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Superconductivity from undressing

J. E. Hirsch
Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

~Received 5 July 2000!

Photoemission experiments in high-Tc cuprates indicate that quasiparticles are heavily ‘‘dressed’’ in the
normal state, particularly in the low doping regime. Furthermore, these experiments show that a gradual
undressing occurs both in the normal state as the system is doped and the carrier concentration increases, as
well as at a fixed carrier concentration as the temperature is lowered and the system becomes superconducting.
A similar picture can be inferred from optical experiments. It is argued that these experiments can be simply
understood with the single assumption that the quasiparticle dressing is a function of the local carrier concen-
tration. Microscopic Hamiltonians describing this physics are discussed. The undressing process manifests
itself in both the one- and two-particle Green’s functions, and hence leads to observable consequences in
photoemission and optical experiments, respectively. An essential consequence of this phenomenology is that
the microscopic Hamiltonians describing it break electron-hole symmetry: these Hamiltonians predict that
superconductivity will only occur for carriers with holelike character, as proposed in the theory of hole
superconductivity.
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I. INTRODUCTION

Photoemission experiments in high-Tc cuprates show tha
the spectral function has two contributions: a coherent q
siparticle peak, and a broad incoherent background.
cently, Dinget al.1 provided an insightful discussion of th
phenomenology observed in photoemission in terms of
one-electron coherence factor, or quasiparticle weightZ.
The analysis of Dinget al., as well as a variety of othe
analyses and experimental data,2–4 suggest that the quasipa
ticle coherence increases in high-Tc cuprates both as the ca
rier concentration increases in the normal state and as
temperature decreases and the system becomes supe
ducting.

These observations can be simply understood by ass
ing that the quasiparticle ‘‘dressing’’ in high-Tc cuprates is a
decreasingfunction of the ‘‘local’’ carrier concentration
more specifically of the probability of finding another carri
in the vicinity of a given carrier. This local carrier conce
tration will increase both as the total carrier concentrat
increases through doping, as well as in a dilute carrier c
centration regime when Cooper pairs form and the superc
ducting state develops. This physics is qualitatively depic
in Fig. 1.

We argue that the essential physics of the high-Tc phe-
nomenon isundressing.5,6 At a low carrier density, carriers
are heavily dressed in the normal state, due to coupling
bosonic degree of freedom. When carriers pair and the
tem becomes superconducting, carriers partially undr
Similarly, when the system is doped in the normal sta
carriers increasingly undress. This will occur if the coupli
to the boson degree of freedom is a function of the lo
carrier concentration, and becomes weaker as the local
rier concentration increases. This feature, we propose
what makes the material a high-temperature supercondu
carriers will pair in order to undress, i.e., to reduce the c
pling to this boson degree of freedom. Paradoxically, by
coming bound in Cooper pairs, carriers become morefree.
PRB 620163-1829/2000/62~21!/14487~11!/$15.00
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At high carrier concentrations, carriers are already undres
in the normal state, and hence superconductivity does
occur.

The undressing will give rise to a lowering of the sy
tem’s free energy, and hence to the condensation energ
the superconductor. Because it is an undressing transitio
is thekinetic energy that is lowered as the system becom
superconducting:7 as carriers undress, their effective ma
decreases, and this higher mobility in the superconduc
state is what provides the ‘‘glue’’ for the collective orde
Naturally, this will cause observable manifestations in op
cal properties.8,9

There are two key distinct questions related to the und
standing of high-Tc superconductivity. One relates to the n
ture of the bosonic degree of freedom coupled to the e
trons that gives rise to pairing and other phenomena: i
magnetic, electronic, phononic, or something else? Wha

FIG. 1. Phenomenology of high-Tc superconductors~sche-
matic!, as described by the models in this paper. Heavily dres
quasiparticles at low concentrations ‘‘undress’’ as the tempera
is lowered or as the carrier concentration increases. s.t. den
spectral weight transfer~from high to low frequencies in the direc
tion of the arrows!, or ‘‘strip tease.’’ Below the curve labeledTc ,
the system is superconducting. The initial rise inTc vs n is due to
the increasing number of carriers.
14 487 ©2000 The American Physical Society
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14 488 PRB 62J. E. HIRSCH
its spectral density? The second question is, what is the
sential physics of the phenomenon, and what are the
experimental signatures? These two questions are not ne
sarily tightly coupled, and here we wish to draw a sha
distinction between them. We do have definite views on
first question, namely, that the mechanism is purely e
tronic10 rather than magnetic, phonon, or a combinatio
However, this paper mainly focuses on the second ques
for which we propose the undressing scenario. It is poss
that this scenario may be applicable independent of the
tailed answer to the first question.

However, we also argue that the theory of hole sup
conductivity11,12 leads naturally to the phenomenology d
scribed above, and, also conversely, that the phenomeno
described above leads naturally to the theory of hole su
conductivity. The electron-hole symmetry breaking leads
the undressing scenario, and the assumption of increase
dressing with increased carrier concentration leads
electron-hole symmetry breaking. Furthermore, of the t
possible choices, we argue that it ishole carriers that are
heavily dressed in the normal state, and that electron car
are instead lightly dressed, or undressed. As holes pair, o
the system is doped with holes, holes become more ‘‘lik
electrons, and they undress. We are not aware of any o
microscopic scenario that can describe the physics of ‘‘
dressing.’’ Through the framework of the theory of hole s
perconductivity it is seen that another unavoidable con
quence of this ‘‘undressing’’ physics is the prediction
tunneling asymmetry of universal sign,13 as well as of charge
imbalance in the superconducting state.14

The microscopic physics is easily described qualitative
there are carriers in a band, and there is a background de
of freedom at each atom or site. The presence of a carrie
a site will modify, or ‘‘disrupt,’’ the background degree o
freedom. So far, the physics is the same as in a variet
electron-boson models. The essential distinguishing fea
here is that the disruption caused by the first carrier on a
is assumed to bedifferent from that caused by a second ca
rier on that site. This essential feature leads to supercon
tivity through undressing, with distinct characteristics.

