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We present benchmark, high precision measurements of the dynamic structure) (gtor of liquid “He
at several temperatures over a wide wave vector transfer rarg®¥29 A1 J(Q,y) is very different in
the superfluid phase beloWw, and in the normal phase aboWg whereT,=2.17 K. BelowT, , J(Q,y)
contains a pronounced additional contribution nea that is asymmetric aboyt=0, reflecting a condensate
contribution modified by asymmetric final-staeéS) effects. The asymmetry id(Q,y) is direct qualitative
evidence of a condensate. We analyze the data af aking the same model Qf(Q,y) consisting of a
condensate fractiomy, a momentum distributiom* (k) for statesk>0 above the condensate, and a FS
broadening functionR(Q,y). We find a condensate fraction given loy(T)=ny(0)[1—(T/T,)”] with
Nng(0)=(7.25£0.75)% andy=5.5x1.0 for T<T,, which is 30% below existing observed values, amd
=(0x0.3)% for T>T, . We determinen(k) in both phases. The* (k) is significantly narrower than a
Gaussian in both superfluid and nornfdde and narrowest in the normal phase. The final-state function is
determined from the data and is the same within precision above and BgloWwhe precise form oR(Q,y)
is important in determining the value of(T) below T, . When independent, theoretidd{Q,y) are used in
the analysis, they(T) is found to be the same as or smaller than the above value.

. INTRODUCTION and the final-state functioR(Q,y) in liquid *He accurately
as a function of temperature. The most direct method to ob-
Superfluidity and Bose-Einstein condensati®EC) in  serveny(T) is by neutron inelastic scattering at high energy
Bose gases and liquids are a topics of great current interes(tﬁw) and momentum#Q) transfer’>?* The quantity ob-
Superfluidity in liquid “He has a long and rich history of gerved is the dynamic structure fact®SP S(Q,w).b7” At
study 8 and BEC has recently been demonstrated spectacyrigh » andQ, S(Qw) depends on single-atom properties and
larly in dilute Bose gase$:'® Einsteirt” first showed that a  the energy transfew is Doppler broadened by the atomic
gas of particles obeying the statistics proposed by Bose momentum distributiom(k). From this broadening)(k) is
could condense into a state having macroscopic occupatiofeasured andy(T) is determined.
of a single-particle quantum statBEC) below a critical Specifically, provided there are no perfectly hard core in-

temperatureT,. In the 1930s superfluidity was discovered tgractions, S(Q,w) at Q—x reduces to the impulse
in*~liquid *He below a temperatuf®, =2.17 K.London®  snoroximatiofi (1A),
C

proposed that this superfluidity was associated with BE
W|th T)\:Tc .

Superfluidity can be readily demonstrated in liquiHe SIA(Q!"-’):J dkn(k) (@ — wg—Vg-K), (1)
today. However, because liquftHe is a strongly interacting
fluid, the fraction of the fluid condensed in the zero momen-wheretk is the *He atom momentum in the fluidy(k) is
tum state is smafl’"2*®less than 10%. For this reason and the momentum distribution, andwg=%2Q%2m and vg
also because of the strong interactfidr? BEC in superfluid =#Q/m are the free*He atom recoil energy and velocity,
“He is difficult to observe. Measurements to ddtare sum-  respectively S;,(Q,») depends solely on(k).
marized below. Unambiguous identification of a condensate At finite Q, interactions of the recoiling atom with its
in liquid “He and accurate determination of the condensat@eighbors, denoted final-statgS) effects, contribute to
fraction no(T) remain important goals today. S(Q,w). The observe®(Q, w) is therf:¢’

In contrast, BEC has been unambiguously demonstrated
in dilute gases of trapped alkali-metal atoPn&’In this case,
the gas is dilute and weakly interacting so that nearly 100% S(Q'w):f do’'SA(Q,0")R(Q,0—w’). @
of the gas is condensed into the lowest single particle state at
low T. These condensed gases show remarkable properti€sjuation(2) may be regarded as the definitforof the FS
but superfluidity, stable persistent flow, is difficult to dem- broadening function R(Q,w). At finite Q (e.g., Q
onstrate. Clear observation of superfluidity in trapped Bose=20 A™') R(Q,w) has a significant width an®(Q,w)
gases is an important research goal today. —d(w) asQ— 0.

The aim of the present investigation is to determine the When there is a condensatgk) contains a ternmyS(K).
condensate fractiony(T), the momentum distribution(k),  This term leads to a ter§A(Q, w) =ngd(w— wg) in the 1A

0163-1829/2000/621)/1433713)/$15.00 PRB 62 14 337 ©2000 The American Physical Society



14 338 H. R. GLYDE, R. T. AZUAH, AND W. G. STIRLING PRB 62

in Eq. (1) and a termS(Q,w)=ngR(Q,w— wg) in the ob-  tribution, and the FS broadening function. We begin with the
served DSF in Eqg(2). S(Q,w) is conveniently expressed in expressions for the dynamic structure factor on which the
terms of they-scaling variabley=(w— wg)/vg and the func- method is based. The method consists, essentially, of cumu-
tion J(Q,y)=vgS(Q,w), which peaks aty=0 and is ap- lative expansion of the intermediate DSF and fitting the ex-
proximately independent o®. In J(Q,y) the term arising panded DSF to the data to obtain the expansion coefficients.

from the condensate is In this way, empirical expressions for the components of the
DSF are obtained. We fit the same expressiinall T both
nNoR(Q,Y). (3 above and below J. The method was set out in detail by

Glyde**? and was discussed recently in a similar context by
A specific goal here is to demonstrate that thgR(Q,y)  Azuahet al3®
term can be observed in the data and is a direct signature of At high wave vector transfer, where the static structure
the condensate. factor S(Q) has saturated t&(Q)=1, the observed DSF

Measurement ofig(T) by neutron scattering has a long S(Q,w) reduces to the incoherent DSF

history, which is reviewed by Soké?, Glyde® Silver and
Sokol?® Glyde and Svenssdif, Svensson and Sedfs, 1 (=
Svenssor?? and others. Early measurements, discussed by 3(Q:w):EJ7xdte'thﬁ(Q,t)- 4
Martel et al,*® produced a wide range af, values, 2%

We express all the present results in the far(®@,y). We
note thatJ(Q,s) depends solely on the momenturkg of
the struck atom projected alori

The IA is obtained by approximatink,(s') by its initial
valuekq(0)=kq for all s’ in Eq. (), i.e.,

