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The incoherent regime of multiple Andreev reflectidAR) is studied in long diffusive SNS junctions at
applied voltages larger than the Thouless energy. Incoherent MAR are treated as a transport problem in energy
space by means of a circuit theory for an equivalent electrical network. The current through NS interfaces is
explained in terms of diffusion flows of electrons and holes through “tunnel” and “Andreev” resistors. These
resistors in diffusive junctions play roles analogous to the normal and Andreev reflection coefficients in
Octavio-Tinkham-Blonder-Klapwijk theory for ballistic junctions. The theory is applied to the subharmonic
gap structurgSGS; simple analytical results are obtained for the distribution function and current spectral
density for the limiting cases of resistive and transparent NS interfaces. In the general case, the exact solution
is found in terms of chain fractions, and the current is calculated numerically. SGS shows qualitatively
different behavior for even and odd subharmonic number2A/eV, and the maximum slopes of the differ-
ential resistance correspond to the gap subharmoeis,2A/n. The influence of inelastic scattering on the
subgap anomalies of the differential resistance is analyzed.

I. INTRODUCTION junctions(e.g., 2DEG-based deviceghe coherence effects
are important and give rise to resonant structures in the cur-
The concept of multiple Andreev reflectiofIAR) was  rent due to Andreev quantization. In this respect, the quasi-
introduced by Klapwijk, Blonder, and Tinkhdnn order to  classical OTBK theory, which does not include any coher-
explain the subharmonic gap structuiGS on current- ence effects, may be qualified as a model foritttmherent
voltage characteristics of superconducting junctions. ThéM/AR regime.
theory was originally formulated for perfect SNS junctions One might expect that impurities could provide the con-
and then extended to include the effect of resistance of théitions for incoherent MAR by washing out the Andreev
SN interfac@ [Octavio-Tinkham-Blonder-KlapwijkOTBK) ~ spectrum. However, this is not the case for a short diffusive
theory]. Within this approach, the subgap current transport igunction, where appreciable Josephson coupling gives rise to
described in terms of ballistic propagation of quasiclassicafoherent MAR:® The electron-hole coherence in the normal
electrons through the normal-metal region, accompanied bynetal holds over a distance of the coherence length
Andreev and normal reflections from specular NS bound= VA D/2E from the superconductof is the diffusion con-
aries. During every passage across the junction, the electrostany. The overlap of coherent proximity regions induced by
and the retroreflected holes gain energy equaWowhich  both SN interfaces creates an energy gap in the electron
allows them eventually to escape from the SNS well. Thisspectrum of the normal metal, which plays the role of the
energy gain results in strong quasiparticle nonequilibriumlevel spacing in the ballistic case. In short junctions with a
within the subgap energy regidk|<A. wide proximity gap of the order of the energy gapin the
OTBK theory gives a qualitatively adequate descriptionsuperconducting electrodes, the phase coherence covers the
of dc current transport in voltage-biased SNS junctionsgntire normal region.
however, its quantitative results have a rather limited range An incoherent MAR regime will occur in long diffusive
of applicability. In short ballistic junctions with lengtd ~ SNS junctions with a small proximity gap of the order of
comparable with or smaller than the coherence lertgty.,  Thouless energ¥r,=%D/d?><A.’ If the applied voltage is
atomic-size junctions the quantum coherence of subsequentarge on a scale of the Thouless energy>Er,, then the
Andreev reflections plays a crucial role leading to the aacoherence lengtz is much smaller than the junction length
Josephson effect. It has been shown that such a coherenat all relevant energieE~min(eV,A). In this case, the
also strongly modifies the dc current and S@&&fs. 3and #  proximity regions near the SN interfaces become virtually
(coherentMAR regime. In fact, even in long ballistic SNS decoupled and the Josephson oscillations are strongly sup-

0163-1829/2000/621)/1443913)/$15.00 PRB 62 14 439 ©2000 The American Physical Society



14 440 E. V. BEZUGLYI et al. PRB 62

pressed. At the same time, as soon as the inelastic mean frdfem our consideration at this stage; their role will be dis-
path exceeds the junction length, the subgap electrons mustissed later. The electric currdnper unit area is expressed
undergo many incoherent Andreev reflections before theyhrough the Keldysh componedf of the supermatrix cur-
enter the reservoir. We emphasize that such incoherency i‘%ntj'
provided by the small coherence length at large enough volt- ’
ages, while the intrinsic dephasing length can be arbitraril _ 3K
Iagrge. In order to describe spuch ar(iJ incgherent MAR regimey, U= (mhon/4e)Tr o (tX), ©
one has to operate with the electron and hole diffusion flowsvhere o is the conductivity of the normal metal.
across the junction rather than with ballistic quasiparticle At the SN interface, the supermatri$ satisfies the
trajectories, and to consider the Andreev reflections as thgoundary conditiot?
relationships between these diffusive flows.

_ The first step in extending the OTBK approach to dif_fu— (ond)+0=(2Rsn) "M G_0.G. 0], (4)
sive SNS structures was taken by Volkov and Klapwijk, o ) )
who derived recurrence relations between the boundary valvhere the indices-0 denote the right and left sides of the
ues of the distribution functions. In that study, only a weakinterface andRsy is the interface resistance per unit area in
nonequilibrium was considered, which implies suppressiofh® normal state, which relates to, e.g., a Schottky barrier or
focus on the opposite case of strong nonequilibrium in thdnfinitely narrow potential of the interface barrie)(x)
deve|oped MAR regime, which results in the appearance oTZHé(X), the interface resistance is related to the barrier
SGS onl-V characteristics of the diffusive SNS junctichs. StrengthZ=H(fivg) ™" as Rsy=21Z%/30y.** It has been
Following the interpretation of MAR as a transport problemShown in Ref. 15 that Ed4) is valid either for a completely

in energy spacél®we analyze it by formulating an equiva- transparent interfaceRgy— 0, G, o=G_o) or for an opaque
lent network in the spirit of Nazarov's circuit theoty. barrier whose resistance is much greater than the resistance
Within this approach, the energy-dependent tunnel and AnR(l)=I/oy of a metal layer with the thickness formally
dreev resistances of an equivalent circuit play roles similar t@qual tol.
the normal and Andreev reflection probabilities in OTBK  According to the definition of the supermatié,
theory, and the effective voltage source is represented by

Fermi reservoirs. . [gR GK L
The paper is organized as follows. In Sec. Il, we derive G= an | GK=gRt—1g”, (5)
the equations for incoherent MAR from the general Keldysh 0 g

equations. In Secs. Il and 1V, the circuit representation iSEquations(l) and (4) represent a compact form of separate

formulated; some applications are considered in Sec. V. Thgq ations for the retarded and advanced Green'’s functions
SGS in junctions with resistive interfaces is calculated in~g o