In the past we proposed a variety of microscopic Ham
tonians to describe this physics:~1! a purely electronic mode
with two orbitals per site;15 ~2! a model of electrons~one
orbital per site! coupled to a spin 1/2 degree of freedom
each site;10,11 and ~3! a variety of generalized Holstei
models.16–18 The essential physics of all these Hamiltonia
~in the parameter range considered! is the same, as discusse
qualitatively above. We believe that either of these Hamil
nians is a plausible choice for a description of the physics
electrons in atoms with several electrons in the outer sh
which we believe is the relevant physics: the ‘‘backgroun
degree of freedom is simply a way of representing the e
tations of these other electrons. However, such Hamilton
could also be used to describe other microscopic physics
example, coupling to a high-frequency phonon.

Some of the consequences of the physics of undres
for optical properties were already discussed.5 In particular,
it led to a prediction of an apparent optical sum ru
violation,7 which was recently detected experimentally.8 This
is due to the fact that undressing manifests itself in the tw
particle Green’s function. However, as discussed in this
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per, undressing also manifests itself in the one-part
Green’s function. Hence it will have observable cons
quences for photoemission experiments. The close con
tion between the effects observed in photoemission and
optical experiments was recently emphasized by Norm
et al.19

For most of this paper we will use a specific generaliz
Holstein model17,18 to describe the physics of supercondu
tivity through undressing. The reason for this is simply tha
large amount of theoretical work has been done on the H
stein model. In the Holstein model usually considered,16 the
electron-hole symmetric version, the physics of undressin
absent. Nevertheless, much of the mathematical treatm
carries over to the generalized model considered here.

Furthermore, we restrict ourselves to the small pola
regime of the model, both because the physics in that reg
is most transparent and because we believe it is the m
appropriate regime to describe high-Tc cuprates. Alexandrov
and co-workers20,21 performed a large amount of very inte
esting theoretical work on the symmetric Holstein model
the small polaron regime, and we will draw on some of th
seminal contributions. In the conclusion, however, we w
discuss the fundamental difference in the physics descr
by our model, and that described by Alexandrov and
workers.

II. PHYSICS AND HAMILTONIANS

The physics is qualitatively depicted in Fig. 2. A loc
bosonic degree of freedom couples to the electron~or hole!
at the site. The first electron at the site causes a small dis
tion of the boson degree of freedom, and the second caus
much larger distortion. Conversely, the first hole at the s
causes a large change of the boson degree of freedom
the second a small one. The discussion can be carried
consistently with electrons or with holes; we will use th
language of holes in most of this paper only because i
somewhat simpler to describe the physics of a few ho
rather than that of many electrons. Note that the key phy
of electron-hole asymmetry is introduced at the outset.

Let un& be the ground state of the local boson degree
freedom when there aren holes at the site, andunl& the l th
excited state of that boson degree of freedom; henceun&
[un0&. Consider the ground-state overlaps of the boson
gree of freedom with different number of holes at the site

FIG. 2. The physics of electron-hole asymmetric polarons.
boson degree of freedom is associated with each site. The
electron at the site causes a small change in the ground state o
degree of freedom, and the second electron causes a large ch
For holes, the situation is reversed. Two examples of the bo
degree of freedom are shown, an oscillator and a spin 1/2.
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S5^0u1&, ~1a!

T5^1u2&. ~1b!

The physics of undressing arises ifSÞT.5 Specifically, for
holesto undress as the hole concentration increases,

S,T ~2!

is required; that is, the overlap matrix element of the grou
state of the boson degree of freedom with no holes and
hole is smaller than the one between one hole and two ho
The effect will be strongest whenS!T; in an ideal situation,
one will haveT;1. The factorsS2 andT2 are the quasipar
ticle weights of single-hole carriers and single-electron c
riers, respectively, in a Fermi-liquid description: hole carrie
will have a small quasiparticle spectral weight, and elect
carriers a large quasiparticle weight.

When a hole at sitei is destroyed, with the boson degre
of freedom in its ground state, one of two things can occ
the boson degree of freedom may make a transition to
ground state with one fewer hole, or it may end up in
excited state. The first process is a diagonal transition,
second a nondiagonal one. If the site is singly occupied
have, withcis a hole destruction operator

ci↑u↑&u1&5u0&u1&5u0&u0&S1(
lÞ0

u0&u0l&^0l u1&, ~3!

so thatS gives the probability amplitude for the diagon
transition. Here the site state is represented as a direct p
uct of the hole occupation state and the boson state. The
term in Eq.~3! conserves energy, preserves the phase of
wave function, and gives rise to a coherent process ass
ated with the quasiparticle contribution to the spectral fu
tion; the second part gives the incoherent contribution. Si
larly, when a hole is destroyed at a site that is occupied
two holes,

ci↑u↑↓&u2&5u↓&u2&5u↓&u1&T1(
lÞ0

u↓&u1l&^1l u2&, ~4!

