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Effects of confinement and surface enhancement on superconductivity
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Within the Ginzburg-Landau approach a theoretical study is performed on the effects of confinement on the
transition to superconductivity for type-1 and type-1l materials with surface enhancement. The superconducting
order parameter is characterized by a negative surface extrapolation berigits leads to an increase of the
critical field H 3 and to a surface critical temperature in zero fi€ld, which exceeds the bulk.. When the
sample ismesoscopiof linear sizeL the surface induces superconductivity in the interiorferT(L), with
T(L)>Tes. In analogy with adsorbed fluids, superconductivity in thin films of type-l materials is akin to
capillary condensation and competes with the interface delocalization or “wetting” transition. The finite-size
scaling properties of capillary condensation in superconductors are scrutinized in the limit that the ratio of
magnetic penetration depth to superconducting coherence lersgiti¢ goes to zero, using analytic calcula-
tions. While standard finite-size scaling holds for the transition in nonzero magnetidfiedd anomalous
critical-point shift is found forH=0. The increase of . for H=0 is calculated for mesoscopic films, cylin-
drical wires, and spherical grains of type-l and type-ll materials. Surface curvature is shown to induce a
significant increase of ¢, characterized by a shift,(R) — T;(e) inversely proportional to the radil’®

[. INTRODUCTION andb<0. Here,\ is the magnetic penetration depth ahis
the zero-field superconducting coherence length. kor

The Ginzburg-Landa{GL) theory of superconductivity <0.374 the wetting transition is of first order, and is accom-
continues to deliver surprisésin this paper we focus on panied by a prewetting line that extends into the bulk normal
some remarkable consequences of special boundary congihase in théd-T phase diagram, and terminates in zero field
tions that enhance superconductivity at the surface of thaet T...° An experimental realization of the prewetting phe-
material. In fact, superconductivity is already known to benomenon is, in hindsight, provided by the twinning-plane
enhanced for the common situation of surfaces againgfuperconductivity transition in ShThe wetting transition
vacuum or insulators, as was demonstrated by the discoveiigself has so far not been verified experimentally. Ror
of the surface critical fieldH .3.> We consider, however, dif- >0.374 the wetting transition is predicted to be critical,
ferent surfaces that enhance superconductivity morgvithout a prewetting liné.
strongly. Within GL theory this is embodied phenomenologi- In this paper we study the effect of confinement on the
cally by taking the surface extrapolation lengito be nega- wetting phase diagram, and, in particular, we examine the
tive. It was shown that this not only leads to a further in-increase ofT,. The situation we consider is analogous to
crease of the surface critical fielH 3, but also to an that of a fluid adsorbed between parallel walls, which under-
increase of the surface critical temperature in zero fleld* goes capillary condensatién.This phenomenon occurs
The simple relationé(T.s) = —b, with &(T) the supercon- slightly below the saturated vapor pressure, and arises from a
ducting coherence length in bulk and in zero field, governgompetition between surface contributions to the free energy,
the shift from T, to T.s. Furthermore, forb<O interface  proportional to the surface area, and volume contributions,
delocalization transitions, which are the precise analogs oproportional to area times wall separationFor largel, the
wetting transitions in adsorbed fluids, have been predicteg@ressure or chemical potential for which the fluid condenses
for type-1 superconductors. between the walls, is shifted by a small amount, proportional

For a semi-infinite system with a planar surface the GLto 1L, from the usual bulk coexistence line. In the presence
surface free energy functional, including the boundary conef a wetting transition for the semi-infinite system, there is
tribution, reads an interesting interplay between capillary condensation and

prewetting, leading to surface triple points. We study the

. %2 ® B counterparts of these phenomena for type-I superconductors,
Ny.Al= m|¢(0)|2+f dx a|y|*+ §|df|4 in the low=« limit.
0 In zero field, the increase of the surface critical tempera-

+ terials, but occurs for type-l and type-Il alike. It is therefore
justified to devote special attention to the effect of confine-
(1.1 ment on this phenomenon. The increaseTgfis unique to
superconductivity, since in fluids confinement generally sup-
The magnetic field is taken parallel to the surface. For thisoresses the critical point of phase separation. In contrast, we
orientation the interface delocalization or wetting transitionfind that in superconductors the critical temperature of a me-
can occur, provided=\/£< 1/\/2 (type-l superconductoys soscopic sample with surface enhancement not only exceeds

2 WX,&_MO,:”z} ture T for samples withb<<O is not limited to type-l ma-
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the bulk T., but is also greater tham.;. We study this studied analytically, and the important finite-size scaling
effect for planar films, cylindrical wires and spherical grains.laws for the phase transitions can be calculated exdstyg
For surfaces with curvature an important additional increas@aext section for detai)s Several of these laws continue to
of T is found. hold, in as far as the leading singularity in the asymptotic

The assumptiob<<0 is crucial here, since fdr=« (sur-  regime of thick films is concerned, for smal>0, as long as
faces against vacuum or insulatoend a fortiori for b>0  the phase diagram undergoes quantitative changes only.
(surfaces against normal metals or ferromagnisisre is no  Therefore, many of the properties that we can demonstrate
increase ofT relative to the bulk value. Fdy=« the effect analytically atx=0, serve as a good first approximation for
of confinement leads to a well-documented increase of tha significant part of the type-I regime. We have verified this
critical field and the presence of a tricritical point where theby numerical computations foe>0.
transition to superconductivity changes from second order to The usefulness of taking the zekolimit has already be-
first order as the field is increased. The effects of sampleome clear in previous studies of interfacial properties in
topology for this casel{=«) have been the subject of thor- type-l superconductors, most notably in the derivation of an
ough experimentaland theoretic4linvestigation. exact interface potential for wetting and prewettiniglore-

This paper is organized as follows. In Sec. Il we study theover, it has been shown extensively that the thermodynamic
effect of confinement on the wetting phase diagram. Thébehavior atk>0 (but not exceeding 4/2) can often be
limit of strongly type-l superconductors turns out to be verycaptured by means of rapidly converging expansions in the
instructive here, since various analytic results can be obparametenc. %
tained fork— 0, the details of which are outlined in Sec. lll. ~ The two basic physical states of the film consist of either
The finite-size scaling properties of the capillary condensasuperconducting surface sheaths, extending from one or both
tion transition in nonzero field, and the link to the anomaloussurfaces into the interior, or a superconducting film state,
critical-point shift in zero field are addressed here. In Sec. IMvhich occupies the whole space between the surfaces. The
we derive and discuss the increase Tof for mesoscopic  former correspond to prewetting layers and the latter to cap-
surface-enhanced superconductors. Conclusions and remaiikary condensation. For computing these states we recall that

pertaining to the experimental relevance of our results argyr =0 the magnetic inductioA(x) and the superconduct-

presented in Sec. V. ing wave functiony(x) exclude one another in spat&ur-
thermore, sinceé\ is a simple step function, the only perti-
Il. CAPILLARY CONDENSATION AND PREWETTING nent GL equation is that fap, which after suitable rescaling
FOR STRONGLY TYPE-I SUPERCONDUCTORS (as in Ref. 9 reads
In this section we discuss the precise analogy between the b=+ g+ P, 2.1)

capillary condensation transition in a fluid confined between

parallel walls and the transition to superconductivity of aThe +(—) signs pertain toT>T(T<T.), respectively.
mesoscopic film of type-I material in a parallel magnetic Note that, with the present rescaling convention, lengths are
field. The surfaces of the film are characterized by surfacéneasured in units of theero-field coherence lengt, and
enhancement of superconductivitpegative extrapolation in the bulk superconducting phasgs=1.

