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This paper summarizes the results of a comprehensive analysis of the thermodynamic and transport data for
the superconducting phases of WP€alculations of the transverse sound attenuation as a function of tem-
perature, frequency, polarization, and disorder are presented for the leading models of the superconducting
order parameter. Measurements of the specific heat, thermal conductivity, and transverse sound attenuation
place strong constraints on the orbital symmetry of the superconducting order parameter. We show that the
superconducting\ andB phases are in excellent agreement with pairing states belonging to the oddeparity
orbital representation.

[. INTRODUCTION for both even-parity Eq4,E,5) and odd-parity Eq,,E5,)
pairing. TheE-rep models require a weak SBF that lowers
Unconventional superconductivity, the electronic analogthe symmetry of the normal state, splits the superconducting
of superfluidity in®He, was discovered in the heavy-fermion transition, and produces multiple superconducting phises.
metals UBg; and UP§ more than a decade ag6.As in  The SBF is generally assumed to be the in-plane antiferro-
quuid %He the observation of multiple superconducting magnetic order parameter that onset a5 K;ZZ however,
phases was the direct evidence for a multi-component supegther explanations of the SBF have been suggestédThe
conducting order paramet¥f® The phases of URthave precise structure of the short-range AFM correlations, e.g.,

since become a paradigm for unconventional supercondugne spatial structure of domains, as well as the role of AFM
tivity. However, unlike the case ofHe the identification of as a SBF for superconductivity, is still an open questfon.

coupling and anisotropy must be factored into any realistic

o anisotropy of the sound attenuation.
'g;eory of superconductivity in these syste(os Refs. 7 and The models that have been most successful in explaining

In this paper we present new theoretical results and anal)}—he properties of the _superconductmg phas_,es of; LifPe
sis of the transport properties of the leading models for the@S€d on the even-paritf(y) and the odd-parity&,,) rep-
superconducting phases of YPThese models yield quali- "esentations of the hexagonal point group. Hjg represen-
tatively different predictions for the transport properties intation is a realization of spin-singled-wave pairing for a
the superconducting phases. We calculate the ultrasonic aietal with a uniaxial symmetry, while thg,, model de-
tenuation for theA andB phases and discuss its sensitivity to Scribes the hexagonal analog of spin-tripfetyave pairing.
order parameter symmetry, polarization direction and disorThese pairing states have an orbital order parameter of the
der. From our analysis of experimental data for the heaform A(pg)= 71Y1(ps) + 72)2(ps), where Y, i(p;) are the
capacity’ thermal conductivity®!! and transverse sound basis functions for the appropriakerepresentation, and the
attenuatiof? we determine the topology of the excitation gap amplitudes »=(71,7,) transform as a two-component
on the Fermi surface and conclude that the orbital symmetryvector” under the sameE-representation. Thus, in the
of the order parameter in theandB phases of URtbelongs  E-representations the order parameter ofAfighase is iden-
to an odd-parityE,, representation. tified as»=(1,0), theB phase as=(1,), and theC phase

as »=(0,1) (see Fig. 1 These identifications then refer to

the specific basis functionsy; Aps), for a particular
E-representation given in Table I. The orbital order param-
The discoveries of multiple  superconducting eter differs significantly for the two models, particularly for
phase$ >3 of UPt led to several theoretical models for the high temperatura phase ,=0). ForE 4 pairing theA
the superconducting phase diagram based on different synphase has the structur&,~ p, px, which has an equatorial
metry groups, or symmetry breaking scenafiv€! One line node in the basal plane, as well as a longitudinal line
class of models is based on a two-dimensidtid&” ) repre-  node circumscribing the Fermi surface. For By represen-
sentation of the hexagonal point groupgy,, with the mul-  tation, A~ pz(pf(— pf,) also has an equatorial line node, but
ticomponent superconducting order parameter coupled to laastwo longitudinal line nodes oriented 90 degrees to one
symmetry breaking field (SBF). There are four another. The low-temperatuBphase of both models breaks
E-representations for strong spin-orbit coupling: tigeps  time-reversal symmetrywith 7,==*i#;). As a result the

II. PAIRING SYMMETRY
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Odd-parity representations are spin-triplet pairing states, and
in the absence of spin-orbit coupling the dimensionality of
these representations is three times larger than that of the
corresponding  spin-singletE-representations. However,
strong spin-orbit coupling in the uranium-based heavy fer-
mion metals reduces the symmetry group by allowing only
joint rotations of the spin and orbital degrees of freedom.
The even and odd parity representations are still described by
(pseudo spin-singlet and spin-triplet order parameters of the

form32-34
, . Ap(Pr)=A(pr) (ioy) 0  (singled, ()
FIG. 1. The phase diagram of UPfThe three superconducting
phasesA, B, and C with amplitudes»=(7%,,7,) meet with the A =A Aioo triplet). 2
normal state(N) at the tetracritical point. For simplicity the addi- “B(pf) (Po)-( y)aﬁ’ (triplet @
tional two Meissner phases are not shown. The triplet representations transform only ung@nt spin

and orbital rotations of the discrete point group for the nor-

longitudinal line nodes are closed by the growth of the secmal state, i.e. A(pr) »RA(R ~'py), where the rotatiorR

ond component of the order parameter; and For0, Ay €[Degnlspin-obit- The full symmetry group of the normal state
~pApxtipy) for E;y symmetry, whileAg~ pz(px+ipy)2 ?S G=[Dehlspin-orbit< T>_< u(1) With_ [D6h]spir}-orb[t repre_sent-

for the E,, representation. Thus, the low energy excitationing the hexagonal point group with inversichjs the time-
spectra for theB phase of theE;; and E,, models is de-  inversion operation and (1) is the group of gauge transfor-
scribed by an equatorial line of zero energy excitatiops ( Mations. In the limit of no spin-orbit coupling\(ps)