<ny=<17%. Searst al®! developed a method for treating At constantQ, Si(Q,w) is a broad peak im centered atog
FS effects based on an additive expan&ioof R(Q,w),  with width proportional tovg where, as in Eq(1), wg
which led to the first consistent values of. With this :ﬁQZ/Zm andvgr=AQ/m are the free atom recoil energy
method Searet al3! and Mook? obtained no(0)=(13.9 and velocity, respectivelyS;(Q,w) and S(Q,t) can be
*+2.3)%, andh(0)=(11=3)%, respectively. In pioneering scaled to approximatel@-independent forms it andt are
measurements using the IPNS spallation neutron source t@placed by they scaling variabley=(w— wg)/vg and its
go to higherQ values and analyzing the data using theconjugate length s=vgt, respectively. The nearly
convolutiorf! form (2) of S(Qw) with the FS function cal- Q-independent forms ar&Q,y) =vrS(Q,w) and
culated by Silvef®2® Sokol and collaboratof$>*~3" obtain
ny=10.0=1.25% at low temperatur@.35 K). A s

In this study, we take advantage of the high flux ISIS J(QS)EQ""RtSﬁ(Q,t):<TseXF{—iJ’ ds'kq(s’) >
neutron scattering facility and the MARI instrument at Ruth- 0 5)
erford Appleton Laboratory to measu&Q,») with high
statistical precision over a range d@ values 15Q  |n the second expression, useful at short timgshort s
<29 A~ High precision over a wid@ range allows usto = t), T(T.) is the time ordering operator anflkg
determine several parameters in model fitSED, w) to the =h(k-©) is the struck atom momentum aloq The Fou-
data. SinceR(Q, ) is changing rapidly in thiQ range, we (o, transform(4) is then
can identifyR(Q,w) in the data. Particularly, we can sepa-
rate it from ngy and n(k), which are independent d®. In 1 (=
earlier measuremerifswe determined the momentum distri- J(Q,y)= —j dsé’sJ(Q,s). (6)
bution in normal*He atT=2.3 K and found thah(k) dif- 2 )~
fers significantly from a Gaussian with high occupation of
low k states. We also determined the condensate fractjon
in superfluid*He atT=1.6 K, findingny=(6+2)%3° The
R(Q,w) atT=1.6 K and 2.3 K was found to be the same
within experimental precisioft. In the present paper, we add
measurements &t=0.5 K, 1.3 K, and 3.5 K and analyze
the data using an improved procedure which is the same at Iia(s) = (e~ ke @)
all T. We find ng(T)=ng(0)[1—(T/T,)*] with ny(0) 1A '
=(7.25£0.75)% andy=5.5+1.0 in the superfluid phase This assumes that the struck atom momenkygis constant
andno=0 in the normal phase using the same model. Weynd not changed from its initial value by interaction as the
find thatn* (k) for states above the condensate in superfluicstryck atom recoilsno final-state interactions Since the
“He (excluding the condensate induced portioiis less  one-body density matrix(OBDM) is defined asn(r)
sharply peaked than(k) in normal “He. =(¥*(0)¥(r))/n=(e '*"), wheren=N/V, we see also

In Secs. Il and I[I, we describe the theoretical backgrounqhatJIA(s) is the OBDM for displacements=sO projected
of the data analysis and the _models used tc_) repras@t alongQ. The Fourier transform of the OBDM is the momen-
and R(Q,w). The data collection and reduction procedurestum distributionsn(k). Thus
are described in Sec. IV. The results are presented and dis- ' ’
cussed in Secs. V and VI, respectively.

1 o
Jia(y)= Z< f dséyse"‘os> (8
Il. THEORY AND ANALYSIS

In this section we describe the method used to analyze the — [ dkn(k)s(y—ko)
data and extract the condensate fraction, the momentum dis- B Y=Ke
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is the momentum distribution(k) for a momentum variable
y projected alond), i.e.,

Ia(y)=n(y)= f dkdk n(k, K, .y), ©

where thez axis is chosen alon@. J;x(y) =n(y) is denoted
the longitudinal momentum distribution.
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states, has been derived lnspace by expressing(k) in
terms of the quasiparticle/phonon response functiér.
This gives

nof (k)= e 2D (14)

ngmc 1 f(Ch|k|)

——— —CO
2n(2m)3n [K| 2kgT

The term in square brackets in Eq4) is the derived expres-

When interactions between the recoiling struck atom angion valid at lowk. We have multiplied the derived expres-

its neighbors are important, the fll{Q,s) in Eq. (5) can be
formally expressed 45

‘J(st)ZJIA(S)R(Q!S)i (10)

which, as in Eq.(2), defines the FS functioR(Q,s). The
Fourier transform of Eq(10) is

1 .
J(Q.y)= ﬂf dse”*Jia(s)R(Q,S). 11

Below we introduce models for the OBDM(S)
=n(s) and the FS functioR(Q,s) based on expressiol8)
and (5), respectively.

IIl. MODEL J |5(s) AND R(Q,s)

The model OBDMJ,5(s) and FS functiorR(Q,s), that

sion by a Gaussian function to cut diffk) at higherk since
f(k) must vanish before the end of the phonon regibn,
=0.7 A1, We have selecte#t,=0.5 A"1. A reasonable
lower limit of k is k,=0.3 so that 0.8k,<0.7 A~L. The
nof(s) in Eq. (9) is obtained by Fourier transformingf (k)
numerically.

The n*(s) follows by expanding Eq(7) in cumulants'®
We retain terms up te®,

L a,s? a,st
n*(s)=exp — o + T

CEGSG

6! | (15

where
ay=(K3), as=(kg)—3(kd)?

ag=(K3) — L5kg)(kg) +30(kg)®

we use to fit to the data are described in detail by Glyde are cumulants o_h(s)._The m_odeL],A(s) therefore has four
and Azuahet al** When a Bose system has a condensate, iparametersy, a,, a,, andag that are obtained by fitting
is convenient to separate its properties into_“condensate’to experiment. As notedd; is determined by normalizing

and “above the condensate” componefit§?°~"The com-

n(k), i.e., requiringn(s=0)=1. A typical Jja(s) at T

ponent arising from the condensate contains the singulat 1.6 K showing the three components, ng[1+f(s)],
behavior—such as a sharp peak in the response functions,aad the full n(s) is displayed in Fig. 1. Ats=0, f(0)

6 function in n(k), and a long range component in the =0 28 andf(s) contributes approximates 15% of the con-
OBDM. The states above the condensate contribute regulafensate weight.