length b) and we consider the case of identical surfaces, The boundary conditions are

which is sufficient to address the basic phenomena. For tem-

peratures sufficiently close td,, interface delocalization ¥(0)=£y(0)/b, (2.2
comes into play and allows us to study, in close analogy to )
what may happen in a confined fluid, how capillary conden- P(LIE)=—EY(LIE)/b.

sation competes with the prewetting phenomenor.l. The useful first integral of E¢2.1),
There are four relevant lengths in our system: the mag-
netic penetration deptk, the coherence length the surface Co 2. 4
extrapolation lengttpb, and the film thicknes&. In order to pr=EdhyiztC @3
study the interplay between capillary condensation andillows one to employ a simple phase-portrait analysis for
prewetting most clearly and accurately, it is very useful todetermining the characteristics of all possible solutions. The
take the limitk=N\/£—0, corresponding to extreme type-l integration constar is determined using the boundary con-
superconductors. It is important to specify that in taking thisditions. ForT<T, capillary condensation states exist for
limit, we let N tend to zero, while keeping the other three <1/2, while for T>T, they occur forC<0. They are sym-
lengths finite. In this limit not only is the wetting transition metric with respect to the middle plane of the film(x)
of first order but also the prewetting transition remains of=(L/é—x). For these stateg/(x) has the shape of a
first order down to zero magnetic field, so that the competi<hammock,” with a minimum atx=L/2¢. C is a smooth
tion with the capillary condensation transiti¢also of first  function of L which tends to 1/2 for large, as (L/2¢)
ordep is not complicated by second-order nucleation phetends to the bulk value 1. An interesting point to note is that
nomena that occur fox>0. Furthermore, the vortex phase, the magnetic fieldH is fully expelled in these states and
which we find to play a role even fot considerably less therefore the profileg/(x) do not depend ofi. In particular,
than 14/2 in a film with enhanced surfaces, is unimportant atC(L) is independent oH.
xk=0. In contrast, the prewetting states depend on the applied
In addition to these reasons pertaining to clarity, the limitfield. These states are characterized by profilés), inter-
x—0 offers the major advantage that the problem can beupted by a magnetic “gap” in which)(x)=0. The phase
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portrait analysis indicates that two types of solutions can be 1 R
considered: symmetric states consisting of two supercon- \
ducting surface sheaths located ore[0Jl/¢] and [(L
—1)/¢,L1&], with a central gap separating them, or asymmet- N
ric states with a sheath at one surface only,xan0,/£], H/H,, \
followed by a gap extending to the other surface. In practice
the asymmetric states are irrelevant, evenlfalL/2, since
their free energy is higher than that of symmetric stéégs
ther of prewetting type, with a central gap, or of capillary
condensation type, without a gag-or prewetting state<;
depends o and not orL. Its form C(Hg) =H3 is the same

as for the semi-infinite system, since the “gap” acts in the
same way as a normal pha@d® in bulk. The quantityHg is

CAPILLARY
CONDENSATION

BULK N

BULK SC

PREWETTING

a reduced field defined in Ref. 9 and relatedHain the t 0 L)
mannerHz= ¢2H. The value ofH% determines the magni- ’ t ‘

tude (squared of the gradient ofys at the interior points

=1/¢ andx=(L—1)/¢ at which ¢ vanishes. FoT<T,, at FIG. 1. Capillary condensation phase diagram for strongly

type-l superconductors with surface enhancement, for a film of
thicknessL/|b|=8, in units of the surface extrapolation lendth
(b<<0). The magnetic fielH is scaled with the fieldH at the
énterface delocalization transitioR. The temperature variable s
=(T—-Ty)/(T.s—T.). The capillary condensation transition runs
mostly parallel to the bulk coexistence line. It meets the prewetting
transition at a film triple poinT1, and again af 2. It terminates at
YeadO) the film critical point in zero field, at (L) >T.s, but very close to
L= zgf dy( = 2+ 2+ c) Y2 (2.9 T.s (imperceptible difference The solid lines indicate first-order

¥m phase transitions for the film. The dashed line is @imetastable
continuation of the prewetting line.

bulk two-phase(SC/N) coexistenceC=1/2, while in the
bulk normal phaseC>1/2. The term “bulk” refers to an
infinite system(without surfaces, in principje

We can conveniently express the film thickness using th
profile of a capillary condensed stat&ap™ ), through the
relation

Here, ¢,=y(L/2£), the value in the middle of the film.
Likewise, we can obtain the thickness of a surface sheath in In order to show most clearly the topology of the new
the prewettingPW) state through phase diagram of the thin film with surface enhancement, we
JonlO) have chosen th&educed thicknessL/|b|=8. The result is
|:§f P dup( = g2+ ¢4/2+H§)*1’2. (2.5 presented in Fig. 1. The_ temperature vanabletas_(T _
0 —TJ/(Tes—To), so that the first-order interface delocalization
. . transition, or “wetting” transition, is located a5 <0, while
For explicit expressions fofiy, ¢caf0), andépw(0), S€€  the pylk critical point in zero field is dt =0 and the surface

the Ap_pendix. . _ critical point in zero field is at.s=1. The magnetic fieldH
Similar compact expressions are available for the reduceg} ;, nits of Hp, the wetting transition field. The ratio

(i.e., dimensionlegsfree energies. For capillary condensedH/HD is related to Hg through the equationH/Hp

states = 2Hg(&/0)2/(£/b)2. The thin straight line fronD to the
Ysard0) origin is the bulk two-phase coexistence line. The new phase
ycap=zf dy(HEZ— ¢*12) (= 2+ ¢*12+C) 12 transitions relevant to the mesoscopic film are indicated by
¥m thick solid lines.
(2.6 The main transition is the capillary condensation line,

Using Eq.(2.4) this can be simplified by separating out the Which consists of three parts. For high fields this line is more
dependence on the magnetic field, which is jd&L/&, the  Or less parallel to the bulk reference line, and represents a
free energy cost of expelling the field over the whole thick-transition from a fully normal film to a fully superconducting

ness of the film. film. BetweenT1 andT2, however, for decreasing, cap-
For prewetting states the free energy of a symmetric statdlary condensation is preceded by the prewetting transition.
with two surface sheaths is The film thus goes superconducting in two distinct stéps:

from a fully normal state to a state with two superconducting
L [vew) 2 4 o 4 2 11 surface sheaths and a normal gap éndrom the latter to a
?’pvv—zfo dy(HR— 4" 12) (= "+ 712+ H) 7% fully superconducting film. At transitiofii) the gap between
2.7 the surface sheaths is still finite. Incidentally, we can com-
pute the line in the phase diagram on whichL/2, so that
In order to be able to discuss the phase diagram for tempergie gap vanishes and the two surface sheaths touch one an-
tures below, above, anat bulk T., it is convenient to ex- other. For all temperatures between the wetting point and the
press the thickness of the film in units [df| instead of¢  prewetting critical point, this line lies at lower fields than the
(sinceé diverges afl; in zero field. It is understood that the capillary condensation transition, and consequently has no
value of b is the result of the surface preparation of thephysical significance. Finally, for temperatures between that
sample, and can therefore be considered a material constawitT2 andt.(L), the transition proceeds in a single step, from
within the explored ranges of field and temperature. fully normal to fully superconducting.
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sition remains. For example, fa/|b|=1 the capillary con-
densation line appears as a straight line parallel to the bulk
coexistence line, and ends in zero fieldtgt 2.4 (see Sec.
V).

