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Circuit theory of multiple Andreev reflections in diffusive SNS junctions: The incoherent case
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The incoherent regime of multiple Andreev reflections~MAR! is studied in long diffusive SNS junctions at
applied voltages larger than the Thouless energy. Incoherent MAR are treated as a transport problem in energy
space by means of a circuit theory for an equivalent electrical network. The current through NS interfaces is
explained in terms of diffusion flows of electrons and holes through ‘‘tunnel’’ and ‘‘Andreev’’ resistors. These
resistors in diffusive junctions play roles analogous to the normal and Andreev reflection coefficients in
Octavio-Tinkham-Blonder-Klapwijk theory for ballistic junctions. The theory is applied to the subharmonic
gap structure~SGS!; simple analytical results are obtained for the distribution function and current spectral
density for the limiting cases of resistive and transparent NS interfaces. In the general case, the exact solution
is found in terms of chain fractions, and the current is calculated numerically. SGS shows qualitatively
different behavior for even and odd subharmonic numbersn52D/eV, and the maximum slopes of the differ-
ential resistance correspond to the gap subharmonics,eV52D/n. The influence of inelastic scattering on the
subgap anomalies of the differential resistance is analyzed.
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I. INTRODUCTION

The concept of multiple Andreev reflections~MAR! was
introduced by Klapwijk, Blonder, and Tinkham1 in order to
explain the subharmonic gap structure~SGS! on current-
voltage characteristics of superconducting junctions. T
theory was originally formulated for perfect SNS junctio
and then extended to include the effect of resistance of
SN interface2 @Octavio-Tinkham-Blonder-Klapwijk~OTBK!
theory#. Within this approach, the subgap current transpor
described in terms of ballistic propagation of quasiclass
electrons through the normal-metal region, accompanied
Andreev and normal reflections from specular NS bou
aries. During every passage across the junction, the elec
and the retroreflected holes gain energy equal toeV, which
allows them eventually to escape from the SNS well. T
energy gain results in strong quasiparticle nonequilibri
within the subgap energy regionuEu,D.

OTBK theory gives a qualitatively adequate descripti
of dc current transport in voltage-biased SNS junctio
however, its quantitative results have a rather limited ra
of applicability. In short ballistic junctions with lengthd
comparable with or smaller than the coherence length~e.g.,
atomic-size junctions!, the quantum coherence of subsequ
Andreev reflections plays a crucial role leading to the
Josephson effect. It has been shown that such a coher
also strongly modifies the dc current and SGS~Refs. 3 and 4!
~coherentMAR regime!. In fact, even in long ballistic SNS
PRB 620163-1829/2000/62~21!/14439~13!/$15.00
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junctions~e.g., 2DEG-based devices!, the coherence effect
are important and give rise to resonant structures in the
rent due to Andreev quantization. In this respect, the qu
classical OTBK theory, which does not include any coh
ence effects, may be qualified as a model for theincoherent
MAR regime.

One might expect that impurities could provide the co
ditions for incoherent MAR by washing out the Andree
spectrum. However, this is not the case for a short diffus
junction, where appreciable Josephson coupling gives ris
coherent MAR.5,6 The electron-hole coherence in the norm
metal holds over a distance of the coherence lengthjE

5A\D/2E from the superconductor (D is the diffusion con-
stant!. The overlap of coherent proximity regions induced
both SN interfaces creates an energy gap in the elec
spectrum of the normal metal, which plays the role of t
level spacing in the ballistic case. In short junctions with
wide proximity gap of the order of the energy gapD in the
superconducting electrodes, the phase coherence cover
entire normal region.

An incoherent MAR regime will occur in long diffusive
SNS junctions with a small proximity gap of the order
Thouless energyETh5\D/d2!D.7 If the applied voltage is
large on a scale of the Thouless energy,eV@ETh , then the
coherence lengthjE is much smaller than the junction lengt
at all relevant energiesE;min(eV,D). In this case, the
proximity regions near the SN interfaces become virtua
decoupled and the Josephson oscillations are strongly
14 439 ©2000 The American Physical Society
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14 440 PRB 62E. V. BEZUGLYI et al.
pressed. At the same time, as soon as the inelastic mean
path exceeds the junction length, the subgap electrons m
undergo many incoherent Andreev reflections before t
enter the reservoir. We emphasize that such incoherenc
provided by the small coherence length at large enough v
ages, while the intrinsic dephasing length can be arbitra
large. In order to describe such an incoherent MAR regim
one has to operate with the electron and hole diffusion flo
across the junction rather than with ballistic quasiparti
trajectories, and to consider the Andreev reflections as
relationships between these diffusive flows.

The first step in extending the OTBK approach to diff
sive SNS structures was taken by Volkov and Klapwij8

who derived recurrence relations between the boundary
ues of the distribution functions. In that study, only a we
nonequilibrium was considered, which implies suppress
of MAR by inelastic relaxation. In the present paper, w
focus on the opposite case of strong nonequilibrium in
developed MAR regime, which results in the appearance
SGS onI -V characteristics of the diffusive SNS junctions9

Following the interpretation of MAR as a transport proble
in energy space,7,10 we analyze it by formulating an equiva
lent network in the spirit of Nazarov’s circuit theory.11

Within this approach, the energy-dependent tunnel and
dreev resistances of an equivalent circuit play roles simila
the normal and Andreev reflection probabilities in OTB
theory, and the effective voltage source is represented
Fermi reservoirs.

The paper is organized as follows. In Sec. II, we der
the equations for incoherent MAR from the general Keldy
equations. In Secs. III and IV, the circuit representation
formulated; some applications are considered in Sec. V.
SGS in junctions with resistive interfaces is calculated
Sec. VI. The complete solution of the problem suitable
numerical calculation of theI -V characteristics is obtained i
Sec. VII by using a chain-fraction technique.4 In Sec. VIII,
we discuss limitations on the MAR regime imposed by
elastic processes.

II. MICROSCOPIC BACKGROUND

The system under consideration consists of a nor
channel (0,x,d) confined between two voltage-biased s
perconducting electrodes, with the elastic mean free pal
much shorter than any characteristic size of the problem
this limit, the microscopic analysis of current transport c
be performed within the framework of the diffusive equ
tions of nonequilibrium superconductivity12 for the 434 su-
permatrix Keldysh-Green functionǦ(t1t2 ,x):

@Ȟ,Ǧ#5 i\D]xJ̌, J̌5Ǧ]xǦ, Ǧ251̌, ~1!