=0) and pairs of point nodes of the excitation gag £ py transforms as a spin vector under the vector representation of
=0) on the Fermi surface. There is a slight difference in thethe full spin-rotation group, and separately as a representa-
density of states from the point nodes because the gap variéin of the point group with respect to the orbital momentum,
linearly near the point nodes for thg;; model, |[A(py)|  Pr, ie., A(Pr) = RepirA(RoiPr), Where Rgpine SU(2)spin
~|9]|, but quadratically for theE,, model, |A(pf)|~]|9|%. and Rqice [ Denlomit- 1N the absence of spin-orbit coupling
These slight differences are predicted to be observable in thiée enlarged symmetry group for the normal stategGis
heat transport at ultralow temperatufés2® =SU(2)spinX< [ DenlomicX 7 U(1).

All of the E-rep models are based on two-component or- There are two special classes of spin-triplet order param-
bital order parameters. However, they yield different predic-eters that are frequently discussed as candidates for the
tions for the thermodynamic, magnetic and transport properphases of URt The first class are states in which the spin-
ties, including theH-T phase diagram. One important triplet order parameter factorizes into a single spin-vector
difference arises for the case of weak in-plane hexagonaind an orbital amplitude, i.eA(p;)=d A(ps) whered is a
anisotropy, as is reflected by the very small in-plane anisotreal unit vector and\(p;) is an odd-parity orbital function.
ropy of H,.2%3! Weak in-plane anisotropy leads to an ap- The vectord defines the axis along which the pairs have zero
parent tetracritical point for all field orientations provided thespin projection, e.g., ifd||z, then A;;=A =0 and A,
order parameter belongs to &3 orbital representatioh. =A;=A(p). Herez is a unit vector in spin space. If we

A key difference between the even-parity and odd-paritychoose the quantization axis to be perpendiculad,ta.e.,
E-representations is the spin structure of the order parameted.l z, then the same pairing state is describecasal spin

TABLE I. Polynomial functions representing the symmetry of the low-temper@ypbases of several
pairing models. The first three entries are based on the symmetry Booyuspin-orbic< 7< U(1). Thethird
entry is representative of the classAB models, and the last entry belongs to mixed symmetry representa-
tions resulting from the crystal-field splitting of the enlarged symmetry gré@{3)spin-omic< 7<U(1).

r r Point nodes Line nodes Cross nodes

H T
Eig P(Pxtipy) 9=0,m 9=
. T
Eau PPy tipy) 9=0,7 =2
H o

AZUEBBlU A p,Im (px+|py)6 ¢n=n§, 9=0,m N\ ®n

+iB Im(py+ip,)* n=0,...5
*1
Arg®Eyq A (2pZ—pZ—p3) ﬂ:cos’lﬁ

+i E pyp, N =0,
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pairing in an “easy-plane,” i.e., the pairs form triplet states paramagnetic limit observed f(hﬂ2 is a robust, thermody-
with amplitudesA _=A_,=A(p) andA-=0. In the second namic property of bulk single crystals of UPtnd a consis-
class,d is complex and the spin components of the ordertent interpretation of the NMR results for the Knight shift
parameter spontaneously break time-reversal symmetry. ldata must accommodate anisotropic paramagnetic limiting.
the general casA is complex, withAX A* 0, and varies This cannot be accomplished with a model of spin-triplet
over the Fermi surface. These states are called “nonunitary’Pairing without strong spin-orbit coupling.

because the square of the spin-matrix representation of the Our analysis presented below for the heat capacity and
order parameter is no longer proportional to the unit spirffansport measurements is independent of the interpretation
matrix, [ATA]aﬁ:|A|2 8.5 HI[AXA* - o],5. As a conse- of the_ Knight shift measurements. We shoyv_ that the heat
quence the spin degeneracy of the excitation spectrum gapacity, low temperature thermal conductivity and trans-

lifted and the quasiparticle energy depends on the local palygrse sound a_ttenuatiqn Qata, in addition to khdl phase
spin atp; : Syai(Pr) ~ 1 A(Pr) X A(pp)*. diagram, are in quantitative agreemeortly for the odd-

Whether or not spin-orbit coupling is weak or strong on parity E,,, representatiofiTable I), independent of the orien-

the enerav scale dé.T.. has important implications for both tation ofd. In order to demonstrate this fact we present cal-
th b'tgly d B¢ pt f th P d ter th ctulations for other models that have been proposed to

€ orbital and spin components ol e order parameter st for the phase diagram. Thus, in addition to the 2D
are allowed by symmetry. Blouift and Volovik and