On the other hand, upon increasibgb| the triple point
T2 moves rapidly to zero field antd=t.s, and T1 moves
slowly towards the wetting poird. The prewetting line re-
mains fixed. The capillary condensation transition converges,
for T<T., to the bulk coexistence line. However, far
>T., the capillary condensation line converges to the seg-
ment[T,.,T.s] of the temperature axi@t H=0). This is a
consequence of the anomalous critical-point shift in zero
field. The phase boundary thus developsaner singularity
at the origin (=0,H=0). The precise manner in which the
phase boundary scales in the lirhit> oo is the subject of the
next section.

x/|b|

FIG. 2. Three coexisting film phases at triple paitit of Fig. 1.
A normal phase ¢=0) coexists with a surface superconducting
film (with two sheaths and with a capillary condensed supercon- lll. FINITE-SIZE SCALING OF CAPILLARY
ducting film. CONDENSATION

The prewetting phenomenon is thus confined to an “is- In order to examine how the capillary condensation phase
land” in the phase diagram, where a film with Superconductboundary approaches the bulk coexistence line in the limit
ing surface layers and a normal interior is thermodynamil— we distinguish the following regimes.
cally stable. All transitions in nonzero field are of first order.
The pointsT1 andT2 are genuine triple points of the film.
The three coexisting film phases are represented by their
wave function profiles in Fig. 2. Likewise, Fig. 3 illustrates
the triple pointT2. The prewetting lingbetweenT1 and In this regime the complication of surface superconduc-
T2) lies exactly on the prewetting line of the semi-infinite tivity does not arise and the transition is from the normal
system(dashed ling which extends from the wetting point phase directly to a superconducting film with complete ex-
D to the surface critical point of the semi-infinite system in pulsion of the magnetic field. The transition occurs when the
zero field, att=t.=1. free energyycap, given in Eq.(2.6), equals that of the normal

In zero field the capillary condensation ends in a criticalphase, which is zero. For lardethis condition is very well
point, att=t.(L). This critical point will be discussed in approximated by replacing the upper and lower limits of the
detail in Sec. V. We shall derive there thia(L) is only integral by their asymptotic valueg.,{0)— ¢(0) and ¢,
slightly abovet.s. On the scale of the figure the two points — 1. Here,#(0) is the surface value of the wave function
appear coincident. profile associated with the superconducting phase in bulk, at

Upon loweringL/|b| the pointsT1 andT2 approach each temperatureT. This leads to the familiar result, akin to
other, and fol/|b| between 6 and 7 the prewetting “island” Laplace’s or Kelvin's equation for a confined flfiexpress-
vanishes. FoL./|b|<6 only the capillary condensation tran- ing the free energy balance between a cost in bulk and a cost

in surface contributions

A. T<Tp: below the wetting transition, approaching
partial wetting

0.5

(HA=1/2)L/¢=—2yy sc- (3.1

X
v The right-hand sidérhs) is by definition—lim _ _ycqpand
representgminug the surface free energy of two wall/SC
“interfaces.” Since yy, y=0, in the absence of supercon-
ducting surface sheaths, the rhs actually equadscg, cosé,
familiar in the context of Young's equation for the contact
angled in the partial wetting regime. The left-hand sidles)

gives the net free energy cost, per unit volume, of expelling
SURFACE . . 2 . .
0.0 SHEATH . . the magnetic fieldcostHg) and, simultaneously, going su-
0 2 4 6 8 perconductinggain 1/2, multiplied by the thickness of the
X/[o| film. This net cost is positive for fields higher than the coex-
istence field(commonly referred to as critical field of the
FIG. 3. Three coexisting film phases at triple poii of Fig. 1.~ superconductoHg .= 1/J/2. Equation(3.1) predicts that the

Under these conditions the sample in bulk would show no supercapillary transition fieldHg(L) approaches the coexistence
conductivity at all. field Hg . according to the power law

SUPERCONDUCTING
FILM
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[Yw sd The constant, /¢ can be calculated analytically, with the
[Hr(L)~Hrcl~V2e——. (32 result

— i i - 1 0)—-1 »
The exponent oL, —1, simply reflects the difference be /=2 In2+ = In $(0) +2f du(2u?+1) 12

tween the surface dimensiai+- 1 and the bulk dimensiod. V2 (0)+1 0
Numerical computations show that E§.1) is extremely
accurate, even for thin films. For example, for “tempera- * 212
ture” &/b=—0.5, Eq.(3.1) is satisfied to an accuracy of _ZL du(2u®) = (3.6

0.1% already forL/|b|=2. The deviation forL/|b|=1 is
about 3%. Therefore, for practical purposes, 8ql) is cor-  The value ofy(0) here corresponds to the limit of bulk
rect for L/|b|=2. The wetting transitiofD) occurs até/b ~ two-phase coexistence, and is determined throygh)?
=(é/b)p~—0.60, and for temperatureSp<T<T, Eq.  =1+(&b)*+{[1+(&/b)*]°~1}*2 Typical values ofl 1 /¢
(3.1) must be modified as follows. are of order 1, confirming the importance of this constant
next to the leading logarithm in E@3.5). For example, for
&b=—1,1,/£~1.640.

The geometrical interpretation of/¢ is straightforward.

_ _ _ _ ~ Keeping only the leading and next-to-leading terms in
In this regime the capillary condensation competes with (H)/¢ we arrive at the identification

the prewetting transition. To a first approximation the surface
free energy balance takes the Laplace or Kelvin form, analo- 1 /é~1(HR /¢, (3.7
gous to Eq.(3.1),

B. To<T<T,: the prewetting regime, approaching
complete wetting

with H3,—1/2=1. This is qualitatively correct. For ex-
H2—1/2)L/&é=2 _ -9 , 3.3 ample, for “temperature” é/lb=—1, 1,/£=1.640 while
(Hr IL/E=2(wn~ Ywsd) =2Ysen @3 I(Hgr1)/é=1.504. Thus],/¢ corresponds essentially to the
where yy y is the surface free energy of a semi-infinite sys-thickness of athin surface sheath at a magnetic field well
tem with a macroscopic surface superconducting léggem-  above the critical field. This th|ck_ne9§m units of £) is of
plete wetting The last equality expresses that Antonov’s ruleorder 1. Consequently, the leading logarithm in EB8.5)

holds for complete wettindf gives the intrinsic or “net” thickness of the wetting layer
However, this approximation is too crude. It neglects firstwhich develops close to bulk coexistence.
of all thatL should be replaced by— 2l to take into account ~ Having established the slow divergencd cdnd contrast-

the thickness of the prewetting layers, constituting the part ofng it with the more rapid divergence &f which is essen-
the film which is already superconducting before capillarytially proportional to 1/HE—1/2), we collect carefully all
condensation occurs. But even with this correction, the reterms proportional td—IZR— 1/2 in Eq.(3.4) and find
sulting approximation is still not satisfactory, in comparison ) )
with numerical computations. In what follows we derive an  (HZ—1/2)(L—21)/¢é=2ygcn+ (H3—1/2)[V2+0(1)]
accurate analytic approximation for large e
i i +0(e” 24 (3.9
We start from the exact condition for capillary condensa- '

tion whereo(1) vanishes foHz—1/2. A summary of the deri-
_ vation is given in the Appendix. The lhs features the net cost
YPW™ Yeap: (3.4 of expelling the magnetic field, while the first term on the rhs