Ȟ51̌@ i\sz] t2ef~ t !1D̂~ t !#, D̂5Deiszxisy , ~2!

where D is the modulus andx is the phase of the orde
parameter, andf is the electric potential. The Pauli matrice
s i operate in the Nambu space of 232 matrices denoted by
‘‘hats,’’ and the products of two-time functions are inte
preted as their time convolutions. The junction lengthd is
assumed to be smaller than the inelastic and phase-brea
lengths, which allows us to exclude the inelastic collisio
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from our consideration at this stage; their role will be d
cussed later. The electric currentI per unit area is expresse
through the Keldysh componentĴK of the supermatrix cur-
rent J̌:

I ~ t !5~p\sN/4e!Tr szĴ
K~ tt,x!, ~3!

wheresN is the conductivity of the normal metal.
At the SN interface, the supermatrixǦ satisfies the

boundary condition13

~sNJ̌!605~2RSN!21@Ǧ20 ,Ǧ10#, ~4!

where the indices60 denote the right and left sides of th
interface andRSN is the interface resistance per unit area
the normal state, which relates to, e.g., a Schottky barrie
mismatch between the Fermi velocities. Within the model
infinitely narrow potential of the interface barrier,U(x)
5Hd(x), the interface resistance is related to the barr
strengthZ5H(\vF)21 as RSN52lZ2/3sN .14 It has been
shown in Ref. 15 that Eq.~4! is valid either for a completely
transparent interface (RSN→0, Ǧ105Ǧ20! or for an opaque
barrier whose resistance is much greater than the resist
R( l )5 l /sN of a metal layer with the thickness formall
equal tol.

According to the definition of the supermatrixǦ,

Ǧ5S ĝR ĜK

0 ĝA D , ĜK5ĝRf̂ 2 f̂ ĝA, ~5!

Equations~1! and ~4! represent a compact form of separa
equations for the retarded and advanced Green’s funct
ĝR,A and the distribution functionf̂ 5 f 11szf 2 . Their time
evolution is imposed by the Josephson relationx(t)52eVt
for the phase of the order parameter in the right electr
~we assumex50 in the left terminal!. This implies that the
function Ǧ(t1t2 ,x) consists of a set of harmonic
Ǧ(En ,Em ,x), En5E1neV, which interfere in time and
produce the ac Josephson current. However, when the j
tion lengthd is much larger than the coherence lengthjE at
all relevant energiesE*eV, we may consider coherent qua
siparticle states separately at both sides of the junction,
glecting their mutual interference and the ac Josephson
fect. Thus, the Green’s function in the vicinity of left S
interface can be approximated by the solutionĝ5szcoshu
1isysinhu of the static Usadel equations for a semi-infin
SN structure,16 with the spectral angleu(E,x) satisfying the
equation

tanh@u~E,x!/4#5tanh@uN~E!/4#exp~2x/jEAi !, ~6!

with the boundary condition

WAiD/Esinh~uN2uS!12 sinh~uN /2!50. ~7!

The indicesS, N in these equations refer to the supercondu
ing and the normal side of the interface, respectively.

The dimensionless parameterW in Eq. ~7!,

W5
R~jD!

RSN
5

jD

dr
, r 5

RSN

RN
, ~8!
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where RN5R(d)5d/sN is the resistance of the norma
channel per unit area, has the meaning of an effective ba
transmissivity for the spectral functions.17 Note that even at
large barrier strengthZ@1 ensuring the validity of the
boundary conditions Eq.~4!,15 the effective transmissivity
W;(jD / l )Z22 of the barrier in a ‘‘dirty’’ system,l !jD ,
could be large. In this case, the spectral functions are vi
ally insensitive to the presence of a barrier and, therefore,
boundary conditions Eqs.~4! can be applied to an arbitrar
interface if we approximately consider high-transmissive
terfaces with W*jD / l @1 as completely transparent,W
5`. For low transmissivity,W!1, Eq.~7! can be analyzed
within a perturbative approach~see the Appendix!. At arbi-
trary W, Eq. ~7! should be solved numerically.

The distribution functionsf 6(E,x) are to be considered
as global quantities within the whole normal channel de
mined by the diffusive kinetic equations

]x@D6~E,x!]xf 6~E,x!#50, ~9!

with dimensionless diffusion coefficients

D15~1/4!Tr~12ĝRĝA!5cos2Im u, ~10a!

D25~1/4!Tr~12szĝ
Rszĝ

A!5cosh2Reu. ~10b!

Assuming the normal conductance of electrodes to
much greater than the junction conductance, we cons
them as equilibrium reservoirs with unperturbed spec
characteristics,uS5arctanh(D/E), and equilibrium quasipar
ticle distribution, f̂ S(E)5 f 0(E)[tanh(E/2T). Within this
approximation, the boundary conditions for the distributi
functions in Eq.~9! at x50 read

sND1]xf 1~E,0!5G1~E!@ f 1~E,0!2 f 0~E!#, ~11!

sND2]xf 2~E,0!5G2~E! f 2~E,0!, ~12!

where

G6~E!5RSN
21~NSNN7MS

6MN
6!, ~13!

N~E!5Re~coshu!, M 1~E!1 iM 2~E!5sinhu.
~14!

At large energies,uEu@D, when the normalized density o
statesN(E) approaches unity and the condensate spec
functionsM 6(E) turn to zero at both sides of the interfac
the conductancesG6(E) coincide with the normal barrie
conductance; within the subgap regionuEu,D, G1(E)50.

Similar considerations are valid for the right NS interfac
if we eliminate the explicit time dependence of the ord
parameter in Eq.~1!, along with the potential of the righ
superconducting electrode, by means of a ga
transformation18

Ǧ~ t1t2 ,x!5exp~ iszeVt1!G̃̌~ t1t2 ,x!exp~2 iszeVt2!.
~15!

As a result, we arrive at the same static equations and bo
ary conditions, Eqs.~6!–~14!, with x→d2x, for the gauge-

transformed functionsg̃̂(E,x) and f̃̂ (E,x). Thus, to obtain a
ier

-
e

-

r-

e
er
l

al

,
r

e

d-

complete solution for the distribution functionf 2 , which
determines the dissipative current

I 5
sN

2eE2`

`

dED2]xf 2 , ~16!

we must solve the boundary problem forf̂ (E,x) at the left

SN interface, and a similar boundary problem forf̃̂ (E,x) at
the right interface, and then match the distribution functi
asymptotics deep inside the normal region by making use
the relationship following from Eqs.~5!, ~15!:

f̂ ~E,x!5 f̃̂ ~E1szeV,x!. ~17!

