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Effects of confinement and surface enhancement on superconductivity
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~Received 23 June 2000!

Within the Ginzburg-Landau approach a theoretical study is performed on the effects of confinement on the
transition to superconductivity for type-I and type-II materials with surface enhancement. The superconducting
order parameter is characterized by a negative surface extrapolation lengthb. This leads to an increase of the
critical field Hc3 and to a surface critical temperature in zero fieldTcs , which exceeds the bulkTc . When the
sample ismesoscopicof linear sizeL the surface induces superconductivity in the interior forT,Tc(L), with
Tc(L).Tcs . In analogy with adsorbed fluids, superconductivity in thin films of type-I materials is akin to
capillary condensation and competes with the interface delocalization or ‘‘wetting’’ transition. The finite-size
scaling properties of capillary condensation in superconductors are scrutinized in the limit that the ratio of
magnetic penetration depth to superconducting coherence lengthk[l/j goes to zero, using analytic calcula-
tions. While standard finite-size scaling holds for the transition in nonzero magnetic fieldH, an anomalous
critical-point shift is found forH50. The increase ofTc for H50 is calculated for mesoscopic films, cylin-
drical wires, and spherical grains of type-I and type-II materials. Surface curvature is shown to induce a
significant increase ofTc , characterized by a shiftTc(R)2Tc(`) inversely proportional to the radiusR.
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I. INTRODUCTION

The Ginzburg-Landau~GL! theory of superconductivity
continues to deliver surprises.1 In this paper we focus on
some remarkable consequences of special boundary co
tions that enhance superconductivity at the surface of
material. In fact, superconductivity is already known to
enhanced for the common situation of surfaces aga
vacuum or insulators, as was demonstrated by the disco
of the surface critical fieldHc3.2 We consider, however, dif
ferent surfaces that enhance superconductivity m
strongly. Within GL theory this is embodied phenomenolo
cally by taking the surface extrapolation lengthb to be nega-
tive. It was shown that this not only leads to a further
crease of the surface critical fieldHc3,3 but also to an
increase of the surface critical temperature in zero fieldTcs .4

The simple relationj(Tcs)52b, with j(T) the supercon-
ducting coherence length in bulk and in zero field, gove
the shift from Tc to Tcs . Furthermore, forb,0 interface
delocalization transitions, which are the precise analogs
wetting transitions in adsorbed fluids, have been predic
for type-I superconductors.5

For a semi-infinite system with a planar surface the
surface free energy functional, including the boundary c
tribution, reads

g@c,AW #5
\2

2mb
uc~0!u21E

0

`

dxFaucu21
b

2
ucu4

1
1

2mUS \

i
¹W 2qAW DcU2

1
u¹W 3AW 2m0HW u2

2m0
G .

~1.1!

The magnetic field is taken parallel to the surface. For t
orientation the interface delocalization or wetting transiti
can occur, providedk[l/j,1/A2 ~type-I superconductors!
PRB 620163-1829/2000/62~21!/14359~14!/$15.00
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andb,0. Here,l is the magnetic penetration depth andj is
the zero-field superconducting coherence length. Fork
,0.374 the wetting transition is of first order, and is acco
panied by a prewetting line that extends into the bulk norm
phase in theH-T phase diagram, and terminates in zero fie
at Tcs .5 An experimental realization of the prewetting ph
nomenon is, in hindsight, provided by the twinning-pla
superconductivity transition in Sn.4 The wetting transition
itself has so far not been verified experimentally. Fork
.0.374 the wetting transition is predicted to be critic
without a prewetting line.5

In this paper we study the effect of confinement on t
wetting phase diagram, and, in particular, we examine
increase ofTc . The situation we consider is analogous
that of a fluid adsorbed between parallel walls, which und
goes capillary condensation.6 This phenomenon occur
slightly below the saturated vapor pressure, and arises fro
competition between surface contributions to the free ene
proportional to the surface area, and volume contributio
proportional to area times wall separationL. For largeL, the
pressure or chemical potential for which the fluid conden
between the walls, is shifted by a small amount, proportio
to 1/L, from the usual bulk coexistence line. In the presen
of a wetting transition for the semi-infinite system, there
an interesting interplay between capillary condensation
prewetting, leading to surface triple points. We study t
counterparts of these phenomena for type-I superconduc
in the low-k limit.

In zero field, the increase of the surface critical tempe
ture Tcs for samples withb,0 is not limited to type-I ma-
terials, but occurs for type-I and type-II alike. It is therefo
justified to devote special attention to the effect of confin
ment on this phenomenon. The increase ofTc is unique to
superconductivity, since in fluids confinement generally s
presses the critical point of phase separation. In contrast
find that in superconductors the critical temperature of a m
soscopic sample with surface enhancement not only exc
14 359 ©2000 The American Physical Society
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the bulk Tc , but is also greater thanTcs . We study this
effect for planar films, cylindrical wires and spherical grain
For surfaces with curvature an important additional incre
of Tc is found.

The assumptionb,0 is crucial here, since forb5` ~sur-
faces against vacuum or insulators! and a fortiori for b.0
~surfaces against normal metals or ferromagnets! there is no
increase ofTc relative to the bulk value. Forb5` the effect
of confinement leads to a well-documented increase of
critical field and the presence of a tricritical point where t
transition to superconductivity changes from second orde
first order as the field is increased. The effects of sam
topology for this case (b5`) have been the subject of tho
ough experimental7 and theoretical8 investigation.

This paper is organized as follows. In Sec. II we study
effect of confinement on the wetting phase diagram. T
limit of strongly type-I superconductors turns out to be ve
instructive here, since various analytic results can be
tained fork→0, the details of which are outlined in Sec. II
The finite-size scaling properties of the capillary conden
tion transition in nonzero field, and the link to the anomalo
critical-point shift in zero field are addressed here. In Sec.
we derive and discuss the increase ofTc for mesoscopic
surface-enhanced superconductors. Conclusions and rem
pertaining to the experimental relevance of our results
presented in Sec. V.

II. CAPILLARY CONDENSATION AND PREWETTING
FOR STRONGLY TYPE-I SUPERCONDUCTORS

In this section we discuss the precise analogy between
capillary condensation transition in a fluid confined betwe
parallel walls and the transition to superconductivity of
mesoscopic film of type-I material in a parallel magne
field. The surfaces of the film are characterized by surf
enhancement of superconductivity~negative extrapolation
length b) and we consider the case of identical surfac
which is sufficient to address the basic phenomena. For t
peratures sufficiently close toTc , interface delocalization
comes into play and allows us to study, in close analogy
what may happen in a confined fluid, how capillary conde
sation competes with the prewetting phenomenon.

There are four relevant lengths in our system: the m
netic penetration depthl, the coherence lengthj, the surface
extrapolation lengthb, and the film thicknessL. In order to
study the interplay between capillary condensation a
prewetting most clearly and accurately, it is very useful
take the limitk[l/j→0, corresponding to extreme type
superconductors. It is important to specify that in taking t
limit, we let l tend to zero, while keeping the other thre
lengths finite. In this limit not only is the wetting transitio
of first order but also the prewetting transition remains
first order down to zero magnetic field, so that the comp
tion with the capillary condensation transition~also of first
order! is not complicated by second-order nucleation p
nomena that occur fork.0. Furthermore, the vortex phas
which we find to play a role even fork considerably less
than 1/A2 in a film with enhanced surfaces, is unimportant
k50.

In addition to these reasons pertaining to clarity, the lim
k→0 offers the major advantage that the problem can
.
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studied analytically, and the important finite-size scali
laws for the phase transitions can be calculated exactly~see
next section for details!. Several of these laws continue t
hold, in as far as the leading singularity in the asympto
regime of thick films is concerned, for smallk.0, as long as
the phase diagram undergoes quantitative changes o
Therefore, many of the properties that we can demonst
analytically atk50, serve as a good first approximation f
a significant part of the type-I regime. We have verified th
by numerical computations fork.0.

