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Identification of the orbital pairing symmetry in UPt 3
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This paper summarizes the results of a comprehensive analysis of the thermodynamic and transport data for
the superconducting phases of UPt3. Calculations of the transverse sound attenuation as a function of tem-
perature, frequency, polarization, and disorder are presented for the leading models of the superconducting
order parameter. Measurements of the specific heat, thermal conductivity, and transverse sound attenuation
place strong constraints on the orbital symmetry of the superconducting order parameter. We show that the
superconductingA andB phases are in excellent agreement with pairing states belonging to the odd-parityE2u

orbital representation.
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I. INTRODUCTION

Unconventional superconductivity, the electronic ana
of superfluidity in3He, was discovered in the heavy-fermio
metals UBe13 and UPt3 more than a decade ago.1,2 As in
liquid 3He the observation of multiple superconducti
phases was the direct evidence for a multi-component su
conducting order parameter.3–6 The phases of UPt3 have
since become a paradigm for unconventional supercon
tivity. However, unlike the case of3He the identification of
the orbital and spin symmetry of the order parameter
been a more difficult task. Heavy fermion metals are m
complex materials in which disorder, magnetism, spin-o
coupling and anisotropy must be factored into any reali
theory of superconductivity in these systems~cf. Refs. 7 and
8!.

In this paper we present new theoretical results and an
sis of the transport properties of the leading models for
superconducting phases of UPt3. These models yield quali
tatively different predictions for the transport properties
the superconducting phases. We calculate the ultrasoni
tenuation for theA andB phases and discuss its sensitivity
order parameter symmetry, polarization direction and dis
der. From our analysis of experimental data for the h
capacity,9 thermal conductivity,10,11 and transverse soun
attenuation12 we determine the topology of the excitation g
on the Fermi surface and conclude that the orbital symm
of the order parameter in theA andB phases of UPt3 belongs
to an odd-parityE2u representation.

II. PAIRING SYMMETRY

The discoveries of multiple superconductin
phases3–5,13,14of UPt3 led to several theoretical models fo
the superconducting phase diagram based on different s
metry groups, or symmetry breaking scenarios.15–21 One
class of models is based on a two-dimensional~‘‘ E’’ ! repre-
sentation of the hexagonal point group,D6h , with the mul-
ticomponent superconducting order parameter coupled
symmetry breaking field ~SBF!. There are four
E-representations for strong spin-orbit coupling: twoE-reps
PRB 620163-1829/2000/62~21!/14393~10!/$15.00
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for both even-parity (E1g ,E2g) and odd-parity (E1u ,E2u)
pairing. TheE-rep models require a weak SBF that lowe
the symmetry of the normal state, splits the superconduc
transition, and produces multiple superconducting phase15

The SBF is generally assumed to be the in-plane antife
magnetic order parameter that onsets atTN.5 K;22 however,
other explanations of the SBF have been suggested.23–25The
precise structure of the short-range AFM correlations, e
the spatial structure of domains, as well as the role of AF
as a SBF for superconductivity, is still an open question26

One of the outcomes of the calculations summarized be
is that a simple model of equal-size, equally populated m
tidomain structures for the SBF is in disagreement with
anisotropy of the sound attenuation.

The models that have been most successful in explain
the properties of the superconducting phases of UPt3 are
based on the even-parity (E1g) and the odd-parity (E2u) rep-
resentations of the hexagonal point group. TheE1g represen-
tation is a realization of spin-singlet,d-wave pairing for a
metal with a uniaxial symmetry, while theE2u model de-
scribes the hexagonal analog of spin-triplet,f-wave pairing.
These pairing states have an orbital order parameter of
form D(pf)5h1Y1(pf)1h2Y2(pf), whereY1,2(pf) are the
basis functions for the appropriateE-representation, and th
amplitudes h5(h1 ,h2) transform as a two-componen
‘‘vector’’ under the sameE-representation. Thus, in th
E-representations the order parameter of theA phase is iden-
tified ash5(1,0), theB phase ash5(1,i ), and theC phase
as h5(0,1) ~see Fig. 1!. These identifications then refer t
the specific basis functions,Y1,2(pf), for a particular
E-representation given in Table I. The orbital order para
eter differs significantly for the two models, particularly fo
the high temperatureA phase (h250). ForE1g pairing theA
phase has the structure,DA;pz px , which has an equatoria
line node in the basal plane, as well as a longitudinal l
node circumscribing the Fermi surface. For theE2u represen-
tation,DA;pz (px

22py
2) also has an equatorial line node, b

has two longitudinal line nodes oriented 90 degrees to o
another. The low-temperatureB phase of both models break
time-reversal symmetry~with h2.6 ih1). As a result the
14 393 ©2000 The American Physical Society
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longitudinal line nodes are closed by the growth of the s
ond component of the order parameter; and forT→0, DB
;pz(px1 ipy) for E1g symmetry, whileDB;pz(px1 ipy)

2

for the E2u representation. Thus, the low energy excitati
spectra for theB phase of theE1g and E2u models is de-
scribed by an equatorial line of zero energy excitationspz
50) and pairs of point nodes of the excitation gap (px5py
50) on the Fermi surface. There is a slight difference in
density of states from the point nodes because the gap v
linearly near the point nodes for theE1g model, uD(pf)u
;uqu, but quadratically for theE2u model, uD(pf)u;uqu2.
These slight differences are predicted to be observable in
heat transport at ultralow temperatures.27–29