III. CIRCUIT REPRESENTATION OF BOUNDARY
CONDITIONS

In order for this kinetic scheme to conform to the conve
tional physical interpretation of Andreev reflection in term
of electrons and holes, we introduce the following parame
zation of the matrix distribution function:

f̂ ~E,x!512S ne~E,x! 0

0 nh~E,x!
D , ~18!

wherene andnh will be considered as the electron and ho
population numbers. Deep inside the normal-metal reg
they acquire rigorous meaning of distribution functions
electrons and holes. In equilibrium, the functionsne,h ap-
proach the Fermi distribution. In this representation, Eqs.~9!
take the form

D6~E,x!]xn6~E,x!5const[2I 6~E!/sN , ~19!

wheren65ne6nh, and they may be interpreted as cons
vation equations for the~specifically normalized! net prob-
ability currentI 1 of electrons and holes, and for the electro
hole imbalance currentI 2 . Furthermore, the probability
currents of electrons and holes, defined asI e,h5(1/2)(I 1

6I 2), separately obey the conservation equations. The p
ability currentsI e,h are naturally related to the electron an
hole diffusion flows,I e,h52sN]xn

e,h, at large distancesx
@jE from the SN boundary. Within the proximity region
x&jE , each currentI e,h generally consists of a combinatio
of both the electron and hole diffusion flows,

I e,h52
sN

2
@~D16D2!]xn

e1~D17D2!]xn
h#, ~20!

which reflects coherent mixing of normal electron and h
states in this region.

In terms of electrons and holes, the boundary conditio
in Eqs.~11!, ~12! read

I e,h5GT~nF2ne,h!7GA~ne2nh!, ~21!

where

GT5G1 , GA5~G22G1!/2. ~22!

Each of the equations Eq.~21! may be clearly interpreted
as a Kirchhoff rule for the electron or hole probability cu
rent flowing through the effective circuit~tripole! shown in
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14 442 PRB 62E. V. BEZUGLYI et al.
Fig. 1~a!. Within such an interpretation, the nonequilibriu
populations of electrons and holesne,h at the interface cor-
respond to ‘‘potentials’’ of nodes attached to the ‘‘volta
source’’—the Fermi distributionnF(E) in the superconduct
ing reservoir—by ‘‘tunnel resistors’’RT(E)5GT

21(E). The
‘‘Andreev resistor’’ RA(E)5GA

21(E) between the node
provides electron-hole conversion~Andreev reflection! at the
SN interface.

The circuit representation of the diffusive SN interface
analogous to the scattering description of ballistic SN int
faces: the tunnel and Andreev resistances19 in the diffusive
case play the same role as the normal and Andreev reflec
coefficients in the ballistic case.14 For instance, foruEu.D
@Fig. 1~a!#, the probability currentI e is contributed by equi-
librium electrons incoming from the superconductor throu
the tunnel resistorRT , and also by the current flowing
through the Andreev resistorRA as the result of hole-electro
conversion. Within the subgap region,uEu,D, @Fig. 1~b!#,
the quasiparticles cannot penetrate into the supercondu
RT5`, and the voltage source is disconnected, which res
in a detailed balance between the electron and hole prob
ity currents,I e52I h ~complete reflection!. For the perfect
interface,RA turns to zero, and the electron and hole pop
lation numbers become equal,ne5nh ~complete Andreev re-
flection!. The nonzero value of the Andreev resistance
RSNÞ0 accounts for suppression of Andreev reflection d
to the normal reflection by the interface.

Detailed information about the boundary resistances
be obtained from asymptotic expressions for the bare in
face resistancesR6(E)[G6

21(E) ~see the Appendix! and
numerical plots ofR6(E) in Fig. 2. In particular,R6(E)
turns to zero at the gap edges due to the singularity in
density of states which enhances the tunneling probabi
Furthermore, the imbalance resistanceR2(E) approaches the

FIG. 1. Elementary equivalent circuits representing bound
conditions Eq.~21! for the electron and hole population numbe
ne,h(E,0) and probability currentsI e,h(E), at energies outside th
gap,uEu.D ~a!, and within the subgap region,uEu,D ~b!; equiva-
lent network in (x,E) space for incoherent MAR in the SNS junc
tion ~c!. Filled and empty symbols stand for electron- and ho
related elements, respectively; half-filled squares denote And
resistors;Un5nF(En).
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normal valueRSN at E→0 due to the enhancement of th
Andreev reflection at small energies, which results from m
tiple coherent backscattering of quasiparticles by the imp
ties within the proximity region. This property is the reas
for the reentrant behavior of the conductance of hig
resistive SIN systems8,20 at low voltages. In the MAR re-
gime, one cannot expect any reentrance since quasipart
at all subgap energies participate in the charge transport e
at small applied voltage.

The diffusion coefficientsD6 in Eq. ~10! turn to unity far
from the SN boundary, and therefore the population numb
ne,h become linear functions ofx,

ne,h~E,x!'n̄e,h~E,0!2RNI e,h~E!x/d. ~23!

This equation defines the renormalized population nu
bers n̄e,h(E,0) at the NS interface, which differ from
ne,h(E,0) due to the proximity effect, as shown in Fig.
These quantities have the meaning of the true electron/
populations which would appear at the NS interface if t
proximity effect had been switched off. It is possible to fo

y

-
ev

FIG. 2. Energy dependences of bare interface resistan
R6(E)5G6

21(E) ~a,b!, bare Andreev resistanceRA(E) ~c! and nor-
malized proximity correctionsm6(E) @insets in ~a! and ~b!#, for
different values of the resistance ratior 5RSN/RN andd/jD55.
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PRB 62 14 443CIRCUIT THEORY OF MULTIPLE ANDREEV . . .
mulate the boundary conditions in Eq.~21! in terms of these
population numbers by including the proximity effect in
renormalization of the tunnel and Andreev resistances.
this end, we will associate the node potentials with renorm
ized boundary valuesn̄e,h(E,0)5(1/2)@ n̄1(E,0)6n̄2(E,0)#
of the population numbers, wheren̄6(E,0) are found from
the exact solutions of Eqs.~19!,

n̄6~E,0!5n6~E,0!2m6~E!I 6~E!. ~24!

Here m6(E) are the proximity corrections to the norma
metal resistance at given energy for the probability and
balance currents, respectively,

m6~E!56RN~jD /d!m6~E!, ~25a!

m6~E!5E
0

`dx

jD
uD6

21~E,x!21u.0, ~25b!

see the insets in Figs. 2~a! and 2~b!. It follows from Eq.~24!
that the same Kirchhoff rules as in Eqs.~21!, ~22! hold for
n̄e,h(E,0) andI e,h(E), if the bare resistancesR6 are substi-
tuted by the renormalized ones,

R6~E!→R̄6~E!5R6~E!1m6~E!. ~26!