3 X X E-representations we also examine the transport properties of
Gor.kov°’ showed that line nodes areot requiredfor odd- e order parameter models belonging to mixed representa-
panty state.s when spin-orbit couplmg_ is relevant. Howeverions of theDy,, point group, i.e., thé\B modeld®2°and the
line nodes in theab-plane of the Fermi surface are allowed, A model*! These models were proposed as alternatives to
and required for some representations, if the normal-statge E-representations to explain the Ginzburg-Landau region
spin-orbit interactions lockl along thec axis of the crystal, of the H-T phase diagram. The most promising candidate of
i.e., d||c. Precisely this orientation af was predictetf for  the AB model is the odd parity, spin-triplet model with
UPt; based on anisotropic paramagnetic limitfigrhis ef-  mixed A,,@ By, symmetry. The orbital order parameter for
fect arises from the competition between the condensatiothe A phase has the fOFmSA(pf)~pz|m(px+ipy)6, exhib-
energy and the Zeeman energy. Bdocked along the axis  iting an equatorial line node and six longitudinal line nodes.
of the lattice the Zeeman energy is pair-breaking f)fc, ~ We also analyze the transport properties of the even-parity,
giving rise to paramagnetic limiting. However, feiLc the  spin-singletA,;® E;; model with anA phase of the form,
Zeeman energyFzeemai (d-H)?, is minimum (vanishes A ,(p)~(2p?— p2—p2), which has a pair of “tropical”
as a result there is no paramagnetic limit for this field Orieﬂ-ﬁne nodes located off the equatoria| p|ane_ For a more de-
tation. The anisotropic paramagnetic limiting léf, is sen-  tailed description of the order parameter for these models,
sitive to the spin structure of the order parameter, but insensee Refs. 41,42.
sitive to the orbital pairing symmetriy:*®"3"The odd-parity
E,, representation with strong spin-orbit locking df|c
guantitatively accounts for the anisotropy of the paramag-
netic limit of H., observed at low temperatures. Electronic transport in the superconducting state is sensi-

The spin-singletE;; model appears to be incompatible tive to the nodal structure of the order paramet&(ps).
with both the tetracritical point foHL ¢ and the anisotropic Recent theoretical analydég’-?84%f low-temperature ther-
paramagnetic limiting oH,,. However, Park and Joyfit mal conductivity data on superconducting YHRefs. 10 and
argue that there is enough freedom in thg, model to ac-  11) have eliminated most of the theoretical models proposed
count for the existing experimental data kn,. BothE-rep  to explain the phase diagram of YPThe nonunitary, spin-
models have recently been challenged by observations of @iplet pairing states based on a one-dimensigbB) orbital
nearly temperature independent Knight shift fell|c,>®  representation studied so f4r*"*° as well as the two-
which is interpreted in terms of nonunitary, spin-triplet pair- component order parameter models obtained from nearly de-
ing with weak, or no spin-orbit couplir]. The authors of generate one-dimensional representafidisAB models”),
Ref. 39 assume that the Knight shift measures the bulk spiare unable to describe, even qualitatively, the temperature
susceptibility. If, for simplicity, we ignore the anisotropy of dependence and anisotropy of the thermal conductivity at
the normal-state susceptibility, then for a given orientation oflow temperatures. The only pairing models which can ac-
d the spin susceptibility is given by;;= xn (5;; —d;d;) count for the thermal conductivity data are the two-
+Xodid;, whereyy is the normal state spin susceptibility dimensional(2D) orbital representations,y andEj,,, and
and xo(T) is the spin susceptibility foH||d, which is sup- the A;;®E,4 (AE) model. However, thé\E model predicts
pressed by pair-breaking and vanishesTer0 in the clean a large ab-plane anisotropy, which has so far not been
limit. For strong spin-orbit coupling witfl locked alongc  observed? After it was shown that a nonunitary, spin-triplet
we expect a suppression of the Knight shift fox T, for  state with a 1D orbital basis function was incompatible with
fields H||c, but no suppression fofLc. However, in the the thermal conductivity daf¥, Machida et al*® modified
limit of no spin-orbit coupling the Zeeman energy is mini- their weak spin-orbit coupling model by adopting the 2D
mized byrotation of d perpendicular to the field. This im- orbital representatioft,,. However, the model of Ref. 48
plies that the Knight shift will be temperature independentproposes a spin structure for the order parameter which is in
and given by the normal-state shift for all field orientations.conflict with the observed Pauli limiting ¢, for H||c, and
The NMR measurements of the Knight sfifappear to be in it predicts a fourth superconducting phase which disagrees
conflict with anisotropic paramagnetic limiting &f.,. The  with the phase diagram.