Sec. VI. The complete solution of the problem suitable forg ;)I a:_r:)dnthe_r?]lsglt:étlgn {Ezc.tllgme: L*;n(’z;; ’ 'I"nh(?rztér\rﬁ
numerical calculation of the-V characteristics is obtained in €V0!/!oN 1S IMPoS y sephson relaidn) =

Sec. VIl by using a chain-fraction technigtién Sec. VIl for the phase of .the order parameter @n .the Iright electrode
we discuss limitations on the MAR regime imposed by in—(We assumey =0 in the left terminal. This implies that the

elastic processes. function G(tytp,x) consists of a set of harmonics
G(E, ,En.X), E,=E+neV, which interfere in time and
Il. MICROSCOPIC BACKGROUND produce the ac Josephson current. However, when the junc-

tion lengthd is much larger than the coherence lengthat
The system under consideration consists of a normagll relevant energieE=eV, we may consider coherent qua-
channel (6<x<d) confined between two voltage-biased su-siparticle states separately at both sides of the junction, ne-
perconducting electrodes, with the elastic mean free path glecting their mutual interference and the ac Josephson ef-
much shorter than any characteristic size of the problem. Ifect. Thus, the Green’s function in the vicinity of left SN
this limit, the microscopic analysis of current transport caninierface can be approximated by the solutipn o-,coshd
be performed within the framework of the diffusive equa- +ioysinhg of the static Usadel equations for a semi-infinite
tions of nonequilibrium superconsiuctwiﬁ/for the 4<4 su- gy structuré® with the spectral anglé(E,x) satisfying the
permatrix Keldysh-Green functio@(tt,,x): equation
[A,G]=ihDsd, I=GaG, G2=1, (1) tant 6(E, x)/4]=tanH On(E)/4]exp( —x/ég\i),  (6)
oL R R _ with the boundary condition
H=1[ifho0—ed() +A(1)], A=Ae"ZXioy, (2
Wi A/ESinh( 6y — 0s) + 2 sink( 6y /2)=0. @)
where A is the modulus andy is the phase of the order

parameter, ang is the electric potential. The Pauli matrices The indicesS, Nin these equations refer to the superconduct-
o; operate in the Nambu space 0k2 matrices denoted by N9 and t_he no_rmal side of the m_terface, respectively.
“hats,” and the products of two-time functions are inter-  The dimensionless parametétin Eq. (7),

preted as their time convolutions. The junction lengtlis

assumed to be smaller than the inelastic and phase-breaking W= R(&a) _ Q :@ @)

= , T )
lengths, which allows us to exclude the inelastic collisions Rsny  dr N
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where Ry=R(d)=d/oy is the resistance of the normal complete solution for the distribution functioh., which

channel per unit area, has the meaning of an effective barriefetermines the dissipative current

transmissivity for the spectral functiohSNote that even at

large barrier strengttz>1 ensuring the validity of the

boundary conditions Eq(4),° the effective transmissivity

W~ (&, /1)Z72 of the barrier in a “dirty” system,|<¢&,, R

could be large. In this case, the spectral functions are virtuwe must solve the boundary problem fifE,x) at the left

ally insensitive to the presence of a barrier and, therefore, the\ interface, and a similar boundary problem T¢E,x) at

boundary conditions Eqs4) can be applied to an arbitrary the right interface, and then match the distribution function

interface if we approximately consider high-transmissive in-asymptotics deep inside the normal region by making use of

terfaces withW=¢,/1>1 as completely transparen®V.  the relationship following from Eq¥5), (15):

=, For low transmissivityW<1, Eq.(7) can be analyzed

within a perturbative approadsee the Appendjx At arbi- 2 _7

trary W, Eq. (7) should be solved numerically. HEX)=1(E+oLVX). 9
The distribution functiond .(E,x) are to be considered

as global quantities within the whole normal channel deter-

mined by the diffusive kinetic equations

I—UNdeED f 16
_E e —L?X—v ( )

Ill. CIRCUIT REPRESENTATION OF BOUNDARY
CONDITIONS

In order for this kinetic scheme to conform to the conven-
D+ (EX)oxf-(EX)]=0, ©) tional physical interpretation of Andreev reflection in terms
with dimensionless diffusion coefficients of electrons and holes, we introduce the following parametri-
zation of the matrix distribution function:
D.=(U4Tr(1-g"g"=cogimo, (109 WEx) 0
o fEx=1-( 7 ,
D_=(1U4Tr(1- o,g%0,g%)=cosi¥Red.  (10b) 0 n¥EX)
_ wheren® andn" will be considered as the electron and hole
Assuming the normal conductance of electrodes t0 b, jation numbers. Deep inside the normal-metal region,
much greater than the junction conductance, we consid&hey acquire rigorous meaning of distribution functions of
them as equilibrium reservoirs with unperturbed spectraljacirons and holes. In equilibrium, the function®" ap-
characteristicsgs=arctanh@/E), and equilibrium quasipar-  yrgach the Fermi distribution. In this representation, Egjs.
ticle distribution, fg(E)=fo(E)=tanh®&2T). Within this  take the form
approximation, the boundary conditions for the distribution
functions in Eq.(9) atx=0 read D.(E,x)dn-(E,x)=consEe—1.(E)/oy, (19

_ _ wheren. =n®+n", and they may be interpreted as conser-
oD+ H(BO =G (B)IF+ (B0~ To(B)], (1D vation equations for théspecifically normalizednet prob-
ability currentl .. of electrons and holes, and for the electron-

(18

onD-of (E0)=C-(B)I-(E0), (12 hole imbalance current_. Furthermore, the probability
where currents of electrons and holes, defined|&8=(1/2)( .
+1_), separately obey the conservation equations. The prob-
G.(E)=Rsu(NNyTMsMy), (13)  ability currentsI®" are naturally related to the electron and
hole diffusion flows,|®"=—o\3,n®", at large distances
N(E)=Re&(coshd), M*(E)+iM ~(E)=sinhé. > ¢ from the SN boundary. Within the proximity region,