The magnetic field terms in these free energies lead to corfiVesS the COStdOf Ta\iinb% two lSN/ ir|1|terf_ace;]s. Especially
tributions 2H2l/¢ andH3L/¢, respectively, as is seen from Interesting, and calculable analytically, is the correction to

the set of equation€2.4—(2.7). In the limit L—c, the cap- the surface ten5|onI-(R—1/2)\/§, appearing as the second

illary condensation fieldH  approaches the bulk coexistence €M in the rhs. Precisely in view of the slow divergence of
field Hg = 1/y2, and the prewetting layer thicknesgli- th_ls contribution is ngm_encally significant |n_comb|nat|on
verges. but very slowly. To see this in detail, we work OutWlth the lhs. Taking it into account greatly improves the

the integral and obtain the magnetic-field dependende of accuracy of the approximation. . . .
The surface tension correction has an interesting physical

interpretation. In the complete wetting regime at bulk two-
l(Hp)/ &= im +1,/E+0(2). (3.5 phase coexistence a superconducting/normal pGnhter-
V2 HEZ-112 face constrainedat a distancé from the surface has a free
energy(per unit areathat is higher than that of aequilib-
The divergence is only logarithmic, so that the constané  rium interface(infinitely) far away from the surface, by an
is an important correction for numerical purposes. Furtheramount which is given by the so-called interface potential
more, it is the only important correction, since we verifiedv(l). This excess free energy is known exactly in #e0
that the remainder is insignificant, up untiH3—1/2  limit,° and we are concerned here with the tail\afl) for
=0(1). Weremark that the upper spinodal of the prewettinglarge I, given by V(I)x exp(— ﬁ|/§)_ Therefore, the free
transition occurs aH§=[1+(§/b)2]2/2. The remainder is energy cost of a constrained interface is easily found, by
indicated byo(1), which signifies that it goes to zero as inserting the logarithmic divergens.5), to be proportional
H&—1/2. Numerically these terms are found to vanish aso HZ—1/2. Thus we arrive at the interpretation that the sur-
HZ—1/2, or H&— 1/2)IM1/(H3—1/2)]. face tension correction is due to the interaction or “interfer-
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ence” of the interface with the surface, which in the broadertinue to use the terminology “capillary condensation” and
context of confined interfaces is often referred to as entropi¢prewetting” in the same sense as in the previous subsec-

repulsion®3

tions.

In the same spirit, a correction is present for the capillary Before discussing the free energies we examine how
condensed superconducting state, relative to a supercondutiehaves when the field is turned to zero. A simple rescal-

ing state with infinite surface separatibnThis correction is

ing in Eq.(3.13 suffices to extract the leading term

due to the interaction between the surfaces bounding the

film, and also decays exponentially with separation. How-

ever, since the distance is ndwinstead ofl, this contribu-
tion is of order exp{\2L/¢&), which is negligible for our
purposegsee the Appendix for deta)ls

In conclusion, in the complete wetting regime the finite-
size shift of the transition to superconductivity has the sam

asymptotic scaling behavittg—Hg ;> 1/L as in the partial

wetting regime, but quantitatively must be shortened by

twice the wetting layer thickneds and an effective further
correction/2¢ must be subtracted frorh in order to take
into account the distortion of the two constrained BGnh-
terfaces.

C. T=T,: the bulk critical isotherm

The finite-size scaling properties of the transition to film
superconductivity aff; are interesting and merit a separate
study, since they invokaniversalquantities associated with
the bulk critical point. AtT=T, the zero-field coherence
length is infinite, and we cannot use it as the unit of length.
Instead we uséb|. The wave function must also be rescaled,

because the normalizatiop,, =1 is inconvenient aff..

Simple universal GL equations result when we rescale

—(&/|bl)x, ¢—(&l|bl)y=¢, Hr—(é/b)’*Hr=hg. The
ratio H/Hp, is invariant and equalg2hg(&/b)3 .
The GL equation now reads

p=¢° (3.9
and the boundary conditions take the form
$(0)=—¢(0), (3.10
G(L/[b])=(LI|b]).
Writing the first integral of Eq(3.9) as
$?=d*2+c (3.11)
we obtain for the film thickness,
¢’ca;{o)
L:2|b|f do(p*2+c) Y2, (3.12
Pm

With ¢m=(—2¢)"* and ¢e,0)?=1+(1-2c)*2 For L
—o0, ¢ approaches zero from below amfg, vanishes. For

|/|b|~h§1’2f dx(1+x%2)"2~2.2048%5 2.
0
(3.14

This power-law divergence is much faster than the logarith-

gnic behavior found in the prewetting regime beldy, ap-

proaching bulk two-phase coexistence. Experimentally, this
implies that the diamagnetic response due to the surface su-
perconducting sheath may be easier to detect when lowering
HatT=T, than atT<T,.

A similar reasoning leads to a simple relation betwéen
andc, in the thick film limit

L/|b|~(— c)‘1’425’4fxdx(x4— 1)"Y2 (3.19
1

The integral equals 1.31103. So we conclude t{at) de-
cays as a power law, in contrast with the exponential decay
seen in the Appendix, EqA12).

We now turn to the free energies. For capillary condensed
states at bulkT,

bcad0)
Yeap= 2 L ‘ dop(hi— ¢*2)(¢p*2+¢) Y2 (3.1

while for prewetting states,

Yew=2 J ;PMO)d d(h3— ¢*2)(p*2+h3) 2
(3.17

Working out the conditionypy= 7.4y for capillary con-
densation we find

(3.18

Using Eq.(3.14 we see that the second term in the lhs is of
orderh‘g’z. The first term on the rhs is the surface free energy
cost of constraininga surface sheath &=0 andT=T, to
terminate atx=1/|b| instead of assuming its equilibrium
power-law decay¢(x)ec1/x. This power-law decay is the
analog of “critical adsorption” for fluids:* Analytic calcu-
lation gives

hé(l—_ 21)/|b|= Sypw— 0Ycap:

Sypw=h3%2 f :dxxz[l— (1+2x% 712, (3.19

the thickness of the superconducting surface sheath we havde integral equals 1.03939. The constrained surface sheath

|=1b| f:mo)d¢(¢4/2+ h2)~ 12 (3.13

with ¢py(0)?=1+(1—2h3)*2
We remark that, although'=T,. marks the terminus of

can be interpreted as a constrained interface interacting with
the surface. This interpretation is quite unconventional in this
case, since an equilibrium interface does not exist at bulk
T.. Nevertheless, assuming the existence of an interface po-
tential V(I) for the constrained interface leads us to infer
V(1)=1~3, in view of Egs.(3.14 and(3.19. The exponent

bulk two-phase coexistence, two-phase coexistence for the 3 is reminiscent of finite-size interactions at bulk criticality
mesoscopic film continues to exist. Therefore, we will con-and will show up again in the next paragraph. Incidentally,
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note thatdypy>0, corresponding to repulsion between the We start, as usual, from Ed3.4). The magnetic field
surface and the constrained interfdtanlike” surfaces re- terms again lead to the net free energy contribution
pel). H2(L/é—21/£). The prewetting layer thicknedshas a dif-
The second correctiofy., is the finite-size interference ferent interpretation than foF<T.. AboveT, no thick wet-
free energy between the two surfaces at separatibound-  ting layer can develop, since the infinite system consists of a
ing the film, in the superconducting state at bllkand in  single normal phase only. Sbjust measures the extent of
zero field. This interference is akin to the generalized Capenetration into the bulk of thiil of the surface supercon-
simir effect’>® Analytic calculation gives ducting sheath. As the field goes to zero the superconduct-
ing wave function no longer vanishesxat1/¢ but decays

 en sl [ ) a1 exponentially as a function of the distangdrom the sur-
8YVeap= —27(—C) L dep¢=(1—1/¢%) face, so that, mathematicallydiverges although physically
the penetration is of short range only.
% ) To see howl behaves abovd@., we employ Eq.(2.5
- fo dée ) (820 with the + sign. We obtain

The integrals add up to 0.43701. Converting the I(Hg)/ €= In i+|2/§+0(1)' (3.23
|c|-dependence into ah dependence, using E¢3.15 we Hr

observe that the finite-size interaction is attracti/kke”
surfaces attragtand decays in the manner 3. We scruti-
nize this generalized Casimir effect for superconductors an
the associated universal exponents and amplitudes

This is similar to Eq.{3.5. The constant,/¢ can be calcu-
hated analytically, with the result