Ill. TRANSPORT THEORY
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Transverse ultrasound is an even more powerful probe ahcludes both the changes in thistribution of occupied
the order parameter and excitation spectrum than the thermatates and the dynamics of tepectrumof low-energy exci-
conductivity*®? The attenuation of hydrodynamic sound is tations(see the Appendjx
determined by the electronic viscosity tensor, which is sen-
sitive to the relative orientation of the polarization, propaga- IV. TRANSPORT EQUATIONS
tion direction and order parame®r! The broken symme-
tries of the pairing state give rise to additional anisotropy of We use Keldysh’s formulation of the nonequilibrium re-
the low-energy excitation spectrum that is specific to thesponse theory and calculate the transport properties and re-
pairing state; the selection rules for acoustic absorption related Green'’s functions in the quasiclassical limit, which is
flect these broken symmetries. easily achieved in URtfor excitation energies,kgT,% w)

In the hydrodynamic limitw7r<1 andql<1, wherel ~ <Ey~1meV, and wavelengths long compared to the Fermi
=v,7 is the quasiparticle mean-free path ani the trans- Wavelength, i.e.iqg<p;. The central equation for the non-
port collision time, the ultrasonic attenuation is determinedequilibrium Green’s function in the quasiclassical limit is a
by components of the viscosity tensor transport equation. For small deviations from equilibrium the
transport equation may be linearized in the deviations of the
Green’s function from its local equilibrium form. Our analy-
sis and notation follows that of Ref. 43, which provides a
detailed discussion of the quasiclassical linear response
theory, including a complete solution to thieearizednon-
equilibrium transport equations. A summary of these equa-
tions, applicable to momentum transport in Fermi-liquid su-
perconductors, is given in the Appendix.

The transport equation for the Green’s function includes
the acceleration of electronic quasiparticles by the acoustic
field and collision terms which transfer momentum between
the lattice and the electrons. The stress tensor, and therefore
the electronic viscosity which damps the acoustic wave, is
calculated from the solution of the transport equation for the
nonequilibrium Green’s functionsgX, which is driven by

) the coupling of quasiparticles to the ionic displacement field,
than they are at low temperature, singd .)=7(0)/2. Nev-

ertheless, attenuation measurementsftr are near the bor- "e_" an externAaI5I35/56|mposed sound  fieldrey(pr . d; )
derline of the hydrodynamic regime. Measurements abové i (Vi-@)(ps-A)1.>>>"Below we report new results for the
and below this cross-over regime would be desirable; botiglectronic shear viscosity for the order parameter models of
for checking the applicability of hydrodynamic results for UPk, and new calculations of the anisotropy and tempera-
the attenuation fok||c and for looking for new phenomena ture depe_ndence of the attenuation which we use to interpret
in the collisionless regime. the experimental data for UPt

The viscosity and sound attenuation are calculated from In the limit of «—0 and for resonant scattering the vis-
the response of the momentum stress tensor to an ionic di§oSity tensor simplifies to
placement fieldA(q,w)=A(q,w)e. For transverse modes

a(9,e,T)=(w?/ocd) 7ij ki(Q, ) %iaj%kal , ©)

where o is the mass density¢s= w/q is the speed of the
sound mode with wave vectorand polarizatiore.®?°3 The
hydrodynamic limit is achieved even for high-purity single
crystals of UP§. For the experiments reported in Ref. 12
with propagationg||a and polarizatione||b the sound fre-
quency is w/2m=165 MHz, the speed of sound isg
=2.1km/s¥ and the elastic mean free pathlig=v; .p7
~1.5 km/s<x240 ps=360 nm>* yielding w7~0.25 and
gla,~0.18 atT=0. Similarly, forqg||a and €||c the reported
values are w/2w=228 MHz, cs=1.4 km/s, and I,
~\2.7,, vielding w7~0.34 andql,~0.61 atT=0. The
parameterg|l. and ot are a factor of two smaller nedr,

(g-&£=0) the stress and viscosity tensors are related in the o Ni f
hydrodynamic limit by®2® MWii= T g AT de sech(e/2kgT)
I1(d,0) = 4 A(0,0) 7 i(0,©) & 4 VATPT e grere, 2
1] ’ ’ ij,kl ’ kYl - X dpfw[gogo _fOfO + 1 ], (6)

At low temperatures the transfer of energy and momen- — -
tum between the ionic lattice and electronic excitations igvhere CR=—(1/m)\|A(py)[>~(eF)?,  gg=€/CR, 1§
dominated by the scattering of quasiparticles off impurities= —A(p;)/CR, and ER:e—%Tr[}y}i‘fnp] is the impurity-
or defects. The theory of momentum transport by quasiparrenormalized energy. In the case of triplet pairing with a
ticle scattering is formulated in terms of nonequilibrium unitary order parameter the only change in Ej.is replace-
Green'’s functions for electronic quasiparticles coupled to thenent of A— A and fgfg*_,fg.fg* . See the Appendix for
acoustic modes of the lattice. The momentum stress tensor {fetails on the notation.