(14  x=<¢&g, each current®" generally consists of a combination

At large energies|E|>A, when the normalized density of of both the electron and hole diffusion flows,

statesN(E) approaches unity and the condensate spectral oN
functionsM *(E) turn to zero at both sides of the interface, [eh=— 7[(D+i D_)dn®+ (D, .FD_)dn"], (20
the conductance& .. (E) coincide with the normal barrier
conductance; within the subgap regidf <A, G, (E)=0. which reflects coherent mixing of normal electron and hole
Similar considerations are valid for the right NS interface,states in this region.
if we eliminate the explicit time dependence of the order In terms of electrons and holes, the boundary conditions
parameter in Eq(1), along with the potential of the right in Egs.(11), (12) read
superconducting electrode, by means of a gauge
transformatiof® 1%M=G(n—n®" T Gu(n®—n"), (21)
. ~ where
G(tity,X)=explio,eVt)G(tits,X)exp —io,e V).
(15 Gr=G,, Gp=(G_—-G,)/2. (22

As aresult, we arrive at the same static equations and bound- .1 of the equations E€1) may be clearly interpreted

ary conditions, Eqs(62—(14), with}x—>d—x, for the gauge- 55 a Kirchhoff rule for the electron or hole probability cur-
transformed functiong(E,x) andf(E,x). Thus, to obtain a rent flowing through the effective circuitripole) shown in
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b) c

FIG. 1. Elementary equivalent circuits representing boundary
conditions Eq.(21) for the electron and hole population numbers
n®"(E,0) and probability currents®"(E), at energies outside the
gap,|E|>A (a), and within the subgap regiofg| <A (b); equiva-
lent network in &,E) space for incoherent MAR in the SNS junc-
tion (c). Filled and empty symbols stand for electron- and hole-
related elements, respectively; half-filled squares denote Andreev
resistors;U,,=ng(E,).

R,/Rg,

Fig. 1(a). Within such an interpretation, the nonequilibrium
populations of electrons and hole&" at the interface cor-
respond to “potentials” of nodes attached to the “voltage
source”’—the Fermi distributiomg(E) in the superconduct-
ing reservoir—by “tunnel resistors’RT(E)=GT_1(E). The
“Andreev resistor” RA(E)=G;1(E) between the nodes 0
provides electron-hole conversi¢Andreev reflectiopat the 0 1 E/a 2
SN interface. °)

The circuit representation of the diffusive SN interface is
analogous to the scattering description of ballistic SN inter
faces: the tunnel and Andreev resistaftés the diffusive
case play the same role as the normal and Andreev reflecti
coefficients in the ballistic casé.For instance, folE|>A

[Flg 1(a)], the probabl|lty Curl’ente iS Contributed by equi' norma| ValueRSN atE—0 due to the enhancement Of the
librium electrons incoming from the superconductor throughandreev reflection at small energies, which results from mul-
the tunnel resistoiRy, and also by the current flowing tiple coherent backscattering of quasiparticles by the impuri-
thrOUgh the Andreev reSiStﬂA as the result of hole-electron ties within the proximity region_ This property is the reason
conversion. Within the subgap regioff| <A, [Fig. 1b)],  for the reentrant behavior of the conductance of high-
the quasiparticles cannot penetrate into the superconductqgsistive SIN systenis® at low voltages. In the MAR re-
Rr=rc°, and the voltage source is disconnected, which resultgime, one cannot expect any reentrance since quasiparticles
in a detailed balance between the electron and hole probabit all subgap energies participate in the charge transport even
ity currents,|®=—1" (complete reflection For the perfect at small applied voltage.

interface,R, turns to zero, and the electron and hole popu-  The diffusion coefficient® .. in Eq. (10) turn to unity far

lation numbers become equaf=n" (complete Andreev re- from the SN boundary, and therefore the population numbers
flection). The nonzero value of the Andreev resistance forneh pecome linear functions of,

Rsn# 0 accounts for suppression of Andreev reflection due o

to the normal reflection by the interface. n®N(E,x)~n®"(E,0)— Ryl *"(E)x/d. (23)
Detailed information about the boundary resistances can

be obtained from asymptotic expressions for the bare inter- This equation defines the renormalized population num-

face resistance®. (E)=G,'(E) (see the Appendixand bers n®"(E,0) at the NS interface, which differ from

numerical plots ofR.(E) in Fig. 2. In particular,R. (E) n®N(E,0) due to the proximity effect, as shown in Fig. 3.

turns to zero at the gap edges due to the singularity in th&hese quantities have the meaning of the true electron/hole

density of states which enhances the tunneling probabilitypopulations which would appear at the NS interface if the

Furthermore, the imbalance resistafteE) approaches the proximity effect had been switched off. It is possible to for-

FIG. 2. Energy dependences of bare interface resistances

R+ (E)=G;(E) (a,b, bare Andreev resistané&,(E) (c) and nor-

malized proximity correctiong..(E) [insets in(a) and (b)], for
erent values of the resistance ratie Rg\/Ry andd/é,=5.
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0.4 T T

| A(Ed)
n(E,d)

n(E,0)

mEo |
0 X d S 2 E/n 3

FIG. 3. Qualitative behavior of population numbers within the
normal channelsolid curve. The edge distortions of the linear
dependence of population numbers, E28), occur within the prox-
imity regions. The difference between the boundary population
numbersn(E,0), n(E,d) and their effective values(E,0), n(E,d)
for true normal electrons and holes is included in the renormaliza-
tion of the boundary resistances, Eg6).

mulate the boundary conditions in E@1) in terms of these
population numbers by including the proximity effect into 0
renormalization of the tunnel and Andreev resistances. To i E— 2 £, 3
this end, we will associate the node potentials with renormal- b)

. - ’h _ _— -
ized boundary values®"(E,0)=(1/2)[n, (E,0)+n_(E,0)] FIG. 4. Energy dependences of the renormalized interface resis-

of the populatipn numbers, where. (E,0) are found from  tances: tunnelprobability) resistanc&;(E) (a) and Andreev resis-
the exact solutions of Eq$19), tanceRA(E) (b), for d=5¢, .