All of the E-rep models are based on two-component
bital order parameters. However, they yield different pred
tions for the thermodynamic, magnetic and transport prop
ties, including the H-T phase diagram. One importan
difference arises for the case of weak in-plane hexago
anisotropy, as is reflected by the very small in-plane anis
ropy of Hc2.30,31 Weak in-plane anisotropy leads to an a
parent tetracritical point for all field orientations provided t
order parameter belongs to anE2 orbital representation.7

A key difference between the even-parity and odd-pa
E-representations is the spin structure of the order param

FIG. 1. The phase diagram of UPt3. The three superconductin
phasesA, B, and C with amplitudesh5(h1 ,h2) meet with the
normal state~N! at the tetracritical point. For simplicity the add
tional two Meissner phases are not shown.
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Odd-parity representations are spin-triplet pairing states,
in the absence of spin-orbit coupling the dimensionality
these representations is three times larger than that of
corresponding spin-singletE-representations. Howeve
strong spin-orbit coupling in the uranium-based heavy f
mion metals reduces the symmetry group by allowing o
joint rotations of the spin and orbital degrees of freedo
The even and odd parity representations are still describe
~pseudo! spin-singlet and spin-triplet order parameters of t
form32–34

Dab~pf !5D~pf ! ~ isy!ab ~singlet!, ~1!

Dab~pf !5D~pf !•~ i ssy!ab ~ triplet!. ~2!

The triplet representations transform only underjoint spin
and orbital rotations of the discrete point group for the n
mal state, i.e.,D(pf)→RD(R 21pf), where the rotationR
P@D6h#spin-orbit. The full symmetry group of the normal stat
is G5@D6h#spin-orbit3T3U(1) with @D6h#spin-orbit represent-
ing the hexagonal point group with inversion,T is the time-
inversion operation andU(1) is the group of gauge transfor
mations. In the limit of no spin-orbit couplingD(pf)
transforms as a spin vector under the vector representatio
the full spin-rotation group, and separately as a represe
tion of the point group with respect to the orbital momentu
pf , i.e., D(pf)→RspinD(Rorbit

21 pf), where RspinPSU(2)spin

andRorbitP@D6h#orbit . In the absence of spin-orbit couplin
the enlarged symmetry group for the normal state isG
5SU(2)spin3@D6h#orbit3T3U(1).

There are two special classes of spin-triplet order para
eters that are frequently discussed as candidates for
phases of UPt3. The first class are states in which the sp
triplet order parameter factorizes into a single spin-vec
and an orbital amplitude, i.e.,D(pf)5d D(pf) whered is a
real unit vector andD(pf) is an odd-parity orbital function.
The vectord defines the axis along which the pairs have ze
spin projection, e.g., ifduuz, then D↑↑5D↓↓50 and D↑↓
5D↓↑5D(p). Here z is a unit vector in spin space. If we
choose the quantization axis to be perpendicular tod, i.e.,
d'z, then the same pairing state is described asequal spin
l

nta-
TABLE I. Polynomial functions representing the symmetry of the low-temperatureB phases of severa
pairing models. The first three entries are based on the symmetry group@D6h#spin-orbit3T3U(1). Thethird
entry is representative of the class ofAB models, and the last entry belongs to mixed symmetry represe
tions resulting from the crystal-field splitting of the enlarged symmetry group,SO(3)spin-orbit3T3U(1).

G YG Point nodes Line nodes Cross nodes

E1g pz(px1 ipy) q50,p q5
p

2

E2u pz(px1 ipy)
2 q50,p q5

p

2

A2u% B1u A pzIm (px1 ipy)
6

wn5n
p

3
, q50,p ` wn

1 iB Im(px1 ipy)
3 n50, . . . ,5

A1g% E1g A (2pz
22px

22py
2) q5cos21

61

A3
1 i E pypz ` w50,p
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pairing in an ‘‘easy-plane,’’ i.e., the pairs form triplet state
with amplitudesD

¸
5D

¹
5D(p) andD�50. In the second

class,d is complex and the spin components of the ord
parameter spontaneously break time-reversal symmetry
the general caseD is complex, withD3D* Þ0, and varies
over the Fermi surface. These states are called ‘‘nonunita
because the square of the spin-matrix representation o
order parameter is no longer proportional to the unit s
matrix, @D†D#ab5uDu2 dab1 i @D3D* •s#ab . As a conse-
quence the spin degeneracy of the excitation spectrum
lifted and the quasiparticle energy depends on the local
spin atpf : Spair(pf); i D(pf)3D(pf)* .

Whether or not spin-orbit coupling is weak or strong
the energy scale ofkBTc has important implications for both
the orbital and spin components of the order parameter
are allowed by symmetry. Blount34 and Volovik and
Gorkov33 showed that line nodes arenot requiredfor odd-
parity states when spin-orbit coupling is relevant. Howev
line nodes in theab-plane of the Fermi surface are allowe
and required for some representations, if the normal-s
spin-orbit interactions lockd along thec axis of the crystal,
i.e., duuc. Precisely this orientation ofd was predicted35 for
UPt3 based on anisotropic paramagnetic limiting.30 This ef-
fect arises from the competition between the condensa
energy and the Zeeman energy. Ford locked along thec axis
of the lattice the Zeeman energy is pair-breaking forHuuc,
giving rise to paramagnetic limiting. However, forH'c the
Zeeman energy,FZeeman;(d•H)2, is minimum ~vanishes!;
as a result there is no paramagnetic limit for this field orie
tation. The anisotropic paramagnetic limiting ofHc2 is sen-
sitive to the spin structure of the order parameter, but ins
sitive to the orbital pairing symmetry.35,36,7,37The odd-parity
E2u representation with strong spin-orbit locking ofduuc
quantitatively accounts for the anisotropy of the param
netic limit of Hc2 observed at low temperatures.