% 44(0)
elsewheré. l,/é=In ————. (3.29
Returning now to Eq(3.18 we see by simple inspection 1+V1+4(0)%/2

that hgL ™2, and that all the leading corrections we ex- S
tracted are of the same order °. We are therefore left with  The value ofy/(0) here corresponds to the zero-field limit,
the simple problem of solving for the amplitudein the  and is determined througf(0)“=2[ — 1+ (&/b)“]. Typical

asymptotic behavior values ofl,/¢ are of order 1. For example, fofé/b=
—21,/16~1.184. However, |,/¢ approaches zero and
hg~A(L/|b])~2. (3.2)  changes sign a&/|b| is decreased to about 1.07, not far from

the surface critical poinTs.
Numerical solution give#\~36.2869. The fact that the ex- The geometrical interpretation bf/ ¢ is similar to that of
ponent ofL equals—2 is linked to the fact that the mean- 1,/¢ discussed previously fof<T.. To a first approxima-
field value of the critical exponenty, is 1/2. This exponent tion we can identify
describes the divergence of the field-dependent coherence
length&(hg) along the bulk critical isotherm approaching the I, /é~1(HR2)/&, (3.29

bulk critical point with Hg,=1. This is reasonable. For instance, b=

- =2, 1,/16€=1.184 whilel(Hg,)/£{=1.381. So we arrive at
&(hg)hg ™. 322 ihe interpretation thdt, /¢ corresponds to the thickness of a
thin surface sheath in a finite fiel@of reduced strength
unity). This interpretation can only be used as long as the
(reduced spinodal field exceeds 1. The spinodal line for
prewetting states abové, is determined byHr=[(£/b)?

A numerical computation of the finite-size shift of the g/ﬁg{ﬁ:;ih?ﬁ%ﬁggﬁgin%ﬁ('i? i?aEk(; s(;ggszpz;segggtoas

critical field at bulk T, supports the analytic leading result A 2 :
(3.21) and suggests that the next-to-leading term is of orde\r/amSh in the mannekz In(1Hg) as follows from numerical

3 . - _ inspection.
(L/|b|).  implying Sl.OW convergence. Fau/[b| .10 the We now return to the condition for capillary condensa-
correction to the leading term is about 31%, whileLatb| : : _
T tion, which can be written as
=100 the correction is about 3.7%.

The transition to superconductivity for the film occurs when
¢(hg)~L, whence Eq(3.21). The sense in whichniversal-

ity holds is governed here by the validity of mean-field
theory for classical superconductors.

H2(L—21)/é= %ap(o)d AP+ g2+ C) 12
D. T.<T<T(L): the bulk supercritical region R &= y A
m

Even thoughl'>T,, in this regime we still find a compe-

0
tition between prewettinglike states and capillary condensa- - fwPW( )d¢,/,4( PP+ A2+ HE) 12
tion. The main difference with respect to the prewetting re- 0

gion below T is that an equilibrium SQ\ interface and (3.26

hence also its surface tension no longer exist. Therefore, the

main modification to Eq(3.8) is that the first term on the rhs with ~ y2=—1+(1-2C)*, 4, f0)?= —1+(&/b)?

is absent folT>T.. Furthermore, since the critical field is +{[— 1+ (&/b)?]2—2C}*2, and ¢py(0)?>=—1+(&/b)?
zero, the combinatioi2—1/2 simplifies toHZ. The other  +{[— 1+ (&/b)?]>—2H3}Y2 The two integrals can be stud-
modifications to Eq(3.8) will now be studied in detail. ied fairly easily, since expanding in the small parameﬂaﬁs
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or |C| poses no problems regarding the exchange of differ- IV. CRITICAL-POINT SHIFT IN ZERO FIELD
entiation and integration, in contrast with the caseT,.

. . ) . . In zero magnetic field the transition to superconductivity
We find analyt_lcally that the |2ntegrals are, In leading orQer,iS of second order and can be calculated using the linearized
simply proportional toC andHg, respectively. The result is

GL equation. This can be seen by calculating, in the presence
2 g2 of a magnetic field, the location of the tricritical point where

HR(L—2D)/E=Hgl1+o(1)]-Cl[1+0(1)], (3.27 the ordegr of the transition changes from secondrio first order,

where the two term®(1) vanish in the limitsHg—0 and as the field is increased. Furthermore, in zero field the de-
C—0, respectively. pendence on the GL parametedrops out so that the results

We are thus left with the final task of determining the are valid for all classical superconductors, regardless of their

dependenc€(L). This can also be done analytically, start- type. We study three different geometries: planar slab, cylin-

ing from Eq.(2.4). In the limit C—0, with C<0, we readily  drical wire, and spherical grain. For each geometry we cal-

find the leading behavior culate the critical temperature as a function of the thickness
(or diameter of the mesoscopic system with surface en-
L/é=In(—1/C)+L,/é+0(1) (3.28 hancement of superconductivity.

The constant is given by the expression
A. Planar film

E:2|2/§, (3.29 For the planar sample, a slab or film with two parallel

£ surfaces, we allow in general a different enhancement on
with 1,/& as given in Eq.(3.24. This quantity varies €ach surface. Thus we assume two surface extrapolation
smoothly between-« for ¢/b=—1 (surface critical point lengthsb; and b,. Scaling all lengths with the zero-field
T.o and the value 5 In23.466 foré/b— —o (bulk critical ~ coherence length leads to the GL equation
point T;). It changes sign at “temperaturef/b~ —1.064.

The remainden(1) is numerically found to be proportional y==y (4.
to CIn(—1/C). with boundary conditions

Inverting Eq.(3.28 to getC(L) we arrive at the follow-
ing conclusion, which is the counterpart of £g.8) for tem- $(0)=(&/by) (0),

peratures above., .
p(L1&)=—(&/b) h(L1E). (4.2

Since we are interested mostly in enhancing superconductiv-
fty (b<0) we are concerned witfi=T,, corresponding to

HA(L—21)/é=H3[1+0(1)]+e2/e "¢ (3.30
which implies an exponentially fast decrease of the field as
function ofL or, equivalently, a logarithmic divergence lof the + sign in the rhs of Eq(4.1).

as a function of Hg. This is in sharp contrast with th? Solving these equations leads to the following relation
simple power law found for the usual capillary condensationyeqcriping the onset anucleationcondition for supercon-

below T . o ductivity in the film
Since nowl andL behave essentially in the same manner
(logarithmig as a function of M, we investigate numeri- 1+ &by \ [ 1+ &lb, .y
cally the interesting differencé —2I, in the limit H—O0. 1—¢&ib,)\ 1—¢&ib, =e 2% 4.3

Using EQgs.(3.23, (3.28 and taking advantage of the equal-
ity (3.29, we find that the constants cancel and we are lefConsidering the extrapolation lengths as material constants
with imposed by the sample preparatidmechanical surface
treatment, physical surface deposition technique, or chemical
(L—21)/¢~ In(—HZ/C). (3.3)  modification such as oxidation, et¢he temperature depen-
N dence is contained in the variakjeln order to obtain direct
On the other hand, Ed3.30 implies estimates of the finite-size shift of the film critical point, we