n.(E,00=n.(E,0—m.(E)l .(E). (24 at large energids This leads to suppression of the probabil-
Here m. (E) are the proximity corrections to the normal- ity currents of normal electrons and holes within the proxim-
metal resistance at given energy for the probability and imity region, which is to be attributed to the appearance of

balance currents, respectively, Andreev reflection. Such a suppression is a global property
of the proximity region in the presence of sharp spatial varia-
M. (E)=*=Ry(&x/d)u~(E), (25a tion of the order parameter, and it is similar to the over-the-

barrier Andreev reflection in the ballistic systems. In the
=dx, presence of normal scattering at the SN interface, the overall
mx(E)= fo g—AIDi (E,x)—1[>0, (25 picture depends on the interplay between the bare interface
resistancedR.. and the proximity corrections.. ; for ex-
see the insets in Figs(& and 2b). It follows from Eq.(24)  ample, the renormalized tunnel resistafG&E) diverges at
that the same Kirchhoff rules as in Eq&1), (22) hold for  |E|— A, along with the proximity correctiom. (E), in con-
n®"(E,0) andI®"(E), if the bare resistanceR. are substi- trast to the bare tunnel resistarRe(E). This indicates com-

tuted by the renormalized ones, plete Andreev reflection at the gap edge independently of the
. transparency of the barrier, which is similar to the situation
R.(E)—R+(E)=R.(E)+m.(E). (26) in the ballistic systems where the probability of Andreev

reflection atf E|=A is always equal to unity.
The energy dependence of the renormalized boundary re-

sistanceR(E) andR,(E) is illustrated in Fig. 4. In some IV. ASSEMBLING MAR NETWORKS
cases, there is an essential difference between the bare and
renormalized resistances, which leads to qualitatively differ- To complete the definition of an equivalent MAR net-
ent properties of the SN interface for normal electrons andvork, we have to construct a similar tripole for the right NS
holes compared to the properties of the bare boundary. Let ugterface and to connect boundary values of population num-
first discuss a perfect SN interface wiity— 0. Within the ~ bers(node potentialsusing the matching condition E¢L7)

subgap regionE|<A, the bare tunnel resistan€ is infi- ~ €xpressed in terms of electrons and holes:

nite whereas the bare Andreev resistafgeturns to zero; _

this corresponds to complete Andreev reflection, as already n®"(E,x)=n*"ExeV,x). (27)
explained. However, the Andreev resistance for normal elec- B
trons and holesR(E)=2m_(E), is finite and negativé Since the gauge-transformed distribution functiohns

which leads to enhancement of the normal metal conductivobey the same equations Ed8)—(14), the results of the
ity within the proximity regiort®2At |E|>A, the bare tun-  previous section can be applied to the functiof$(E) and
nel resistancdy is zero, while the renormalized tunnel re- _Teh(g) (the minus sign implies that is associated with

sistanceET(E)szr(E) is finite (though rapidly decreasing the current incoming to the right-boundary tripplén par-
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E, E,4 E, E, g physical electric current, Eq31), through the sum of all
partial currentd , flowing through the normal resistoRy,
integrated over an elementary energy intervalb<eV:

1w Lev
I—EﬁwdE[ll(E)Jrlo(E)]—gfo dEJE), (33

—A 0 A E + oo

FIG. 5. MAR network of Fig. {c) in energy space. The nodes ‘J(E):n;w In(E). (34)
outside the gap are connected with the distributed voltage source
ne(E) (bold curve; the subgap nodes are disconnected from therhe spectral density(E) is periodic inE with the periodeV
voltage source. and symmetric irg, J(— E)=J(E), which follows from the

. . . symmetry of all resistances with respectBo
ticular, the asymptotics of the gauge-transformed population As soon as the partial currents are found, the population

numbers far from the right interface are given by the equan \mbers can be recovered by virtue of EG9), (21), (23)
tion . ' ' '
and(32):
~eh ~menh Teh _ _
n (Eax) n (Erd)+RNI (E)(l X/d) (28) ne’h(E,X):ne’h(E,O)iRN|1’0(E)X/d, (35)
After matching the asymptotics in Eq&3) and (28) by
means of Eq(27), we find the following relations: — 1 —
q ? n®(E,0)=ne— 5 [R. (11~ 10 =R (I, +10)] (30
1&NE)=T*NE+eV), (29
at|E|>A. Within the subgap region, E¢36) is inapplicable
ﬁ%vh(E,o)_?ﬁh(EieV’d):RN|evh(E), (30) due to the undeterminacy of produBt, (I,—1p). In this
] ) o case, one may consider the subgap part of the network as a
From the viewpoint of the circuit theory, EG30) may be  yojtage divider between the nodes nearest to the gap edges,
interpreted as Ohm’s law for the resistd®g which connect having the numbers-N_, N., respectively, whereN.
energy-shifted boundary tripoles, separately for the electrons. Intf (AF¥E)/eV]+1, Int(x) denoting the integer part of

and holes, as shown in Fig(c). o _ Then the boundary populations |[& <A become
The final step which essentially simplifies the analysis of

the MAR network, is based on the following observation. N.—1
The spectral probability current&" yield opposite contribu- NeP(E,0)=n"R(E.n )*1o| NiRy+ 2 Ra(ELp) |,
tions to the electric current in E¢16), o N k=1 -
(37)
l 0
| = %f dE[I15(E)—I"NE)], (31)  whereR,L indicate the right(left) node of the tripole, irre-

spectively of whether it relates to the ld¢&venn) or right

due to the opposite charge of electrons and holes. At thédd n) interface. The physical meaning of*"(Ey), how-
same time, these currents, referred to the energy axis, tran@Ver, depends on the parity of

fer the charge in the same direction, viz., from bottom to top o

of Fig. 1(c), according to our choice of positiveV. Thus, by ne'h(En,O), n=2kK,

introducing the notation,,(E) for an electric current enter- nRHE) =4 - (38
ing the noden with the energyE,=E+neV, as shown by n"e(E,,d), N=2k+1.

arrows in Fig. 1c),
9- 10 The valuesn®! in Eq. (37) can be found from Eq(36)

I(E_1), n=2k+1, which is generalized for any tripole of the network in Fig. 5
In(E)= _INE,), n=2k, (32 outside the gap as
we arrive at an “electrical engineering” problem of current  nRL(E y=n.(E,)— (1/2)[R.(Ey) (1,11~ 11) =R_(E,)
distribution in an equivalent network in energy space plotted

in Fig. 5, where the difference between electrons and holes X(Ihsa+ 1) ] (39
becomes unessential. The bold curve in Fig. 5 represents a
distributed voltage source—the Fermi distribution(E) The circuit formalism can be simply generalized to the

connected periodically with the network nodes. Within thecase of different transparencies of NS interfaces, as well as

gap, |E,|<A, the nodes are disconnected from the Fermito different values ofA in the electrodes. In this case, the

reservoir and therefore all partial currents associated with theetwork resistances become dependent not onl\Eptbut

subgap nodes are equal. also on the parity oh. As a result, the periodicity of the
Since all resistances and potentials of this network dependurrent spectral density double3(E)=J(E+2eV), and,

on E,=E+neV, the partial currents obey the relationship therefore J(E) is to be integrated in E433) over the period