behavior characteristic of a normal fluid. Specifically, the

The model final-state functioR(Q,s) can be obtained by

condensate contributes “off-diagonal long range order” tocymulant expansion af(Q,s) in Eq. (5) and the definition

Jia(S). This is a constant term i o (S) of magnituden,, the

(10) (see Appendix A of Azuahetal®® and references

condensate fraction. Also, when there is a condensate, qugserein for a full discussionUp to powerss®, this expansion
siparticles can be excited out of and into the condensate tg

states above the condensate. At l&wthese quasiparticle

excitations have a linear dispersion and in lig@ide are part

of the coupled quasiparticle/phonon excitation. These excita-

tions contribute a ternmyf(s) to J;a(s) which is also long

range ins but not constant. The contribution from the states

above the condensate is short rangesirThis “normal”
component, which we denote hy*(s), can be well de-
scribed by a cumulant expansion of E@) in powers ofs.
The model OBDM containing these three components is

Jia(s)=n(s)=ng[1+f(s)]+An*(s). (12

Here A; is a constant chosen so thatk) is normalized to
unity [J;4(0)=1].
To specifyf(s), we note that the three-dimensior{@D)

momentum distributiom(k) obtained by Fourier transform-

ing Eq.(12) is
n(k)=ng[1+f(k)]+An* (k). (13

The coupling termf(k) betweenk=0 and k#0 states,

iB2S3  Bas* iBsS°  Bes®
R(Q’S)zexr{ B::! +ﬁ2! _ﬁ55! _Bg!

(16)
Expressions for the coefficienf_i;n are
Bs=a3/\Q,
Ba=2a4(A\Q),
Bs=as,/(AQ)*+as4/\Q, (17)

Bs=2as2/ (NQ)*+ass/ (\Q)?,
where the En are independent ofQ and A=#%#%/m
=1.0443 meV K in liquid “He.
Expressions for tha,, can_be obtained from the moments
of J(Q,y) and results up t@e, have been derivetf.?* The