The usefulness of taking the zero-k limit has already be-
come clear in previous studies of interfacial properties
type-I superconductors, most notably in the derivation of
exact interface potential for wetting and prewetting.9 More-
over, it has been shown extensively that the thermodyna
behavior atk.0 ~but not exceeding 1/A2) can often be
captured by means of rapidly converging expansions in
parameterk.10,11

The two basic physical states of the film consist of eith
superconducting surface sheaths, extending from one or
surfaces into the interior, or a superconducting film sta
which occupies the whole space between the surfaces.
former correspond to prewetting layers and the latter to c
illary condensation. For computing these states we recall
for k50 the magnetic inductionȦ(x) and the superconduct
ing wave functionc(x) exclude one another in space.9 Fur-
thermore, sinceȦ is a simple step function, the only pert
nent GL equation is that forc, which after suitable rescaling
~as in Ref. 9! reads

c̈56c1c3. ~2.1!

The 1(2) signs pertain toT.Tc(T,Tc), respectively.
Note that, with the present rescaling convention, lengths
measured in units of the~zero-field! coherence lengthj, and
in the bulk superconducting phase,c51.

The boundary conditions are

ċ~0!5jc~0!/b, ~2.2!

ċ~L/j!52jc~L/j!/b.

The useful first integral of Eq.~2.1!,

ċ256c21c4/21C ~2.3!

allows one to employ a simple phase-portrait analysis
determining the characteristics of all possible solutions. T
integration constantC is determined using the boundary co
ditions. ForT,Tc capillary condensation states exist forC
,1/2, while forT.Tc they occur forC,0. They are sym-
metric with respect to the middle plane of the film,c(x)
5c(L/j2x). For these statesc(x) has the shape of a
‘‘hammock,’’ with a minimum atx5L/2j. C is a smooth
function of L which tends to 1/2 for largeL, as c(L/2j)
tends to the bulk value 1. An interesting point to note is th
the magnetic fieldH is fully expelled in these states an
therefore the profilesc(x) do not depend onH. In particular,
C(L) is independent ofH.

In contrast, the prewetting states depend on the app
field. These states are characterized by profilesc(x), inter-
rupted by a magnetic ‘‘gap’’ in whichc(x)50. The phase
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PRB 62 14 361EFFECTS OF CONFINEMENT AND SURFACE . . .
portrait analysis indicates that two types of solutions can
considered: symmetric states consisting of two superc
ducting surface sheaths located onxP@0,l /j# and @(L
2 l )/j,L/j#, with a central gap separating them, or asymm
ric states with a sheath at one surface only, onxP@0,l /j#,
followed by a gap extending to the other surface. In prac
the asymmetric states are irrelevant, even forl .L/2, since
their free energy is higher than that of symmetric states~ei-
ther of prewetting type, with a central gap, or of capilla
condensation type, without a gap!. For prewetting states,C
depends onH and not onL. Its formC(HR)5HR

2 is the same
as for the semi-infinite system, since the ‘‘gap’’ acts in t
same way as a normal phase~N! in bulk. The quantityHR is
a reduced field defined in Ref. 9 and related toH in the
mannerHR}j2H. The value ofHR

2 determines the magni
tude ~squared! of the gradient ofc at the interior pointsx
5 l /j andx5(L2 l )/j at whichc vanishes. ForT,Tc , at
bulk two-phase~SC/N! coexistence,C51/2, while in the
bulk normal phase,C.1/2. The term ‘‘bulk’’ refers to an
infinite system~without surfaces, in principle!.

We can conveniently express the film thickness using
profile of a capillary condensed state~‘‘cap’’ !, through the
relation

L52jE
cm

ccap(0)

dc~6c21c4/21C!21/2. ~2.4!

Here, cm[c(L/2j), the value in the middle of the film
Likewise, we can obtain the thickness of a surface sheat
the prewetting~PW! state through

l 5jE
0

cPW(0)

dc~6c21c4/21HR
2 !21/2. ~2.5!

For explicit expressions forcm , ccap(0), andcPW(0), see
the Appendix.

Similar compact expressions are available for the redu
~i.e., dimensionless! free energies. For capillary condens
states

gcap52E
cm

ccap(0)

dc~HR
22c4/2!~6c21c4/21C!21/2.

~2.6!

Using Eq.~2.4! this can be simplified by separating out th
dependence on the magnetic field, which is justHR

2L/j, the
free energy cost of expelling the field over the whole thic
ness of the film.

For prewetting states the free energy of a symmetric s
with two surface sheaths is

gPW52E
0

cPW(0)

dc~HR
22c4/2!~6c21c4/21HR

2 !21/2.

~2.7!

In order to be able to discuss the phase diagram for temp
tures below, above, andat bulk Tc , it is convenient to ex-
press the thickness of the film in units ofubu instead ofj
~sincej diverges atTc in zero field!. It is understood that the
value of b is the result of the surface preparation of t
sample, and can therefore be considered a material con
within the explored ranges of field and temperature.
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In order to show most clearly the topology of the ne
phase diagram of the thin film with surface enhancement,
have chosen the~reduced! thicknessL/ubu58. The result is
presented in Fig. 1. The temperature variable ist[(T
2Tc)/(Tcs2Tc), so that the first-order interface delocalizatio
transition, or ‘‘wetting’’ transition, is located attD,0, while
the bulk critical point in zero field is attc50 and the surface
critical point in zero field is attcs51. The magnetic fieldH
is in units of HD , the wetting transition field. The ratio
H/HD is related to HR through the equationH/HD

5A2HR(j/b)D
2 /(j/b)2. The thin straight line fromD to the

origin is the bulk two-phase coexistence line. The new ph
transitions relevant to the mesoscopic film are indicated
thick solid lines.

The main transition is the capillary condensation lin
which consists of three parts. For high fields this line is mo
or less parallel to the bulk reference line, and represen
transition from a fully normal film to a fully superconductin
film. BetweenT1 andT2, however, for decreasingH, cap-
illary condensation is preceded by the prewetting transiti
The film thus goes superconducting in two distinct steps:~i!
from a fully normal state to a state with two superconduct
surface sheaths and a normal gap and~ii ! from the latter to a
fully superconducting film. At transition~ii ! the gap between
the surface sheaths is still finite. Incidentally, we can co
pute the line in the phase diagram on whichl 5L/2, so that
the gap vanishes and the two surface sheaths touch one
other. For all temperatures between the wetting point and
prewetting critical point, this line lies at lower fields than th
capillary condensation transition, and consequently has
physical significance. Finally, for temperatures between t
of T2 andtc(L), the transition proceeds in a single step, fro
fully normal to fully superconducting.

FIG. 1. Capillary condensation phase diagram for stron
type-I superconductors with surface enhancement, for a film
thicknessL/ubu58, in units of the surface extrapolation lengthb
(b,0). The magnetic fieldH is scaled with the fieldHD at the
interface delocalization transitionD. The temperature variable ist
[(T2Tc)/(Tcs2Tc). The capillary condensation transition run
mostly parallel to the bulk coexistence line. It meets the prewett
transition at a film triple pointT1, and again atT2. It terminates at
the film critical point in zero field, atTc(L).Tcs , but very close to
Tcs ~imperceptible difference!. The solid lines indicate first-orde
phase transitions for the film. The dashed line is the~metastable!
continuation of the prewetting line.
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The prewetting phenomenon is thus confined to an ‘
land’’ in the phase diagram, where a film with supercondu
ing surface layers and a normal interior is thermodyna
cally stable. All transitions in nonzero field are of first orde
The pointsT1 andT2 are genuine triple points of the film
The three coexisting film phases are represented by t
wave function profiles in Fig. 2. Likewise, Fig. 3 illustrate
the triple pointT2. The prewetting line~betweenT1 and
T2) lies exactly on the prewetting line of the semi-infini
system~dashed line!, which extends from the wetting poin
D to the surface critical point of the semi-infinite system
zero field, att5tcs51.