I,(E)=1[E+(n—k)eV] which allows us to express the 2eV, with an additional factor 1/2.
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/ \/ \ <d, (ii) the proximity correctionsn.. at the left SN interface
| EA [ are to be expressed through the integrals
Upget Upi k1

ddx,
m:(E):iRNJ‘OE“D: (Exx)—1], (42)

a)
<
r 1 W r b Y D \ r I, 1 _ _
ak + + +en instead of Eq.(25), and (iii) odd tunnel resistanceRgy
ng Uy UO Y b

should be replaced by the energy-dependent bare resistances
R, (E) [or, equivalently,R_(E)]. From this point of view,
the entire channel represents a global “Andreev reflector”

b)
O O — . . .
1y N/ / \ 7 \ for normal electrons and holes incoming from the right res-
T 0 N1 e ervoir
U.N__1 U_N_ C) UNF

Unp+1 The next simple application of this circuitry is given by
calculation of the exces@leficit) current in SNS junctions,
FIG. 6. Simplified circuits used for calculation @) 1-V char- i.e., the differencd.,=1(V)—V/R between the currents in

acteristic of SNN junctiontb) excesgdeficit) current in SNS junc-  superconducting and normal state at large voltages\/e.

tion; (c) 1-V characteristic of SNS junction with low-transparent Assuming the integration in Eq33) to be reduced to the

interfaces. interval 0<E<eV/2 by making use of the symmetd(E)

=J(—E)=J(eV—E), we note that the Andreev conduc-

tances are negligibly small for all nodes with=0 (E,

o ) . >A). Thus, the circuit in Fig. 5 may be split, as in the case
A helpful example of an asymmetric junction which al- of the SNN junction discussed above, into the chain of sepa-

lows us immediately to obtain an analytical solution is givenyate circuits shown in Fig.(6). The contribution of the cen-

by the superconductor—normal metal—normal me&MN) g circuit is described by Eq40) with k=0, whereas the

structure. The problem of calculation of its conductivity is gther parts are to be considered as normal circuits and rep-

inherently static and therefore may be completely solved fofesent contribution of thermally excited quasiparticles:
any junction length. If the latter is much larger than the co-

herence length, the circuit approach of the previous section is
applicable without restrictions. Due to the absence of super-
conducting correlations at the right NN interface, odd An-
dreev resistors are eliminated and, therefore, the whole nejghere R=Ry+2Rgy is the net normal resistance of the
work may be split into separate finite circuits located aroundunction. In summary, we obtain another well-known
even(superconductingnodes, as shown in Fig(®; more-  regylt?°

over, odd tunnel resistances are to be considered as normal

ones. After some simple algebra, we obtain the sum of par- 2 [ev2 _ne(E—eV)—ng(E+eV)

V. SIMPLE APPLICATIONS

> 1,=[1+ne(Ey)—ne(E_y IR, (43)
n#0,1

tial currents in each subcircuit, lex=—0 — Rsn—R_(E)
" eRJo Rt Rou R (E) o :
Ne(Eok—1) = Ne(Eoiy 1) —
Lo+ i 1= =, (40) 2 (= _ Rsy—R.(E)
RN + RSN+ R—(EZK) ~— d — . (44)
eRJo ~ Ry+RgytR_(E)
which leads to a well-known formula for tHeV character-
istics of a long SNN junctiofi: It is of interest to note that the net resistafe=R.. for
ooy 7 the probability current never enters final results in these ex-
|— e dE Ne(Eak-1) ~ Ne(Bacia) amples and, therefore, the superconducting modification in-
2eJo k=== Ry+Rsnyt R-(Ex) volves only the imbalance resistanBe . In other words,
only the evolution of the imbalanage_ between the electron
_ EJWdE”F(E_eV)_”i(E”LeV) (41) and hole populations is relevant for the charge transport in
elo Ry+ Rsnt R_(E) ’ such cases.
If the junction is short enougld(and &g are comparable VI. MAR TRANSPORT

one might naively expect some kind of proximity-induced

Andreev scattering at the right NN interface, followed by Proceeding with the analysis of current transport through
MAR and SGS anomalies in tHeV characteristic. However, the SNS junction at arbitrary voltages, we first discuss the
the circuit theory rejects this assumption at once: since thease of low-transparent barriel¥/<<1. We note that in prac-
condensate spectral functiohs™, Eq. (14), disappear in the tice this case is relevant for a wide range of junctions both
normal terminal, the conductivitie6.. become equal, and with high interface resistanc&s\> Ry, and comparatively
the Andreev channel becomes closed,0) at the NN  low interface resistancBsy<Ry . Indeed, according to Eq.
interface at any length of the junction. Thus, the circuit(8), the ratio Ry/Rsy=Wd/&,, being proportional tow,
model of charge transport in Fig(é remains valid, with a contains also the large parametf¢, . Therefore, the limit
few modifications:(i) the spectral angl@(E,x) has to be W<1 covers most of the practically interesting situations,
found from the Usadel equation for the finite intervak®  O<Ry/Rgsn<d/&,, and only the case of very small inter-
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face resistance®y /Rgp>d/é4> 1, requires special consid- 4 - - -
eration.
At W<1, the proximity effect is essentially suppressed < 3f
and the calculations can be performed on the basis of a sim- &
plified model of the equivalent network, which nevertheless i’\ ol
provides a quantitative description k). Due to the sharp =
increase in the Andreev resistancg B> A [see Fig. 4b)],
all Andreev resistors outside the gap can be excluded, and T
we arrive at the sequence of subcircuits shown in F{g).6
The central circuit between the nodedN_ andN, includes QLess
N_+N_ normal andN . +N_—1 Andreev resistors within 0
the gap, as well as two tunnel resistors at the circuit edges.
The total resistanc®, of this circuit is 5
Ry(E)=(N;+N_)Ry+ >  Ra(EQ)+Rr(Ey,) =l
—N_<k<Nj >
2 3t
+Rr(E_n ), (45) -
and the currenity through this circuit is given by Ohm'’s law: ]
Ne(E—n ) —ne(En,) 0 e
lo(E)= R.(E) : (46) 0o 1 2 3 4 5 6 7
A b) 2n/eV
Thus, the contribution of this circuit to the current spectral
density, Eq.(34), is (N, +N_)I,. FIG. 7. 1-V characteristicga) and differential resistance vs in-
The current of thermal excitations is carried by the sideVerse voltagéb) of SNS junctions with Iow-transparent interfaces,
circuits (>N, , n<—N_): W=0.1 a_ndW= 0.2, atd/é,=5. Dashed lines denote low-voltage
asymptotics of the-V curves, Eq(49).
o= nF(_Enfl)_n_':(E”) ] (47) the edge Andreev resistors. Careful analysis shows that at the
Ryt R(Ep) +Rt(E,_1) gap subharmonics,eV,=2A/n, the second derivative
d?V/dI? has sharp maxima.
From Eq.(46) we obtain a simple formula at<A: The magnitude oflV/dI strongly depends on the number
of large Andreev resistors which contribute Ryag. At
_ eV dE _ Ri(B) eV<A, at least one Andreev resistor appears far from the
- fo eRuar(E)’ RMAR(E)_N++N_' (48) “resonant” points E=0,=A where R, sharply decreases.