For a normal metal with a spherical Fermi szurzface we
de obtain Pippard’s result for the viscosityzi-yi:%svfprfr
ITj(q,0) = fo ﬁf dpr [velilpel; 9% (pr .0; €, @), for i #.5" Below T, the sound attenuation i}lrops; for a con-
(5  ventional superconductor, in the lingi<1, the attenuation
decreases exponentially fegT<<A.%° But for an unconven-
wherev; is the Fermi velocityp; is the Fermi momentum, tional superconductor in which the order parameter vanishes
N; the density of states at the Fermi surface, agi is the  at points or lines on the Fermi surface, the attenuation de-
nonequilibrium quasiparticle Green’s function, integratedcreases with temperature as a power law reflecting the spec-
with respect to the quasiparticle enerdys=v(p—ps); 59K trum of low-energy excitations near the nodes of the order
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(©) (d)

FIG. 2. Sketch of thep dependence of thé& phase pairing states at+ /2 for (@) Epy, (b) Eig, (€) Apy®Byy, and(d) Ayg®E;q
models. The crossed lines represent the areas of maximal absorption of a sound pradiesyitimetry €||a, £/|b) at the Fermi surface.
The dark shaded areas represent the distribution of quasiparticle excitations.

parameter®®"°%%9Impurity scattering modifies this spec- E,,, Eyq, Ay @By, andA;¢@Ey,, are shown in Fig. 2.
trum near the nodes, and at low energies a new energy scale, The propagation and polarization vectors determine the
y<<A,, appears, which is roughly the “bandwidth” of low- angular dependence of the momentum transport by quasipar-
energy quasiparticles bound to the impurity distribution byticles on the Fermi surface; the matrix element is propor-
Andreev scattering® The bandwidth also appears as antional to[pf]iz[vf]jz. This angular dependence is weighted by
impurity-renormalized quasiparticle width at zero energy,the angle-resolved density of states for momentum transfer
'€R(0)=iy. This new low energy scale defines a crossovetvia impurity scattering, which depends on the anisotropy of
from the power law behavior associated with scattering othe quasiparticle excitation spectrum through (py)|?.
continuum quasiparticles fop/kgy<T<T,, to a temperature When both the propagation and polarization vectors are in
independent attenuation in the linkigT < y.5%5158:59 the basal planed(|a,|[b)*® the matrix element is propor-
The bandwidth of the impurity-induced Andreev levels istional to sirf2¢, and is maximum at angles af/4 from
determined by the self-consistency equation for the quasipathese two axes, i.e., the midpoints between the polarization

ticle self-energy, and propagation directions. If these midpoint directions co-
incide with nodal directionfe.g.,|A(p;)|~|cos 24| for E,,]
(AP P+ then the attenuation will be a maximum, while if the mid-
Y= (7 point directions are along the antinodal directions then the

u _ ’

cof S+ (A (pp) 2+ »*] 7122 attenuation is a minimum. This is illustrated in Fig. 2 where
where( ...) is an average over the Fermi surface dhgd the polarization is directed along thedirection. The attenu-
=nimp/ N is the scattering rate in the normal state for reso-ation is largest when theolarizationis along an antinode of
nant impurities and, is the scattering phase shift. For the the order parameter, and it is smallest when the polarization
high purity UPt crystals studied in Ref. 10, i.e., low scatter- 1S @long a nodal direction. One can immediately see that we
ing rate, the crossover temperature is very low compared t§0uld expect to observe a rather differaitplane angular
T.; analysis of the thermal conductivity provides a determi-dépendence to the attenuation for the different order param-
nation of both the scattering phase shift as well as the band:ter models proposed for UptWe quantify these remarks
width of the impurity-induced Andreev states. The scattering?€lOW-
centers are nearly resonant, i.6y=/2, giving a band-

width, and crossover temperature, of order~kgT* A. Results
~0.2Jul’' \ Ag=0.0%kgT., where TI';=0.0KgT., A In order to make quantitative predictions for YRte use

=2.0kgT, and the slope of the excitation gap near the lineheat capacity and thermal conductivity measurements to fix
node isu=A,*/dA/d®|y_,,=2. Thus, transport experi- the magnitude of the order parameter, the Fermi surface an-
ments on URthave so far not investigated the ultralow tem- isotropy, the nodal parameters and the scattering rate, all of

perature regiofkgT<<y in any systematic way. which control the temperature dependence and anisotropy of
the thermal conductivity below, .?”*?>We used variational
V. TRANSVERSE SOUND ATTENUATION basis functions based on the polynomial functions in Table I.

Symmetry dictates the geometry of the line and point nodes,

The anisotropyand temperature dependence of the soundis well as the topological indices for the point nodes, but not
attenuation is sensitive to the polarization of the sound fieldhe slopes or curvature of the nodal regions of the excitation
and the symmetry of the order parameter. This was the basigap. Our variational procedure fits these parameters to the
of transverse sound attenuation experiments that provideldw-energy excitation spectrum from the thermal conductiv-
early evidence for a line of nodal excitations in the basality data of Ref. 10. The order parameter is then determined
plane?® We examine theab-plane anisotropy of the trans- self-consistently. For a detailed discussion of this analysis
verse sound attenuation. Our analysis covers the full temsee Refs. 27 and 42. The anisotropy and temperature depen-
perature range beloW,, and is particularly sensitive to the dence of the transverse sound attenuation are then calculated
polarization and anisotropy of the order parameter for Both with no additional parameters or adjustments of the order
and B phases of URt To illustrate the sensitivity of the parameter models shown in Fig. 2.
transverse sound polarization to the order parameter symme- The transition temperature and splitting of the zero-field
try consider the theoretical models for tAephase of UR{t transition in UP{ determine the scale and relative magni-
The ab-plane anisotropies of the excitation gap, tudes of the two order parameter components; they deter-
|A(9# wI2,$)|, for the A phase of four pairing models, mine the dominant and subdominant instability temperatures.
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g 1.0 t FIG. 4. Comparison between the measured and calculated trans-
E verse sound attenuation of WPfThe theoretical calculation is for
=~ the E,, model and the phenomenological model previously used for
=05} the total elastic and inelastic scattering ratg;T) =0.0%g T, (1
2 +T2/T2,), obtained from the thermal conductivity analysis. The
data are from Ellmaet al. (Ref. 12 which are corrected to vanish
0.0 ' ' atT=0.
0.0 0.5 1.0
T/T ) additional nodes of th& phase order parameter compared to