The spin-singletE1g model appears to be incompatib
with both the tetracritical point forH'” c and the anisotropic
paramagnetic limiting ofHc2. However, Park and Joynt38

argue that there is enough freedom in theE1g model to ac-
count for the existing experimental data onHc2. Both E-rep
models have recently been challenged by observations
nearly temperature independent Knight shift forHuuc,39

which is interpreted in terms of nonunitary, spin-triplet pa
ing with weak, or no spin-orbit coupling.40 The authors of
Ref. 39 assume that the Knight shift measures the bulk s
susceptibility. If, for simplicity, we ignore the anisotropy o
the normal-state susceptibility, then for a given orientation
d the spin susceptibility is given byx i j 5xN (d i j 2didj )
1x0 didj , wherexN is the normal state spin susceptibili
andx0(T) is the spin susceptibility forHuud, which is sup-
pressed by pair-breaking and vanishes forT→0 in the clean
limit. For strong spin-orbit coupling withd locked alongc
we expect a suppression of the Knight shift forT,Tc for
fields Huuc, but no suppression forH'c. However, in the
limit of no spin-orbit coupling the Zeeman energy is min
mized by rotation of d perpendicular to the field. This im
plies that the Knight shift will be temperature independe
and given by the normal-state shift for all field orientation
The NMR measurements of the Knight shift39 appear to be in
conflict with anisotropic paramagnetic limiting ofHc2. The
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paramagnetic limit observed forHc2
uu is a robust, thermody-

namic property of bulk single crystals of UPt3, and a consis-
tent interpretation of the NMR results for the Knight sh
data must accommodate anisotropic paramagnetic limit
This cannot be accomplished with a model of spin-trip
pairing without strong spin-orbit coupling.

Our analysis presented below for the heat capacity
transport measurements is independent of the interpreta
of the Knight shift measurements. We show that the h
capacity, low temperature thermal conductivity and tra
verse sound attenuation data, in addition to theH-T phase
diagram, are in quantitative agreementonly for the odd-
parity E2u representation~Table I!, independent of the orien
tation of d. In order to demonstrate this fact we present c
culations for other models that have been proposed
account for the phase diagram. Thus, in addition to the
E-representations we also examine the transport propertie
the order parameter models belonging to mixed represe
tions of theD6h point group, i.e., theAB models18,20and the
AE model.41 These models were proposed as alternative
theE-representations to explain the Ginzburg-Landau reg
of theH-T phase diagram. The most promising candidate
the AB model is the odd parity, spin-triplet model wit
mixed A2u% B1u symmetry. The orbital order parameter fo
the A phase has the form,DA(pf);pz Im(px1 ipy)

6, exhib-
iting an equatorial line node and six longitudinal line node
We also analyze the transport properties of the even-pa
spin-singletA1g% E1g model with anA phase of the form,
DA(pf);(2pz

22px
22py

2), which has a pair of ‘‘tropical’’
line nodes located off the equatorial plane. For a more
tailed description of the order parameter for these mod
see Refs. 41,42.

III. TRANSPORT THEORY

Electronic transport in the superconducting state is se
tive to the nodal structure of the order parameter,D(pf).
Recent theoretical analyses43,27,28,42of low-temperature ther-
mal conductivity data on superconducting UPt3 ~Refs. 10 and
11! have eliminated most of the theoretical models propo
to explain the phase diagram of UPt3. The nonunitary, spin-
triplet pairing states based on a one-dimensional~1D! orbital
representation studied so far,44–47,40 as well as the two-
component order parameter models obtained from nearly
generate one-dimensional representations20 ~‘‘ AB models’’!,
are unable to describe, even qualitatively, the tempera
dependence and anisotropy of the thermal conductivity
low temperatures. The only pairing models which can
count for the thermal conductivity data are the tw
dimensional~2D! orbital representations,E1g andE2u , and
theA1g% E1g (AE) model. However, theAE model predicts
a large ab-plane anisotropy, which has so far not be
observed.42 After it was shown that a nonunitary, spin-triple
state with a 1D orbital basis function was incompatible w
the thermal conductivity data,42 Machida et al.48 modified
their weak spin-orbit coupling model by adopting the 2
orbital representationE2u . However, the model of Ref. 48
proposes a spin structure for the order parameter which i
conflict with the observed Pauli limiting ofHc2 for Huuc, and
it predicts a fourth superconducting phase which disagr
with the phase diagram.
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Transverse ultrasound is an even more powerful prob
the order parameter and excitation spectrum than the the
conductivity.49,12 The attenuation of hydrodynamic sound
determined by the electronic viscosity tensor, which is s
sitive to the relative orientation of the polarization, propag
tion direction and order parameter.50,51 The broken symme-
tries of the pairing state give rise to additional anisotropy
the low-energy excitation spectrum that is specific to
pairing state; the selection rules for acoustic absorption
flect these broken symmetries.