and the weight of the coherent process is given byT, which
is assumed to be larger thanS. Hence coherence will increas
as the number of doubly occupied sites~by holes! increases,
which will be the case both when hole doping and when h
pairing occurs. The completeness relations

(
l

unl&^nl u51 ~5!

ensure that an increase in the weight of coherent process
accompanied by a decrease in the weight of incoherent
cesses, and that the spectral function sum rule is satisfie

Similarly, the amplitudes of ground-state to ground-st
transitions determine the effective mass of the carriers. Ift is
the hopping amplitude for a carrier in the absence of c
pling to the boson degree of freedom, the hopping amplit
for a single hole when there are no other holes in eithe
the two sites involved in the hopping process is

t25tS2; ~6!

when there is one other hole it is
d
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t15tST[t21Dt, ~7!

and when there are two other holes it is

t05tT2, ~8!

the latter of course also being the hopping amplitude fo
single electron when there are no other electrons at the
sites involved. The hopping amplitudes are shown schem
cally in Fig. 3. Single-hole carriers are most heavily dress
and hence have a large effective massmh* , related to the
hopping amplitudet2 by

mh* 5
\2

2t2a2
, ~9!

with a the lattice spacing. When holes hop in the presence
other holes, they do so with a hopping amplitudet1.t2, as a
partial undressing occurs. The effective hopping Hamilton
arising from these transitions is

Hhop52 (
^ i , j &,s

t i j
s~cis

† cj s1H.c.!, ~10a!

t i j
s 5t@S21S~T2S!~ni ,2s1nj ,2s!1~T2S!2ni ,2snj ,2s#.

~10b!

The third term in Eq.~10b! will be negligible in the low hole
concentration regime for reasonable values of on-site re
sion. Hence the effective Hamiltonian, also including on-s
and nearest-neighbor Coulomb repulsion, is

He f f52 (
^ i , j &,s

@ t21Dt~ni ,2s1nj ,2s!#~cis
† cj s1H.c.!

1U(
i

ni↑ni↓1V(̂
i j &

ninj , ~11!

with ni5ni↑1ni↓ . The difference in hopping amplitudes

Dt5t12t25tS~T2S! ~12!

gives rise to pairing and superconductivity.12 The undressing
and accompanying effective mass lowering when pairing
curs gives rise to an apparent violation of the optical s
rule, as discussed in detail elsewhere.7,5

Furthermore, in the normal state the effective hopping
a hole will be an increasing function of hole concentrati
n,12 given by

FIG. 3. Schematic depiction of hopping processes for differ
band fillings. As the~electron! band filling increases, the hoppin
amplitude decreases and carriers become heavier.nh denotes the
hole concentration.
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14 490 PRB 62J. E. HIRSCH
t~n!5t21nDt. ~13!

This will cause an expansion of the effective bandwidth
the hole concentration increases, as shown schematical
Fig. 4. For the integrated optical absorption for intraba
processes the conductivity sum rule yields

E
0

vm
dvs1~v!5

pe2n

2m*
, ~14!

with s1 the frequency-dependent real part of the conduc
ity ~per site!. n is the number of carriers per site,m* is the
effective mass, andvm is a high-frequency cutoff that allow
only for intraband processes. Using Eqs.~9! and ~13!,

E
0

vm
dvs1~v!5

pe2a2t~n!n

\2
, ~15!

so that the integrated low-frequency spectral weight
creases faster than linearly with carrier concentration. Th
is evidence from optical experiments that the low-frequen
optical spectral weight increases with doping more rapi
than expected from the added number of carriers,22 in sup-
port of Eq.~15!. This transfer of optical spectral weight from
high to low frequencies with hole doping is a manifestati
of the undressing that occurs with increasing hole concen
tion, and will be accompanied by a decrease in the spec
weight of nondiagonal transitions, i.e., hopping proces
where the background degrees of freedom end up in exc
states rather than the ground state.

The relation between quasiparticle spectral weight and
fective mass discussed above follows, of course, from g
eral properties of many-body systems. The exact Gree
function for a many-body system can be written as

G~k,v!5
1

v2ek2S~k,v!
, ~16!

where S is the self-energy, andek is measured from the
chemical potential. In the models considered here the s
energy has no significantk dependence, and we have for i
real part

S re~v!5S re~0!1v
]S re

]v
. ~17!

S re(0) just renormalizes the chemical potential. Hence

FIG. 4. Electronic band vs doping~schematic! as predicted by
Eq. ~13!. As the hole doping increases, the Fermi level moves do
and the band becomes broader.
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G~k,v!5
1

vS 12
]S re

]v D2ek

1G85
Z

v2Zek
1G8,

~18!

with

Z5
1

12
]S re

]v

. ~19!

The termG8 contains the imaginary part of the self-energ
and gives rise to the incoherent contribution. Equation~18!
shows that the same factorZ, the wave-function renormal
ization factor that results from the frequency dependence
the real part of the self-energy, determines the quasipar
spectral weight and the effective-mass renormalization.
the models considered here,Z is a function of carrier con-
centration, and we have simply

Z~n!5S21nS~T2S!1
n2

4
~T2S!2 ~20!

in the normal state, withn the hole concentration per site. I
particular Z5S2 or Z5T2 for an almost filled band (n
→0) or an almost empty band (n→2), respectively. In the
superconducting state,Z will increase as the pair amplitud
develops.