The energy dependence of the renormalized boundary
sistancesR̄T(E) and R̄A(E) is illustrated in Fig. 4. In some
cases, there is an essential difference between the bare
renormalized resistances, which leads to qualitatively diff
ent properties of the SN interface for normal electrons a
holes compared to the properties of the bare boundary. Le
first discuss a perfect SN interface withRSN→0. Within the
subgap regionuEu,D, the bare tunnel resistanceRT is infi-
nite whereas the bare Andreev resistanceRA turns to zero;
this corresponds to complete Andreev reflection, as alre
explained. However, the Andreev resistance for normal e
trons and holes,R̄A(E)52m2(E), is finite and negative,21

which leads to enhancement of the normal metal conduc
ity within the proximity region.20,22 At uEu.D, the bare tun-
nel resistanceRT is zero, while the renormalized tunnel re
sistanceR̄T(E)5m1(E) is finite ~though rapidly decreasing

FIG. 3. Qualitative behavior of population numbers within t
normal channel~solid curve!. The edge distortions of the linearx
dependence of population numbers, Eq.~23!, occur within the prox-
imity regions. The difference between the boundary populat

numbersn(E,0), n(E,d) and their effective valuesn̄(E,0), n̄(E,d)
for true normal electrons and holes is included in the renormal
tion of the boundary resistances, Eq.~26!.
o
l-

-

e-

and
r-
d
us

dy
c-

v-

at large energies!. This leads to suppression of the probab
ity currents of normal electrons and holes within the proxi
ity region, which is to be attributed to the appearance
Andreev reflection. Such a suppression is a global prop
of the proximity region in the presence of sharp spatial va
tion of the order parameter, and it is similar to the over-th
barrier Andreev reflection in the ballistic systems. In t
presence of normal scattering at the SN interface, the ove
picture depends on the interplay between the bare inter
resistancesR6 and the proximity correctionsm6 ; for ex-
ample, the renormalized tunnel resistanceR̄T(E) diverges at
uEu→D, along with the proximity correctionm1(E), in con-
trast to the bare tunnel resistanceRT(E). This indicates com-
plete Andreev reflection at the gap edge independently of
transparency of the barrier, which is similar to the situati
in the ballistic systems where the probability of Andre
reflection atuEu5D is always equal to unity.

IV. ASSEMBLING MAR NETWORKS

To complete the definition of an equivalent MAR ne
work, we have to construct a similar tripole for the right N
interface and to connect boundary values of population nu
bers~node potentials! using the matching condition Eq.~17!
expressed in terms of electrons and holes:

ne,h~E,x!5ñe,h~E6eV,x!. ~27!

Since the gauge-transformed distribution functionsf̃ 6

obey the same equations Eqs.~9!–~14!, the results of the
previous section can be applied to the functionsñe,h(E) and
2 Ĩ e,h(E) ~the minus sign implies thatĨ is associated with
the current incoming to the right-boundary tripole!. In par-

n

-

FIG. 4. Energy dependences of the renormalized interface re

tances: tunnel~probability! resistanceR̄T(E) ~a! and Andreev resis-

tanceR̄A(E) ~b!, for d55jD .
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ticular, the asymptotics of the gauge-transformed popula
numbers far from the right interface are given by the eq
tion

ñe,h~E,x!' ñ̄e,h~E,d!1RNĨ e,h~E!~12x/d!. ~28!

After matching the asymptotics in Eqs.~23! and ~28! by
means of Eq.~27!, we find the following relations:

I e,h~E!5 Ĩ e,h~E6eV!, ~29!

n̄e,h~E,0!2 ñ̄e,h~E6eV,d!5RNI e,h~E!. ~30!

From the viewpoint of the circuit theory, Eq.~30! may be
interpreted as Ohm’s law for the resistorsRN which connect
energy-shifted boundary tripoles, separately for the electr
and holes, as shown in Fig. 1~c!.

The final step which essentially simplifies the analysis
the MAR network, is based on the following observatio
The spectral probability currentsI e,h yield opposite contribu-
tions to the electric current in Eq.~16!,

I 5
1

2eE2`

`

dE@ I e~E!2I h~E!#, ~31!

due to the opposite charge of electrons and holes. At
same time, these currents, referred to the energy axis, tr
fer the charge in the same direction, viz., from bottom to
of Fig. 1~c!, according to our choice of positiveeV. Thus, by
introducing the notationI n(E) for an electric current enter
ing the noden with the energyEn5E1neV, as shown by
arrows in Fig. 1~c!,

I n~E!5H I e~En21!, n52k11,

2I h~En!, n52k,
~32!

we arrive at an ‘‘electrical engineering’’ problem of curre
distribution in an equivalent network in energy space plot
in Fig. 5, where the difference between electrons and h
becomes unessential. The bold curve in Fig. 5 represen
distributed voltage source—the Fermi distributionnF(E)
connected periodically with the network nodes. Within t
gap, uEnu,D, the nodes are disconnected from the Fer
reservoir and therefore all partial currents associated with
subgap nodes are equal.

Since all resistances and potentials of this network dep
on En5E1neV, the partial currents obey the relationsh
I n(E)5I k@E1(n2k)eV# which allows us to express th

FIG. 5. MAR network of Fig. 1~c! in energy space. The node
outside the gap are connected with the distributed voltage so
nF(E) ~bold curve!; the subgap nodes are disconnected from
voltage source.
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physical electric current, Eq.~31!, through the sum of all
partial currentsI n flowing through the normal resistorsRN ,
integrated over an elementary energy interval 0,E,eV:

I 5
1

2eE2`

`

dE@ I 1~E!1I 0~E!#5
1

eE0

eV

dEJ~E!, ~33!

J~E!5 (
n52`

1`

I n~E!. ~34!

The spectral densityJ(E) is periodic inE with the periodeV
and symmetric inE, J(2E)5J(E), which follows from the
symmetry of all resistances with respect toE.

As soon as the partial currents are found, the popula
numbers can be recovered by virtue of Eqs.~19!, ~21!, ~23!,
and ~32!:

ne,h~E,x!5n̄e,h~E,0!7RNI 1,0~E!x/d, ~35!

n̄e,h~E,0!5nF2
1

2
@R̄1~ I 12I 0!6R̄2~ I 11I 0!# ~36!

at uEu.D. Within the subgap region, Eq.~36! is inapplicable
due to the undeterminacy of productR̄1(I 12I 0). In this
case, one may consider the subgap part of the network
voltage divider between the nodes nearest to the gap ed
having the numbers2N2 , N1 , respectively, whereN6

5Int@(D7E)/eV#11, Int(x) denoting the integer part ofx.
Then the boundary populations atuEu,D become

n̄e,h~E,0!5nL,R~E6N6
!6I 0FN6RN1 (

k51

N621

RA~E6k!G ,

~37!

whereR,L indicate the right~left! node of the tripole, irre-
spectively of whether it relates to the left~evenn) or right
~odd n) interface. The physical meaning ofnR,L(En), how-
ever, depends on the parity ofn:

nR,L~En!5H n̄e,h~En,0!, n52k,

ñ̄h,e~En ,d!, n52k11.
~38!

The valuesnR,L in Eq. ~37! can be found from Eq.~36!
which is generalized for any tripole of the network in Fig.
outside the gap as

nR,L~En!5nF~En!2~1/2!@R̄1~En!~ I n112I n!6R̄2~En!

3~ I n111I n!#. ~39!