which leads to enhanced occupation of low momentumowest two area;={(V?v(r))/6 anda,={(Vv)?)/3 where
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1.0 = ' ratory in the United Kingdom. The instrument used was the
. T gt high energy direct geometry chopper spectrometer MARI
A n(s) with incident energies up to 1000 meV possible. More than
\ [T RE.eBA 900 3He gas detectors provide an almost continuous cover-
\ age of scattering angles between 3° and 135° in steps of
\ 0.43°. This makes it possible to measure a large range in
\ momentum and energy transfer in a single experimental
\, scan. Due to the pulsed nature of the source, data collection
~~~~~~~~~~~~~~ TR S is performed in time-of-flight TOF) mode in which the time
00 —— of arrival of a neutron in the detector, measured from when
the neutrons leave the moderator, determines its energy loss
or gain after scattering from the sample. The momentum
transfer depends on the TOF and the scattering angle of the
neutron.

A high purity sample of*He gas was condensed into a
cylindrical aluminum can of length 5.5 cm and diameter 6
cm placed inside a standaféie “SORPTION” cryostat. To
minimize multiple scattering of neutrons within the sample,
the cylindrical sample volume was split into six smaller cy-
lindrical sections using highly neutron absorbing boron ni-
tride disks. Sample temperatures were determined using a
calibrated germanium resistance sensor and controlled using
a Lakeshore temperature controller which achieved tempera-
ture stabilities of 0.01 K or better. Measurements were made

FIG. 1. Upper frame: Model one-body density matrixs) @t Sample temperatures of 0.5, 1.3, 1.6, 2.3, and 3.5 K and at
=no[1+f(s)]+Asn*(s), (solid line) showing the components, ~ Saturated vapor pressuf8VP). A second data set at 1.6 K
(dotted ling, andno[ 1+ f(s)] (dashed lingfor no=6% andn*(s) ~ and 2.3 K was also collected at an earlier time when the
in Eq. (15 with @,=0.884 A2 ;=047 A and ag instrument was in a particularly stable condition and so these
=1.03 A6 obtained from fits to data &=1.6 K (see Table).  temperatures were chosen to perform@rdependent analy-
R(Q,s) (in A1) is the FS function16) for Q=29 AL Lower SiS. As an independent check, the resistance thermometry
frame: The corresponding®* (k) andn,f(k) in momentum space. readings were compared to the vapor pressure readings of the

sample. In order to cover theQ(w) range of interest, an
v(r) is the total potential experienced by the struck atomincident neutron energy of 755 meV was employed. A mea-
The momentR,= [dyy"R(Q,y) of R(Q,y) areR, =43, up  Surement was also made with the sample cell empty to de-

. — termine the sample-independent background scattering.
to n=5. Given the Q dependence of the3,, clearly )
R(Q,s)—1 for Q—oo and the IA is obtained aD—s . The collected data in TOF were then converted to energy

; i transfer ¢ w) at constant scattering angle using standard pro-
We treat thes, as parameters to be determined by fits 10cequres, The reader is referred to the recent article by

data at eaclQ value. The dependence gf,(Q) on Q there-  Andersenet al** for a detailed discussion of the data trans-

fore emerges from the fit to the data. We found tAatwas  formation from TOF toS(¢,w) and then tdS(Q, w).

very small and we qu4=o for simplicity. This appears to In this article we have made use of the inherent scaling

be an accidental zero in liquitHe sinceﬁ was not negli- property of the _scattering function Wiﬂg inthe 1A ge_nerally
=P known asy scaling and referred to in the last section. In the

gible in liquid neorf® A calculation ofa,/\ confirms that A the scattering function can be portrayed as the longitudi-
Ba is small in heliunt® The R(Q,s) therefore has three pa- nal momentum distributiod;»(y) and does not depend @
rameters8;, Bs, andBs. From theQ dependence g85(Q)  and w separately. However, at moderafe where the 1A
that emerged from the fit, we found that the first termdoes not applyy scaling is still approximately observed and
as,/(NQ)® dominated theas,/(\Q) term and ag,(AQ) It is useful to present the data as a generalized longitudinal
could be neglected, while inBs(Q) the second term momen;um dlstr|bu_t|on_](Q,y)—(ﬁQ/m)S(Q,w) (as dis-
= ) ) — 4 cussed in Sec. )] which is weaklyQ dependent as a result of
ap4/(NQ)“ dominated andagy(AQ)" could be neglected. g effects. The experimental data were transformed to
Again, these are empirical findings. J(Q,y) for Q=20 to 29 Al in steps of 0.5 A! and

In summary,Jia(S)R(Q,s) has a total of seven param- gamples of the data are shown in Figs. 2 and 3. The statistical
eters:ng, a,, a4, and ag which determine the OBDM, accuracy of the data is very high.
Jia(s), and B3, Bs, andBg which determines the FS func- The observed)(Q,y) consists of a convolution of the
tion R(Q,s) with ag, andag, found to be negligible. underlying momentum distribution, the FS function, and the
instrumental resolution function. Hence, for a quantitative
analysis of the data, the instrumental resolution function
must be accurately known. We have used a Monte Carlo

The measurements were carried out at the ISIS pulsesimulation method to calculate the instrumental resolution.
spallation neutron source at the Rutherford Appleton Laboin this method, the neutron scattering experiment is simu-

n(s) A"
f=)
W

0.12 1

IV. DATA COLLECTION AND REDUCTION
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FIG. 2. Observed(Q,y) including the instrument resolution in liquitHe at SVP at the temperatures indicated. Upper frame shows that
J(Q,y) is similar atT=2.3 andT=3.5 K in normal*He and similar alf=0.5 K, 1.3 K and 1.6 K in superfluidHe. The lower frame
shows that)(Q,y) is very different in superfluid and norméHe (T,=2.17 K). J(q,y) in the superfluid shows direct evidence of the
condensate termyR(Q,y): an increased peak heightyt0 and a right-left asymmetry around=0.

lated using the known instrument parameters, sample cell V. RESULTS
geometry, and an estimate for the sample scattering function.