One Hamiltonian that describes this physics is the sp
fermion model,10,11 with the site Hamiltonian given by

Hi5~V~ni↑1ni↓!2v0!sz
i 1Dsx

i 1Uni↑ni↓ , ~21!

with s i a spin 1/2 degree of freedom, andnis a hole occu-
pation operator. The physics described here arises in the
rameter regimeV.v0 , D!v0. Then the spin degree o
freedom points approximately up when there is no hole at
site, and approximately down when there are one or t
holes at the site, as shown schematically in Fig. 2. T
change in the spin state is much larger between hole o
pations 0 and 1 than between hole occupations 1 and
henceS!T.

Another Hamiltonian that describes this physics is
electronic model with two orbitals per site,15 and a site
Hamiltonian

Hi5Uni↑ni↓1U8ni↑8 ni↓8 1Vnini81eni82t8~cis
† cis8 1H.c.!,

~22!

where the primed and unprimed operators refer toelectrons
in the two site orbitals. The physics of undressing will ari
if the condition

U812e,V2e,U ~23!

is satisfied, together with the orderingU,U8,V@e@t8.
These conditions ensure that a single electron resides pr
rily in the lower level~unprimed orbital!, while two electrons
reside dominantly in the higher level~primed orbitals!. When
an electron leaves a doubly occupied orbital, the second e
tron relaxes to the lower-energy level, giving a large ren
malization effect, andS!1, while T51. This Hamiltonian
in the parameter regime described may be justified fr
first-principles atomic physics calculations.23
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Finally, the physics described here will arise in a varie
of generalizations of the Holstein Hamiltonian18 describing
electrons interacting with a local displacement degree
freedomqi :

Hi5
pi

2

2m~ni !
1

1

2
K~ni !qi

21a~ni !qini1Uni↑ni↓ . ~24!

The undressing effect arises when the usual Holstein m
is generalized by allowing for an occupation dependence
the parametersm, K, or a in Eq. ~24!, or by adding an
anharmonic termbq4 to the site Hamiltonian. In the remain
der of this paper we will use one particular version of th
model, where the couplinga depends on site occupation.

III. A GENERALIZED HOLSTEIN MODEL

We consider the site Hamiltonian

Hi5
p2

2m
1

1

2
Kq21q@a~n↑1n↓!2a8n↑n↓#1Un↑n↓ ,

~25!

where the site index on the right-hand side is understo
The new term in this Hamiltonian, proportional toa8, breaks
electron-hole symmetry, and gives rise to the physics of
dressing. This term may be understood as arising from
dependence of the electron-boson coupling on the hole o
pation @a(ni)5a2a8(n↑1n↓21)/2#. Assuminga,a8.0,
Eq. ~25! implies that the electron-boson coupling becom
weaker as holes are added. Alternatively, the new term m
be understood as a modification of the on-site Coulomb
pulsion by the boson displacement,U(q)5U2a8q. In
terms of boson creation and annihilation operators
Hamiltonian is

H5\vS a†a1
1

2D1M ~a†1a!Fn↑1n↓2
a8

a
n↑n↓G

1Un↑n↓ , ~26!

with M5a(\v0/2K)1/2 andv05(K/m)1/2. Our Hamiltonian
differs from the usual Frohlich-type Hamiltonian in that th
boson couples to a term that is quartic in fermion opera
in addition to the usual quadratic one.24

By completing the squares in Eq.~25!, we obtain the ef-
fective on-site repulsion

Ue f f5U2
2a21a8224aa8

2K
. ~27!

We assumea8<a. Note thata8 causes anincreasein the
on-site repulsion; in particular, fora8.(22A2)a, the re-
duction in U due to the electron-boson couplinga is com-
pletely offset, andUe f f.U. Still, the model in that regime
will give rise to superconductivity due to the undressing
fect produced bya8. The polaron site energy is given by

e052
a2

2K
. ~28!

The equilibrium position of the oscillators withn holes at
the sites,qn , is
f
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q050, ~29a!

q152
a

K
, ~29b!

q252
2a

K
1

a8

K
, ~29c!

and the ground-state overlap matrix elements for the st
with n andn8 holes is

^nun8&5e2(K/4\v0)(qn2qn8)2
, ~30!

so that

S5e2a2/4K\v0[e2g2/2, ~31a!

T5e2[(a2a8)2/4K\v0][e2(g2/2)(12g)2
, ~31b!

with

g5
a

A2K\v0

5
M

\v0
, ~32a!

g5
a8

a
. ~32b!

Hence T.S, and in particularT51 for a85a. For that
particular case,Ue f f5U1a2/2K. The effective low-energy
Hamiltonian to first order in the bare hoppingt is

He f f52 (
^ i , j &,s

@ t21Dt~ni ,2s1nj ,2s!#~cis
† cj s1H.c.!

1Ue f f(
i

ni↑ni↓ , ~33!

with t2 andDt given by Eqs.~6! and~12!. Superconductivity
will occur if the condition12

T

S
.S 11

Ue f f

Dh
D 1/2

~34!

is satisfied, withDh52zt2 the single-hole bandwidth (z is
the number of nearest neighbors to a site!. Hence forT;1
and sufficiently smallS, superconductivity will occur for ar-
bitrarily large values of the on-site repulsionUe f f . Some
discussion of the effect of a nearest-neighbor Coulomb
pulsion and of higher-order corrections to the parameter
He f f is given in Ref. 18. Matrix elements between groun
state oscillator states and excited states with different oc
pation numbers are given by

^0u1l&5~21! l^1u0l&5
e2g2/2gl

~ l ! !1/2
, ~35a!

^1u2l&5~21! l^2u1l&5
e2g2(12g)2/2@g~12g!# l

~ l ! !1/2
.