The circuit formalism can be simply generalized to t
case of different transparencies of NS interfaces, as we
to different values ofD in the electrodes. In this case, th
network resistances become dependent not only onEn but
also on the parity ofn. As a result, the periodicity of the
current spectral density doubles:J(E)5J(E12eV), and,
therefore,J(E) is to be integrated in Eq.~33! over the period
2eV, with an additional factor 1/2.

ce
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V. SIMPLE APPLICATIONS

A helpful example of an asymmetric junction which a
lows us immediately to obtain an analytical solution is giv
by the superconductor–normal metal–normal metal~SNN!
structure. The problem of calculation of its conductivity
inherently static and therefore may be completely solved
any junction length. If the latter is much larger than the c
herence length, the circuit approach of the previous sectio
applicable without restrictions. Due to the absence of sup
conducting correlations at the right NN interface, odd A
dreev resistors are eliminated and, therefore, the whole
work may be split into separate finite circuits located arou
even~superconducting! nodes, as shown in Fig. 6~a!; more-
over, odd tunnel resistances are to be considered as no
ones. After some simple algebra, we obtain the sum of p
tial currents in each subcircuit,

I 2k1I 2k115
nF~E2k21!2nF~E2k11!

RN1RSN1R̄2~E2k!
, ~40!

which leads to a well-known formula for theI -V character-
istics of a long SNN junction:8

I 5
1

2eE0

2eV

dE (
k52`

1`
nF~E2k21!2nF~E2k11!

RN1RSN1R̄2~E2k!

5
1

eE0

`

dE
nF~E2eV!2nF~E1eV!

RN1RSN1R̄2~E!
. ~41!

If the junction is short enough (d andjE are comparable!,
one might naively expect some kind of proximity-induc
Andreev scattering at the right NN interface, followed
MAR and SGS anomalies in theI -V characteristic. However
the circuit theory rejects this assumption at once: since
condensate spectral functionsM 6, Eq. ~14!, disappear in the
normal terminal, the conductivitiesG6 become equal, and
the Andreev channel becomes closed (GA50) at the NN
interface at any length of the junction. Thus, the circ
model of charge transport in Fig. 6~a! remains valid, with a
few modifications:~i! the spectral angleu(E,x) has to be
found from the Usadel equation for the finite interval 0,x

FIG. 6. Simplified circuits used for calculation of~a! I -V char-
acteristic of SNN junction;~b! excess~deficit! current in SNS junc-
tion; ~c! I -V characteristic of SNS junction with low-transpare
interfaces.
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,d, ~ii ! the proximity correctionsm6 at the left SN interface
are to be expressed through the integrals

m6~E!56RNE
0

ddx

d
uD6

21~E,x!21u, ~42!

instead of Eq.~25!, and ~iii ! odd tunnel resistancesRSN
should be replaced by the energy-dependent bare resista
R1(E) @or, equivalently,R2(E)]. From this point of view,
the entire channel represents a global ‘‘Andreev reflecto
for normal electrons and holes incoming from the right re
ervoir.

The next simple application of this circuitry is given b
calculation of the excess~deficit! current in SNS junctions,
i.e., the differenceI ex5I (V)2V/R between the currents in
superconducting and normal state at large voltagesV@D/e.
Assuming the integration in Eq.~33! to be reduced to the
interval 0,E,eV/2 by making use of the symmetryJ(E)
5J(2E)5J(eV2E), we note that the Andreev conduc
tances are negligibly small for all nodes withnÞ0 (En
@D). Thus, the circuit in Fig. 5 may be split, as in the ca
of the SNN junction discussed above, into the chain of se
rate circuits shown in Fig. 6~b!. The contribution of the cen-
tral circuit is described by Eq.~40! with k50, whereas the
other parts are to be considered as normal circuits and
resent contribution of thermally excited quasiparticles:

(
nÞ0,1

I n5@11nF~E1!2nF~E21!#R21, ~43!

where R5RN12RSN is the net normal resistance of th
junction. In summary, we obtain another well-know
result,20

I ex5
2

eRE0

eV/2

dE
nF~E2eV!2nF~E1eV!

RN1RSN1R̄2~E!
@RSN2R̄2~E!#

'
2

eRE0

`

dE
RSN2R̄2~E!

RN1RSN1R̄2~E!
. ~44!

It is of interest to note that the net resistanceRT5R̄1 for
the probability current never enters final results in these
amples and, therefore, the superconducting modification
volves only the imbalance resistanceR̄2 . In other words,
only the evolution of the imbalancen2 between the electron
and hole populations is relevant for the charge transpor
such cases.

VI. MAR TRANSPORT

Proceeding with the analysis of current transport throu
the SNS junction at arbitrary voltages, we first discuss
case of low-transparent barriers,W!1. We note that in prac-
tice this case is relevant for a wide range of junctions b
with high interface resistance,RSN@RN , and comparatively
low interface resistanceRSN!RN . Indeed, according to Eq
~8!, the ratio RN /RSN5Wd/jD , being proportional toW,
contains also the large parameterd/jD . Therefore, the limit
W!1 covers most of the practically interesting situation
0,RN /RSN!d/jD , and only the case of very small inte
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14 446 PRB 62E. V. BEZUGLYI et al.
face resistances,RN /RSN.d/jD@1, requires special consid
eration.

At W!1, the proximity effect is essentially suppress
and the calculations can be performed on the basis of a
plified model of the equivalent network, which neverthele
provides a quantitative description ofI (V). Due to the sharp
increase in the Andreev resistance atuEu.D @see Fig. 4~b!#,
all Andreev resistors outside the gap can be excluded,
we arrive at the sequence of subcircuits shown in Fig. 6~c!.
The central circuit between the nodes2N2 andN1 includes
N11N2 normal andN11N221 Andreev resistors within
the gap, as well as two tunnel resistors at the circuit ed
The total resistanceRD of this circuit is

RD~E!5~N11N2!RN1 (
2N2,k,N1

R̄A~Ek!1R̄T~EN1
!

1R̄T~E2N2
!, ~45!

and the currentI 0 through this circuit is given by Ohm’s law

I 0~E!5
nF~E2N2

!2nF~EN1
!

RD~E!
. ~46!

Thus, the contribution of this circuit to the current spect
density, Eq.~34!, is (N11N2)I 0.

The current of thermal excitations is carried by the s
circuits (n.N1 , n<2N2):

I n5
nF~En21!2nF~En!

RN1R̄T~En!1R̄T~En21!
. ~47!

From Eq.~46! we obtain a simple formula atT!D:

I 5E
0

eV dE

eRMAR~E!
, RMAR~E!5

RD~E!

N11N2
, ~48!

whereRMAR(E) has the meaning of the effective resistan
of the subgap region for the physical electric current.