Thus, the net subgap resistanBgsr(E) remains large
whereRyar(E) has the meaning of the effective resistance(~Rgy/W) at any energy, which results in large differential
of the subgap region for the physical electric current. resistancedV/dl ~Rgn/W at these voltages. In the vicinity

In Fig. 7 we present the'V characteristics and the differ- of the second subharmonie{~ A, the current transport in-
ential resistance vs inverse voltage at zero temperature, calelves a high-transmissive circuit with three Andreev resis-
culated numerically by means of E@8). The parameteWW  tors located near the resonant points, which yields a much
was chosen to be equal to 0.1 and 0.2d&§, =5, which  smaller value ofdV/dl~Rgy. The same effect occurs at
corresponds to the resistance ratioRgy/Ry equal to 2 and  eV~2A when the resonant circuit contains two suppressed

1, respectively. In our calculation & A(E) in Eq.(45), we ~ Andreev resistances at the gap edgeseXt-2A the differ-
used the asymptotic Eq(A3) for the bare resistances ential resistance is basically determined by quasiparticles
Ry o(E) at W<1, neglecting small proximity corrections Which overcome the energy gap without Andreev reflections,
m;(E)~RN(§A /d)W2, Eq. (A2b). The results are in good and it turns to the normal ve}IUE at large voltgge.s.
agreement with those obtained on the basis of exact calcula- At low voltage, the amplitude of the oscillations of the
tions [see further Eq(64)]. The smeared steps in theV differential resistance decreases and .the asymptotic value of
characteristic indicate steplike increase in the number of sudV/dl at V<A/e can be found analytically from Eq¢45)

gap Andreev resistors in E¢45). The sharp peak@dips) in ~ and(48), by replacing the sum in Ed45) with an energy-
dVv/dl arise from the rapidly varying contribution of the independent integral. As a result we get

nodes which simultaneously cross the gap edges, and there-

fore both the edge Andreev resistances undergo strong sup- dV/dI(0)~Ry+ i JA JERME)=R +%R

pression. A certain contribution also comes from the edge NT2A | 4 NT 2w TSN

tunnel resistances which also show singular behavidEpat (49)
—A. The peaks are more pronounced for even subharmon-

ics, when the middle Andreev resistor crosses the Fermi Since each circuit in Fig.(6) represents a separate volt-
level, E=0, and its value is suppressed simultaneously withrage divider, we easily obtain the boundary values of the
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pn(E)=Ry+R_(En-1) +R_(Ey), (539
ro(E)=[R,(E,)—R_(Ey)]/2. (53b)

By analogy with differential equations, we introduce the
following ansatz:
In(E)=Aq (E)I, (E)+A, (E)l, (E), (54)

wherel , are the fundamental solutions of the corresponding
uniform equation, decreasing at— * oo, respectively,

FIG. 8. Energy dependence of the electron population number

né(E,0) at the left interface of the SNS junction wilty = Ry and
d=5¢,, at voltageV=A/e andT=0.

population numbers. If the node=0 belongs to the central
circuit (—A—eV<E<A for electrons and—A<E<A
+eV for holeg, we have

Ne(E-n ) —ne(Ey,)
RA(E)
N.—-1
X|Rr(Exn, )+ N=Ryt 2 Ra(E=i) |,

ne(E,0)=ng(Ey,)*

(50)
and, in the opposite case,
—h B ~ Ri(B)[ne(E)—ne(E=eV)]
THEO=NE) " R TR (E) +R(ExeV)
(51

As follows from Eqgs.(50) and(51), at low temperatures, the
energy distribution of quasiparticles within the regiem\
—eV<E<A+eV has a steplike form(Fig. 8), which is
qualitatively similar to, but quantatively different from, that

N Sh-10, N>0,
—]_’ny ’
P, n>0,

N E . (55b)
P_in, n<O,

+

Iy =1y =1. The quantities

SmE)=11 5(B). Pui®)=11 pyE) (56

are expressed through the products of chain fractisps,
=I5, pa=1,/1,.,, defined by the recurrences

n M

Sy=———————, = (57

" Pn+1trntanss P pntratbyy (679
a,=rn(l=-s,), by=r,(1-pp), (57b)

with the boundary conditionss,_, .—0, p,__.—0.
Within the gap|E,| <A, wherer ,—, the values,,, p, are
equal to 1, in accordance with the conservation of the subgap
currents mentioned above.

The coefficientsA,, in Eq. (54) satisfy an equation fol-

found in OTBK theory? The number of steps increases atlowing from Egs.(52), (54), and(55),
low voltage, and the shape of the distribution function re-

sembles a “hot electron” distribution with the effective tem-
perature of the order a&f. This distribution is modulated due

to the discrete nature of the heating mechanism of MAR,
which transfers the energy from an external voltage source to

the quasiparticles by energy quare®. Since the subgap
probability currently, Eq. (46), is strongly suppressed by
large subgap resistanc®,~Rgpn(N; +N_)/W>Ry, the
spatial variations of the population numbers, E@S), (35),
are negligibly smalln®"(E,x) —n®"(E,0)~Ry/Ry<1.