~35b!

To calculate the single-particle Green’s function and
spectral function, it is useful to formulate the problem
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terms of polaron operators, as is done in the usual Hols
model. In the absence of hopping between sites, the Ha
tonian is diagonalized by a generalized Lang-Firs
transformation25,6

H̄ i5eGHie
2G, ~36!

with

G5g~a†2a!~n↑1n↓2gn↑n↓!, ~37!

with a† a boson creation operator:

a†5
1

A2
SAmv0

\
q1 i

1

Am\v0

pD . ~38!

Boson operators transform according to

ā5eGae2G5a2g~n↑1n↓2gn↑n↓!, ~39!

and fermion operators transform according to

c̄is5eGcise2G5cisXis , ~40a!

Xis5e2g(a†2a)(12gni ,2s). ~40b!

In contrast to the usual Lang-Firsov transformation,
dressing operatorsXis here depend on the fermion occup
tion number. The hopping part of the Hamiltonian,

Hhop52t(
( i , j )

~cis
† cj s1H.c.! ~41!

becomes

H̄hop52t(
( i , j )

~Xis
† Xj scis

† cj s1H.c.!. ~42!

The expectation value of theX operators in the zero boso
subspace is

^Xis&5e2(g2/2)(12gni ,2s)2
, ~43!

i.e., the overlap matrix elementsSor T of Eq. ~31! depending
on the value of the hole occupationni ,2s , so that the hop-
ping terms in Eq.~10! result.

IV. EXACT RESULTS

Consider a system with a single site. The single-part
spectral function at zero temperature for holes with spin
is given by

An↑n↓
↑ ~v!52p(

l
$ z^ l uc↑

†u0& z2d@w2~El
(n11)2E0

n!#

1 z^ l uc↑u0& z2d@w1~El
(n21)2E0

n!#%, ~44!

whereu0& is the ground state of the system withns holes of
spin s, and u l & are states of the system withn↑11 or n↑
21 holes with spin-up. Using Eq.~3!, we obtain

An↑0
↑ ~v!52pS2d~v2e0!12p(

lÞ0
z^1l u0& z2@~12n↑!

3d~w2e02v l !1n↑d~w2e01v l !#, ~45a!
in
il-
v

e

e
p

with e0 the site energy for one hole, andv l the energy of the
l th excited state of the boson. If instead the ground state
the site has a spin down hole the spectral function is

An↑1
↑ 52pT2d~v2e02Ue f f!12p(

lÞ0
z^2l u1& z2@~12n↑!

3d~w2e02Ue f f2v l !1n↑d~w2e02Ue f f1v l !#,

~45b!

where (2e01Ue f f) is the energy of two holes at the site. I
a many-body system the spectral function has the form26

A~k,v!52pZ~k!d@v2~Ek2m!#1Ainc~k,v!; ~46!

that is, a sharpd function describing the quasiparticle and a
incoherent backgroundAinc . The weight of thed function,
0<Z<1, gives the degree of coherence. For our case@Eq.
~45!#, the first term, corresponding to diagonal transition
represents the coherent part, and the second term is the
herent part. HenceZ5S2 when there is no spin-down hole a
the site, andZ5T2 when there is one. We assumed the o
erators in Eq.~44! to be hole operators, andS,T. Thus, as
holes are added to the site the coherent part of the spe
function increases and the incoherent part decreases, so
the sum rule

E dv An~v!52p ~47!

is satisfied.
For the case of the generalized Holstein model defined

Sec. III, v l5 lv0 , S and T are given by Eq.~31!, and the
matrix elements involving excited states by Eq.~35!. The
qualitative behavior predicted by Eq.~45! is shown in Fig. 5.
A similar qualitative behavior is found for the two othe
models discussed in Sec. II.

This simple example bears directly on the understand
of qualitative features of photoemission experiments in hi
Tc cuprates. When the system has a low concentration
holes in the normal state, the spectral function will lo

FIG. 5. Spectral function for a site for the generalized Holst
model @Eq. ~45!, with n↑50#. The lowest peak gives the quasipa
ticle weight, and the other peaks give the incoherent contribut
which in an extended system will broaden into a smooth spect
given by the envelope dashed lines.~a! corresponds to Eq.~45a!,
with n↓50, and~b! corresponds to Eq.~45b!, with n↓51. As the
hole concentration increases, the weight of the quasiparticle~q.p.!
peak increases, and the incoherent contribution shifts to lower
quencies and decreases in total weight. Parameters used areg253
andg50.5.
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qualitatively like Fig. 5~a!. The l 50 peak, which gives the
quasiparticle contribution, will be nearly absent ifg2 is large.
The other peaks in an extended system will merge int
continuum incoherent contribution, peaking at some high
ergy. When the system is doped with holes, and also
fixed doping when the temperature is lowered and superc
ductivity sets in, the number of doubly occupied~by holes!
sites will increase; hence the spectral function will have
larger contribution from Fig. 5~b!. Hence the intensity of the
quasiparticle peak in the spectral function will increase b
as the system becomes superconducting and as the syst
doped in the normal state.

Similarly, consider the optical absorption resulting fro
transitions between localized particles at sites 1 and 2.
sume the current operator is given by26

j 5(
s

p12c2s
† c1s1H.c. ~48!

The real part of the optical conductivity at zero temperat
is given by

s1~v!5
p

v (
m

z^mu j u0& z2d@v2~Em2E0!#. ~49!