In Fig. 7 we present theI -V characteristics and the differ
ential resistance vs inverse voltage at zero temperature,
culated numerically by means of Eq.~48!. The parameterW
was chosen to be equal to 0.1 and 0.2 atd/jD55, which
corresponds to the resistance ratior 5RSN/RN equal to 2 and
1, respectively. In our calculation ofR̄T,A(E) in Eq. ~45!, we
used the asymptotic Eq.~A3! for the bare resistance
RT,A(E) at W!1, neglecting small proximity correction
m6(E);RN(jD /d)W2, Eq. ~A2b!. The results are in good
agreement with those obtained on the basis of exact calc
tions @see further Eq.~64!#. The smeared steps in theI -V
characteristic indicate steplike increase in the number of s
gap Andreev resistors in Eq.~45!. The sharp peaks~dips! in
dV/dI arise from the rapidly varying contribution of th
nodes which simultaneously cross the gap edges, and th
fore both the edge Andreev resistances undergo strong
pression. A certain contribution also comes from the ed
tunnel resistances which also show singular behavior atuEu
→D. The peaks are more pronounced for even subharm
ics, when the middle Andreev resistor crosses the Fe
level, E50, and its value is suppressed simultaneously w
-
s

nd

s.
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the edge Andreev resistors. Careful analysis shows that a
gap subharmonics,eVn52D/n, the second derivative
d2V/dI2 has sharp maxima.

The magnitude ofdV/dI strongly depends on the numbe
of large Andreev resistors which contribute toRMAR . At
eV,D, at least one Andreev resistor appears far from
‘‘resonant’’ points E50,6D where RA sharply decreases
Thus, the net subgap resistanceRMAR(E) remains large
(;RSN/W) at any energy, which results in large differenti
resistancedV/dI;RSN/W at these voltages. In the vicinity
of the second subharmonic,eV'D, the current transport in-
volves a high-transmissive circuit with three Andreev res
tors located near the resonant points, which yields a m
smaller value ofdV/dI;RSN. The same effect occurs a
eV'2D when the resonant circuit contains two suppres
Andreev resistances at the gap edges. AteV.2D the differ-
ential resistance is basically determined by quasipartic
which overcome the energy gap without Andreev reflectio
and it turns to the normal valueR at large voltages.

At low voltage, the amplitude of the oscillations of th
differential resistance decreases and the asymptotic valu
dV/dI at V!D/e can be found analytically from Eqs.~45!
and ~48!, by replacing the sum in Eq.~45! with an energy-
independent integral. As a result we get

dV/dI~0!'RN1
1

2D E
2D

D

dERA~E!5RN1
16A2

21W
RSN.

~49!

Since each circuit in Fig. 6~c! represents a separate vo
age divider, we easily obtain the boundary values of

FIG. 7. I -V characteristics~a! and differential resistance vs in
verse voltage~b! of SNS junctions with low-transparent interface
W50.1 andW50.2, atd/jD55. Dashed lines denote low-voltag
asymptotics of theI -V curves, Eq.~49!.
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PRB 62 14 447CIRCUIT THEORY OF MULTIPLE ANDREEV . . .
population numbers. If the noden50 belongs to the centra
circuit (2D2eV,E,D for electrons and2D,E,D
1eV for holes!, we have

n̄e,h~E,0!5nF~E6N6
!6

nF~E2N2
!2nF~EN1

!

RD~E!

3FRT~E6N6
!1N6RN1 (

k51

N621

RA~E6k!G ,

~50!

and, in the opposite case,

n̄e,h~E,0!5nF~E!2
RT~E!@nF~E!2nF~E6eV!#

RN1RT~E!1RT~E6eV!
.

~51!

As follows from Eqs.~50! and~51!, at low temperatures, th
energy distribution of quasiparticles within the region2D
2eV,E,D1eV has a steplike form~Fig. 8!, which is
qualitatively similar to, but quantatively different from, th
found in OTBK theory.2 The number of steps increases
low voltage, and the shape of the distribution function
sembles a ‘‘hot electron’’ distribution with the effective tem
perature of the order ofD. This distribution is modulated du
to the discrete nature of the heating mechanism of MA
which transfers the energy from an external voltage sourc
the quasiparticles by energy quantaeV. Since the subgap
probability currentI 0, Eq. ~46!, is strongly suppressed b
large subgap resistanceRD;RSN(N11N2)/W@RN , the
spatial variations of the population numbers, Eqs.~23!, ~35!,
are negligibly small:ne,h(E,x)2ne,h(E,0);RN /RD!1.

VII. EXACT SOLUTION

In the case of high transmittance of the NS interface,
partial currents outside the gap noticeably contribute to
net electric current even atT50. In this case, theI -V curves
should be calculated on the basis of the exact solution of
recurrence relations between partial currents,

I n11r n1I n21r n212I n~rn1r n211r n!5Un2Un21 ,
~52!

following from the Kirchhoff rules for an infinite network in
Fig. 5. HereUn(E)5nF(En) and

FIG. 8. Energy dependence of the electron population num
ne(E,0) at the left interface of the SNS junction withRSN5RN and
d55jD , at voltageV5D/e andT50.
t
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to
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rn~E!5RN1R̄2~En21!1R̄2~En!, ~53a!

r n~E!5@R̄1~En!2R̄2~En!#/2. ~53b!

By analogy with differential equations, we introduce th
following ansatz:

I n~E!5An
1~E!I n

1~E!1An
2~E!I n

2~E!, ~54!

whereI n
6 are the fundamental solutions of the correspond

uniform equation, decreasing atn→6`, respectively,

I n
1~E!5H Sn21,0, n.0,

S21,n
21 , n,0,

~55a!

I n
2~E!5H Pn21,0

21 , n.0,

P21,n , n,0,
~55b!

I 0
15I 0

251. The quantities

Smn~E!5)
j 5n

m

sj~E!, Pmn~E!5)
j 5n

m

pj~E! ~56!

are expressed through the products of chain fractionssn

5I n11
1 /I n

1 , pn5I n
2/I n11

2 , defined by the recurrences

sn5
r n

rn111r n1an11
, pn5

r n

rn1r n1bn21
, ~57a!

an5r n~12sn!, bn5r n~12pn!, ~57b!

with the boundary conditionssn→1`→0, pn→2`→0.
Within the gap,uEnu,D, wherer n→`, the valuessn , pn are
equal to 1, in accordance with the conservation of the sub
currents mentioned above.

The coefficientsAn
6 in Eq. ~54! satisfy an equation fol-

lowing from Eqs.~52!, ~54!, and~55!,

@~rn112r nsn
21!dAn11

1 2r nsn
21dAn

1#Sn,01@~rn11

2r npn!dAn11
2 2r npndAn

2#Pn,0
215Un112Un ,

~58!

for n.0 ~and similar forn,0), wheredAn5An112An .
The requirement of cancellation of terms withdAn11

6 in Eq.
~58! allows us to completely determineAn

6 . This yields first-
order recurrences forAn

6 which lead to the formula for par
tial currents atn.0,

I n5A0
1I n

11A0
2I n

21 (
k51

n

j k~Sn21,k2Pn21,k
21 !, ~59!

j n~E!5
Un212Un

rn1an1bn21
. ~60!