that of theB phase. BelowT._ the subdominant order pa-
FIG. 3. Fit of thEEzu model to the thermal conductivity data rameter closes the additional nodes of mphase order pa-
(top) (Ref. 10 and the specific heat dataottom (Ref. 9. rameter. Thus, the sound absorption drops faster inBthe
phase than it would in thA& phase. The experimental results
The instability temperature for the dominant channel is thefor the sound attenuation, including the anomalyfat , are
transition temperaturd,;; =T, , while the second instabil- in excellent agreement with theoretical calculations for the
ity temperature represents the strength of the subdominaim,, model of theA andB phases, with ai phase given by
pairing channelT > w.exp(—1/N,), whereV, is the pair- a 5=(1,0) state, but not a (0,1) state; an@® @hase at low
ing interaction for the sub-dominant channel angdis the  temperature which isapproximately the »=(1,+i) state®?
cutoff energy’! The physical transition temperaturg,_ , The comparison between theory and experiment is unsatis-
separating theA and B phases depends on the relative factory for all other models. Even including the frequency
strength of the two paring channels, i.e. &3 /T..<1. We  dependence of the viscosity; i;(q,»), does not change
solve the coupled gap equations for the first and second tramhis result. We find only minor corrections to the sound at-
sition and adjusi ¢, to the observed splitting in the specific tenuation foro<A, (see Fig. 4 The (1,0) state of theé
heat, (To. — To_)/ T ~60 mK/495 mK22° All other mate- phase, as determined by sound attenuation, also agrees with
rial parameters are taken from our previous analysis of théhe order parameter orientation obtained from the observed
thermal conductivity of URt*> We show the quality of the sixfold oscillations ofH,(¢), and the change in sign of
theoretical fits to the thermal conductivity, and heat ca- these oscillations when crossing theC phase boundar§?
pacity for theE,, model in Fig. 3. Similar fits can be ob- In Fig. 5 we show the sound attenuation fan and ac
tained for theE,; and AE models. However, only the in- polarizations and different pairing models. Note in particular
plane thermal conductivity data can be accounted for by théhat none of the order parameter models shown in Fig. 5 can
AB model. account for both anomalies ., anda,c at T, . The main
result of this work is that the experimental data for the heat
1. Identification of the A phase capacity, thermal conductivity, and sound attenuation, as
I%/vell as theH-T phase diagram, are explainedly by an
order parameter with an orbit&,, pairing symmetry. We
emphasize that there are no adjustable parameters in the cal-
culation of the sound attenuation; all parameters of the model
g||c. These measurements were made on the same batch of . . " :
were previously determined by fitting the theoretical model

crystals of UP§ as the heat capacity and thermal conductiv- ; o -
ityymeasuremgnts shown in Fi%. 2.yln addition to the anisot” arameters to the heat capacity and thermal conducffvity.

ropy associated with the polarization, the data show a pro-
nounced change in the anisotropy and temperature
dependence at th&-B phase transition. Neutron diffraction studies in pure UPander pressuré

The enhanced absorption in tAephase compared to that and at ambient pressure in Pd doped samples-@®f) %
of the B phase at the same temperature results from excestemonstrated that the splitting ©f correlates with the basal
quasiparticles that scatter off the impurity distribution due toplane AFM, suggesting a SBF coupling between the super-

In Fig. 4 we show the attenuation data reported by Ellma
et al? for transverse sound propagation in tieplane with
gl|a and polarizations both in and out of plang/b and

2. Domain structure
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FIG. 5. Attenuation ofab andac transverse sound for the vari-
ous order parameter models.

0.6

conducting and AFM order. It has been argued, based or
neutron diffraction studies as a function of magnetic field,
that the AFM order is described either by a distribution of 0.4 : s
three equally populated domains, wif vectors oriented 0.8 0.9 1.0 1.1
120° to one another, or a tripl@-structure®>% If a domain T/T

structure is present then, in the AFM model for the SBF, the c+

superconducting order parameter describing Ahghase in

the E-rep models may also form a domain structure. Such
domain structure leads to a weakening of the anomaly foz
ay, at T, but leaves the anomaly i, (T, ) virtually
unchanged.

