out one of the electrons in a Cu, the other
@ (meV) electron can fall onto the @ orbital, thus destroying an O

FIG. 16. Same as Fig. 15 for an underdoped ¢es€.02, fora  hole and sampling the quasiparticle weight
momentum corresponding to the bottom of the hole band. The same It is clear that this qualitative explanation needs further
line convention as in Fig. 15 is used. elaboration and experimental confirmation to be convincing.

Nevertheless we also point out that it suggests an explanation

hole representation, correspondhole destructionor elec-  for why the sharp peaks seen in photoemission along the
tron creation that is, inverse photoemissionit is for this (.0 direction are not seen along ther,¢r) direction?
case that the experiment would sample the quasiparticle Since Cud,z.,2 orbitals point along the principal axis in the
weight for electron creation. Instead, if we calculate spectr@lanar square lattice, the coupling to the photon along the
for direct photoemission, we would find that quasiparticle(7,) direction is likely to be much smaller. For that direc-
peaks aresuppressedy the onset of superconductivity due tion the larger coupling may be to the @ band itself, in
to the behavior 0%, discussed in Sec. IV. which case inverse rather than direct photoemission would
The present theory does not allow for a switch in the roleshow the enhanced coherence. It is possible that some indi-
of the weightsZ, and Z,,: electron-hole asymmetry, of the cation of this effect may have already been seen in tunneling
sign assumed here, is central to the theory. Does this thegxperiments?
imply that the theory is irrelevant for description of the cu-

prates?
We believe this is not the case. We propose that, in fact, Vill. CONCLUSIONS
the photoemission experiments along the,Q) direction In this paper we have continued to explore the conse-

close to the {/a,0) point sample the part of the spectral quences of the physical principle proposed in I: that, in at
function discussed in Sec. VI, corresponding to hole destrudeast some electronic materials in nature, the dressing of qua-
tion or electron creation. siparticle carriers is a function of the local carrier concentra-
How can photoemission sample electron creation? Recatlon, and becomes smaller as the local carrier concentration
that in the theory of hole superconductivity the relevant or-increases. This physical principle leads to superconductivity
bitals are oxygemr orbitals in the plane$There are, how- occurring in these systems because of a lowering of the car-
ever, also oxygeipo orbitals, strongly hybridized with the rier’s kinetic energy upon pairing. The superconducting tran-
Cu d,2.y2 orbitals. Suppose that in a photoemission experisition, and many of the features of the superconducting state,
ment along the 4,0) direction the largest matrix element were already discussed within the theory of hole super-
couples to the destruction ofdgz.y2 electron. This would not  conductivity® 15
directly couple to the band responsible for superconductivity; In this paper we explored the consequences of this prin-
however, that process could induce the destruction of amiple for the single-particle Green’s function in the supercon-
oxygen hole in theps orbitals. The proposed situation is ducting state. The central result of this pajieq. (18)], dem-
schematically depicted in Fig. 17, in an electron representaenstrates that formation of the superfluid condensate will
tion. Before the photon comes in there is one electron in eacimfluence the behavior of the single-particle spectral func-
CUw?* atom neighbor to a given O atom, and two holes in thetion. Equation(18) is thus a generalization of the BCS spec-
ps orbital on that O atom. We assume the energy-levetral function for systems where superconductivity is driven
structure shown in Fig. 17: an electron from?%ucannot by undressing. Surprisingly, the results show that the en-
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hanced coherence in the superconducting state is displaygdeudogap is simply the energy difference between the bot-
in the quasiparticle weight for electron creation but not fortom of the band and the chemical potentrat®
electron destruction. We calculated the behavior of the If the theory of hole undressing discussed here describes
quasiparticle weights as a function of temperature, dopinghe cuprates, it is likely that it is more generally applicable
dependence, and momentum, and highlighted the differencé¥cause it is based on very general principles. In this regard
from conventional BCS theory. we note that one of the paradoxes of the conventional expla-
Furthermore, we discussed the calculation of the fullnation of superconductivity is that it is thought to originate in
spectral function, including the incoherent contribution,@" electron-bosorithe electron phongncoupling thatop-

for one particular model where superconductivity occurgPoses conductivity.e., gives rise to resistivity, in the normal

through undressing, a generalized Holstein model. Our castate. In a sense the present theory eliminates this paradox.