The undeterminacy ofan , bn21 in Eq. ~60! within the
subgap region@wheresn5pn51 andr n→`, see Eq.~57b!#,
is resolved by the recurrencesan5rn111an11 , bn5rn
1bn21 following from Eqs.~57! for uEnu,D. These recur-
rences are to be continued until the nodesN1 and 2N2 ,

er
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14 448 PRB 62E. V. BEZUGLYI et al.
respectively, are reached. As a result, we obtain a conven
representation forj n at (2N211)<n<N1 :

j n~E!5
Un212Un

RD2r N1
~11sN1

!2r 2N2
~11p2N2

!
. ~61!

The effective subgap resistance determined by the den
nator in Eq.~61! differs from RD in Eq. ~45! by extra terms
describing leakage of the subgap current through the
dreev resistors outside the gap.

The coefficientsA0
6 have to provide finite values ofI n in

Eq. ~59! at all n; for instance, forn→1`, the divergent
products ofpj

21 in I n
2 and Pn21,k

21 should compensate eac
other:A0

25(k50
1` j kPk21,0. A similar procedure for negative

n determines the value ofA0
1 and results in the final formula

for the partial current with arbitrary indexn,

I n~E!5 j n~E!1 (
k5n11

1`

j k~E!Pk21,n~E!

1 (
k52`

n21

j k~E!Sn21,k~E!. ~62!

By making use of the relationp2n(E)5sn(2E) follow-
ing from Eq. ~57! and taking into account the symmetry
all resistances with respect toE, we obtain the net curren
spectral density,

J~E!5 (
n52`

1` H j n~E!1 (
k5n

1`

@ j n~E!Sk,n~E!

1 j 2n~E!Sk11,n11~2E!#J . ~63!

At low temperaturesT!D, only the term withn50 contrib-
utes to the sum in Eq.~63!,

J~E!5 j 0~E!H 11 (
k51

1`

@Sk21,0~E!1Sk,1~2E!#J . ~64!

Figure 9 shows the results of a numerical calculation
I (V) anddV/dI for an SNS junction with high-transmissiv
interfaces,W51 andW→`, at zero temperature. In prac
tice, due to rapid decrease of the coefficientsr n(E) in Eq.
~53! at large energies, it is enough to calculate recurrence
Eq. ~57! starting from the maximum numbernmax5N212
and assuming the chain fractions to be truncated,sn50, at
n.nmax. To avoid formal singularity inm2(E) at E→0, we
introduce a small dephasing factorG which provides a cutoff
of the coherence lengthjE→A\D/2(E1 iG). The corre-
sponding dephasing lengthl f5A\D/2G was chosen equal to
the junction length; the variation ofl f is not critical for the
fine structure ofdV/dI.

Similar to the case of low barrier transmittance, the c
rent transport through an SNS junction with nearly perf
interfaces can be qualitatively explained within a simplifi
model of MAR, where the over-the-barrier (uEu.D) An-
dreev reflection is ignored. Indeed, as follows from Fig. 4
RSN!RN , the tunnel resistancesR̄T(E) outside the gap are
much smaller than the Andreev and/or normal resistan
nt

i-

-

f

in

-
t

t

s,

except for a narrow region around the gap edges, wh
R̄T(E) diverges due to complete Andreev reflection. Th
allows us to assume all the normal resistors atuEu.D to be
connected directly to the ‘‘voltage source’’nF(E) and there-
fore to exclude all Andreev resistors in Fig. 5 outside t
gap. As a result, we arrive at the sequence of subcirc
shown in Fig. 6~c!, with R̄T50 for side circuits. Thus, atT
!D, the subgap current may be approximately described
Eqs.~45! and ~48!, with the tunnel and Andreev resistanc
renormalized by the proximity effect.

Within this model, the SGS oscillations in the differenti
resistance in Fig. 9 can be explained in the following wa
As the voltage decreases, the subgap current, which app
mately follows Ohm’s law, undergoes an additional suppr
sion in the vicinity of the gap subharmonics, due to the pr
ence of a high-resistive circuit with two large tunnel resisto
located just at the gap edges. These current steps, bein
most invisible in theI -V characteristic, manifest themselve
as sharp dips indV/dI. At even subharmonics, this effect
partially compensated by the middle negative Andreev re
tor, which rapidly reduces the effective normal metal res
tance due to the increase in the size of the proximity reg
at small energies. As a result, the even dips become
pronounced and, as long as the interface transparency
creases, turn into small peaks. At low voltages, the differ
tial resistance approaches a constant value, which can
estimated for perfect NS interface by the following expre
sion similar to Eq.~49!:

dV/dI~0!'RNF122
jD

d E
2D

D dE

2D
m2~E!G

5RNS 122.64
jD

d D , RSN50. ~65!

FIG. 9. I -V characteristics~a! and differential resistances v
inverse voltage~b! of an SNS junction with high-transparent inte
faces.



re
cu
id
o-

t
ce
t

te
te

th

b
S
to
le

th

ng

th

a

A
ba
-

th
ro

l
tiv
ng

th

e
-

re-
red

nor-
d an
el-
le
are

-
pu-
cted
ted
su-

de-
r-
an
nce.
i-

ns
ra-

r-
his
e
ro

GS,

he
y:
ity

c-
ng
ns.
ed in
cle
ui-

t
b-
to

on

s

e
ction
ce

e

up-
at
toff
ch

PRB 62 14 449CIRCUIT THEORY OF MULTIPLE ANDREEV . . .
Unlike the ballistic SNS junction,1,3 but similar to short
diffusive constriction,5 the SGS survives at zero temperatu
even for perfect NS interfaces. In this case, the SGS oc
due to coherent impurity scattering of quasiparticles ins
the proximity region, with the amplitude approximately pr
portional to the characteristic lengthjD of this region. If we
neglect the proximity corrections (m6→0), the SGS disap-
pears, along with the excess current, and theI -V character-
istic shows perfect Ohmic behavior.7 Thus, we conclude tha
in both the cases of resistive and transparent NS interfa
SGS appears due to the normal electron backscattering in
proximity region. This formally corresponds to the fini
value of the renormalized Andreev resistance of the in
face.