The incident neutron beam characteristics were modeled US7o
ing the Ikeda-Carpent& speed and time distribution func- temperaturesT=0.5 K, 1.3 K, 1.6 K, 2.3 K, and 3.5 K
tion with the adjustable parameters determined from a fit tFigure 2 shows the ot,)se.rvela,Q,&/) at,Q.=28.’5 Alasa
the experimental monitor peaks before and after the samplg,n.tion of energy transfey, including the instrument reso-
The simulation results are obtained in TOF and are thefiqn function(see Fig. 3. In the upper frame, th&(Q,y) at
treated in the same way as the experimental data. The resyffe three temperaturéE=0.5 K, 1.3 K, and 1.6 K in the

is a convolution between the instrumental resolution functionsperfluid phase T<T,=2.17 K) are shown together.
1(Q.y), and the model scattering function input to the simu-These J(Q,y) are clearly all very similar. AfT=0.5 K
lation. 1(Q,y) is then simply deconvoluted from the simula- j(Q,y) is slightly higher in the peak regiog=0, where the
tion. The resulting instrumental resolution function is shownterm nyR(Q,y) makes its largest contribution. This reflects
as a dashed line in the top left frame of Fig. 3. We observehe somewhat larger condensate fractioTat0.5 K. The

that 1(Q,y) narrows significantly with increasin@ and is  two J(Q,y) in normal *He atT=2.3 and 3.5 K are plotted
quite small at largeQ, thus increasing the reliability of the together and are also very similar to each other. The peak
data. height at 3.5 K is slightly lower, reflecting a small broaden-

The dynamic structure factod(Q,y)=vgS(Q,w) was
termined at 2& values in the range ¥5Q<29 A at five
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JQy) (A)

y(A™)

FIG. 3. Data with fits of the model(Q,y) given by Egs.(11), (12), and(16) (solid line9 to the data. The dotted line is the MARI
instrument resolution function.

ing of n(k) betweenT=2.3 K and 3.5 K. 25.0 A1) along with the fit of the model(Q,y) from Egs.

In the lower frame of Fig. 2)(Q,y) at T=0.5 K and (11), (12), and (16) as solid lines. The dotted line is the
T=2.3 K are plotted together. There we see a marked difMARI instrument resolution function, which is narrow rela-
ference in thel(Q,y) between these two temperatures aris-tive to bothJ(Q,y) andR(Q,y). Both the data and the fitted
ing from the condensate termR(Q,y) atT=0.5 K, which  modelJ(Q,y) include the instrument resolution. The fits are
is absent in the normal phase. WhilgR(Q,y) contributes  excellent. In the superfluid phase the fitt§®,y) lies mar-
predominantly at the peaky=0), it also contributes in the  ginally below the data in the peak regiop=0. Again,
wings of J(Q,y). This leads to right-left asymmetry in n R(Q,y) contributes both in the peak region and away from
J(Q,y) aroundy=0 atT=0.5 K relative t0J(Q,y) at 2.3 the peak. Since there are many points in the wings, the wings
K. For example, ay=1.0 A lthe rlght-hand_ sidéRHYS) of play an important role in determining,R(Q,y). Appar-
J(Q,y) at 0.5 K is lower than the LHS relative to the 2.3 K ently, the best fit total function at ayl including noR(Q,y)

J(Q,y). At y=2.5 A1 the RHS ofJ(Q,y) at 0.5 K is lect ined* (k) R that i i
higher than the LHS relative to the 2.3 K case. This asym_jveh:tclzwa{;(;rz%l.ned (k). R(Q.). andno that s some

metry at 0.5 K reflects the asymmetry R(Q.y). The lon- The seven fitted parameters obtained from fits to data at
gitudinal momentum distribution(y) is an even functionof +_4 6 k for 19 Q values betweenQ=20 A~! and

y and must be symmetric aboyt=0. At 2.3 K, all of 29 A"! are shown in Fig. 4. The parameters are

R(Q,y) is folded with the much broaden(y) and this — . .
smears out asymmetric features over wigéntervals in  o» %2, @4 andag which determine the OBDM (s) and

J(Q,y) so that they cannot be seen. At=0.5 K the Bs: Bs: and B which determineR(Q,s). From Fig. 4a),
noR(Q,y) term appears “unfolded” and the asymmetry in We see that the fitted values io§ are essentially independent
R(Q,y) can be seen in the data. In this way, the data shoWf Q—as they should be. Similarly, we see in Figbpthat
directly features expected for a condensate. the fitted values of,, a4, andag are found to be indepen-
Figure 3 shows the observel{Q,y) at 28.5 A'! (and dent of Q. The error bars shown are the error bars that
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FIG. 4. Fitting parameters obtained from fits of the model

Jia(8)R(Q,s) to data affT=1.6 K over a wideQ range giving final
values ny=0.06+0.075, @,=0.884-0.02 A2  az=0.47
+0.04 A% as=1.0320.10 A° in Ja(s) and az/\=2.43
+0.25 A% a5, /\3=2560:300 A8, and ag/\2=215
+25 A"8in R(Q,s). The fluctuation of the points witl reflects
the counting statistical error.

TABLE I. Parameters in the functiod(Q,s)=n(s)R(Q,s)
given by Egs.(12) and (16) obtained by fitting to data af
=1.6 Kand 2.3 K {=#%/m=1.0443 meV £=12.12 K&). In
the fits we found thaa,, as,, andag, in Eq.(17) were smallzero
within statistical error and set these coefficients to zero. The cor-
responding kinetic energies afi)=14.45-0.3, (K)=14.7+0.3,
and(K)=16.3+0.3 K atT=0.5, 1.6, and 2.3 K, respectively.

T nO ay ay EG 33/)\ ;52/)\3 ;64/)\2

® @ A AH A° A AP A

16 6.0:0.75 0.884 047 1.03 243 2560 215
*£0.02 £0.05 *0.1 *=0.25 *=300 =25

2.3 0 0.897 0.46 0.38 3.3 2000 155
+0.02 £0.05 =0.04 *=0.3 =300 =20

emerge from therRrILLS fitting package that we use. These
error bars are consistent with an independent determination
of the error bars on an individual parameter as discussed in
the Appendix and with the fluctuation of the parameters with
Q.

Figure 4c) shows the fitted3s, Bs, and Bg values as
functions of Q. We foundE was small(zero within statis-
tical errop and we sej3,=0. From the upper frame, we see
that the f|tteoQ,83 is independent of as expected from Eq.
(17). The fitted value ofaz/A=2.43t0.10 A ! in B,
=a5/\Q is shown as the dashed line in Figcy From the
fits, we find thatﬁs is dominated by its second term in Eq.

0.12 &
Liquid ‘He

0.08 —— T=16KExpt
~~~~~ 2.3 K Exp't
o 1.54 K PIMC