In the hydrodynamic limit,vt!1 and ql!1, where l
5v ft is the quasiparticle mean-free path andt is the trans-
port collision time, the ultrasonic attenuation is determin
by components of the viscosity tensor

a~q,«,T!5~v2/%cs
3! h i j ,kl~q,v! «̂i q̂j «̂kq̂l , ~3!

where % is the mass density,cs5v/q is the speed of the
sound mode with wave vectorq and polarization«.52,53 The
hydrodynamic limit is achieved even for high-purity sing
crystals of UPt3. For the experiments reported in Ref. 1
with propagationquua and polarization«uub the sound fre-
quency is v/2p.165 MHz, the speed of sound iscs
.2.1 km/s,30 and the elastic mean free path isl ab5v f ,abt
'1.5 km/s3240 ps'360 nm,54 yielding vt'0.25 and
qlab'0.18 atT50. Similarly, forquua and«uuc the reported
values are v/2p.228 MHz, cs.1.4 km/s, and l c

'A2.7l ab , yielding vt'0.34 andqlc'0.61 atT50. The
parametersqlc and vt are a factor of two smaller nearTc
than they are at low temperature, sincet(Tc).t(0)/2. Nev-
ertheless, attenuation measurements for«uuc are near the bor-
derline of the hydrodynamic regime. Measurements ab
and below this cross-over regime would be desirable; b
for checking the applicability of hydrodynamic results f
the attenuation for«uuc and for looking for new phenomen
in the collisionless regime.

The viscosity and sound attenuation are calculated fr
the response of the momentum stress tensor to an ionic
placement fieldA(q,v)5A(q,v)«. For transverse mode
(q•«50) the stress and viscosity tensors are related in
hydrodynamic limit by55,56

P i j ~q,v!5v q A~q,v! h i j ,kl~q,v! «̂kq̂l . ~4!

At low temperatures the transfer of energy and mom
tum between the ionic lattice and electronic excitations
dominated by the scattering of quasiparticles off impurit
or defects. The theory of momentum transport by quasip
ticle scattering is formulated in terms of nonequilibriu
Green’s functions for electronic quasiparticles coupled to
acoustic modes of the lattice. The momentum stress tens

P i j ~q,v!5NfE de

8p i E dpf @vf # i@pf # jdgK~pf ,q;e,v!,

~5!

wherevf is the Fermi velocity,pf is the Fermi momentum
Nf the density of states at the Fermi surface, anddgK is the
nonequilibrium quasiparticle Green’s function, integrat
with respect to the quasiparticle energy,jp.v f(p2pf); dgK
of
al

-
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includes both the changes in thedistribution of occupied
states and the dynamics of thespectrumof low-energy exci-
tations~see the Appendix!.

IV. TRANSPORT EQUATIONS

We use Keldysh’s formulation of the nonequilibrium r
sponse theory and calculate the transport properties and
lated Green’s functions in the quasiclassical limit, which
easily achieved in UPt3 for excitation energies, (kBT,\v)
!Ef'1 meV, and wavelengths long compared to the Fe
wavelength, i.e.,\q!pf . The central equation for the non
equilibrium Green’s function in the quasiclassical limit is
transport equation. For small deviations from equilibrium t
transport equation may be linearized in the deviations of
Green’s function from its local equilibrium form. Our analy
sis and notation follows that of Ref. 43, which provides
detailed discussion of the quasiclassical linear respo
theory, including a complete solution to thelinearizednon-
equilibrium transport equations. A summary of these eq
tions, applicable to momentum transport in Fermi-liquid s
perconductors, is given in the Appendix.

The transport equation for the Green’s function includ
the acceleration of electronic quasiparticles by the acou
field and collision terms which transfer momentum betwe
the lattice and the electrons. The stress tensor, and there
the electronic viscosity which damps the acoustic wave
calculated from the solution of the transport equation for
nonequilibrium Green’s function,dgK, which is driven by
the coupling of quasiparticles to the ionic displacement fie
i.e., an externally imposed sound field,ŝext(pf ,q;v)
5 i (vf•q)(pf•A)1̂.55,56 Below we report new results for th
electronic shear viscosity for the order parameter model
UPt3, and new calculations of the anisotropy and tempe
ture dependence of the attenuation which we use to inter
the experimental data for UPt3.

In the limit of v→0 and for resonant scattering the vi
cosity tensor simplifies to

h i j ,i j 52
Nf

8p3kBT
E de sech2~e/2kBT!

3E dpf

@vf # i
2@pf # j

2

ReCR
@g0

Rg0
R* 2 f 0

Rf 0
R* 1p2#, ~6!

where CR52(1/p)AuD(pf)u22( ẽR)2, g0
R5 ẽR/CR, f 0

R

52D(pf)/C
R, and ẽR5e2 1

4 Tr@ t̂3ŝ imp
R # is the impurity-

renormalized energy. In the case of triplet pairing with
unitary order parameter the only change in Eq.~6! is replace-
ment of D→D and f 0

Rf 0
R* →f0

R
•f0

R* . See the Appendix for
details on the notation.