In Fig. 6 we show the effect of multidomain averaging on oss over temperaturkg T< y. The zero-temperature limit
the anisotropy of the transverse sound attenuation. These ¢ " finite, reflecting the finite density of states at the Fermi

culations show that an AFM domain structure does not deyg, e and the leading temperature-dependent corrections are
stroy the anomaly in the attenuationTat. . However, aver- of the Sommerfeld type?[ (T/y)?] for ksT<y. The limit-

aging over domains _suppresses the characteristig,, auenyation in the ultralow temperature linkgT<7, is
enhancement ok, for the E,, order parameter coupled (0 @ piained from the viscous stress tensor Tor0 and o
dommant or single domal.n of the SBF. In pqr'tlcular, the—>0. In this limit the states contributing to the stress tensor
domain-averaged attenuatidiay,,), for theE,, pairing state Eq. (5) are confined to the impurity-induced Andreev band

drops roughly twice as fast as the measured attenuation igf order v>max The spectrum and self-enerav are
the A phase. If the AFM order parameter is the SBF for the Y ([©). P oy

superconducting phases, then our calculations are in agree-
ment with transport and heat capacity measurementsonlyfo 4 4 |
an E,, order parameter coupled todmminantdomain, or a
triple-Q structure for the antiferromagnetic SBF.

FIG. 6. Configuration averaged attenuatigmdicated by
...)) assuming three equally populated monodomains fdg gn
ndE,, pairing state. For a comparison the results forEyg state
of Fig. 4 are replotted.

o expt.: ab

0.8 r

c+)

3. Scattering phase shifts

(T

It has been pointed out in several studies that the tempera 0.6
ture dependence of the transport coefficients in;Uguali- =
tatively consistent with strong scattering in the unitarity == 0.4 |
limit. Our analysis of the thermal conductivity ddftand the 3
attenuation dafd confirm that the scattering phase shift is
near the resonant limit; from the analysis of the thermal con-
ductivity we obtain5,=80°,%" while the transverse sound

. . . . . ) 00 1 1 1 L
attenua.tlon'data implies a scattering phase shift 60°, as 0.0 02 0.4 06 08 10
shown in Fig. 7.

TT,.

FIG. 7. Sensitivity of the transverse sound attenuation to the
The temperature dependence of the transverse sound &tattering phase shiff,=30°,60°,80°,90° for theE,, pairing

tenuation is predicted to change qualitatively below themodel and the same parameters as shown in Fig. 4.

4. Ultralow temperature region
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TABLE Il. Asymptotic low-temperature limits of the sound at- To summarize the main conclusions, we have shown that
tenuation (@, T—0) and thermal conductivity for the,y andE;,  transverse ultrasound provides detailed information on the
pairing states. The results are scaled in units &b  orbital pairing symmetry of both the superconductiagnd
=(m?13)kaT Npwfry and ao=(w?/4e c3)pf Niwiry, where 7y B phases of URt the anisotropy and the anomalies in the
=f/2ul, is an effective transport time. temperature dependence of the attenuation for different po-
larizations is explainednly by an E,, order parameter.

Tran§port Measurements otr,, and a,. are in excellent agreement
coefficient Eig Eay with a (1,0) state for theA phase, corresponding to a
Kpp! Ko 1 1 pz(pf(—pf,) order parameter. Further measurements at lower
Kool Ko 2yl (12A) wl s temperatures, or as a funqtl(_)n of |mpur|ty dlsord_er,_ may also
aglag 1 1 be used to test the prediction of a universal limit for the
a in-plane transverse sound attenuation.
8u T 2u vy
el ag - 't -= 7
l-|-2/,L2 Ag ,u,g A
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_ In this appendix we summarize the relevant nonequilib-
where we hzzalvemneglected the Sommerfeld corrections of okium transport equations for our calculations of the sound
der O[(T/y)<]. S attenuation in unconventional superconductors. For a more
Whether or not the zero-temperature limitusiversa] — extensive review of nonequilibrium transport theory in su-

i.e., independent of the density and scattering cross sectigserconductors see Refs. 43 and 70.
for the impurities, depends on the polarization of the acoustic The nonequilibrium(Keldysh Green’s function,
wave and the symmetry of the ground state. The damping is
universal only for transverse waves propagating along the “K_ oR AL sha

. . . . . . 69" =69~ ®dy— Dy 59"+ 697, Al
high symmetry directions in thab plane, i.e., for polariza- g 97°P0™%0%0 g (AD)
tion £[|b propagating alongj||a, or vice versa. For these contains thespectral responsgiven by the retarded and ad-
polarizations the ground state afl the models we discuss, vanced Green's functionss§®?), and theanomalous re-

except theAE model, possess aniversallimit for the at- ) ~a o . .
tenuation. Table Il summarizes the results for Bg and ~ SPONS&diven by 9%, which in normal metals is essentially
the nonequilibrium distribution function. The equilibrium

E,, models. For the ground state of eitHerepresentation ° = ™' L

we find 7. abzvgpng/(SMAO) where u~2 is the slope distribution function is®,=tanh(/2kgT), and we use the
P ! . shorthand notation for the shifting producbcA=® (e

of the excitation gap near the line node in thie plane. For I—(u/Z)A(e,w) and Aedy—A(e,)Do(e+wl/2). Pairing

any other polarization the relevant viscosity is nonuniversa . . . .
for w,T< . For example, for th&,, ground state we obtain correlations and pa_rt|cle-hole coherence require a matrix
: ' 2u structure for the particle-hole degree of freedom. The “hat”

a limiting  value for a0) (ZMV/MZ.AP)aab(O) over the Green’s functions and self-energies indicates their
<aap(Tc.), whereu,~4 is the parameter defining the cur- . 4 oy structure in particle-hole and spin space.
vature of the excitation gap near the quadratic point node The transport equations for the Green’s functions, linear-

i< 68
along thec axis. . . iEed with respect to an external perturbation, are
Further experiments using transverse sound can be used to

confirm the predictions for thab-plane anisotropy of the

order parameter in URt The ideal method would be to [6g7A, ARAL=[g5", Text 60741, (A2)
propagate transverse sound alongdtexis and measure the

attenuation as a function of the azimuthal orientation of the hRo 5g2— sg2oh”

polarization in theab plane. The qualitative predictions for

the in-plane anisotropy can be deduced from Fig. 2; a two- = 8a%gh—gReso?