In zero field the capillary condensation ends in a criti
point, at t5tc(L). This critical point will be discussed in
detail in Sec. V. We shall derive there thattc(L) is only
slightly abovetcs . On the scale of the figure the two poin
appear coincident.

Upon loweringL/ubu the pointsT1 andT2 approach each
other, and forL/ubu between 6 and 7 the prewetting ‘‘island
vanishes. ForL/ubu,6 only the capillary condensation tran

FIG. 2. Three coexisting film phases at triple pointT1 of Fig. 1.
A normal phase (c50) coexists with a surface superconducti
film ~with two sheaths!, and with a capillary condensed superco
ducting film.

FIG. 3. Three coexisting film phases at triple pointT2 of Fig. 1.
Under these conditions the sample in bulk would show no su
conductivity at all.
-
t-
i-
.

ir

l

sition remains. For example, forL/ubu51 the capillary con-
densation line appears as a straight line parallel to the b
coexistence line, and ends in zero field attc'2.4 ~see Sec.
IV !.

On the other hand, upon increasingL/ubu the triple point
T2 moves rapidly to zero field andt5tcs , and T1 moves
slowly towards the wetting pointD. The prewetting line re-
mains fixed. The capillary condensation transition converg
for T,Tc , to the bulk coexistence line. However, forT
.Tc , the capillary condensation line converges to the s
ment @Tc ,Tcs# of the temperature axis~at H50). This is a
consequence of the anomalous critical-point shift in z
field. The phase boundary thus develops acornersingularity
at the origin (t50,H50). The precise manner in which th
phase boundary scales in the limitL→` is the subject of the
next section.

III. FINITE-SIZE SCALING OF CAPILLARY
CONDENSATION

In order to examine how the capillary condensation ph
boundary approaches the bulk coexistence line in the li
L→` we distinguish the following regimes.

A. TËTD : below the wetting transition, approaching
partial wetting

In this regime the complication of surface supercond
tivity does not arise and the transition is from the norm
phase directly to a superconducting film with complete e
pulsion of the magnetic field. The transition occurs when
free energygcap, given in Eq.~2.6!, equals that of the norma
phase, which is zero. For largeL this condition is very well
approximated by replacing the upper and lower limits of t
integral by their asymptotic valuesccap(0)→c(0) andcm
→1. Here,c(0) is the surface value of the wave functio
profile associated with the superconducting phase in bulk
temperatureT. This leads to the familiar result, akin t
Laplace’s or Kelvin’s equation for a confined fluid,6 express-
ing the free energy balance between a cost in bulk and a
in surface contributions

~HR
221/2!L/j522gW,SC. ~3.1!

The right-hand side~rhs! is by definition2 lim
L→`

gcap and

represents~minus! the surface free energy of two wall/S
‘‘interfaces.’’ Since gW,N50, in the absence of supercon
ducting surface sheaths, the rhs actually equals 2gSC/N cosu,
familiar in the context of Young’s equation for the conta
angleu in the partial wetting regime. The left-hand side~lhs!
gives the net free energy cost, per unit volume, of expell
the magnetic field~costHR

2) and, simultaneously, going su
perconducting~gain 1/2!, multiplied by the thickness of the
film. This net cost is positive for fields higher than the coe
istence field~commonly referred to as critical field of th
superconductor! HR,c51/A2. Equation~3.1! predicts that the
capillary transition fieldHR(L) approaches the coexistenc
field HR,c according to the power law

r-
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@HR~L !2HR,c#;A2j
ugW,SCu

L
. ~3.2!

The exponent ofL, 21, simply reflects the difference be
tween the surface dimensiond21 and the bulk dimensiond.

Numerical computations show that Eq.~3.1! is extremely
accurate, even for thin films. For example, for ‘‘temper
ture’’ j/b520.5, Eq. ~3.1! is satisfied to an accuracy o
0.1% already forL/ubu52. The deviation forL/ubu51 is
about 3%. Therefore, for practical purposes, Eq.~3.1! is cor-
rect for L/ubu>2. The wetting transition~D! occurs atj/b
5(j/b)D'20.60, and for temperaturesTD,T,Tc Eq.
~3.1! must be modified as follows.

B. TDËTËTc : the prewetting regime, approaching
complete wetting

In this regime the capillary condensation competes w
the prewetting transition. To a first approximation the surfa
free energy balance takes the Laplace or Kelvin form, an
gous to Eq.~3.1!,

~HR
221/2!L/j52~gW,N2gW,SC!52gSC,N , ~3.3!

wheregW,N is the surface free energy of a semi-infinite sy
tem with a macroscopic surface superconducting layer~com-
plete wetting! The last equality expresses that Antonov’s ru
holds for complete wetting.12

However, this approximation is too crude. It neglects fi
of all thatL should be replaced byL22l to take into account
the thickness of the prewetting layers, constituting the par
the film which is already superconducting before capilla
condensation occurs. But even with this correction, the
sulting approximation is still not satisfactory, in comparis
with numerical computations. In what follows we derive
accurate analytic approximation for largeL.

We start from the exact condition for capillary condens
tion

gPW5gcap. ~3.4!

The magnetic field terms in these free energies lead to c
tributions 2HR

2 l /j andHR
2L/j, respectively, as is seen from

the set of equations~2.4!–~2.7!. In the limit L→`, the cap-
illary condensation fieldHR approaches the bulk coexisten
field HR,c51/A2, and the prewetting layer thicknessl di-
verges, but very slowly. To see this in detail, we work o
the integral and obtain the magnetic-field dependence ofl,

l ~HR!/j5
1

A2
ln

1

HR
221/2

1 l 1 /j1o~1!. ~3.5!

The divergence is only logarithmic, so that the constantl 1 /j
is an important correction for numerical purposes. Furth
more, it is the only important correction, since we verifi
that the remainder is insignificant, up untillHR

221/2
5O(1). Weremark that the upper spinodal of the prewetti
transition occurs atHR

25@11(j/b)2#2/2. The remainder is
indicated byo(1), which signifies that it goes to zero a
HR

2→1/2. Numerically these terms are found to vanish
HR

221/2, or (HR
221/2)ln@1/(HR

221/2)#.
-

h
e
o-

-

t

f

-

-

n-

t

r-

s

The constantl 1 /j can be calculated analytically, with th
result

l 1 /j5A2 ln 21
1

A2
ln

c~0!21

c~0!11
12E

0

`

du~2u211!21/2

22E
1

`

du~2u2!21/2. ~3.6!

The value ofc(0) here corresponds to the limit of bul
two-phase coexistence, and is determined throughc(0)2

511(j/b)21$@11(j/b)2#221%1/2. Typical values ofl 1 /j
are of order 1, confirming the importance of this consta
next to the leading logarithm in Eq.~3.5!. For example, for
j/b521, l 1 /j'1.640.

The geometrical interpretation ofl 1 /j is straightforward.
Keeping only the leading and next-to-leading terms
l (HR)/j we arrive at the identification

l 1 /j' l ~HR,1!/j, ~3.7!

with HR,1
2 21/2[1. This is qualitatively correct. For ex

ample, for ‘‘temperature’’ j/b521, l 1 /j51.640 while
l (HR,1)/j51.504. Thus,l 1 /j corresponds essentially to th
thickness of athin surface sheath at a magnetic field we
above the critical field. This thickness~in units of j) is of
order 1. Consequently, the leading logarithm in Eq.~3.5!
gives the intrinsic or ‘‘net’’ thickness of the wetting laye
which develops close to bulk coexistence.

Having established the slow divergence ofl, and contrast-
ing it with the more rapid divergence ofL, which is essen-
tially proportional to 1/(HR

221/2), we collect carefully all
terms proportional toHR

221/2 in Eq.~3.4! and find

~HR
221/2!~L22l !/j52gSC,N1~HR

221/2!@A21o~1!#

1O~e2A2L/j!, ~3.8!

whereo(1) vanishes forHR
2→1/2. A summary of the deri-

vation is given in the Appendix. The lhs features the net c
of expelling the magnetic field, while the first term on the r
gives the cost of having two SC/N interfaces. Especially
interesting, and calculable analytically, is the correction
the surface tension (HR

221/2)A2, appearing as the secon
term in the rhs. Precisely in view of the slow divergence ol
this contribution is numerically significant in combinatio
with the lhs. Taking it into account greatly improves th
accuracy of the approximation.