For a normal metal with a spherical Fermi surface
obtain Pippard’s result for the viscosity,h i j ,i j 5

2
15 v f

2pf
2Nft

for iÞ j .57 Below Tc the sound attenuation drops; for a co
ventional superconductor, in the limitql!1, the attenuation
decreases exponentially forkBT!D.55 But for an unconven-
tional superconductor in which the order parameter vanis
at points or lines on the Fermi surface, the attenuation
creases with temperature as a power law reflecting the s
trum of low-energy excitations near the nodes of the or
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FIG. 2. Sketch of thef dependence of theA phase pairing states atqÞp/2 for ~a! E2u , ~b! E1g , ~c! A2u% B1u , and ~d! A1g% E1g

models. The crossed lines represent the areas of maximal absorption of a sound probe withab symmetry (quua,«uub) at the Fermi surface.
The dark shaded areas represent the distribution of quasiparticle excitations.
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parameter.50,51,58,59 Impurity scattering modifies this spec
trum near the nodes, and at low energies a new energy s
g!D0, appears, which is roughly the ‘‘bandwidth’’ of low
energy quasiparticles bound to the impurity distribution
Andreev scattering.43 The bandwidth also appears as
impurity-renormalized quasiparticle width at zero energ
ẽR(0)5 ig. This new low energy scale defines a crosso
from the power law behavior associated with scattering
continuum quasiparticles forg/kB,T!Tc , to a temperature
independent attenuation in the limitkBT!g.50,51,58,59

The bandwidth of the impurity-induced Andreev levels
determined by the self-consistency equation for the quasi
ticle self-energy,

g5Gu

^g@ uD~pf !u21g2#21/2&

cot2d01^g@ uD~pf !u21g2#21/2&2
, ~7!

where ^ . . . & is an average over the Fermi surface andGu
5nimp /pNf is the scattering rate in the normal state for re
nant impurities andd0 is the scattering phase shift. For th
high purity UPt3 crystals studied in Ref. 10, i.e., low scatte
ing rate, the crossover temperature is very low compare
Tc ; analysis of the thermal conductivity provides a determ
nation of both the scattering phase shift as well as the ba
width of the impurity-induced Andreev states. The scatter
centers are nearly resonant, i.e.,d0.p/2, giving a band-
width, and crossover temperature, of orderg;kBT*
'0.2AmGuD0'0.07kBTc , where Gu.0.03kBTc , D0
.2.0kBTc and the slope of the excitation gap near the l
node ism5D0

21udD/dquq5p/2.2. Thus, transport experi
ments on UPt3 have so far not investigated the ultralow tem
perature regionkBT!g in any systematic way.

V. TRANSVERSE SOUND ATTENUATION

The anisotropyand temperature dependence of the sou
attenuation is sensitive to the polarization of the sound fi
and the symmetry of the order parameter. This was the b
of transverse sound attenuation experiments that prov
early evidence for a line of nodal excitations in the ba
plane.49 We examine theab-plane anisotropy of the trans
verse sound attenuation. Our analysis covers the full t
perature range belowTc , and is particularly sensitive to th
polarization and anisotropy of the order parameter for botA
and B phases of UPt3. To illustrate the sensitivity of the
transverse sound polarization to the order parameter sym
try consider the theoretical models for theA phase of UPt3.
The ab-plane anisotropies of the excitation ga
uD(qÞp/2,f)u, for the A phase of four pairing models
le,

,
r
f

r-

-

to
-
d-
g

d
d
sis
ed
l

-

e-

E2u , E1g , A2u% B1u, andA1g% E1g , are shown in Fig. 2.
The propagation and polarization vectors determine

angular dependence of the momentum transport by quas
ticles on the Fermi surface; the matrix element is prop
tional to@pf # i

2@vf # j
2 . This angular dependence is weighted

the angle-resolved density of states for momentum tran
via impurity scattering, which depends on the anisotropy
the quasiparticle excitation spectrum throughuD(pf)u2.
When both the propagation and polarization vectors are
the basal plane (quua,«uub)60 the matrix element is propor
tional to sin2 2f, and is maximum at angles ofp/4 from
these two axes, i.e., the midpoints between the polariza
and propagation directions. If these midpoint directions
incide with nodal directions@e.g.,uD(pf)u;ucos 2fu for E2u]
then the attenuation will be a maximum, while if the mi
point directions are along the antinodal directions then
attenuation is a minimum. This is illustrated in Fig. 2 whe
the polarization is directed along thea direction. The attenu-
ation is largest when thepolarizationis along an antinode o
the order parameter, and it is smallest when the polariza
is along a nodal direction. One can immediately see that
should expect to observe a rather differentab-plane angular
dependence to the attenuation for the different order par
eter models proposed for UPt3. We quantify these remark
below.

A. Results

In order to make quantitative predictions for UPt3 we use
heat capacity and thermal conductivity measurements to
the magnitude of the order parameter, the Fermi surface
isotropy, the nodal parameters and the scattering rate, a
which control the temperature dependence and anisotrop
the thermal conductivity belowTc .27,42 We used variational
basis functions based on the polynomial functions in Tabl
Symmetry dictates the geometry of the line and point nod
as well as the topological indices for the point nodes, but
the slopes or curvature of the nodal regions of the excita
gap. Our variational procedure fits these parameters to
low-energy excitation spectrum from the thermal conduct
ity data of Ref. 10. The order parameter is then determi
self-consistently. For a detailed discussion of this analy
see Refs. 27 and 42. The anisotropy and temperature de
dence of the transverse sound attenuation are then calcu
with no additional parameters or adjustments of the or
parameter models shown in Fig. 2.