L/g—21/é—1~ —C/Hﬁ. (3.32 fo.cu's on the following particular cases: similar surfaces and
dissimilar surfaces.
In combination with the previous result the differende Similar surfacesin this case we assume, for simplicity,
=(L—2l)/¢ must solve the equation b,=b,=b and b<0. We can then work out Eq4.3 to

obtain the critical film thicknesk/|b| as a function of tem-

A=1In (3.33 perature

A-1"
L & 1+&|b|

Numerically, this gives\ ~1.2785. In conclusion, the differ- o]~ Tol nm, (4.4
encel —2I converges to dinite length, as we follow the
capillary condensation transition into the asymptotic regimevalid for b<<0 and &/|b|<1 only. This remarkable relation
L—oo. We have verified this analytic result numerically, and describes the increase of the film critical temperafly@.)
the agreement is very good for sufficiently largeFor in-  upon reduction of the film thickneds It is graphically rep-
stance, fore/b=—1.5, A is reproduced to 4 digits if we take resented in Fig. 4. Sincg|b|«=|T—T 2 and the surface
L/|b|=20. Foré&/b=—2 we achieve similar accuracy taking critical point of the semi-infinite systerfwith a single sur-
L/|b|=25. face lies atT.>T, such thaté(T.)/b=—1, relation(4.4)
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The increase off (L) upon reduction of the film thick-
ness is analogous to an effect that has been uncovered in the
context of twinning-plane superconductivhCertain mate-
rials (Sn and Nb display enhancement of superconductivity
near an internal twinning plane. In a situation with closely
CYLINDER spaced twinning planes, the enclosed slab of material expe-
riences a transition to superconductivity Bi{L) given by
the same relation as E¢.4). Twinning-plane superconduc-
tivity is a special phenomenon. We would like to emphasize
that the increase o (L) due to confinement is a more
general phenomenon and occurs for thin films with surface
enhancement, regardless of the precise microscopic origin of
t ' the enhancement.

t o \ . . . . Dissimilar surfacesAs a first concrete example, we con-
0 1 5 3 4 5 5 sider enhancement on one surface only and assume that the
other surface corresponds to a direct contact with vacuum or
L/Ibf or 2R/|b] an insulator. We takd;<0 andb,=. In this case the
increase ofT (L) still follows a law similar to Eq(4.4) but

FIG. 4. Increase of the critical temperature as a function of theto obtain the same transition temperature increase a further
thickness or diameter of mesoscopic superconductors with surfaddm thickness reduction by a factor of 2 is required,
enhancement. The temperature variable 1is(L)=[T.(L)

—T.)/[T(e°) —T.], whereL is the film thickness, to be replaced by L & 1+ §/|b|

2R for cylinders or sphered () equals the surface critical tem- == N -

peratureT . of a semi-infinite sample, and exce€lls. The impor- bl 2[b] " 1-¢/|b|

tant difference between curved and planar surfaces is the long-range

(algebraig decay of the critical-point shift for large radius. In a second example we make the second surface unfa-
vorable to superconductivity by introducing suppression of

predicts thaff,(L)>T.s. A convenient temperature variable the wave function by assumirig,>0 andb,>|b,|. Physi-

for our purposes ib?/ &= (T—T.)/(T.s— T.), which we de- ~ cally, this corresponds to direct contact with a normal metal.

note byt (see Fig. 4 With this notationf.=0 andt..=1,as The two surfaces are now in competition and the increase of

10
t(L)

FILM
t(R)

SPHERE

4.9

in previous sections. T.(L) with decreasing film thickness qualitatively still be-
Equation(4.4) can be written in more compact form if we haves as in Fig. 4, but becomes progressively weakbs &s
express the film thickness &s¢, decreased. The enhancement effect is lost in the antisymmet-
ric limit b,— —b;.
£ L
b _tanh2§ 4.5 B. Cylindrical wire

but we remark that sample size and temperature are mixed For the case of axial symmetry we adopt cylindrical co-
when using the variablé/£. We distinguish two regimes: ordinates and write the linearized GL equation in zero exter-
the macroscopic regimes ¢, and the microscopic regime nal field in the familiar Schrdinger equation form

L<¢. In between is the mesoscopic rarge &. In the mac-

roscopic limit(4.5) gives the critical-point shift K2 (1 J ( (9,/,) 1 6%y (921[;)
—— ==t =—+—|=—«
glb=—1+2e /¢ 4.6 2mirorl ar) r2a¢® oz
(4.10
or, using the definition=b?/£2,
The coherence length and thus the temperature is related to
t(L)=1+4e ¢ (4.7  the “energy” — « through#?2/2m|a|= &2, with m twice the

electron mass. The boundary condition on the cylinder sur-
Clearly, for L—«, while keeping the coherence length face, atr =R, reads
finite, the ratio&/b converges exponentially fast tol. This
signifies thatT.(L) decreases toward$.s. In contrast, Y W(R)
simple finite-size scaling ideas would suggest tiiafL) o ST (411
converge to the bull .. This is not the case for our system, r=R
and therefore the finite-size shift in zero fieldasomalous
For microscopically small thicknesseds<¢) the increase
of the critical temperature follows the power law

with b<<0 for surface enhancement of superconductivity.
Solutions are of the formy(r, ¢,z)=1f(r)e" ?e’*%. Since
we are looking for the lowest “energy,” we can skt0
t.(L)~2|bl/L. 4.9 and_l_=0. Indeed, fonk;to_ the enzergy simply increases by a
positive amount proportional tk“. Also, for |#0, the en-
Of course, the achievement of very small thicknesse®d-  ergy is strictly greater than fdr=0. This is due to the strict
micron to nanometer ranges subject to practical limita- positivity of the angular momentum contribution, in combi-
tions. nation with Ritz' theorem
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e _ () _ GnlHol ) | (wilLar2melygy) ¢l|b| =coth R/&) — ¢/R (4.18
" (il (thlvn) (thlth) which results in an increase @f,(R) upon a reduction of
R/|b| shown in Fig. 4. The effect is stronger yet for spheres
(lHolth) _ (%olHol o) E,. (412  than for cylinders.
() (ol o) The asymptotic critical-point shift for largR is algebraic

HereH, is the first term of the Hamiltonian, associated with
the radial kinetic energy. The scalar product is defined on the &/[b|~1-¢/R (4.19

supportr e[ O,R] for functions that satisfy the boundary con- jmplying T (R) — T, 1/R as for cylinders, but with an am-
dition (4.11). Note that this boundary condition drives the pjityde larger by a factor of 2. Note that the mean curvature
ground state energy negative, corresponding to tunnelingjffers from that of the cylinder by the same factor. The

states with negative kinetic energy. Note that the temperaturgftect of confinement is therefore most pronounced for me-
for onset of superconductivity lies abollg, sincea>0 in  goscopic spherical grains.

the ground state. o . Finally, in the microscopic limiR< ¢ we find
After rescalingr by ¢, it is easily seen that the ground
state eigenfunction is the modified Bessel functig(r/¢&), t.(R)~3|b|/R. (4.20

which has the shape of a “hammock” with a smooth mini- ) ) ) )
mum on the cylinder axis and a maximum on the Surfaceﬁecapltulatlng, we find that for cylinders and spheres the

Application of the boundary condition leads to the nucleationincréase off(R) is qualitativelystronger than that of (L)
condition for films, in view of the 1R, or “curvature” dependence of

the critical-point shift.