The surface tension correction has an interesting phys
interpretation. In the complete wetting regime at bulk tw
phase coexistence a superconducting/normal (SC/N) inter-
face constrainedat a distancel from the surface has a fre
energy~per unit area! that is higher than that of anequilib-
rium interface~infinitely! far away from the surface, by a
amount which is given by the so-called interface poten
V( l ). This excess free energy is known exactly in thek50
limit,9 and we are concerned here with the tail ofV( l ) for
large l, given by V( l )} exp(2A2l /j). Therefore, the free
energy cost of a constrained interface is easily found,
inserting the logarithmic divergence~3.5!, to be proportional
to HR

221/2. Thus we arrive at the interpretation that the s
face tension correction is due to the interaction or ‘‘interfe
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ence’’ of the interface with the surface, which in the broad
context of confined interfaces is often referred to as entro
repulsion.13

In the same spirit, a correction is present for the capill
condensed superconducting state, relative to a supercon
ing state with infinite surface separationL. This correction is
due to the interaction between the surfaces bounding
film, and also decays exponentially with separation. Ho
ever, since the distance is nowL instead ofl, this contribu-
tion is of order exp(2A2L/j), which is negligible for our
purposes~see the Appendix for details!.

In conclusion, in the complete wetting regime the finit
size shift of the transition to superconductivity has the sa
asymptotic scaling behaviorHR2HR,c}1/L as in the partial
wetting regime, but quantitativelyL must be shortened b
twice the wetting layer thicknessl, and an effective further
correctionA2j must be subtracted fromL in order to take
into account the distortion of the two constrained SC/N in-
terfaces.

C. TÄTc : the bulk critical isotherm

The finite-size scaling properties of the transition to fi
superconductivity atTc are interesting and merit a separa
study, since they invokeuniversalquantities associated wit
the bulk critical point. AtT5Tc the zero-field coherenc
length is infinite, and we cannot use it as the unit of leng
Instead we useubu. The wave function must also be rescale
because the normalizationcbulk51 is inconvenient atTc .
Simple universal GL equations result when we rescalex
→(j/ubu)x, c→(j/ubu)c[f, HR→(j/b)2HR[hR . The
ratio H/HD is invariant and equalsA2hR(j/b)D

2 .
The GL equation now reads

f̈5f3 ~3.9!

and the boundary conditions take the form

ḟ~0!52f~0!, ~3.10!

ḟ~L/ubu!5f~L/ubu!.

Writing the first integral of Eq.~3.9! as

ḟ25f4/21c ~3.11!

we obtain for the film thickness,

L52ubu E
fm

fcap(0)

df~f4/21c!21/2, ~3.12!

with fm5(22c)1/4 and fcap(0)2511(122c)1/2. For L
→`, c approaches zero from below andfm vanishes. For
the thickness of the superconducting surface sheath we

l 5ubu E
0

fPW(0)

df~f4/21hR
2 !21/2, ~3.13!

with fPW(0)2511(122hR
2)1/2.

We remark that, althoughT5Tc marks the terminus o
bulk two-phase coexistence, two-phase coexistence for
mesoscopic film continues to exist. Therefore, we will co
r
ic

y
ct-

e
-

-
e

.
,

ve

he
-

tinue to use the terminology ‘‘capillary condensation’’ an
‘‘prewetting’’ in the same sense as in the previous subs
tions.

Before discussing the free energies we examine hol
behaves when the fieldh is turned to zero. A simple resca
ing in Eq. ~3.13! suffices to extract the leading term

l /ubu'hR
21/2E

0

`

dx~11x4/2!21/2'2.20488hR
21/2.

~3.14!

This power-law divergence is much faster than the logar
mic behavior found in the prewetting regime belowTc , ap-
proaching bulk two-phase coexistence. Experimentally,
implies that the diamagnetic response due to the surface
perconducting sheath may be easier to detect when lowe
H at T5Tc than atT,Tc .

A similar reasoning leads to a simple relation betweenL
andc, in the thick film limit

L/ubu'~2c!21/425/4E
1

`

dx~x421!21/2. ~3.15!

The integral equals 1.31103. So we conclude thatc(L) de-
cays as a power law, in contrast with the exponential de
seen in the Appendix, Eq.~A12!.

We now turn to the free energies. For capillary conden
states at bulkTc ,

gcap52E
fm

fcap(0)

df~hR
22f4/2!~f4/21c!21/2, ~3.16!

while for prewetting states,

gPW52E
0

fPW(0)

df~hR
22f4/2!~f4/21hR

2 !21/2.

~3.17!

Working out the conditiongPW5gcap for capillary con-
densation we find

hR
2~L22l !/ubu5dgPW2dgcap. ~3.18!

Using Eq.~3.14! we see that the second term in the lhs is
orderhR

3/2. The first term on the rhs is the surface free ene
cost ofconstraininga surface sheath atH50 andT5Tc to
terminate atx5 l /ubu instead of assuming its equilibrium
power-law decayf(x)}1/x. This power-law decay is the
analog of ‘‘critical adsorption’’ for fluids.14 Analytic calcu-
lation gives

dgPW5hR
3/2A2E

0

`

dxx2@12~112/x4!21/2#. ~3.19!

The integral equals 1.03939. The constrained surface sh
can be interpreted as a constrained interface interacting
the surface. This interpretation is quite unconventional in t
case, since an equilibrium interface does not exist at b
Tc . Nevertheless, assuming the existence of an interface
tential V( l ) for the constrained interface leads us to inf
V( l )} l 23, in view of Eqs.~3.14! and ~3.19!. The exponent
23 is reminiscent of finite-size interactions at bulk criticali
and will show up again in the next paragraph. Incidenta
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note thatdgPW.0, corresponding to repulsion between t
surface and the constrained interface~‘‘unlike’’ surfaces re-
pel!.

The second correctiondgcap is the finite-size interference
free energy between the two surfaces at separationL bound-
ing the film, in the superconducting state at bulkTc and in
zero field. This interference is akin to the generalized C
simir effect.15,16 Analytic calculation gives

dgcap5225/4~2c!3/4S E
1

`

dff2~121/f4!21/2

2E
0

`

dff2D . ~3.20!

The integrals add up to 0.43701. Converting t
ucu-dependence into anL dependence, using Eq.~3.15! we
observe that the finite-size interaction is attractive~‘‘like’’
surfaces attract! and decays in the mannerL23. We scruti-
nize this generalized Casimir effect for superconductors
the associated universal exponents and amplitu
elsewhere.17

Returning now to Eq.~3.18! we see by simple inspectio
that hR}L22, and that all the leading corrections we e
tracted are of the same orderL23. We are therefore left with
the simple problem of solving for the amplitudeA in the
asymptotic behavior

hR'A~L/ubu!22. ~3.21!

Numerical solution givesA'36.2869. The fact that the ex
ponent ofL equals22 is linked to the fact that the mean
field value of the critical exponentnH is 1/2. This exponent
describes the divergence of the field-dependent coher
lengthj(hR) along the bulk critical isotherm approaching th
bulk critical point

j~hR!}hR
2nH . ~3.22!

The transition to superconductivity for the film occurs wh
j(hR)'L, whence Eq.~3.21!. The sense in whichuniversal-
ity holds is governed here by the validity of mean-fie
theory for classical superconductors.

A numerical computation of the finite-size shift of th
critical field at bulkTc supports the analytic leading resu
~3.21! and suggests that the next-to-leading term is of or
(L/ubu)23, implying slow convergence. ForL/ubu510 the
correction to the leading term is about 31%, while atL/ubu
5100 the correction is about 3.7%.