fold symmetry of the anomaly & is expected for th&, . A .
representation and a nearly isotropic attenuation affove —[0exs Pol.oGo—9p°[Po, Texd.,  (A3)

for the other models. In thB phase all models show a nearly

isotropic attenuation except for theE model, which has a whereh®?A=er;— o}, 75 is a Pauli matrix, andr. is the
twofold symmetry. A similar experiment was suggested byexternal perturbation, e.g., the coupling of quasiparticles to a
Moreno and Colem&n to map out the gap structure in the sound field(ionic displacement field The transport equa-
high-T. cuprates. tions determine the deviations of the Green'’s functions from
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~ RA_
external field and the corrections to the self-energiks; A™= . (A8)

ternal Aioy+A-ioyo 0
=0"—0oy with Xe{R,A,K}. The anomalous self-energy,
502, is defined similarly to theSg?,

their local equilibrium valuessg*=g*— gy , in terms of the . ( 0 Aioy+A-igo,

where the spin-singlety) and spin-triplet A) order param-
eters are given by the gap equations,

80K =8 Ro®— Do S+ So?. (A4)

de
~ R,A — | N fK A7 -
The equilibrium Green's functiongy, and self-energies, A (pf:t)—f 27 V(s p) FR(pr € )pr s (A9)
&é, are inputs to the linearized transport equations. At low
temperatures, and for long-wavelength, low-frequency R A de ek
sound, the damping of the acoustic wave is determined by A™(ps;t)= J 4—7ﬂ<!(Pf Po) - (prst)pr . (A10)
the scattering of quasiparticles off impurities and defects that
are comoving with the ionic Iat_tic%s.lmpurity_ scattering en- whereV® and V' are the pairing interactions in the singlet
ters the transport equations via the impurity-scattering selfénd triplet channels. The componeﬁsandxare related to
energies, A and A by fundamental symmetriesee Appendix C of
~ ~ . Tk A — A* A— A*
X (p; ;e,t)=nimptx(pf priet), (A5) Ref. 71; in equilibrium A=A an.dA—A . _
S . . . To complete the set of equations for the linear response
where the quasiparticle-impurity scatteringnatrices are equations we write the solutions for the equilibrium response

given by functions in terms of renormalized quasiparticle energy and
“RA . N , order parameter. For spin-singlet and unitary spin-triplet
2 (pr Pt 5 €,1) =u(pr,Pr) pairing the general solutions for the equilibrium retarded and

- . " advanced Green'’s functions are
+N(U(pr,pY)°g (Y s €.t)

JRA( ! - , . TRAZ _ZR,A
t (pf »Ps '6rt)>pf , (A6) gg,A: — 7 3 ’ (A11)
/lZR,A|2_ (;R,A)Z
t(pr Py €)= Ng(t%(pr Py s €,)°9" (P s €,1) . - .
where the renormalized quasiparticle energy is
otA(pf . pf ;G’t)>p,f,' (A7) ~RA 10 “RA (A12)
] ] ] e (ps,e)=€e— 7 Tr[ 307 ,€6)]. Al2
Thet-matrices are calculated self-consistently with the order Pr # T 7aoimp(Py €]
parameterA(p;), and with the impurity vertexu(ps,p;),  For resonant-wave scattering
describing elastic coupling of quasiparticles to impurities. R R
The calculations presented here assume isotropic, honmag- Timp(€)=—Ty(95"(Pr;€))p " (A13)

netic impurities withu=u,1 for all (ps,p;). This model is _ o .

then described by two parameters, e.g.,sheave scattering For swave scattering the renormalization of the off-diagonal

phase shiftd,=tan (7N;ug), and the density of impuri- Self-energy by impurity scattering vanishes,

ties, Nimp - Another useful parametrization is in terms of the X .

cross sectiong= (47/k?)sirfd, and the normal-state scat- ARA(p,e)=A(py), (A14)

tering rate in the unitarity limit §o=7/2), I' ;= Njyp/ 7N; . . . ) . .

Note that the transport scattering rate in this model is givefor nonidentity representations of the point group, i.e., ex-

by 1/2r=T,sir? &, and the elastic mean free path is thencluding theA,, representation. Finally, we note that the di-

lg=0v¢T. agonal component of the nonequilibrium Green’s function
The other key term entering the transport equations is thi1at determines the momentum stress tensor in (Emf

off-diagonal pairing self-energy, or order parameter. ThePbtained from the matrix Green's function byg

general form for the pairing self-energies is =3 Tragk.
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