VII. EXACT SOLUTION

In the case of high transmittance of the NS interface, the

[(Pns1—TnSn )AL 1= TSy “0AT 1Sh o+ [(pnsa
—aPn) SAL 1~ TaPndAL TP 5=Uni1— Uy,
(58)

for n>0 (and similar forn<0), where SA,=A,;1—Ay.
The requirement of cancellation of terms wi, ; in Eq.
(58) allows us to completely determirf, . This yields first-
order recurrences fok,, which lead to the formula for par-
tial currents an>0,

n
ln=Agla +Agln + 2, Ju(Sh-1k=Pntad, (59

partial currents outside the gap noticeably contribute to the

net electric current even at=0. In this case, thé-V curves

should be calculated on the basis of the exact solution of the

recurrence relations between partial currents,

lnrirntlnoarnoa—In(pntrpoatry)=U,—U, 4,
(52

following from the Kirchhoff rules for an infinite network in
Fig. 5. HereU,(E) =ng(E,) and

Unfl_Un

in(E)= p (60)

ntant+bo_q’
The undeterminacy oé,, b,_; in Eq. (60) within the
subgap regiofwheres,=p,=1 andr,—x, see Eq(57b],
is resolved by the recurrences,=pp:1tansii, bn=pn

+b,,_; following from Egs.(57) for |E,|<A. These recur-
rences are to be continued until the nodés and —N_ ,
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respectively, are reached. As a result, we obtain a convenient 5 ————

representation foj, at (—=N_+1)<n=<N,:

Up-1— Uy
AN (T+sy )=y (1+p_y )

in(BE)=g5 (61)

The effective subgap resistance determined by the denomi-

nator in Eq.(61) differs from R, in Eq. (45) by extra terms

describing leakage of the subgap current through the An-

dreev resistors outside the gap.

The coefficientsA, have to provide finite values df, in
Eqg. (59 at all n; for instance, forn— +o, the divergent
products ofpj’l in 1, and P;_llyk should compensate each
other:AngszjkPk_lyo. A similar procedure for negative
n determines the value @, and results in the final formula
for the partial current with arbitrary index

+ o

|n<E>=jn<E>+k§+1 i (E)Py_1n(E)

n—-1

+ 2 IE)S, 1(E). (62

By making use of the relatiop_,(E)=s,(—E) follow-
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PRB 62

{(V)eRIA

6
b) 2A/eV

FIG. 9. I-V characteristic§a) and differential resistances vs

ing from Eq.(57) and taking into account the symmetry of inverse voltagdb) of an SNS junction with high-transparent inter-

all resistances with respect t we obtain the net current
spectral density,

+ o

jn<E)+k§n [in(E)Scn(E)

=—

J<E>=n2 [

+jn(E)Sk+l,n+1(_E)]}- (63)

At low temperature§ <A, only the term withn=0 contrib-
utes to the sum in Eq63),
+ 00

J<E>=10<E>{1+k§l [Skl,o<E)+sk,1<—E)]}. (64)

Figure 9 shows the results of a numerical calculation o

(V) anddV/dI for an SNS junction with high-transmissive
interfaces W=1 andW—o, at zero temperature. In prac-
tice, due to rapid decrease of the coefficien{éE) in Eq.

Eq. (57) starting from the maximum number,,,=N_+2
and assuming the chain fractions to be truncasze; 0, at
N>Nyax- 10 avoid formal singularity irm_(E) atE—0, we
introduce a small dephasing factorwhich provides a cutoff
of the coherence lengtlfg— VADI2(E+il"). The corre-
sponding dephasing length= A D/2I" was chosen equal to
the junction length; the variation df; is not critical for the
fine structure ofdV/dlI.

(53) at large energies, it is enough to calculate recurrences i

faces.

except for a narrow region around the gap edges, where

R7(E) diverges due to complete Andreev reflection. This
allows us to assume all the normal resistor$Et> A to be
connected directly to the “voltage sourcelr(E) and there-
fore to exclude all Andreev resistors in Fig. 5 outside the
gap. As a result, we arrive at the sequence of subcircuits

shown in Fig. 6c), with Ry=0 for side circuits. Thus, at
<A, the subgap current may be approximately described by
Egs.(45) and(48), with the tunnel and Andreev resistances
renormalized by the proximity effect.

Within this model, the SGS oscillations in the differential
resistance in Fig. 9 can be explained in the following way.
As the voltage decreases, the subgap current, which approxi-

tmately follows Ohm'’s law, undergoes an additional suppres-

sion in the vicinity of the gap subharmonics, due to the pres-
ence of a high-resistive circuit with two large tunnel resistors
located just at the gap edges. These current steps, being al-
most invisible in thel -V characteristic, manifest themselves
s sharp dips idV/dl. At even subharmonics, this effect is
partially compensated by the middle negative Andreev resis-
tor, which rapidly reduces the effective normal metal resis-
tance due to the increase in the size of the proximity region
at small energies. As a result, the even dips become less
pronounced and, as long as the interface transparency in-
creases, turn into small peaks. At low voltages, the differen-
tial resistance approaches a constant value, which can be
estimated for perfect NS interface by the following expres-

Similar to the case of low barrier transmittance, the cur-sion similar to Eq(49):
rent transport through an SNS junction with nearly perfect

interfaces can be qualitatively explained within a simplified

model of MAR, where the over-the-barrief§(>A) An-

A dE

éa
dV/dI(O)wRN[1—2FJ_AEM_(E)}

dreev reflection is ignored. Indeed, as follows from Fig. 4, at

Rsn<Ry, the tunnel resistancd®;(E) outside the gap are

much smaller than the Andreev and/or normal resistances,

EA

=RN(1—2.64E), Rgn=0. (65)
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Unlike the ballistic SNS junctioh? but similar to short  parency of the SN interfaces. We formulated a circuit repre-
diffusive constrictiorr, the SGS survives at zero temperaturesentation for the incoherent MAR, which may be considered
even for perfect NS interfaces. In this case, the SGS occurgs an extension of Nazarov’s circuit thebryo a system of
due to coherent impurity scattering of quasiparticles insideyoltage-biased superconducting terminals connected by nor-
the proximity region, with the amplitude approximately pro- mal wires in the absence of supercurrent. We constructed an
portional to the characteristic lengéh of this region. If we  equivalent MAR network which includes a new resistive el-
neglect the proximity corrections1(. —0), the SGS disap- ement, “Andreev resistor,” which provides electron-hole
pears, along with the excess current, andIthe character-  conversion at the SN interfaces. Separate Kirchhoff rules are
istic shows perfect Ohmic pehawBﬂ.’hus, we conclude that  formylated for electrorthole) population numbers and diffu-
in both the cases of resistive and transparent NS interfaceg e flows. Within this approach, the electron and hole popu-
SGS appears due to the normal electron backscattering in thgio, numbers are considered as potential nodes connected
S;le(émg]}/ trr]?ag:(;?\.orz]zﬁiz?c;nz:g/recg/rr?;gigtna?\scetooghtﬁeﬁinr:tgrEhrough the tunnel and Andreev resistors with a distributed
face voltage source—the equilibrium Fermi reservoirs in the su-
' perconducting terminals.