The transition temperature and splitting of the zero-fie
transition in UPt3 determine the scale and relative magn
tudes of the two order parameter components; they de
mine the dominant and subdominant instability temperatu
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The instability temperature for the dominant channel is
transition temperature,Tc15Tc1 , while the second instabil
ity temperature represents the strength of the subdomi
pairing channel,Tc2}vcexp(21/V2), whereV2 is the pair-
ing interaction for the sub-dominant channel andvc is the
cutoff energy.61 The physical transition temperature,Tc2 ,
separating theA and B phases depends on the relati
strength of the two paring channels, i.e., onTc2 /Tc1<1. We
solve the coupled gap equations for the first and second t
sition and adjustTc2 to the observed splitting in the specifi
heat, (Tc12Tc2)/Tc1'60 mK/495 mK.12,9 All other mate-
rial parameters are taken from our previous analysis of
thermal conductivity of UPt3.42 We show the quality of the
theoretical fits to the thermal conductivity,k, and heat ca-
pacity for theE2u model in Fig. 3. Similar fits can be ob
tained for theE1g and AE models. However, only the in
plane thermal conductivity data can be accounted for by
AB model.

1. Identification of the A phase

In Fig. 4 we show the attenuation data reported by Ellm
et al.12 for transverse sound propagation in theab plane with
quua and polarizations both in and out of plane,«uub and
«uuc. These measurements were made on the same bat
crystals of UPt3 as the heat capacity and thermal conduct
ity measurements shown in Fig. 2. In addition to the anis
ropy associated with the polarization, the data show a p
nounced change in the anisotropy and tempera
dependence at theA-B phase transition.

The enhanced absorption in theA phase compared to tha
of the B phase at the same temperature results from ex
quasiparticles that scatter off the impurity distribution due

FIG. 3. Fit of theE2u model to the thermal conductivity dat
~top! ~Ref. 10! and the specific heat data~bottom! ~Ref. 9!.
e
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additional nodes of theA phase order parameter compared
that of theB phase. BelowTc2 the subdominant order pa
rameter closes the additional nodes of theA phase order pa-
rameter. Thus, the sound absorption drops faster in thB
phase than it would in theA phase. The experimental resul
for the sound attenuation, including the anomaly atTc2 , are
in excellent agreement with theoretical calculations for
E2u model of theA andB phases, with anA phase given by
a h5(1,0) state, but not a (0,1) state; and aB phase at low
temperature which is~approximately! the h5(1,6 i ) state.62

The comparison between theory and experiment is uns
factory for all other models. Even including the frequen
dependence of the viscosity,h i j ,i j (q,v), does not change
this result. We find only minor corrections to the sound
tenuation forv!D0 ~see Fig. 4!. The (1,0) state of theA
phase, as determined by sound attenuation, also agrees
the order parameter orientation obtained from the obser
sixfold oscillations ofHc2(f), and the change in sign o
these oscillations when crossing theA-C phase boundary.63

In Fig. 5 we show the sound attenuation forab and ac
polarizations and different pairing models. Note in particu
that none of the order parameter models shown in Fig. 5
account for both anomalies inaab andaac at Tc2 . The main
result of this work is that the experimental data for the h
capacity, thermal conductivity, and sound attenuation,
well as theH-T phase diagram, are explainedonly by an
order parameter with an orbitalE2u pairing symmetry. We
emphasize that there are no adjustable parameters in the
culation of the sound attenuation; all parameters of the mo
were previously determined by fitting the theoretical mod
parameters to the heat capacity and thermal conductivity42

2. Domain structure

Neutron diffraction studies in pure UPt3 under pressure,22

and at ambient pressure in Pd doped samples (Pt↔Pd),64

demonstrated that the splitting ofTc correlates with the basa
plane AFM, suggesting a SBF coupling between the sup

FIG. 4. Comparison between the measured and calculated tr
verse sound attenuation of UPt3. The theoretical calculation is fo
theE2u model and the phenomenological model previously used
the total elastic and inelastic scattering rate,G(T)50.03kBTc1(1
1T2/Tc1

2 ), obtained from the thermal conductivity analysis. T
data are from Ellmanet al. ~Ref. 12! which are corrected to vanish
at T50.
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conducting and AFM order. It has been argued, based
neutron diffraction studies as a function of magnetic fie
that the AFM order is described either by a distribution
three equally populated domains, withQ vectors oriented
120° to one another, or a triple-Q structure.65,66 If a domain
structure is present then, in the AFM model for the SBF,
superconducting order parameter describing theA phase in
the E-rep models may also form a domain structure. Suc
domain structure leads to a weakening of the anomaly
aab at Tc2 , but leaves the anomaly inaac(Tc2) virtually
unchanged.

In Fig. 6 we show the effect of multidomain averaging
the anisotropy of the transverse sound attenuation. These
culations show that an AFM domain structure does not
stroy the anomaly in the attenuation atTc2 . However, aver-
aging over domains suppresses the character
enhancement ofaab for theE2u order parameter coupled to
dominant or single domain of the SBF. In particular, t
domain-averaged attenuation,^aab&, for theE2u pairing state
drops roughly twice as fast as the measured attenuatio
the A phase. If the AFM order parameter is the SBF for t
superconducting phases, then our calculations are in ag
ment with transport and heat capacity measurements only
an E2u order parameter coupled to adominantdomain, or a
triple-Q structure for the antiferromagnetic SBF.26

3. Scattering phase shifts

It has been pointed out in several studies that the temp
ture dependence of the transport coefficients in UPt3 is quali-
tatively consistent with strong scattering in the unitar
limit. Our analysis of the thermal conductivity data,10 and the
attenuation data12 confirm that the scattering phase shift
near the resonant limit; from the analysis of the thermal c
ductivity we obtaind0>80°,27 while the transverse soun
attenuation data implies a scattering phase shiftd0.60°, as
shown in Fig. 7.