For the case where there is one hole at site 1 and no ho
site 2 in the ground state, Eq.~49! yields

s1
(1)~v!5

p

v
p12

2 FS4d~v!1 (
( l l 8)Þ(00)

z^0l u1& z2z^1l 8u0& z2d

3~v2v l2v l 8!G , ~50!

and for the case where there is one hole at each site
opposite spin,

s1
(2)~v!5

2p

v
p12

2 FS2T2d~v2Ue f f!

1 (
( l l 8)Þ(00)

z^0l u1& z2z^2l 8u1& z2d

3~v2Ue f f2v l2v l 8!G . ~51!

Once again we have separated the coherent contribution
volving no excited bosons, from the incoherent contribut
where bosons are emitted. For the generalized Hols
model, using the relation

(
l 50

L

(
l 850

L2 l g1
2lg2

2l 8

l ! l 8!
5

~g11g2!L

L!
, ~52!

these relations become

s1
(1)~v!5

p

v
p12

2 Fe22g2
d~v!1e22g2

(
l 51

`
~2g2! l

l !
d~v2v0l !G ,

~53a!
a
-
a
n-

a

h
is

s-

e

at

of

in-
n
in

s1
(2)~v!5

2p

v
p12

2 Fe2g2[11(12g)2]d~v2Ue f f!

1e2g2[11(12g)2]

3(
l 51

`
g2l@11~12g!2# l

l !
d~v2Ue f f2v0l !G .

~53b!

The qualitative behavior of these quantities is similar to t
of the single-particle spectral functions shown in Fig. 5.
an extended system the zero boson terms give rise to
intraband optical absorption. According to these results,
gÞ0 the intraband absorption will increase as holes
added to the system more rapidly than proportional to
number of holes, since there is an increasing contribution
s1

(2)(v) relative tos1
(1)(v). Correspondingly, the contribu

tion of lÞ0 terms, corresponding to nonintraband process
decreases. The two other models discussed in Sec. II dis
similar physics.5

Furthermore, as the system with a dilute concentration
holes becomes superconducting, the relative contribution
s1

(2) will also increase relative to that ofs1
(1) , because there

is an increased fraction of configurations with holes on
same or on nearest-neighbor sites. In that case the resu
extra intraband optical spectral weight goes into thed func-
tion that determines the London penetration depth, and
apparent violation of the Ferrell-Glover-Tinkham conduct
ity sum rule results.7,5

In summary, in the two simple examples discussed in t
section it is seen that the process of undressing will mani
itself similarly in one- and two-particle spectral function
which determine the results of photoemission and optic
absorption measurements. For both types of observab
within the class of models discussed here, an increase in
local hole concentration through doping or through pairi
gives rise to increased coherence.

V. SPECTRAL FUNCTION IN THE DILUTE LIMIT

To obtain further insight into the effect of undressing
connection with superconductivity, we consider the dilu
limit, that is, the limit when the number of hole carriers
the band goes to zero. The wave function for a single pai
holes governed by the effective Hamiltonian@Eq. ~11!# can
be found exactly, and is of the form27

uC&5
1

AN
(

k
f kck↑

† c2k↓
† u0&5

1

AN
(
i , j

f ~ i 2 j !ci↑
† cj↓

† u0&,

~54a!

f k5(
j

eiRj f ~ j !, ~54b!

with

(
d

u f ~d!u251. ~54c!

Equations that determine the amplitudesf (d) and the pair
binding energyEb are found from exact solution of th
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Schrödinger equation for a single pair.27 In particular, in the
limit where t2→0 in Eq. ~11!, only the amplitudesf (d) for
on-site and nearest-neighbor pairs are nonvanishing.28

We consider the part of the spectral function@Eq. ~44!#
corresponding to the destruction of a hole of momentumk.
Applying the operator

ck↑5
1

AN
(

k
eikRici↑ ~55!

to the wave function@Eq. ~54a!# gives rise to diagonal and
nondiagonal terms, as given by Eqs.~3! and ~4!. The diago-
nal terms, where the bosons remain in the ground st
yields

~ck↑uC&)diag5
1

AN
@~T2S! f ~0!1S fk#c2k↓u0&, ~56!

and the nondiagonal terms are

~ck↑uC&)nondiag5
1

N (
i ,l

eikRi f ~0!u↓& i^1
l u2&

1
1

N (
iÞ j ,l

eikRi f ~ i 2 j !u↓& j u0l& i^0
l u1&.

~57!

Assuming that states with excited bosons in a real-space
resentation are approximately eigenstates of the Hamilton
one obtains the spectral function

As~k,v!52pnpF @~T2S! f ~0!1S fk#
2d~v1ek1Eb!

1(
lÞ0

$ z^1l u2& z2f 2~0!1 z^0l u1& z2

3@12 f ~0!2#%d~v1ek1Eb1v l !G . ~58!

We have assumed that there arenp pairs in the ground state
that do not interfere with one another. In contrast, in stand
models with no electron-hole symmetry breaking such as
conventional Holstein model,S5T and ^0l u1&5^1l u2&, so
that the first term in Eq.~58! disappears and the second o
is simplified. In particular, the dependence onf (0), the on-
site pair amplitude, disappears.