2.50 K PIMC

0.04
T
g 0.00
&
— 0.12
< .

0.08 —— T=16KExp't
~~~~~ 23 K Exp't

= = Gaussian Comp.

All ha i
0.04 nonna‘l’ii:rlilt:tn
A, =10)
0.00 .
0 1 2 3

k A1

FIG. 5. Upper frame: Observed momentum distribution
A;n* (k) abovethe condensate &t=1.6 K (solid line) and atT
=2.3 K (dotted ling. Open circles and open triangles are the cor-
responding quantities calculated by Ceperley and Poli&ek. 20
using PIMC methods af=1.54 K and 2.50 K. Lower frame: Ob-
servedn* (k) atT=1.6 K andT=2.3 K both normalized to unity
for comparison of the shape.
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0.10 4 Liquid “He
N T=1.6K — 1y=0.03 Fixed
R NS 1y = 0.05 Fixed
) N ——— 1,=0.06 Fitted
< o0s | 1y =0.07 Fixed
E
0.00
0 1 2 3 4
k(A"
— 1ny=0.03 Fixed
1 [0y . ny=005Fixed | [
2 ——— ny =006 Fitted
< 1, = 0.07 Fixed
ey
g
4
0 p

-1
Y (A ) FIG. 7. Variation of the fittedA,n* (k) andR(Q,y) functions
FIG. 6. Upper frame: Observed OBDN(s) at T=1.6 K and for fixed inputn, values showing the smooth variation of these
T=2.3 K. Lower frame: Observed final-state broadening functionfitted functions withn,. The n,=0.06 value gives the best overall
atT=1.6 KandT=2.3 K. fit (lowest x?).

(17), Es=552/(>\_Q)3- That iS,Eng is largely independent the lowk states im* (k) just aboveT, . We emphasize that

i . . e . the nyf (k) term is not included in Fig. 5.
of Q. §|m|larly, B is dominated by its first term in E417), Thoe(p;th integral Monte CarICPII\%C) n* (k) in normal
since3sQ? is independent oQ. While the plots in Fig. &)  “He (Ref. 20 is shown in the upper frame of Fig. 5 and
display theQ dependence g8,(Q) that emerge from the fits agrees very well with our experimentat (k), as noted ini-

well, the a, are most accurately obtained by plotting the tially by Azuahet al®® The agreement between PIMC and

B.(Q) so that they have a slope and intercept. For exampldN® Present observetf (k) is also good belowr, . There is
lot 0f Q% = agy+ 3502 vs Q2 givesag, as the slope and some discrepancy, much of which comes from a difference
ap 6 627 <64 9 64 P in normalization of A;n* (k) since the PIMC calculations
a2 as the intercept. _ _ find ng=8.5% atT=1.54 K and we observa,=6.0% at
Values of the fitted parameters obtained from fits at the 18— 1 g K. There is no evidence of dik) term in the PIMC
largestQ values at temperatures 9=1.6 K and 2.3 Kare ggyits.
listed in Table I. The data at the larg€3walues are the most

precise. Also, the data &=1.6 K and 2.3 K are the most 8
precise as discussed in Sec. IV, so that the parameters at
these temperatures are quoted. The same model was fitted at 6 1

all T. The calculation of the errors in the parameters is dis-
cussed in the Appendix.

The momentum distributiod;n* (k) for k values above
the condensate calculated from the fitted parameters in su- 2 1
perfluid “He atT=1.6 K and in normal*He at 2.3 K is
shown in the upper frame of Fig. 5. At=2.3 K, we find 01
no=(0=0.3)% andn* (k)=n(k) (A;=1). Bothn* (k) are
much sharper than a Gaussian. The fitte(k) at T 0 ! 2 3 4
=2.3 K shown in Fig. 5 agrees with our previous Temperature (K)

determinatiori” The A;n* (k) at T=1.6 K (solid line) lies FIG. 8. Temperature dependenceng{T). The circles are ob-
below theT=2.3 K n(k) partly becauseé\;=0.93. In the  3ineq using the present fittd®(Q,y) for T=1.6 K (see Fig. at
lower frame of Fig. 5 we have normalizetf (k) at both 4 T, the fittedn* (k) for T=1.6 K belowT, , and then(k) for
temperatures to unity so that the observed shap& (k) at  T=2.3 K aboveT, . The squares are obtained as above but using
T=1.6 and 2.3 K can be compared. Tinve(k) is sharper in  n*(k) for T=1.6 K at allT. The error bars shown reflect the error
normal “He than in superfluid*He. The fraction that con- in the T dependence only. The solid and dashed lines are guides to
denses into th&=0 state belowT, appears to come from the eye.

g (%)
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FIG. 9. Condensate fractiomy(T) observed heréfull circles)
and by Sosniclet al. (Ref. 39 (squarescompared with those cal-
culated by Ceperley and PollodRef. 20 (PIMC) and by Kalos
et al. (Ref. 18 and Whitlock and PanoffRef. 19, Green function
Monte Carlo(GFMC).

The upper frame of Fig. 6 shows the OBDNI(S)
=ny[1+f(9)]+AN*(s) at T=2.3 K andT=1.6 K display-
ing the condensate termy[1+f(s)] at 1.6 K, particularly.

8 I
Experimental n*(k)
6 —o— ExptR(Qy)
—a— Sil
..g-- CK
@ 4 —&-— Maz
=°
2 4
o4 TETT B
8
PIMC n*(k)
6 4
g 4
&
2 4
0| —
0 1 2 3 4

Temperature (K)

FIG. 11. Condensate fractionyg(T) obtained by fitting the
present data using different FS functioR6Q,y): the present ob-

The FS functiorR(Q,y) at these two temperatures is shown servedR(Q,y) (solid line and open circlgsandR(Q,y) calculated

in the lower frame. ClearlyR(Q,y) is effectively indepen-

by Silver (solid line and triangles by Carraro and Kooniridotted

dent of temperature as expected for a function that dependi§e and squargsand by Mazzantet al. (dashed line and squajes

on interactions in the fluid. We have used the 1.RQ,y)
in all further analysis.

To verify thatng is well determined in our fits with a total
of seven parameters, we fixet) at the valuesn,=0.03,
0.05, and 0.07 and refitted far*(k) and R(Q,y) at T
=1.6 K. TheA;n* (k) andR(Q,y) for these fixed values of
ny are shown in Fig. 7. Thea*(k) and R(Q,y) change
smoothly and consistently with the, value selected, show-
ing that n*(k) and R(Q,y) are reliably determined as a

function ofng in a statistical sense. The converse should als

be true. The lowest globa}?> and best fit was obtained for
no=0.06.

RQY) A

-4 2 0 2 4
y (A

FIG. 10. Final-state broadening functions =23 A%
present observe@solid ling), and calculated by Silve(Ref. 33
(open circleg by Carraro and KooniriRef. 49 (dotted ling, and
by Mazzantiet al. (Ref. 47 (dashed ling

In the upper frame the present observed momentum distribution
n*(k) is used T=1.6 K) for T<T,, the presentn(k) (T
=2.3 K) for T>T, . In the lower frame the PIM@* (k) calcu-
lated by Ceperley and PollocRef. 20 is used T=1.54 Kn* (k)

for T<T,; T=2.5 Kn(k) for T>T,]. ng(T) is clearly sensitive

to R(Q,y) but not greatly sensitive to* (k).

Using the best fiR(Q,y) atT=1.6 K (see Fig. § at all
temperatures we refitted to geg(T) as a function ofT. In
the fit, n* (k) shown in Fig. 5 forT=1.6 K was used for

% <T, andn* (k) for T=2.3 K was used foT>T,. The

resultingng(T) are shown by the open circles in Fig. 8. The
squares in Fig. 8 were obtained in the same way except the
n* (k) obtained forT=1.6 K was used at all, T>T, and
T<T, . Clearly a smootmy(T) is obtained. Also we find
no=0 in normal “He even ifn* (k) at T<T, is used. The
error bars omg(T) in Fig. 8 are the statistical error in tfie
dependence ofig(T) only. At T=0.5 K we findny=(7.2
+0.5)% (see the Appendixand a fit to theT dependence
gives

No(T)=no(0)[1—(T/Ty)"] (18

with ng(0)=(7.25+0.75)% andy=5.5=1.0.

Finally, Fig. 9 compares the presemg(T) shown in Fig.
8 (see parameters in Tablgwith Monte Carlo(MC) values
and previous measurements by Sosretlal3* As noted the
total error in the present, is =0.75% (see the Appendix
These values are discussed below.

VI. DISCUSSION

From fits to data, we have obtained a condensate fraction
of ng=(7.25-0.75)% atT=0 K and theT dependence of
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-1
Liquid ‘He Q=285 ATT-05K 0.16
041 n, = 7% fitted Liquid ‘He