D. TcËTËTc„L …: the bulk supercritical region

Even thoughT.Tc , in this regime we still find a compe
tition between prewettinglike states and capillary conden
tion. The main difference with respect to the prewetting
gion below Tc is that an equilibrium SC/N interface and
hence also its surface tension no longer exist. Therefore
main modification to Eq.~3.8! is that the first term on the rh
is absent forT.Tc . Furthermore, since the critical field i
zero, the combinationHR

221/2 simplifies toHR
2 . The other

modifications to Eq.~3.8! will now be studied in detail.
-

d
es

ce

r

a-
-

he

We start, as usual, from Eq.~3.4!. The magnetic field
terms again lead to the net free energy contribut
HR

2(L/j22l /j). The prewetting layer thicknessl has a dif-
ferent interpretation than forT,Tc . AboveTc no thick wet-
ting layer can develop, since the infinite system consists
single normal phase only. So,l just measures the extent o
penetration into the bulk of thetail of the surface supercon
ducting sheath. As the fieldH goes to zero the superconduc
ing wave function no longer vanishes atx5 l /j but decays
exponentially as a function of the distancex from the sur-
face, so that, mathematically,l diverges although physically
the penetration is of short range only.

To see howl behaves aboveTc , we employ Eq.~2.5!
with the 1 sign. We obtain

l ~HR!/j5 ln
1

HR
1 l 2 /j1o~1!. ~3.23!

This is similar to Eq.~3.5!. The constantl 2 /j can be calcu-
lated analytically, with the result

l 2 /j5 ln
4c~0!

11A11c~0!2/2
. ~3.24!

The value ofc(0) here corresponds to the zero-field lim
and is determined throughc(0)252@211(j/b)2#. Typical
values of l 2 /j are of order 1. For example, forj/b5
22,l 2 /j'1.184. However, l 2 /j approaches zero an
changes sign asj/ubu is decreased to about 1.07, not far fro
the surface critical pointTcs .

The geometrical interpretation ofl 2 /j is similar to that of
l 1 /j discussed previously forT,Tc . To a first approxima-
tion we can identify

l 2 /j' l ~HR,2!/j, ~3.25!

with HR,251. This is reasonable. For instance, forj/b5
22, l 2 /j51.184 while l (HR,2)/j51.381. So we arrive a
the interpretation thatl 2 /j corresponds to the thickness of
thin surface sheath in a finite field~of reduced strength
unity!. This interpretation can only be used as long as
~reduced! spinodal field exceeds 1. The spinodal line f
prewetting states aboveTc is determined byHR5@(j/b)2

21#/A2. Consequently, Eq.~3.25! makes sense as long a
j/ubu.1.554. The remaindero(1) in Eq. ~3.23! appears to
vanish in the mannerHR

2 ln(1/HR) as follows from numerical
inspection.

We now return to the condition for capillary condens
tion, which can be written as

HR
2~L22l !/j5E

cm

ccap(0)

dcc4~c21c4/21C!21/2

2E
0

cPW(0)

dcc4~c21c4/21HR
2 !21/2

~3.26!

with cm
2 5211(122C)1/2, ccap(0)25211(j/b)2

1$@211(j/b)2#222C%1/2, and cPW(0)25211(j/b)2

1$@211(j/b)2#222HR
2%1/2. The two integrals can be stud

ied fairly easily, since expanding in the small parametersHR
2



fe

er

e
rt-

l

s

e
io

e

l-
le

-

m
nd

e
g

ity
ized
nce
re
er,

de-
s
heir
lin-
al-
ess
n-

lel
on
tion

ctiv-

on

ants

ical
-

e
nd

,

14 366 PRB 62EMMA MONTEVECCHI AND JOSEPH O. INDEKEU
or uCu poses no problems regarding the exchange of dif
entiation and integration, in contrast with the caseT,Tc .
We find analytically that the integrals are, in leading ord
simply proportional toC andHR

2 , respectively. The result is

HR
2~L22l !/j5HR

2@11o~1!#2C@11o~1!#, ~3.27!

where the two termso(1) vanish in the limitsHR→0 and
C→0, respectively.

We are thus left with the final task of determining th
dependenceC(L). This can also be done analytically, sta
ing from Eq.~2.4!. In the limit C→0, with C,0, we readily
find the leading behavior

L/j5 ln~21/C!1L2 /j1o~1! ~3.28!

The constant is given by the expression

L2

j
52l 2 /j, ~3.29!

with l 2 /j as given in Eq. ~3.24!. This quantity varies
smoothly between2` for j/b521 ~surface critical point
Tcs) and the value 5 ln 2'3.466 forj/b→2` ~bulk critical
point Tc). It changes sign at ‘‘temperature’’j/b'21.064.
The remaindero(1) is numerically found to be proportiona
to C ln(21/C).

Inverting Eq.~3.28! to getC(L) we arrive at the follow-
ing conclusion, which is the counterpart of Eq.~3.8! for tem-
peratures aboveTc ,

HR
2~L22l !/j5HR

2@11o~1!#1eL2 /je2L/j ~3.30!

which implies an exponentially fast decrease of the field a
function ofL or, equivalently, a logarithmic divergence ofL
as a function of 1/HR . This is in sharp contrast with th
simple power law found for the usual capillary condensat
below Tc .

Since nowl andL behave essentially in the same mann
~logarithmic! as a function of 1/HR , we investigate numeri-
cally the interesting differenceL22l , in the limit H→0.
Using Eqs.~3.23!, ~3.28! and taking advantage of the equa
ity ~3.29!, we find that the constants cancel and we are
with

~L22l !/j' ln~2HR
2/C!. ~3.31!

On the other hand, Eq.~3.30! implies

L/j22l /j21'2C/HR
2 . ~3.32!

In combination with the previous result the differenceD
[(L22l )/j must solve the equation

D5 ln
1

D21
. ~3.33!

Numerically, this givesD'1.2785. In conclusion, the differ
enceL22l converges to afinite length, as we follow the
capillary condensation transition into the asymptotic regi
L→`. We have verified this analytic result numerically, a
the agreement is very good for sufficiently largeL. For in-
stance, forj/b521.5, D is reproduced to 4 digits if we tak
L/ubu520. Forj/b522 we achieve similar accuracy takin
L/ubu525.
r-
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r
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e

IV. CRITICAL-POINT SHIFT IN ZERO FIELD

In zero magnetic field the transition to superconductiv
is of second order and can be calculated using the linear
GL equation. This can be seen by calculating, in the prese
of a magnetic field, the location of the tricritical point whe
the order of the transition changes from second to first ord
as the field is increased. Furthermore, in zero field the
pendence on the GL parameterk drops out so that the result
are valid for all classical superconductors, regardless of t
type. We study three different geometries: planar slab, cy
drical wire, and spherical grain. For each geometry we c
culate the critical temperature as a function of the thickn
~or diameter! of the mesoscopic system with surface e
hancement of superconductivity.

A. Planar film

For the planar sample, a slab or film with two paral
surfaces, we allow in general a different enhancement
each surface. Thus we assume two surface extrapola
lengths b1 and b2. Scaling all lengths with the zero-field
coherence lengthj leads to the GL equation

c̈56c ~4.1!

with boundary conditions

ċ~0!5~j/b1!c~0!,

ċ~L/j!52~j/b2!c~L/j!. ~4.2!

Since we are interested mostly in enhancing supercondu
ity (b,0) we are concerned withT>Tc , corresponding to
the 1 sign in the rhs of Eq.~4.1!.

Solving these equations leads to the following relati
describing the onset ornucleationcondition for supercon-
ductivity in the film

S 11j/b1

12j/b1
D S 11j/b2

12j/b2
D5e22L/j. ~4.3!

Considering the extrapolation lengths as material const
imposed by the sample preparation~mechanical surface
treatment, physical surface deposition technique, or chem
modification such as oxidation, etc.! the temperature depen
dence is contained in the variablej. In order to obtain direct
estimates of the finite-size shift of the film critical point, w
focus on the following particular cases: similar surfaces a
dissimilar surfaces.