& 1L(RIY »
bl 14(R/I&)" 4.13 D. Comparison between spherical and cubic grains
If we make the identificatioh. =2R we can compare this N going from a planar film to a cylindrical wire and a

critical-point shift for the cylindrical wire with that of the SPherical grain the effective dimensionality of the system is
thin film. This is done in Fig. 4, with agait=b?/£2. Note reduced from 2 to 1 and O, respectively. An alternative way
that t is plotted versus R/|b| instead of R/ With this of reducing the dimensiona!ity is togo frpm a planar film to
choice of variables it is understood tHats afixedmaterial & réctangular rod and a cubic grain. In this case, however, the

constant, so that Fig. 4 presents a temperature versus diafirface is not smoothly curved, but displays strong geometric
eter diagram. singularities in the form of sharp edges and corners. In this

It is obvious that the increase @t, for cylinders is stron- subsection we calculate the critical-point shift for rectangular

ger than for films. This is seen dramatically in the experi-Sample topology. o _
mentally most relevant asymptotic regime of large radius, Consider a hypercube in dimensions §=1,2 or 3 of

R> ¢, for which we obtain the power law sizeL" and extend the system infinitely in the remaining 3
—n dimensions. The choice=1 reproduces the case of the

& 3 planar film,n=2 the rod with square cross-section amd
m“l_ 2R’ (4.14 =3 the cubic grain. Note that the effective dimensionality is

o ) o ) . d=3-—n. The GL equation in zero field takes the form
This implies a slowly decayinglgebraic critical-point shift
hZ
to(R)~1+¢/R, (4.15 —=—Ay=—ay (4.2)

so thatT,(R) —T.s<1/R, in contrast with the exponential

decay found for the film. with >0 since T>T,;. The boundary conditions on the

On the other hand, for small radiR< ¢, we obtain faces of the hypercube read
t.(R)~2|b|/R (4.16 M P(x=0)
which is similar to Eq.(4.8). Mily—o D
C. Spherical grain j_’r/’ _ ‘//(Xib:L) ’ 4.22
Using similar arguments as for the cylinder one sees that Xi x=L
in zero field it suffices to work with the radial wave function, herei = 1 db
which satisfies the differential equation wherer=2,....nan =<0. . : N
The technique of separation of variables leads in this case
721 2 to the exact ground state, since, as we shall show, the wave
~3mT oz rf)=—af (4.17  function has no nodes. Thus we assume the product form
ar
(i) =TI 1 fi(%)). (4.23

with the same boundary conditigd.11) but now applicable
to the surface of the sphere. Writing=rf and usingu(0) Solutions to Eq(4.21) are of the form

=0, we findu(r)e sinh¢/¢). Application of the boundary

condition then leads to the nucleation condition fi(x)=AeN/éi+Be X't (4.249
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The decay lengthg; satisfy the constraint

CAPILLARY
CONDENSATION

d
Zl & 2=¢2=2malh?. (4.25

Imposing the boundary conditions leads to the equations BULK N

L |1+&ib)
&i 1-&/|b|

In order for the wave function to possess no nodes, and
therefore to correspond to the exact ground state of the
Schralinger problem equivalent to our system of equations,
it is necessary to consider only the solutions for which 0 " TR i
& /|b|<1. Furthermore, for a given ratio/|b| this solution ° t 0 Fss3
is nondegenerate and isotropic, so that

, i=1,...n (4.26

=1n
BULK SC
PREWETTING

FS82

FIG. 5. Finite-size scalingFSS of the capillary condensation

g=¢&Vd, i=1,...n (4.27)  transition at«=0 illustrated for a thick film, withL/|b|=20. See
also Fig. 1 for comparison. The arrows FSS1 show the algebraic
The critical-point shift forL> ¢ is now given by shift of order 1L between the film transition and the bulk transition,
in the partial wetting regiméno surface sheaths interven&SS2
tC(L)%n(1+267L’(§"ﬁ)). (4.28 indicates the similar shift in the complete wetting regirvéth

surface sheaths induced by the prewetting transitiéor T> T, the
The exponential decay of the shift,(L)—T(c) turns out  exponentially small shift is apparefESS3 and clarifies how the
to be characteristic for rectangular geometry, in contrast With;api”ary condensation line eventually converges, for ldrgéo a
the power-law decay for curved surfaces. Moreover, sinc@orner shape or “dog leg” consisting of the bulk coexistence line
the condition¢;/b=—1 differs from the conditioné/b= supplemented with the segmdiit, ,T.s] on the temperature axis.
—1, the temperature of onset of superconductivity in the
thermodynamic limil. — o> depends om in rectangular ge-

. effects on the various phase transitions involved.
ometry. We find

We have scrutinized the anomalous critical-point shift in
to(0) = (Te(®) = T (Tee—Teo) =N, (4.29 mes_oscopic samples .il’.l zero field, and the ;tandgrd finite-size
scaling for the transition to superconductivity in nonzero
with T, the surface critical temperature for a single planarmagnetic field. The critical-point shift in zero field is anoma-
surface(in a semi-infinite system lous in the sense that.(L) or T.(R) converges tdT ()

It is a paradox that the transition temperature in the ther=T_ instead ofT.. Standard finite-size scaling would have
modynamic limitL — <o depends on the shape of the sample predictedT () =T,.. However, in a fixed nonzero magnetic
However, after some reflection it is clear that in this limit the field H, no matter how small, the transition temperature in
onset of superconductivity is limited to the vicinity of the the limit L— (or R— =) converges to the temperature as-
surface(for n=1), the vicinity of the wedge where two sur- sociated with the bulk critical fielti ;.= H. In other words, in
faces meet at right angléfor n=2) and the vicinity of the  nonzero field the bulk two-phase coexistence line is fully
corners(for n=3), where superconductivity is strongly en- restored in the macroscopic or “thermodynamic” limit.
hanced. Away from these boundaries, in the interior of the The anomaly is thus confined to the temperature segment
system, very little superconductivity should be expected jusfT, T..] in vanishing field. This segment becomes part of
below T(>). Therefore, from a physical point of view, the the two-phase coexistence line in the limit of large thickness
fact that Tc(«)>T, reflects boundary superconductivity or diameter of the sample. As a result, the capillary conden-
rather than bulk superconductivity. sation line displays a corner or bend in the vicinity af (

In the microscopic limit [ <¢) we obtain =T.,H=0). How this corner develops can be seen in Fig. 5,

which shows the phase diagram fof|b|=20. Comparing

te(L)~2n|b|/L (4.30  this with Fig. 1, which corresponds tio/|b|=8 we notice
which corresponds well to the results for the curved surfacedhat the capillary condensation line approaches the bulk co-
if, as usual, we make the identificatian=2R. existence line in nonzero field, but the supercritical tempera-
ture segment remains part of the capillary condensation line.

We have indicated by FSS1 the finite-size shift of the
capillary condensation transition in the partial wetting re-

In this paper we have established a close analogy betweeagime. Likewise, FSS2 refers to the finite-size shift in the
capillary condensation in fluids and the transition from sur-complete wetting regime, and FSS3 marks the shift in the
face superconductivity to mesoscopic sample supercondusupercritical region. These shifts obey the analytical laws
tivity. Furthermore, the interplay between capillary conden-derived in Sec. lIl. For this large value &f |b| the critical-
sation, prewetting and wetting, has been studied irpoint shiftin zero field is sgexponentially small thatT (L)
superconductors which display an interface delocalizatiompractically coincides withl ;.
transition. In the limit of strongly type-lI superconductors a The significance of the zero-field critical temperature in
full analytic description has been given for the finite-sizethe macroscopic limif .(«2) must be considered with care.