0.12 b —— 16K Exp't n, = 0% (fixed)
0.2 4 o AL U PP 23K Exp't
< “ s 250 KPIMC
& 0.08 K
0.04
04 n0 = 8% fixed
n*(K) not refitted
< 0.00 .
g, 02 0 1 2 3
= k A%

00 FIG. 13. Momentum distribution(k) obtained by fitting to data
atT=1.6 K (T<T,) if ny is fixed atny=0 solid line. The dotted
line is the corresponding(k) at T=2.3 K. The triangles are cal-

04 n0 = 9% fixed culated(PIMC) values(Ref. 20 atT=2.5 K.

n*(k) refitted

02 n* (k) show a clear broadening of* (k) asT is decreased
throughT, . Below T, , there is also the,f(k) component
shown in Fig. 1 which contributes at very lokwalues.

00 poees™ We find that the value ofio(T) below T, obtained in our

2 0 N fits is not sensitive to reasonable variation rof(k). For
A example, we find the sam®(T) using our fittedn* (k) for
y @75 normal “He, the PIMCn*(k), and our fittedn(k) for T
FIG. 12. Data atQ=28.5 A ™! and T=0.5 K (open circles ~ ~ 1A _
with fitted J(Q,y) given by Egs.(10), (11), (12), and (16) (solid The termngyf (k) coupling the condensate to states above

line). Upper frame: best overall fit giving lowest? and n,  the condensate is highly localized ndar 0 and its Fourier
=(7.00+0.78)%. Middle framen, reset ain,=8% to fit in peak  transformnqf(s) is long range irs (see Fig. 1 When con-
region alone with other parameters unchanged. Lower framge: Voluted withR(Q,y) at the presen® values, this term can-
preset any=9% andn* (k) refitted. not be distinguished fromyd(k). This term has a firm the-
oretical foundatiof”*? at low k (e.g., k<0.2 A1) and
no(T) shown in Fig. 9. This compares with (¥A.25)%  must be included. However, its behavior at higkeis not
found by Sokol and collaborators and £9.01)% atT well known. It must vanish by the end of the phonon region
=0 K calculated by Whitlock and Pandffand by Kalos of the phonon-roton excitationsk<0.7 A~!). We have
et al!® using GFMC methods. Ceperley and PollStising  added a Gaussian cutoff with parametgr=0.5 A to bring
PIMC methods find (8—9)+1]% at lowT and the tempera- nof(k) smoothly to zero bk=0.7 A~1. With thisk. value
ture dependence shown in Fig. 9. nof(s) contributes approximately 15% tg[ 1+ f(s)] in the
We fitted the same model momentum distribution,range 2.5:s<4.5 A over whichn, is measured in the
nol 8(k) + f(k)]+A;n*(k), to the data at all, whereny is  present method. Specifically, aff=0.5 K and Q
the fitted condensate fraction aAd follows from normaliz-  =28.5 A shown in Fig. 2,nq increases fronny=(7.00
ing n(k). In normal *He, we foundny=0 with A;=1 and  *=0.78)% tony=(8.10=0.95)% if thenyf(s) term is not
n* (k) for statesk above the condensate @t=2.3 K the included at all. Ik is reduced fronk.=0.5 tok.=0.3, ng
same as determined previousyThis n* (k) in normal *He  increases tm,="7.3%. The latter sensitivity tk is included
broadens only marginally betwee=2.3 K and T inthe present quoted error of. In PIMC calculationsg is
=3.5 K. In normal*He, n* (k) shows a large occupation of determined by the height of(s) at larges. At large enough
low k states and is much more sharply peaked athdivan s(s=6 A), f(s) is small and does not contribute to this
a Gaussian, as might be expected in a cold quantum liquicheight. The essential issue is thgff (s) does contribute to
PIMC calculations ofn* (k) agree well with our observed ng[1+f(s)] in the range 2.5s<4.5 A that we can access
n* (k) (see Fig. 5 as noted previousl§? in experiment to determiney, and it must be included.
Below T, the fit gives a finiteng(T) and A;=0.91 atT To test the sensitivity ofng(T) to the FS function
=0.5 K. The fittedn* (k) at T<T, is also not Gaussian but R(Q,y), we refitted those data using the present modk)
is not so sharply peaked at Idnas in normal*He. The high in Eqg. (10) combined with theR(Q,y) calculated by
occupation of lowk states in normal*He has apparently Silver3*?®by Carraro and Kooniff and by Mazzantét al*’
dropped in part into the condensate Tat’T, . The fitted The FS functions are shown in Fig. 10 and tgT) ob-
n*(k) at T<T, also agrees well with the PIM@* (k) al-  tained using these functions are shown in Fig. 11. The upper
though the PIMC result is slightly more sharply peaked.frame of Fig. 11 showsy(T) obtained for the fouR(Q,y)
However, both PIMC calculations and the present observedhen the present observed (k) is used inn(k). The lower
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frame of Fig. 11 shows they(T) obtained when the PIMC The presenR(Q,y) has three terms,
n* (k) is used. Clearlyny(T) does depend sensitively on the _ _ _
R(Q,y) used. B is® ag is® a5 s ag
The R(Q,y) calculated by Carraro and Koofifhyields R(Q.S)=eXd 37 Y5 "Bl 7o 6! (19
no(T) values close to those obtained using the experimental L -
R(Q,y). However,ng(T) obtained using the Silv&t**and and depends on three parameters as,, and ag,. As
Mazzantiet al*’ R(Q,y) are much lowerny=<4%. In nor-  noted above, we found from the fits tr, as,, andag, in
mal “He we findny=0 independent of the FS function used. Eq. (17) were small(zero within statistical errgrand we set
The calculated?(Q,y) are narrower and have a higher these coefficients equal to zero. A fitt®{Q,y) with only
peak aty=0 than our observeR(Q,y). We believe that the three terms may not be sufficiently flexible. To test this we
width at half height ofR(Q,y) is an important factor in increased the number of terms retained, u'fb indepen-
setting the corresponding, value obtained—a narrow dently of whether the coefficients could be meaningfully de-
R(Q,y) leads to a smallen,. For example, the Carraro and termined in a fit to data. We found that a significantly nar-
Koonin (CK) R(Q,y) is somewhat broader in the half height rower R(Q,y) was not obtained without also leading to
region than the other two calculat®{Q,y). Secondly, the unrealistic behavior oR(Q,y) at largey. Thus the width of
accuracy ofR(Q,y) at largey whereR(Q,y) oscillates is R(Q,y) appears to be largely set by the functional form in
very important. An accuratd’(Q,y) for y=15 At is  Eqg.(16).
needed fomyR(Q,y) to select its full value in the fit. The ~ The expansion oR(Q,s) in Eg. (16) has the correct
oscillations in the CK and our observ&{Q,y) have similar  structure to satisfy the first six momentsR,
amplitudes. Also, we found that the calculat®@Q,y) all = [dyy"'R(Q,y), of R(Q,y). In particular, the zeroth, first,

peaked at highey values than the observef{Q,y). Sinceé  and second momen®y=1, R;=R,=0 are automatically
n(y) is symmetric iny, the peak position aJ(Q,y) is setby  satisfied by Eq(16) because there are no termssiar s2. To
R(Q,y). If this position is not correct, a poor fit is obtained obtain the correct values cﬁgzﬁgzggl)\Q and §4=E4

and thengR(Q,y) term does not assume its full value in the — 2. /(NO)? ires that th t val da,
fit. The last two factors appear to be responsible for the low ™ 24/(\Q)” requires that the correct values af and a

n, obtained for the Silver and the Mazzaetial. RQ,y). emerge from the fit. We find3/\=2.5+0.2 A~* from our
In contrast, the observe®(Q,y) could be too broad near fit compared with a valu@z/A =5.1+0.5 A~% calculated
y=0. There is no clear impetus for a narrowR(Q,y) ex-  using PIMC methodS and a valueas /A =5.55 A * calcu-
cept that the fits to data shown in Fig. 3 Iall marginally |5¢eq by Rinatet al*® The coefficienag is somewhat below
bellcl)w .tt?]epdlag ay|=0 fo[hTﬁT\Xd(glnc):e tthen 0(k) atg)]r%?s the expected value. In the fit, there is some compensation