VIII. ROLE OF INELASTIC SCATTERING

Since the relative SGS amplitude increases along with
NS barrier strength~though the current itself decreases!, one
might expect systems with high-resistive interfaces to
more favorable for the experimental observation of SG
However, there exists an intrinsic restriction for the effect:
provide strong nonequilibrium of the subgap quasipartic
inherent to MAR, the timetd of their diffusion through the
whole MAR staircase, from2D to D, must be smaller than
the inelastic relaxation timet« . The value oftd can be es-
timated as the time for diffusion over an effective leng
(2D/eV)d. At low interface resistance,RSN!RN , the diffu-
sion rate is basically determined by the impurity scatteri
td(eV);(2D/eV)2d2/D. For high interface resistance,RSN
@RN , the large Andreev resistanceRA;RSN/W presents a
bottleneck which renormalizes the diffusion coefficient intd
by a small factorWRN /RSN. In this way, the level of non-
equilibrium of the subgap quasiparticles is controlled by
parameter

W«5
t«

td~2D!
5

RN

RN1RSN/W
ETht« , ~66!

which must be large enough to allow observation of at le
a few subharmonics inI (V), i.e., the conditionW«.1 deter-
mines the lower boundary for the barrier transparency.
analogous estimate for the inelastic parameter, with the
rier resistanceRT@RN substituting for the Andreev resis
tance RSN/W in Eq. ~66!, was obtained in Ref. 7 for an
SNINS structure with perfect NS interfaces. In this case,
tunnel barrier does not affect the Andreev reflection but p
duces renormalization of the diffusion coefficient,D
→DRN /RT .

At eV/2D!W«
21/2, whent«!td(eV), the normal channe

may be considered as a reservoir with a certain effec
temperature~depending on the details of inelastic scatteri
which are beyond our model approach!, and theI -V curve
becomes structureless. At smallW« , the SNS junction be-
haves at two SN junctions connected in series through
equilibrium normal reservoir.

IX. SUMMARY

We have developed a consistent theory of incoher
MAR in long diffusive SNS junctions with arbitrary trans
rs
e
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he

r-

e

e
.

s

:

e

st

n
r-

e
-

e

e

nt

parency of the SN interfaces. We formulated a circuit rep
sentation for the incoherent MAR, which may be conside
as an extension of Nazarov’s circuit theory11 to a system of
voltage-biased superconducting terminals connected by
mal wires in the absence of supercurrent. We constructe
equivalent MAR network which includes a new resistive
ement, ‘‘Andreev resistor,’’ which provides electron-ho
conversion at the SN interfaces. Separate Kirchhoff rules
formulated for electron~hole! population numbers and diffu
sive flows. Within this approach, the electron and hole po
lation numbers are considered as potential nodes conne
through the tunnel and Andreev resistors with a distribu
voltage source—the equilibrium Fermi reservoirs in the
perconducting terminals.

The theory was applied to calculation of theI -V charac-
teristics. The subgap current decreases stepwise with
creasing applied voltage in junctions with resistive inte
faces, while in junctions with transparent interfaces
appreciable SGS appears only on the differential resista
In all cases,dV/dI exhibits sharp structures whose max
mum slopes correspond to the gap subharmonics,eVn

52D/n. The amplitude and the shape of SGS oscillatio
strongly depend on the interface/normal-metal resistance
tio r 5RSN/RN and reveal a noticeable parity effect: diffe
ence of the amplitudes of the even and odd structures. T
effect is specific for diffusive junctions: it comes from th
strongly enhanced probability of Andreev reflection at ze
energy. Inelastic scattering results in smearing of the S
which disappears at small applied voltage.

Our theory of incoherent MAR is valid as soon as t
applied voltageeV is much larger than the Thouless energ
in this case, one may neglect the overlap of the proxim
regions near the NS interfaces. In the opposite case,eV
&ETh!D, the problem of the low-energy part of the effe
tive circuit should be considered more carefully, by taki
into account the interference between the proximity regio
Aspects of this ac Josephson regime have been consider
Ref. 23 in terms of adiabatic oscillations of the quasiparti
spectrum and distribution functions, which produce noneq
librium ac supercurrent.24 Within our approach, this effec
will introduce an effective boundary condition for the pro
ability currents at small energy, which must be included in
the circuit representation of MAR in energy space.

It is interesting to consider the effect of dephasing
MAR, which is introduced by an imaginary additioniG to
the energy,E→E1 iG. It is easy to see that this model lead
to more pronounced SGS. Indeed, as it follows from Eq.~7!,
the effect of large dephasing rateG is similar to the effect of
an opaque interface barrier~the transmissivity parameterW
becomes effectively small!. This is easily understood sinc
the dephasing suppresses the anomalous Green’s fun
within the normal metal similar to the effect of the interfa
barrier. Thus, even for highly transmissive interfaces, theI -V
curves for largeG@ETh become similar to the ones in th
case of low-transparent interfaces~see Fig. 7!, with deficit
current and pronounced SGS. This conclusion is also s
ported by direct numerical calculation. It is of interest th
the parity effect in SGS almost disappears due to the cu
of the long-range proximity effect at small energies. In su
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a case, the incoherent MAR regime persists at arbitra
small voltages and our theory is valid until the quasiparti
relaxation will affect the MAR regime as described in Se
VIII.
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APPENDIX

The analytical expressions for bare conductivitiesG6 and
proximity correctionsm6 can be obtained in the case
low-transparent NS interface,W!1, by making use of a per
turbative solution of Eq.~7!:

uN~E!5WAiD/EsinhuS~E!, ~A1!

RSNG65
EQ~E2D!

AE22D2
2

WD2Q@6~E2D!#

E22D2

3FA D

2E
2

WD

AD22E2 S 0

1D G , ~A2a!

m6

RN
5

jDW2D2

2duE22D2uS D

2ED 3/2

@621Q~E2D!2Q~D2E!#,

~A2b!

whereQ(x) is the Heaviside function andE is assumed for
brevity to be positive. From Eq.~A2a!, we obtain approxi-
mations for the tunnel and Andreev resistances:

RT~E!'RSN~12D2/E2!, ~A3a!

RA~E!'
2RSNuE22D2u

WD
A2E

D

3F11WQ~D2E!U 2ED

E22D2U1/2G . ~A3b!
,
-

ett

ti,

in,
ly
e
.

-

In the vicinity of the gap edges,uE2Du&W2, and at small
energies,E&W2, where uN(E) in Eq. ~A1! diverges, the
following approximate solutions of Eq.~7! have to be used
instead of Eq.~A1!:

exp~uN!5u2~ t !, t52uE2Du/DW2 ~A4!

at uE2Du!D, whereu(t) is the solution of a cubic equatio
u32u5Ai /t, and

sinh
uN

2
52

i

A2
exp~2arcsinhA2 iE/2W2D! ~A5!

at uEu!D. The asymptotics of G6 and m65
6RN(jD /d)m6 near these ‘‘dangerous’’ points, are given b

RSNG15
A3t21/6

2W
Q~E2D!, ~A6a!

RSNG25
t25/6

4W
@A3Q~E2D!1Q~D2E!#, ~A6b!

m15A 2

3t1/3~
A21A31A22A3!, m25A2

~A6c!

at t!1, and

RSNG251, m25~A221!AD/E, ~A7!

at E!W2.
For perfect SN interface,G6

2150, the asymptotics of
m2(E) atE2D!D andE!D are given by Eqs.~A6c!, ~A7!
respectively, whereasm1(E) diverges at the gap edge a
@D/2(E2D)#1/4. Several examples of these dependences
culated numerically are presented in Fig. 2~see discussion in
Sec. IV!.
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