Similar surfaces.In this case we assume, for simplicity
b15b25b and b,0. We can then work out Eq.~4.3! to
obtain the critical film thicknessL/ubu as a function of tem-
perature

L

ubu
5

j

ubu
ln

11j/ubu
12j/ubu

, ~4.4!

valid for b,0 andj/ubu,1 only. This remarkable relation
describes the increase of the film critical temperatureTc(L)
upon reduction of the film thicknessL. It is graphically rep-
resented in Fig. 4. Sincej/ubu}uT2Tcu21/2, and the surface
critical point of the semi-infinite system~with a single sur-
face! lies atTcs.Tc such thatj(Tcs)/b521, relation~4.4!
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predicts thatTc(L).Tcs . A convenient temperature variab
for our purposes isb2/j25(T2Tc)/(Tcs2Tc), which we de-
note byt ~see Fig. 4!. With this notation,tc50 andtcs51, as
in previous sections.

Equation~4.4! can be written in more compact form if w
express the film thickness asL/j,

j

ubu
5tanh

L

2j
~4.5!

but we remark that sample size and temperature are m
when using the variableL/j. We distinguish two regimes
the macroscopic regimeL@j, and the microscopic regim
L!j. In between is the mesoscopic rangeL'j. In the mac-
roscopic limit ~4.5! gives the critical-point shift

j/b52112e2L/j ~4.6!

or, using the definitiont[b2/j2,

tc~L !5114e2L/j. ~4.7!

Clearly, for L→`, while keeping the coherence leng
finite, the ratioj/b converges exponentially fast to21. This
signifies that Tc(L) decreases towardsTcs . In contrast,
simple finite-size scaling ideas would suggest thatTc(L)
converge to the bulkTc . This is not the case for our system
and therefore the finite-size shift in zero field isanomalous.

For microscopically small thicknesses (L!j) the increase
of the critical temperature follows the power law

tc~L !'2ubu/L. ~4.8!

Of course, the achievement of very small thicknesses~sub-
micron to nanometer range! is subject to practical limita-
tions.

FIG. 4. Increase of the critical temperature as a function of
thickness or diameter of mesoscopic superconductors with sur
enhancement. The temperature variable istc(L)[@Tc(L)
2Tc#/@Tc(`)2Tc#, whereL is the film thickness, to be replaced b
2R for cylinders or spheres.Tc(`) equals the surface critical tem
peratureTcs of a semi-infinite sample, and exceedsTc . The impor-
tant difference between curved and planar surfaces is the long-r
~algebraic! decay of the critical-point shift for large radius.
ed

The increase ofTc(L) upon reduction of the film thick-
ness is analogous to an effect that has been uncovered i
context of twinning-plane superconductivity.4 Certain mate-
rials ~Sn and Nb! display enhancement of superconductiv
near an internal twinning plane. In a situation with close
spaced twinning planes, the enclosed slab of material ex
riences a transition to superconductivity atTc(L) given by
the same relation as Eq.~4.4!. Twinning-plane superconduc
tivity is a special phenomenon. We would like to emphas
that the increase ofTc(L) due to confinement is a mor
general phenomenon and occurs for thin films with surfa
enhancement, regardless of the precise microscopic origi
the enhancement.

Dissimilar surfaces.As a first concrete example, we con
sider enhancement on one surface only and assume tha
other surface corresponds to a direct contact with vacuum
an insulator. We takeb1,0 and b25`. In this case the
increase ofTc(L) still follows a law similar to Eq.~4.4! but
to obtain the same transition temperature increase a fur
film thickness reduction by a factor of 2 is required,

L

ubu
5

j

2ubu
ln

11j/ubu
12j/ubu

. ~4.9!

In a second example we make the second surface u
vorable to superconductivity by introducing suppression
the wave function by assumingb2.0 andb2.ub1u. Physi-
cally, this corresponds to direct contact with a normal me
The two surfaces are now in competition and the increas
Tc(L) with decreasing film thickness qualitatively still be
haves as in Fig. 4, but becomes progressively weaker asb2 is
decreased. The enhancement effect is lost in the antisym
ric limit b2→2b1.

B. Cylindrical wire

For the case of axial symmetry we adopt cylindrical c
ordinates and write the linearized GL equation in zero ex
nal field in the familiar Schro¨dinger equation form

2
\2

2m S 1

r

]

]r S r
]c

]r D1
1

r 2

]2c

]f2
1

]2c

]z2 D 52ac.

~4.10!

The coherence length and thus the temperature is relate
the ‘‘energy’’ 2a through\2/2muau5j2, with m twice the
electron mass. The boundary condition on the cylinder s
face, atr 5R, reads

]c

]r U
r 5R

52
c~R!

b
~4.11!

with b,0 for surface enhancement of superconductivity.
Solutions are of the formc(r ,f,z)5 f (r )eil feikz. Since

we are looking for the lowest ‘‘energy,’’ we can setk50
and l 50. Indeed, forkÞ0 the energy simply increases by
positive amount proportional tok2. Also, for lÞ0, the en-
ergy is strictly greater than forl 50. This is due to the strict
positivity of the angular momentum contribution, in comb
nation with Ritz’ theorem

e
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El[
^c l uHuc l&

^c l uc l&
5

^c l uH0uc l&

^c l uc l&
1

^c l uLz
2/2mr2uc l&

^c l uc l&

.
^c l uH0uc l&

^c l uc l&
>

^c0uH0uc0&

^c0uc0&
[E0 . ~4.12!

HereH0 is the first term of the Hamiltonian, associated w
the radial kinetic energy. The scalar product is defined on
supportr P@0,R# for functions that satisfy the boundary co
dition ~4.11!. Note that this boundary condition drives th
ground state energy negative, corresponding to tunne
states with negative kinetic energy. Note that the tempera
for onset of superconductivity lies aboveTc , sincea.0 in
the ground state.

After rescalingr by j, it is easily seen that the groun
state eigenfunction is the modified Bessel functionI 0(r /j),
which has the shape of a ‘‘hammock’’ with a smooth min
mum on the cylinder axis and a maximum on the surfa
Application of the boundary condition leads to the nucleat
condition

j

ubu
5

I 1~R/j!

I 0~R/j!
. ~4.13!

If we make the identificationL[2R we can compare this
critical-point shift for the cylindrical wire with that of the
thin film. This is done in Fig. 4, with againt[b2/j2. Note
that t is plotted versus 2R/ubu instead of 2R/j. With this
choice of variables it is understood thatb is a fixedmaterial
constant, so that Fig. 4 presents a temperature versus d
eter diagram.

It is obvious that the increase ofTc for cylinders is stron-
ger than for films. This is seen dramatically in the expe
mentally most relevant asymptotic regime of large radi
R@j, for which we obtain the power law

j

ubu
'12

j

2R
. ~4.14!

This implies a slowly decayingalgebraic critical-point shift

tc~R!'11j/R, ~4.15!

so that Tc(R)2Tcs}1/R, in contrast with the exponentia
decay found for the film.

On the other hand, for small radii,R!j, we obtain

tc~R!'2ubu/R ~4.16!

which is similar to Eq.~4.8!.

C. Spherical grain

Using similar arguments as for the cylinder one sees
in zero field it suffices to work with the radial wave functio
which satisfies the differential equation

2
\2

2m

1

r

]2

]r 2
~r f !52a f ~4.17!

with the same boundary condition~4.11! but now applicable
to the surface of the sphere. Writingu5r f and usingu(0)
50, we find u(r )} sinh(r/j). Application of the boundary
condition then leads to the nucleation condition
e

g
re

.
n

m-

-
,

at

j/ubu5coth~R/j!2j/R ~4.18!

which results in an increase ofTc(R) upon a reduction of
R/ubu shown in Fig. 4. The effect is stronger yet for spher
than for cylinders.