The theory was applied to calculation of th&/ charac-
teristics. The subgap current decreases stepwise with de-
Since the relative SGS amplitude increases along with thereasing applied voltage in junctions with resistive inter-
NS barrier strengtlithough the current itself decreagesne  faces, while in junctions with transparent interfaces an
might expect systems with high-resistive interfaces to beappreciable SGS appears only on the differential resistance.

more favorable for the experimental observation of SGSin all cases,dV/dl exhibits sharp structures whose maxi-
However, there exists an intrinsic restriction for the effect: tomum slopes correspond to the gap subharmoni,
provide strong nonequilibrium of the subgap quasiparticles=2A/n. The amplitude and the shape of SGS oscillations
inherent to MAR, the timerg of their diffusion through the  strongly depend on the interface/normal-metal resistance ra-
whole MAR staircase, from-A to A, must be smaller than o r =R, /Ry and reveal a noticeable parity effect: differ-

the inelastic relaxation time, . The value ofry can be es- gnce of the amplitudes of the even and odd structures. This
timated as the time for diffusion over an effective length gfect is specific for diffusive junctions: it comes from the
(2A7eV)d. At low interface resistanc&sy<Ry, the diffu- 50041y enhanced probability of Andreev reflection at zero

sion rate is basically determined by the impurity scattering:ener Inelastic scattering results in smearing of the SGS
rq(eV)~(2A/eV)2d?/D. For high interface resistancBgy oy g g ’

: which disappears at small applied voltage.
>Ry, the large Andreev resistané® —Rsy/W presents a Our theory of incoherent MAR is valid as soon as the
bottleneck which renormalizes the diffusion coefficient-jn aoplied voltageeV is much laraer than the Thouless enerav:
by a small factoWWRy/Rgy. In this way, the level of non- PP g g ay:

equilibrium of the subgap quasiparticles is controlled by the this case, one may neglect the overlap of the proximity

regions near the NS interfaces. In the opposite cadg,

VIIl. ROLE OF INELASTIC SCATTERING

parameter
=Eq,<<A, the problem of the low-energy part of the effec-
tive circuit should be considered more carefully, by taking
Te Ry into account the interference between the proximity regions.
W, = 7q(20) = Ry+ Rsn/W EmTe, (66) Aspects of this ac Josephson regime have been considered in

. ] Ref. 23 in terms of adiabatic oscillations of the quasiparticle
which must be large enough to allow observation of at leasgpectrum and distribution functions, which produce nonequi-
a few subharmonics if(V), i.e., the conditio'W,>1 deter-  jiniym ac supercurrerf® Within our approach, this effect
mines the lower boundary for the barrier transparency. Ay introduce an effective boundary condition for the prob-

a}nalogqus estimate for the |_nel_ast|c parameter, with the_ baléibility currents at small energy, which must be included into
rier resistanceR>Ry substituting for the Andreev resis- the circuit representation of MAR in energy space

tance Rsn/W in Eq. (66), was obtained in Ref. 7 for an It is interesting to consider the effect of dephasing on

SNINS structure with perfect NS interfaces. In this case, th R : : L
tunnel barrier does not affect the Andreev reflection but pro?AR’ which 'SE'Tr%dl’l'f_ed by atn |magt|rr]1 atri/hadd't'zﬁl Ito d
duces renormalization of the diffusion coefficienf) e energyE—E+II". Itis easy to see that this model leads

— DR./R to more pronounced SGS. Indeed, as it follows from &g.
At gV/zTA<W*1’2 whenr, < 4(eV), the normal channel the effect of large dephasing rdteis similar to the effect of

may be considered as a reservoir with a certain effectiv@? OPaque interface barriéthe transmissivity parametel/

temperaturgdepending on the details of inelastic scatteringP&comes effectively smallThis is easily understood since

which are beyond our model approachnd thel-V curve the dephasing suppresses the anomalous Green'’s function
becomes structureless. At smalll,, the SNS junction be- Within the normal metal similar to the effect of the interface

haves at two SN junctions connected in series through thBarrier. Thus, even for highly transmissive interfaces, the
equilibrium normal reservoir. curves for largel’>E, become similar to the ones in the
case of low-transparent interfacésee Fig. 7, with deficit
current and pronounced SGS. This conclusion is also sup-
ported by direct numerical calculation. It is of interest that
We have developed a consistent theory of incoherenthe parity effect in SGS almost disappears due to the cutoff
MAR in long diffusive SNS junctions with arbitrary trans- of the long-range proximity effect at small energies. In such

IX. SUMMARY
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a case, the incoherent MAR regime persists at arbitrarily In the vicinity of the gap edgesE — A|<W?, and at small
small voltages and our theory is valid until the quasiparticleenergies,E<W?, where 6\(E) in Eq. (A1) diverges, the
relaxation will affect the MAR regime as described in Sec.following approximate solutions of Eq7) have to be used

VIII.
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APPENDIX

The analytical expressions for bare conductivitgs and
proximity correctionsm. can be obtained in the case of
low-transparent NS interfac®y<1, by making use of a per-
turbative solution of Eq(7):

E)=W\iA/Esinhés(E), (A1)

EO(E—A) WA?O[=(E—A)]

I:QSNGt: \/ﬁ - _AZ
A WA 0
Ve mrel)) 4
m. gAWZAZ 3/2

R_;:m(ﬁ) [i2+®(E—A)_®(A_E)],
(A2b)

where®(x) is the Heaviside function ané is assumed for
brevity to be positive. From EqA2a), we obtain approxi-
mations for the tunnel and Andreev resistances:

R(E)~Rgn(1—A?/E?), (A3a)
2Rg\E2—A?| [2E
RAE)~ e T
2EA 1/2

instead of Eq(Al):
exp(Oy) =u3(t), t=2|E—A|/AW?

t|E A|<A whereu(t) is the solution of a cubic equation

(Ad)

i/t, and
0 i
sinh7N= - Eexp(—arcsinh/— iE/2W?A)  (A5)
at |E|<A. The asymptotics of G. and m.=

*+Ry(éA/d) . near these “dangerous” points, are given by

—1/6
Rs@:ﬁt—@(E—A), (A6a)
W
—5/6
RsnG- =y [V3O(E-A)+O(A-E)], (A6h)
2
M= V3t_1/3(\/2+\/§+\/2_\/§)’ M—:\/E
(A6cC)
att<1, and
RsnG_ =1, u_=(y2—1)\AJE, (A7)
at E<W2,

For perfect SN interfaceG.'=0, the asymptotics of
m_(E) atE—A<A andE<A are given by EqA6¢), (A7)
respectively, wheream, (E) diverges at the gap edge as
[A/2(E—A)]Y4 Several examples of these dependences cal-
culated numerically are presented in Figs2e discussion in

Sec. V.
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