Equation ~58! clearly shows the effect of electron-ho
symmetry breaking. The coherent part of the spectral fu
tion in the superconducting state will be enhanced wheT
.S, proportionally to the on-site pair wave-function amp
tude f (0). As aconsequence the enhancement will be lar
the smaller the coherence length, i.e. the size of the
wave function, is. Correspondingly, the incoherent part
the spectral function is reduced, sincez^1l u2& z is smaller than
z^0l u1& z if S,T, as discussed in Sec. II. Furthermore, t
enhancement is proportional to the number of pairs. T
number of pairs within a two-fluid model is given by th
superfluid densitynp5lL(0)2/l l(T)2, with lL the London
penetration depth, and grows proportionally to the g
squared as the temperature is lowered belowTc . Also, the
e,

p-
n,

rd
e

c-

r
ir
f

e

p

superfluid density will increase with doping. Hence, in t
presence of the undressing effect, we conclude that there
be an extra contribution to the coherent part of the spec
function that increases both as the temperature is lowe
and superconductivity sets in, and as the doping is increa
in the superconducting state. These effects should be obs
able in photoemission experiments. We discuss these eff
in more detail after considering the spectral function in t
normal state in Sec. VI.

VI. SPECTRAL FUNCTION IN THE NORMAL STATE

The calculation of the spectral function in the normal st
of the generalized Holstein model closely follows the tre
ment of Alexandrov and Ranninger for the electron-ho
symmetric case.21 In the single-particle Green’s function,

G~m,t!52^Ttc0↑~t!cm↑
† ~0!&, ~59!

fermion operators are replaced by the transformed opera
@Eq. ~40!#, and averages over fermions and bosons are
coupled. The result for the spectral function is

A~k,v!52pe2g2F @11n~egg2
21!#d@v1~ek2m!#

1
1

N (
k8

(
l 51

`
g2l

l !
$11n@egg2

~12g! l21#%

3@~12nk8!d~v1 lv01ek82m!

1nk8d~v2 lv01ek82m!#G , ~60!

wheren is the hole concentration. Forg50 this reduces to
the result of Alexandrov and Ranninger. The first term d
scribes the coherent contribution, and the second term
incoherent one. Wheng.0, the coherent part increases
the expense of the incoherent part as the hole concentratin
increases. The amplitude of the coherent part of the spe
function is proportional to the effective bandwidth, which
given ~to lowest order ing) by

D~n!52zt~n!52z~ t21nDt !52zte2g2
@11n~egg2

21!#,
~61!

and increases linearly with doping.
In a photoemission experiment, the quantity probed is

I 0~k,v!5A~k,v! f ~v!, ~62!

with f (v) the Fermi function. To take the experimental res
lution into account we calculate the convolution

I ~k,v!5E dv8F~v2v8!I 0~k,v8!, ~63!

with F(v) a Gaussian function with widthsv . An example
of the behavior obtained is shown in Fig. 6. Note that t
quasiparticle peak is absent for a low hole concentration,
appears as the hole concentration increases.



th
re
th

d
Ho
tic

n

t
an
ev

e

fo
o

gh
t
e
a

a
t

t

m

ticle

-
i-

the
eak

se
off
ely

x-
l
the

n-

that
in-

ex-
at
tate
ole
sys-
ence
al’’
m-

the
rst
de-

rup-
ntial
n-
a
this

c-
el,
rent
the
her-
at

state
n

t in
l be

wo-
ti-
al
the

ting
vio-
al
rp-

r-

a

ar
re

PRB 62 14 495SUPERCONDUCTIVITY FROM UNDRESSING
VII. QUASIPARTICLE SPECTRAL WEIGHT

Here we summarize the qualitative conclusions on
quasiparticle spectral weight that we can draw from the
sults of the previous two sections. In the normal state,
quasiparticle weightZ is, from Eqs.~60! and ~46!,

Zn5S2F11nS T

S
21D G5e2g2

@11n~egg2
21!#. ~64!

The first form is general for the class of models discusse
Sec. II, the second the particular case of the generalized
stein model. In the superconducting state the quasipar
weight, from Eq.~58!, is

Zs5np@~T2S! f ~0!1S fk#
2. ~65!

For the particular caseT@S and the generalized Holstei
model,

Zs5npe2g2
~egg2

21!2f 2~0!. ~66!

Equations~64! and ~66! show that the quasiparticle weigh
will grow both as the system is doped in the normal state
as the system goes into the superconducting state. How
because the factor (egg2

21) appearssquaredin the expres-
sion forZs , the onset of coherence will be more pronounc
as the temperature is lowered than asn is increased in the
normal state if that factor is large, which will be the case
S!1 andT@S. This appears to be the observation in ph
toemission experiments.1 More generally, the conditionsS
!1 andT@S are consistent with the observations of a hi
degree of incoherence in the underdoped regime of cupra
and the onset of coherence for a relatively modest increas
n. Furthermore, in the model of hole superconductivity, th
condition, which is equivalent toDt@t2, and t2 very small,
is required to fit a variety of experiments.12

In this case, one may expect to see a pronounced qu
particle peak emerge as superconductivity sets in even in
underdoped regime. The temperature dependence ofZs is
governed bynp , the superfluid weight, which is wha
is observed experimentally.1 The amplitude of the pair wave
function f (0) is found to be essentially independent of te
perature in the model of hole superconductivity.12

FIG. 6. Angle-resolved photoemission spectrum in the norm
state for low~solid lines! and high~dashed lines! hole concentra-
tions, from Eq.~60!. For each case two values of the momentum
shown:ek2m510 meV andek2m520 meV. Parameters used a
g254, g50.75,v0510 meV, andsv510 meV.
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Furthermore, the doping dependence of the quasipar
peak in the superconducting state@Eq. ~66!# will be deter-
mined by that of the superfluid weightnp , and also by the
doping dependence off (0). In themodel of hole supercon
ductivity, the superfluid weight is found to grow approx
mately linearly with doping.7 The on-site pair amplitude
f (0) is found to decrease as the system moves toward
overdoped regime, because there is a crossover to the w
coupling regime and the coherence length increases.12,29