The asymptotic critical-point shift for largeR is algebraic

j/ubu'12j/R ~4.19!

implying Tc(R)2Tcs}1/R as for cylinders, but with an am
plitude larger by a factor of 2. Note that the mean curvat
differs from that of the cylinder by the same factor. Th
effect of confinement is therefore most pronounced for m
soscopic spherical grains.

Finally, in the microscopic limitR!j we find

tc~R!'3ubu/R. ~4.20!

Recapitulating, we find that for cylinders and spheres
increase ofTc(R) is qualitativelystronger than that ofTc(L)
for films, in view of the 1/R, or ‘‘curvature’’ dependence of
the critical-point shift.

D. Comparison between spherical and cubic grains

In going from a planar film to a cylindrical wire and
spherical grain the effective dimensionality of the system
reduced from 2 to 1 and 0, respectively. An alternative w
of reducing the dimensionality is to go from a planar film
a rectangular rod and a cubic grain. In this case, however
surface is not smoothly curved, but displays strong geome
singularities in the form of sharp edges and corners. In
subsection we calculate the critical-point shift for rectangu
sample topology.

Consider a hypercube inn dimensions (n51,2 or 3! of
size Ln and extend the system infinitely in the remaining
2n dimensions. The choicen51 reproduces the case of th
planar film, n52 the rod with square cross-section andn
53 the cubic grain. Note that the effective dimensionality
d532n. The GL equation in zero field takes the form

2
\2

2m
Dc52ac ~4.21!

with a.0 since T.Tc . The boundary conditions on th
faces of the hypercube read

]c

]xi
U

xi50

5
c~xi50!

b
,

]c

]xi
U

xi5L

52
c~xi5L !

b
, ~4.22!

wherei 51, . . . ,n andb,0.
The technique of separation of variables leads in this c

to the exact ground state, since, as we shall show, the w
function has no nodes. Thus we assume the product form

c~$xi%!5P i 51
n f i~xi !. ~4.23!

Solutions to Eq.~4.21! are of the form

f i~xi !5Aie
xi /j i1Bie

2xi /j i. ~4.24!
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The decay lengthsj i satisfy the constraint

(
i 51

d

j i
225j22[2ma/\2. ~4.25!

Imposing the boundary conditions leads to the equations

L

j i
5 lnU11j i /ubu

12j i /ubuU, i 51, . . . ,n ~4.26!

In order for the wave function to possess no nodes,
therefore to correspond to the exact ground state of
Schrödinger problem equivalent to our system of equatio
it is necessary to consider only the solutions for wh
j i /ubu,1. Furthermore, for a given ratioL/ubu this solution
is nondegenerate and isotropic, so that

j i5jAd, i 51, . . . ,n. ~4.27!

The critical-point shift forL@j is now given by

tc~L !'n~112e2L/(jAn)!. ~4.28!

The exponential decay of the shiftTc(L)2Tc(`) turns out
to be characteristic for rectangular geometry, in contrast w
the power-law decay for curved surfaces. Moreover, si
the conditionj i /b521 differs from the conditionj/b5
21, the temperature of onset of superconductivity in
thermodynamic limitL→` depends onn in rectangular ge-
ometry. We find

tc~`!5„Tc~`!2Tc…/~Tcs2Tc!5n, ~4.29!

with Tcs the surface critical temperature for a single plan
surface~in a semi-infinite system!.

It is a paradox that the transition temperature in the th
modynamic limitL→` depends on the shape of the samp
However, after some reflection it is clear that in this limit t
onset of superconductivity is limited to the vicinity of th
surface~for n51), the vicinity of the wedge where two su
faces meet at right angles~for n52) and the vicinity of the
corners~for n53), where superconductivity is strongly en
hanced. Away from these boundaries, in the interior of
system, very little superconductivity should be expected
below Tc(`). Therefore, from a physical point of view, th
fact that Tc(`).Tc reflects boundary superconductivi
rather than bulk superconductivity.

In the microscopic limit (L!j) we obtain

tc~L !'2nubu/L ~4.30!

which corresponds well to the results for the curved surfac
if, as usual, we make the identificationL52R.

V. CONCLUSIONS

In this paper we have established a close analogy betw
capillary condensation in fluids and the transition from s
face superconductivity to mesoscopic sample supercon
tivity. Furthermore, the interplay between capillary conde
sation, prewetting and wetting, has been studied
superconductors which display an interface delocaliza
transition. In the limit of strongly type-I superconductors
full analytic description has been given for the finite-si
d
e
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h
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e

r

r-
.
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en
-
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n
n

effects on the various phase transitions involved.
We have scrutinized the anomalous critical-point shift

mesoscopic samples in zero field, and the standard finite-
scaling for the transition to superconductivity in nonze
magnetic field. The critical-point shift in zero field is anom
lous in the sense thatTc(L) or Tc(R) converges toTc(`)
.Tc instead ofTc . Standard finite-size scaling would hav
predictedTc(`)5Tc . However, in a fixed nonzero magnet
field H, no matter how small, the transition temperature
the limit L→` ~or R→`) converges to the temperature a
sociated with the bulk critical fieldHc5H. In other words, in
nonzero field the bulk two-phase coexistence line is fu
restored in the macroscopic or ‘‘thermodynamic’’ limit.

The anomaly is thus confined to the temperature segm
@Tc ,Tcs# in vanishing field. This segment becomes part
the two-phase coexistence line in the limit of large thickne
or diameter of the sample. As a result, the capillary cond
sation line displays a corner or bend in the vicinity of (T
5Tc ,H50). How this corner develops can be seen in Fig
which shows the phase diagram forL/ubu520. Comparing
this with Fig. 1, which corresponds toL/ubu58 we notice
that the capillary condensation line approaches the bulk
existence line in nonzero field, but the supercritical tempe
ture segment remains part of the capillary condensation l

We have indicated by FSS1 the finite-size shift of t
capillary condensation transition in the partial wetting r
gime. Likewise, FSS2 refers to the finite-size shift in t
complete wetting regime, and FSS3 marks the shift in
supercritical region. These shifts obey the analytical la
derived in Sec. III. For this large value ofL/ubu the critical-
point shift in zero field is so~exponentially! small thatTc(L)
practically coincides withTcs .

The significance of the zero-field critical temperature
the macroscopic limitTc(`) must be considered with care

FIG. 5. Finite-size scaling~FSS! of the capillary condensation
transition atk50 illustrated for a thick film, withL/ubu520. See
also Fig. 1 for comparison. The arrows FSS1 show the algeb
shift of order 1/L between the film transition and the bulk transitio
in the partial wetting regime~no surface sheaths intervene!. FSS2
indicates the similar shift in the complete wetting regime~with
surface sheaths induced by the prewetting transition!. ForT.Tc the
exponentially small shift is apparent~FSS3! and clarifies how the
capillary condensation line eventually converges, for largeL, to a
corner shape or ‘‘dog leg’’ consisting of the bulk coexistence li
supplemented with the segment@Tc ,Tcs# on the temperature axis.
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For planar, cylindrical and spherical geometry,Tc(`)
5Tcs . This implies that for asymptotically flat surface
~with vanishing curvature everywhere! superconductivity
starts near the surface. For macroscopic cubes, howeve
perconductivity can start at higherT because it nucleates firs
in wedges and corners. This is why, for square rods
cubes,Tc(`) is progressively increased. This apparent
crease ofTc in the macroscopic limit disappears when t
sharp edges are fully rounded. In the mesoscopic and mi
scopic regimes smoothing of corners or other asperitie
irrelevant, since shape details are then small relative to
scale ofj and cannot be ‘‘resolved.’’ The critical tempera
ture is then independent of the details of the shape of
sample.

From a more practical point of view our most notewort
result is the significant increase ofTc(R) for mesoscopic
cylindrical or spherical superconductors with surface
hancement. The main asymptotic relation betweenTc(R)
and the sample radius can be summarized in the form
leading order in 1/R,

t'112cj, ~5.1!

where t[(b/j)25@Tc(R)2Tc#/(Tcs2Tc), and c[(1/R1
11/R2)/2 is the mean curvature. For cylinders,c51/2R. For
spheres,c51/R.