4. Ultralow temperature region

The temperature dependence of the transverse soun
tenuation is predicted to change qualitatively below

FIG. 5. Attenuation ofab andac transverse sound for the var
ous order parameter models.
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cross-over temperature,kBT,g. The zero-temperature limi
is finite, reflecting the finite density of states at the Fer
level, and the leading temperature-dependent corrections
of the Sommerfeld type,O@(T/g)2# for kBT,g. The limit-
ing attenuation in the ultralow temperature limit,kBT!g, is
obtained from the viscous stress tensor forT→0 and v
→0. In this limit the states contributing to the stress ten
in Eq. ~5! are confined to the impurity-induced Andreev ba
of order g@max(T,v). The spectrum and self-energy a

FIG. 6. Configuration averaged attenuation~indicated by
^ . . . &) assuming three equally populated monodomains for anE1g

andE2u pairing state. For a comparison the results for theE2u state
of Fig. 4 are replotted.

FIG. 7. Sensitivity of the transverse sound attenuation to
scattering phase shiftd0530°,60°,80°,90° for theE2u pairing
model and the same parameters as shown in Fig. 4.
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weakly energy dependent on this scale, thus, we can eva
the slowly varying parts of the integrand in Eq.~6! at zero
energy to obtain

h i j ,i j .NfE dpf @vf # i
2@pf # j

2 g2

@ uD~pf !u21g2#3/2
, ~8!

where we have neglected the Sommerfeld corrections of
der O@(T/g)2#.67

Whether or not the zero-temperature limit isuniversal,
i.e., independent of the density and scattering cross sec
for the impurities, depends on the polarization of the acou
wave and the symmetry of the ground state. The dampin
universal only for transverse waves propagating along
high symmetry directions in theab plane, i.e., for polariza-
tion «uub propagating alongquua, or vice versa. For thes
polarizations the ground state ofall the models we discuss
except theAE model, possess auniversal limit for the at-
tenuation. Table II summarizes the results for theE1g and
E2u models. For the ground state of eitherE-representation
we find hab,ab.v f

2pf
2Nf /(8mD0), wherem'2 is the slope

of the excitation gap near the line node in theab plane. For
any other polarization the relevant viscosity is nonuniver
for v,T!g. For example, for theE2u ground state we obtain
a limiting value for aac(0)'(2mg/m2

2D0)aab(0)
!aab(Tc1), wherem2'4 is the parameter defining the cu
vature of the excitation gap near the quadratic point n
along thec axis.68

Further experiments using transverse sound can be us
confirm the predictions for theab-plane anisotropy of the
order parameter in UPt3. The ideal method would be to
propagate transverse sound along thec axis and measure th
attenuation as a function of the azimuthal orientation of
polarization in theab plane. The qualitative predictions fo
the in-plane anisotropy can be deduced from Fig. 2; a tw
fold symmetry of the anomaly atTc2 is expected for theE1g
representation and a nearly isotropic attenuation aboveTc2

for the other models. In theB phase all models show a near
isotropic attenuation except for theAE model, which has a
twofold symmetry. A similar experiment was suggested
Moreno and Coleman69 to map out the gap structure in th
high-Tc cuprates.

TABLE II. Asymptotic low-temperature limits of the sound a
tenuation (v, T→0) and thermal conductivity for theE1g andE2u

pairing states. The results are scaled in units ofk0

5(p2/3)kB
2T Nfv f

2tD and a05(v2/4% cs
3)pf

2 Nfv f
2tD , where tD

[\/2mD0 is an effective transport time.

Transport
coefficient E1g E2u

kbb /k0 1 1
kcc /k0 2mg/(m1

2D0) m/m2

aab /a0 1 1

aac /a0
8m

112m2

Gu

D0

a
2m

m2
2

g

D0

aIn the strong scattering limit including vertex corrections.
ate
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To summarize the main conclusions, we have shown
transverse ultrasound provides detailed information on
orbital pairing symmetry of both the superconductingA and
B phases of UPt3; the anisotropy and the anomalies in th
temperature dependence of the attenuation for different
larizations is explainedonly by an E2u order parameter.
Measurements ofaab and aac are in excellent agreemen
with a (1,0) state for theA phase, corresponding to
pz(px

22py
2) order parameter. Further measurements at lo

temperatures, or as a function of impurity disorder, may a
be used to test the prediction of a universal limit for t
in-plane transverse sound attenuation.
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APPENDIX

In this appendix we summarize the relevant nonequi
rium transport equations for our calculations of the sou
attenuation in unconventional superconductors. For a m
extensive review of nonequilibrium transport theory in s
perconductors see Refs. 43 and 70.

The nonequilibrium~Keldysh! Green’s function,

dĝK5dĝR+F02F0+dĝA1dĝa, ~A1!

contains thespectral responsegiven by the retarded and ad
vanced Green’s functions (dĝR,A), and theanomalous re-

sponsegiven bydĝa, which in normal metals is essentiall
the nonequilibrium distribution function. The equilibrium
distribution function isF05tanh(e/2kBT), and we use the
shorthand notation for the shifting product,F0+A5F0(e
2v/2)A(e,v) and A+F05A(e,v)F0(e1v/2). Pairing
correlations and particle-hole coherence require a ma
structure for the particle-hole degree of freedom. The ‘‘ha
over the Green’s functions and self-energies indicates t
434 matrix structure in particle-hole and spin space.