Ding et al.1 found Z in the superconducting state to increa
linearly with doping in the underdoped regime, and taper
on the overdoped side. Hence this behavior is qualitativ
consistent with the prediction of Eq.~66!. A detailed quan-
titative comparison will be given elsewhere. Finally, the e
pression@Eq. ~64!# for the quasiparticle weight in the norma
state predicts that a quasiparticle peak should be seen in
normal state for sufficiently high doping, which is also co
sistent with observations.1

VIII. CONCLUSIONS

In this paper we have considered a class of models
appear to contain key ingredients of the phenomenology
ferred from a wide range of photoemission and optical
periments in high-Tc cuprates. This phenomenology is th
increased coherence is observed both in the normal s
when the hole concentration increases, and for a fixed h
concentration when the temperature is reduced and the
tem becomes superconducting. The emergence of coher
thus appears to be associated with an increase in the ‘‘loc
carrier concentration. We have pointed out that this pheno
enology follows from the class of models considered in
theory of hole superconductivity. In these models, the fi
hole on a site causes a large disruption in a background
gree of freedom, and the second hole a much smaller dis
tion. Electron-hole asymmetry thus results as an esse
feature. The resulting low-energy effective Hamiltonian co
tains a termDt, which leads to superconductivity and is
manifestation of the undressing process. We illustrated
physics with some simple examples.

An explicit calculation of the single-particle spectral fun
tion for one such model, a generalized Holstein mod
showed that indeed it exhibits a decrease in the incohe
contribution and the emergence of a quasiparticle peak in
normal state as the hole concentration increases. Furt
more, in the particular case of the dilute limit we showed th
increased coherence also results in the superconducting
as a result of the formation of the pair wave function. A
approximate calculation of the one-particle spectral weigh
the superconducting state for a more general case wil
discussed in a forthcoming paper.

These models have similar consequences for the t
particle Green’s function, and predict that a transfer of op
cal spectral weight from high to low frequency in the norm
state should occur as the hole doping increases due to
undressing process. Furthermore, in the superconduc
state the undressing process gives rise to an ‘‘apparent’’
lation of the Ferrell-Glover-Tinkham low-frequency optic
sum rule,7,8 accompanied by a decrease in the optical abso
tion at high frequencies,5,9 signaling the fact that the supe
conducting condensation energy iskinetic energy.
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Other models were recently discussed in the literat
where the superconducting condensation energy was ar
to come from kinetic energy.30,31 However, none of those
models address the questions of from where, and thro
which mechanism, the transfer of high-frequency opti
spectral weight occurs.

Even though the Hamiltonian considered here is relate
the model studied by Alexandrov in his theory of bipolaron
superconductivity,20 there are fundamental differences. Ale
androv’s model, by not breaking electron-hole symme
does not contain the physics of undressing. Also, his mo
predicts pair formation~bipolarons! in the normal state,
which subsequently Bose condenses. Instead, in the mo
discussed here, because of the enhanced pair mobility du
the undressing process, the transition to the supercondu
state occurs through pair binding rather than Bose conde
tion, except in extremely low carrier concentratio
regimes.32 Finally, we believe that the relevant boson ex
tations that were described here through the generalized
stein model are likely to be electronic excitations of t
atomic shells,10,11,23,33rather than related to ionic lattice dis
placements as in Alexandrov’s work.

The physics of undressing discussed here leads uniq
to the symmetry of the superconducting state being
s-wave state.12 Currently the generally accepted view, su
ported by a large body of experimental evidence, is that
superconducting state in the cuprates hasdx2-y2 symmetry, or
at least a very significantd-wave component.34–36 However,
there are several recent experiments that cast some dou
this picture.37–40 For example, the observation that the cri
cal current density in bicrystalc-axis Josephson junctions o
Bi2Sr2CaCu2O81d is independent of twist angle has be
interpreted as indicating that the order parameter symm
is dominantly of isotropics-wave type.37 Also, scanning tun-
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neling microscopy spectroscopy of vortex cores
Bi2Sr2CaCu2O81d ~Ref. 40! shows evidence of bound state
in the cores, with exponential decay away from the co
centers, and a lack of angular dependence in the densit
states, all features compatible with a nodeless order par
eter and incompatible withdx2-y2 symmetry.

If it is firmly established that the order parameter is dom
nantly of d-wave type in the cuprates, the theory discuss
here in its present form would not be applicable. Even in t
case, however, we cannot rule out the possibility that a mo
fied version of the present theory might be able to desc
other order-parameter symmetries, and hence could stil
of relevance to the cuprates. In particular, it was recen
shown that certain Hamiltonians with correlated hoppi
terms can also give rise tod-wave superconductivity.41

In summary, we believe that the basic physics discus
here is relevant to an understanding of high-Tc superconduc-
tivity in cuprates. Because of its generality it should al
apply to any Fermi-liquid system where the quasiparti
dressing decreases as the local carrier concentration
creases, and we suggest that this may be generally the
for metals for which at least some of the quasiparticles in
normal state have a holelike character. This is also consis
with the empirical observation that superconductivity a
pears to be quite generally associated with positive value
the Hall coefficient in the normal state, at least in som
directions.42,43Thus the possibility that this physics may pla
an essential role inall superconductors should not b
excluded.44
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