culation was performed within the Lang-Firsov approxima-C.OUplir.lg to a boson is certgin_ly_ necessary, and that coupling

tion,1 and it should be interesting to see whether the qua"_glves rise to enhanced resistivity in the normal state due to

tati\;e results survive a more exact treatnfSrt enhanced effective mass, but superconductivity arises from a
Results for the full spectral function showed several feaProcess whereby the coupling to that bosorréducedas

tures that resemble experimental observations in photoemiét-arrlers pair and the system becomes supercon-ductmg. How-
sion experiments in high- cuprates:? in particular en- ever, the_old paradox is replaced by anew one: that in order
hanced coherence, as displayed by the quasiparticle peakfi r hZ?jVIgr ,i;gif?,d.t . c?]r;]lr;eda cz;l(;rrlir]senzwdepnorggoless
the spectra, when the system enters the superconducting st §£ssed, - LIS ssary : )

and as the carrier concentration increases both in the normBF" Palrs. o .
and superconducting states. We also note that the principle on which the present

This study was strongly motivated by the experimentaltheory is based, that an increase in the local hole occupation

results and insightful analysis of previous photoemissionCauses undressing, is likely to be more general than as ex-

experiments:? Thus it is perhaps disappointing that at the pressed by Eq(2): rather than just be enhanced by the same

end of the day our calculation predicted these effects, in théIte occupation, u_ndres;smg may also he enhancgd by hole
simplest one-band model, to ariseimverserather than in occupation of neighboring sites, and aiso by neighboring

direct photoemission. Thus some readers may conclude th an Qccupation. F.)OSSibI.(? limplications of'this fo'r supercon-
our calculation is not more than an academic exercise. HowdUctivity and other instabilities of metals will be discussed in

. : g ) - future work.
ever, as discussed in Sec. VII, we believe there is a plau3|bléJ If indeed the essential physics of high-cuprates is hole

scenario by which the spectral weight for electron creation ; .
y b 9 ndressing, what makes a material a highsupercon-

would be sampled in the photoemission experiments in th& . .
cuprates P P P ductor? Presumably, the fact that quasiparticles are heavily

While the theory discussed here predistsrather than dressed in the normal state, together with the fact that the
d-wave superconductivity, we believe it is remarkable howundressing process that occurs when the local carrier concen-

many of the features that appear to be part of the phenonHat'on mcreaseds_,t_ls pa][tml;]lgrly efficient. EOtT. t_r;esetz) fac_ts are
enology of highT . cuprates it exhibits, as a consequence of1€cessary conditions for ighs superconductivity, by giv-

the single assumptioof a large value of the undressing pa- ing rise to a largeY parameter. Here we will not discuss
rameterY: (1) incoherence in the normal state at low hoIeWhat aspects of the chemistry of the cuprates would favor

concentration;(2) increased coherence with doping in the:E'S 5|tuat|o]|:|2. Howivgr,b(;%nyerselyr/],_ Vr\:_?_ may conclgdetthat
normal state(3) transition to superconductivity for low dop- € réason for a materiabt being a hight . Superconauctor

ing, its disappearance for high doping, and bell-shapgd woulc_i be_a small value of_the parametér either because
versus hole concentratiorid) increased coherence as the quasiparticles areot hgawly dressed in the normgl stlate
system goes superconducting) a superconducting transi- ((je.g., the caﬁe of alurlmnl)mor, because the qulas(;partlc(lje
tion driven by kinetic energy lowering, optical sum rule vio- 4réssing in the normal state may not be strongly dependent

lation; and(6) a nondecrease of the quasiparticle gap at lowP" the local carrier concentratide.g., the case of “heavy

hole density wherT. goes to zero. This latter feature arises fermion” systems.

in our model from the fact that as the hole concentration

decreases and the band becomes narrower, the chemical po-

tential falls below the bottom of the bartwe believe that The author is grateful to F. Driscoll for the donation of a
many of the unusual properties of underdoped cuprates fokomputer where the calculations reported here were per-
low from this simple fact, and in particular that the observedformed.
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