We illustrate the theoretically predicted increase ofTc by
means of a numerical example based on the~old! results of
Fink and Joiner3 for a surface-enhanced In0.993Bi0.007 foil,
with Tc'3.5 K, and k'0.37. After cold working of the
sample surface the critical temperature increased toTcs
5Tc10.02 K. An order of magnitude estimate suffices,
we take a typical value for the coherence length amplitu
j0'1000 Å and obtainj(Tcs)5j0(Tcs /Tc21)21/2'1.3
mm. Sinceb52j(Tcs) we obtain thatubu is of the order of
a micron.

This estimate allows us to predict the further increase
Tc due to confinement. For example, for a thin film of thic
nessL510mm of the same alloy the predictedTc(L) on the
basis of Eq.~4.4! is still Tc10.02 K. The confinement effec
is imperceptible for this thickness. Reducing the thickn
further to L51 mm we obtainTc(L)5Tc10.05 K and for
L50.1 mm we findTc(L)5Tc10.41 K. Now, changing the
geometry from planar to cylindrical or spherical the increa
of Tc is more striking. For example, for a spherical grain
diameter 10mm of the same material, Eq.~4.15! predicts
Tc(R)5Tc10.03 K. For 2R51 mm we obtainTc(R)5Tc
10.13 K, and for 2R50.1 mm we get Tc(R)5Tc11.21
K54.71 K.

We would like to stress that cold working of the samp
surface is only one of the possible surface treatments that
lead to surface enhancement of the superconducting o
parameter. In modern experiments deposition of a thin la
~of thickness less than the coherence length! can be per-
formed in a clean, controlled and reproducible way. T
layer affects the boundary condition, and measurement o
critical temperature in zero field is sufficient to establish
sign and, forb,0, also the magnitude of the surface e
trapolation lengthb.

Further, our results for zero magnetic field are indep
dent of the GL parameterk and thus apply to type-I and
su-
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type-II superconductors alike. In our opinion the results co
cerning the increase ofTc are possibly also relevant fo
surface-enhanced high-Tc superconductors. The reason f
this belief is that in at least two experiments surface enhan
ment was found in high-Tc materials. Fanget al. measured
an increase ofTc of several degreesK in macroscopic
YBaCuO samples with twinning planes,18 and Schwartzkopf
et al. in HoBaCuO.19 Abrikosov and Buzdin20 invoked the
GL theory with the same boundary conditionb,0, to de-
scribe this phenomenon.

In a future publication we intend to report on calculatio
of global H-T phase diagrams fork.0. In addition to the
features we have discussed in this paper, second-order
sition lines and tricritical points appear. Also, the film vorte
phase becomes stable in a small region of the phase diag
and gains importance ask is increased.

ACKNOWLEDGMENTS

We thank Franc¸ois Peeters and Todor Mishonov fo
stimulating discussions, and Ralf Blossey and Harvey Do
for comments on the manuscript. This research was s
ported by the Flemish FWO Project No. G.0277.97 and
the Inter-University Attraction Poles and the Concerted A
tion Program.

APPENDIX: CAPILLARY CONDENSATION
APPROACHING COMPLETE WETTING

In this appendix we are concerned with the derivation
Eq. ~3.8!. The starting point is the condition for capillar
condensationgPW5gcap. This is worked out as follows:

gPW2gcap52gSC,N2~HR
221/2!~L22l !/j

1dgPW2dgcap. ~A1!

The termdgPW represents the free energy of two co
strained wetting layers minus that of two equilibrium wettin
layers. If we adopt the notation

J~c;A,B!5
A2c4/2

A2c21c4/21B
~A2!

we obtain

dgPW52E
0

cPW(0)

dcJ~c;1/2,HR
2 !22E

0

c(0)

dcJ~c;1/2,1/2!.

~A3!

The fact that the argumentA of the functionJ equals 1/2 in
both terms signifies thatHR is set equal toHR,c . The con-
straint is imposed by setting the argumentB equal toHR

2

.1/2 in the first term only, so that the constrained layer h
the same thickness and profile as an equilibrium layer i
field HR . For more details on the physics of constrain
surface sheaths, we refer to Ref. 9.

The termdgcap represents the free energy of the capilla
condensed state minus 2gW,SC,
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dgcap52E
cm

ccap(0)

dcJ~c;1/2,C!22E
1

c(0)

dcJ~c;1/2,1/2!,

~A4!

where C5C(L) is the ‘‘constant’’ in the first integral for
superconducting film states~2.3!.

We now examine the calculation of these terms, and be
with dgPW. We definee5HR

221/2 and consider an expan
sion to first order ine. The first contribution comes from th
e-dependent upper limit of the integral. Explicitly,

cPW~0!2511~j/b!21A@11~j/b!2#22~112e!.
~A5!

For e→0, cpw(0) reduces toc(0). Thesecond contribution
comes from thee dependence of the integrandJ(c;1/2,HR

2).
After some elementary algebra, we find to first order

dgPW

A2e
5

c~0!211

2c~0!@c~0!2212~j/b!2#

1 lim
e→0

S E
1

c(0)

2E
0

1D dc
11c2

~12c2!21e
. ~A6!

The evaluation of the limit must be done carefully. W
have separated the integrand into a symmetric and an
symmetric part~with respect toc51). The symmetric part
which contains the dominant singularity proportional
1/(c21)2, is largely canceled by subtracting the integrals.
the part that remains one may safely sete50 and the result
is the contribution, withx5c21,

dsym52E
c(0)21

1

dx
822x21x4

x2~42x2!2
~A7!

which is simple to evaluate. In the antisymmetric part, ho
ever, one may not exchange the limite→0 with the integra-
tion. One must calculate

dantisym5 lim
e→0

S E
0

1

1E
0

c(0)21D
3dx

2ex22x5

e218ex212ex4116x428x61x8
.

~A8!

This leads to two contributions, associated with the t
terms in the numerator of the integrand. The result is, w
z5x2/e,
ct
i B
in

ti-

-

o
h

dantisym5E
0

`

dz
2

~114z!2
2S E

0

1

1E
0

c(0)21D dx
2x

~42x2!2

~A9!

which is elementary to evaluate.
The final result is

dgPW5A2e1o~e!. ~A10!

The correctiono(e) goes to zero faster thane, in the manner
ae2log(1/e), according to numerical computations. For e
ample, forj/b521 we obtaina'0.26. It is interesting to
note that the leading-order term is independent ofc(0), and
thus independent of the ‘‘temperature’’ variablej/b.

We now turn to the evaluation ofdgcap. As a first step we
examine the dependenceC(L) for capillary condensation
states more closely. For this it suffices to study the lead
terms inL/j for C→1/2 from below. Using Eq.~2.4!, to-
gether with the relationscm5@11(122C)1/2#1/2 and
ccap(0)2511(j/b)21$@11(j/b)2#222C%1/2, we obtain
after some algebra,

L

j
5

1

A2
ln

1

1/22C
1D1o~1!, ~A11!

whereo(1) denotes terms that vanish forC→1/2. We veri-
fied numerically that the constantD is typically of order
unity and depends onj/b. This result implies the~expected!
exponential decay ofC(L) for largeL,

~1/22C!}e2A2L/j. ~A12!

In a second step we find, using numerical computati
that for C approaching 1/2,

dgcap'2
1

A2
S 1

2
2CD ~A13!

so that the finite-size correction for the surface free energ
the capillary condensed profile decays exponentially rap
with the thickness of the film, in view of Eq.~A12!. The fact
that dgcap is negative expresses the lowering of the free
ergy of the superconducting film by confinement. This is
manifestation of the fairly general observation that ‘‘like
surfaces attract each other.21 In contrast,dgPW.0, reflecting
the repulsion between the SC/N interface and the surface.
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