V. CONCLUSIONS
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For planar, cylindrical and spherical geometry (=) type-Il superconductors alike. In our opinion the results con-
=T.. This implies that for asymptotically flat surfaces cerning the increase of, are possibly also relevant for
(with vanishing curvature everywheresuperconductivity —surface-enhanced high: superconductors. The reason for
starts near the surface. For macroscopic cubes, however, siins belief is that in at least two experiments surface enhance-
perconductivity can start at high@rbecause it nucleates first ment was found in high-, materials. Fangt al. measured
in wedges and corners. This is why, for square rods andn increase ofT, of several degreeX in macroscopic
cubes, T () is progressively increased. This apparent in-YBaCuO samples with twinning plané$and Schwartzkopf
crease ofT. in the macroscopic limit disappears when theet al. in HoBaCuO*® Abrikosov and Buzdiff invoked the
sharp edges are fully rounded. In the mesoscopic and micra@sL theory with the same boundary conditir< 0, to de-
scopic regimes smoothing of corners or other asperities iscribe this phenomenon.
irrelevant, since shape details are then small relative to the In a future publication we intend to report on calculations
scale of¢ and cannot be “resolved.” The critical tempera- of global H-T phase diagrams fok>0. In addition to the
ture is then independent of the details of the shape of théatures we have discussed in this paper, second-order tran-
sample. sition lines and tricritical points appear. Also, the film vortex
From a more practical point of view our most noteworthy phase becomes stable in a small region of the phase diagram,
result is the significant increase af.(R) for mesoscopic and gains importance asis increased.
cylindrical or spherical superconductors with surface en-
hancement. The main asymptotic relation betwe(R)

. . : ACKNOWLEDGMENTS
and the sample radius can be summarized in the form, to
leading order in R, We thank Francis Peeters and Todor Mishonov for
stimulating discussions, and Ralf Blossey and Harvey Dobbs
t~1+2c¢, (5.1)  for comments on the manuscript. This research was sup-

ported by the Flemish FWO Project No. G.0277.97 and by
where t=(b/&)2=[T(R)—T.)/(Tes—Tc), and c=(1/R; the Inter-University Attraction Poles and the Concerted Ac-
+1/R,)/2 is the mean curvature. For cylindecss 1/2R. For  tion Program.
spheresc=1/R.

We illustrate the theoretically predicted increasel gy
means of a numerical example based on(thd) results of
Fink and Joinet for a surface-enhanced (g dBig oo7 foil,
with T.~3.5 K, and k~0.37. After cold working of the In this appendix we are concerned with the derivation of
sample surface the critical temperature increasedl{9 Eq. (3.8). The starting point is the condition for capillary
=T.+0.02 K. An order of magnitude estimate suffices, socondensationypy,= ycap. This is worked out as follows:
we take a typical value for the coherence length amplitude,

APPENDIX: CAPILLARY CONDENSATION
APPROACHING COMPLETE WETTING

£~1000 A and obtaing(T.d=&y(Tes/Tc—1) ¥2~1.3 =9 C(H2—1/2)(L—21)/
um. Sinceb=— £(T.) we obtain thaib| is of the order of vew™ Yeap~ 2¥sen~ (Hr=1/2)( e
a micron. + 8Ypw— Ycap (A1)

This estimate allows us to predict the further increase of

T, due to confinement. For example, for a thin film of thick-  The term Sypy represents the free energy of two con-

nessL.=10um of the same alloy the predictdd(L) onthe  girained wetting layers minus that of two equilibrium wetting

is imperceptible for this thickness. Reducing the thickness
further toL=1 um we obtainT (L)=T.+0.05 K and for

_ - _ : A— P2
L=0.1 um we findT(L)=T,+ 0.41 K. Now, changing the

geometry from planar to cylindrical or spherical the increase J(yAB)= \/m (A2)
of T, is more striking. For example, for a spherical grain of
diameter 10um of the same material, Eq4.15 predicts we obtain
T(R)=T,+0.03 K. For R=1 um we obtainT,(R)=T,
+0.13 K, and for R=0.1 um we getT,(R)=T.+1.21 JoulO) 0)
K=4.71 K. - . 2y _ .
We would like to stress that cold working of the sample oew ZJo dyd(yiLi2HR) zfo dyd(y;1/2,113.
surface is only one of the possible surface treatments that can (A3)

lead to surface enhancement of the superconducting order
parameter. In modern experiments deposition of a thin layefhe fact that the argumet of the functionJ equals 1/2 in
(of thickness less than the coherence lehgthn be per- both terms signifies thatlg is set equal tdHg .. The con-
formed in a clean, controlled and reproducible way. Thisstraint is imposed by setting the arguméhitequal toHZ
layer affects the boundary condition, and measurement of the-1/2 in the first term only, so that the constrained layer has
critical temperature in zero field is sufficient to establish thethe same thickness and profile as an equilibrium layer in a
sign and, forb<0, also the magnitude of the surface ex-field Hg. For more details on the physics of constrained
trapolation lengthb. surface sheaths, we refer to Ref. 9.

Further, our results for zero magnetic field are indepen- The terméy.,,represents the free energy of the capillary
dent of the GL parametex and thus apply to type-l and condensed state minusyg, sc,
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cad0) #(0) o -
5ycap=2J o d¢J(¢;1/2,C)—2f dyd( 12,112, 5 :f dZL_( fﬂf“’“” 1)dX2_X
1 antisym 2 202
¥m (Ad) 0o (1+42) o Jo (4—x9)
(A9)
where C=C(L) is the “constant” in the first integral for o
superconducting film state@.3). which is elementary to evaluate.
We now examine the calculatlon of these terms, and begin The final result is
with Sypy. We definee= H —1/2 and consider an expan-
sion to first order ire. The first contribution comes from the Sypw=\2€+0(e). (A10)

e-dependent upper limit of the integral. Explicitly,
The correctiorn(e) goes to zero faster than in the manner

Ypw(0)2=1+ (&/b)%+ J[1+(&/b)?]°— (1 + 2e). ae’log(1/e), according to numerical computations. For ex-
(A5) ample, foré/b=—1 we obtaina~0.26. It is interesting to
For e—0, /,,(0) reduces tay(0). Thesecond contribution note that the leading-order term is independeng(), and

comes from thes dependence of the integraddy;1/2 HR) thuvsvindependent Orf] the “remperz;ure” \friak]?éo.
After some elementary algebra, we find to first order e now turn to the evaluation @ycay. As a first step we

examine the dependencg(L) for capillary condensation

SYpw P(0)%+1 states more closely. For this it suffices to study the leading

= terms inL/¢ for C—1/2 from below. Using Eq(2.4), to-

V2e  20(0)[¥(0)*~ 1~ (&/b)’] gether with the relationsy,=[1+(1—2C)¥?*2 and

#(0) W2 zﬂcap(O)2=1+(§/b)2+{[1+(g/b)Z]Z_zc}UZ, we obtain

+ lim f f ) (A6)  after some algebra,
€0 (1 W
The evaluation of the limit must be done carefully. We E: i|n ! +D+o0(1), (A11)
have separated the integrand into a symmetric and an anti- 3 \/— 172-C

symmetric partwith respect togy=1). The symmetric part,

which contains the dominant singularity proportional towhereo(1) denotes terms that vanish fGr— 1/2. We veri-
1/(—1)?, is largely canceled by subtracting the integrals. Infied numerically that the constam is typically of order
the part that remains one may safely set0 and the result unity and depends o&/'b. This result implies théexpected

is the contribution, withx=—1, exponential decay of(L) for largelL,
1 8—2x%+x* _ —\2LIg
S f dx (A7) (1/2-C)=e ¢, (A12)
W0)-1  x*(4—x2)?

which is simple to evaluate. In the antisymmetric part, hOW_thaItnf:r (s:eacon:jo;t;?nwilgnd, using numerical computation,
ever, one may not exchange the linait>0 with the integra- PP 9 e,
tion. One must calculate

11
0)—-1 ~——| = —
antlsym lim J fl/l( " ) 57’cap \/E( 2 C) (A13)
e—0
5 so that the finite-size correction for the surface free energy of
< dx 2eX—2x _ the capillary condensed profile decays exponentially rapidly
€2+ 8ex?+ 2ex*+ 16x4—8x8+x8 with the thickness of the film, in view of EgA12). The fact

that dycqp is Negative expresses the lowering of the free en-
(A8) ergy of the superconducting film by confinement. This is a
This leads to two contributions, associated with the twomanifestation of the fairly general observation that “like”
terms in the numerator of the integrand. The result is, withsurfaces attract each otténn contrast,8ypy>0, reflecting
z=x%/¢, the repulsion between the SC/nterface and the surface.
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