The transport equations for the Green’s functions, line
ized with respect to an external perturbation, are

@dĝR,A, ĥR,A# +5@ ĝ0
R,A , ŝext1dŝR,A# + , ~A2!

ĥR+dĝa2dĝa+ĥA

5dŝa+ĝ0
A2ĝ0

R+dŝa

2@ŝext, F0# ++ĝ0
A2ĝ0

R+@F0 , ŝext# +, ~A3!

whereĥR,A5et̂32ŝ0
R,A , t̂3 is a Pauli matrix, andŝext is the

external perturbation, e.g., the coupling of quasiparticles
sound field~ionic displacement field!. The transport equa
tions determine the deviations of the Green’s functions fr
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their local equilibrium values,dĝX5ĝX2ĝ0
X , in terms of the

external field and the corrections to the self-energies,dŝX

5ŝX2ŝ0
X with XP$R,A,K%. The anomalous self-energy

dŝa, is defined similarly to thedĝa,

dŝK5dŝR+F02F0+dŝA1dŝa. ~A4!

The equilibrium Green’s functions,ĝ0
X , and self-energies

ŝ0
X , are inputs to the linearized transport equations. At l

temperatures, and for long-wavelength, low-frequen
sound, the damping of the acoustic wave is determined
the scattering of quasiparticles off impurities and defects
are comoving with the ionic lattice.55 Impurity scattering en-
ters the transport equations via the impurity-scattering s
energies,

ŝX~pf ;e,t !5nimp t̂X~pf ,pf ;e,t !, ~A5!

where the quasiparticle-impurity scatteringt-matrices are
given by

t̂ R,A~pf ,pf8 ;e,t !5û~pf ,pf8!

1Nf^û~pf ,pf9!+ĝR,A~pf9 ;e,t !

+ t̂ R,A~pf9 ,pf8 ;e,t !&p
f9
, ~A6!

t̂ K~pf ,pf8 ;e,t !5Nf^ t̂ R~pf ,pf9 ;e,t !+ĝK~pf9 ;e,t !

+ t̂ A~pf9 ,pf8 ;e,t !&p
f9
. ~A7!

The t-matrices are calculated self-consistently with the or
parameter,D̂(pf), and with the impurity vertex,û(pf ,pf8),
describing elastic coupling of quasiparticles to impuritie
The calculations presented here assume isotropic, nonm
netic impurities withû5u01̂ for all (pf ,pf8). This model is
then described by two parameters, e.g., thes-wave scattering
phase shift,d05tan21(pNfu0), and the density of impuri-
ties, nimp . Another useful parametrization is in terms of th
cross section,s5(4p/kf

2)sin2d0, and the normal-state sca
tering rate in the unitarity limit (d05p/2), Gu5nimp /pNf .
Note that the transport scattering rate in this model is gi
by 1/2t5Gu sin2 d0, and the elastic mean free path is th
l el5v ft.

The other key term entering the transport equations is
off-diagonal pairing self-energy, or order parameter. T
general form for the pairing self-energies is
.

r-
n

r,
y
y

at

f-

r

.
g-

n

e
e

D̂R,A5S 0 D isy1D• i ssy

D̄ isy1D̄• isys 0 D , ~A8!

where the spin-singlet (D) and spin-triplet (D) order param-
eters are given by the gap equations,

DR,A~pf ;t !5E de

4p i
^Vs~pf ,pf8! f K~pf8 ;e,t !&p

f8
, ~A9!

DR,A~pf ;t !5E de

4p i
^Vt~pf ,pf8!•fK~pf8 ;t !&p

f8
, ~A10!

whereVs and Vt are the pairing interactions in the singl

and triplet channels. The componentsD̄ andD̄ are related to
D and D by fundamental symmetries~see Appendix C of
Ref. 71!; in equilibrium D̄5D* and D̄5D* .

To complete the set of equations for the linear respo
equations we write the solutions for the equilibrium respon
functions in terms of renormalized quasiparticle energy a
order parameter. For spin-singlet and unitary spin-trip
pairing the general solutions for the equilibrium retarded a
advanced Green’s functions are

ĝ0
R,A52p

ẽR,At̂32 D̂̃R,A

AuD̃R,Au22~ ẽR,A!2
, ~A11!

where the renormalized quasiparticle energy is

ẽR,A~pf ,e!5e2 1
4 Tr@ t̂3ŝ imp

R,A~pf ,e!#. ~A12!

For resonants-wave scattering

ŝ imp
R,A~e!52Gu^ĝ0

R,A~pf ;e!&pf

21. ~A13!

For s-wave scattering the renormalization of the off-diagon
self-energy by impurity scattering vanishes,

D̂̃R,A~pf ,e!5D̂~pf !, ~A14!

for nonidentity representations of the point group, i.e., e
cluding theA1g representation. Finally, we note that the d
agonal component of the nonequilibrium Green’s functi
that determines the momentum stress tensor in Eq.~5! is
obtained from the matrix Green’s function bydgK

5 1
4 Tr dĝK.
ys.

ys.
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