well wi values, the lo ,y) at y=0 probably = — ) — L,
results fromR(Q,y). In this casen, might be too large to betweenB; and Bs. Similarly, the fitted value o&,/\“ is in
; . reasonable agreement but somewhat below the calculated
compensate. To explore the connection with) we replot value® While the presenR(Q.y) satisfies many moment
theQ=28.5 A"t andT=0.5 K data refitted with different = p Y y
- , relations and provides an excellent representation of FS ef-
ng values in Fig. 12. The top frame shows the bedidivest ; % .

N B %. The middle f h h f_tfe_cts, the three terms retamgd up 90 appear to S|mulgte
X°) giving ng=7.00%. The middle ran;e shows the same fithjgher power terms not retained in the series. That is, the
Wo'th no alone artificially increased to 8%. A changergfof \gjyes of the coefficients adjust to best reproduce the whole
1% provides good agreementyat0 and gives the magni-  geries. Thus, while the functidR(Q,y) is well represented,
tude of poismle error 1Mo However, if we increas®y  the coefficient of each term in the truncated series may not
further to 9% and refin™ (k), the fit again falls marginally  correspond to the value expected if the whole series were
below the data neay=0, as shown in the lower frame of |gtained.

Fig. 12. The chief point is thai,R(Q,y) contributes at aly We recently became aware of the extensive diffusion
values, not jusyy=0. Then, follows from the best fit over \onte Carlo calculations of liquid helium by Moroat al*°

the whi)(ale range oy yalues. The_ fact that the Carraro and They find a condensate fraction of=7.17% atT=0 K
Koonin™ R(Q,y), which has a high peak at=0, and the  anq SVP, lower than previous MC values but in excellent
observedR(Q,y), which is much lower ay=0, give similar  agreement with the present observed value. Their momentum
ng values supports this picture. A fit that is lowyat 0 does  distribution and OBDM are similar to those found here but

not mean thahg is too low or too high, probably only that n(k) has a “shoulder” at approximatelg=2 A~! that is
R(Q,y) is somewhat too broad. not observed here.

If we fix ng=0 and refit the data in the superfluid phase to
obtainn(k) andR(Q,Y) it is possible to obtain a reasonable
fit. However, then(k) obtained is unrealistic as shown in
Fig. 13. A large change im(k) betweenT=2.3 K andT The present results show that there is definitely a conden-
=1.6 K is required, for example. The(k) must sharpen sate in superfluid*He. This is demonstrated by the clear
dramatically at lonk over a small temperature interval of 0.7 asymmetry of the observet{Q,y) abouty=0 seen in the
K between 2.3 K and 1.6 K. This would be most unexpectedsuperfluid phase but not seen in the normal pHase Fig.
in a cold quantum liquid where the thermal contributioh ( 2). This asymmetry arises from the termyR(Q,y) in
=2 K) is already small compared to the zero point energyd(Q,y) that appears when there is a condensate. Using the
(e.g.,(K)=15 K). Thus, while the data can always be fitted same model to fit the data above and bel®ywwe find a
without a condensate, the result is physically unrealistic.  finite ny below T, andny=0 aboveT,, independent of mo-

VII. CONCLUSION
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mentum distributiom* (k) and final-state functioR(Q,y) 1 N g —ii\2
used—althougim, below T, is small when some calculated X2=N— 2 (;)
R(Q,y) are used. Finally, a fit to the data in the superfluid P! i
without a condensate leads to a large and unrealistic change
in n(k) betweenT=2.3 K (aboveT,) andT=1.6 K (be-  whereN,=N—M+1, Nis the number of data point¥] is
low T,) (see Fig. 13 The condensate is also reflected in thethe number of fitting parameters, and is the statistical
sensitivity of the results tR(Q,y) belowT, and the relative  error ofd; . The best fit values of the parameters in the func-
insensitivity toR(Q,y) aboveT, . tion j;=J(Q,y) are those that minimizg?. If the fit of j; to

A Dbest fit to the data leads tag(T)=ne(0)[1 the observed pointd; is good, the deviation of thd; from
—(T/T\)?] with ng(0)=(7.25+0.75)% andy=5.5=1.0.  the functionj; will arise largely from the statistical errar,
The statistical error omg(0) is =0.3% with the remainder (i.e.,d;—j;=0;). In this event, the minimum \,&uu)eﬁq of x?
of the error arising from uncertainty in the sharply peakedy;| pe 2 ~1.

component of the momentum distribution; thgf (k) term If we assume thaj?, as a function of the fitting param-
in Eq. (13). This value is 30% below previously accepted gters s distributed as a Gaussian about the minimum value

values?®34-37|t agrees with a recent diffusion Monte Carlo _2 - o
. . . - . , then, when a parameter is moved one standard deviation
value® is consistent with PIMC valu@< at finite T, butis <™ P 2

; ; 2

; _ 9.20 . away from its best valuey? increases fromy?s, to x5,
lower than pr_ewoué’ 0 K Monte Carld®*values, which +1/N.*® We can determine the standard deviation of a pa-
predictng(0)=9.0%.

The shape of the momentum distributiafi(k) was de- ramiter’ saylo, by adjustingn, until x* if]i:reases fromy,
termined in both phases and has much higher occupation §f Xm* 1/N. For example, aQ=27.5 AlandT=16 K

low k states than a classical, Gaussiagk). The n* (k) this _proceduzre gives a stzandard deviatiomgfof +=1.15%.
broadens somewhat ass lowered belowT,—as if some of [N this casexy,=1.0175,xp+ 1IN, =1.0257 N,=122) and

the low momentum occupation in the normal phase dropd iS important to readjust all other parameters s is

into the condensate in the superfluid phase. The final-statehanged. This error agrees well with the errgy=(6.10
functionR(Q,y) was determined from the data. We find that = 1.06)% calculated byriLLS and shown in Fig. 4 aQ

it is largely independent of temperature and the same in nor=27-5 A™*. We found a similar agreement of errors at other
mal and superfluid*He within precision(see Fig. 6. The Q values, at other temperatures, and for other parameters. At
Fourier transfornR(Q,s) appears in Eq(17) with parameter someQ values the error is large because the data set was
values listed in Table I. This expression can be used to opsmall . .

tain R(Q,y) at higher or lowerQ values. It is less sharply _ The fluctuation of the parameters with(e.g.,n) shown
peaked neay=0 than most calculateR(Q,y) and shows N Fig. 4 arises from th_e statlst|cal_ error in qletermlnmg the
oscillations at largey values needed to satisfy the momentParameters. The magnitude of this fluctuation can also be
relations. The condensate fraction obtained is the same ¢&iS€d to determine the statistical error in the parameters. For

smaller when calculateR(Q,y) are used in the data analy- example, one standard deyiation of _the parameter value
sis. should cover 68% of the points shown in Fig. 4. In the case

of ng, ng=(5.7+1.2)% readily covers 70% of the points in
Fig. 4(a). This determination of the statistical error of
agrees well with the other two determinations noted above in

We thank Dr. F. Mazzanti for sending us his calculatedmost cases.

R(Q,y) and Dr. S. M. Bennington for valuable scientific and ~We have used the fluctuation of the parameters \@th
technical assistance. Valuable discussions on statistical ephown in Fig. 4 to determine their error. Since there Mg
rors with Dr. D. S. Sivia are gratefully acknowledged. This values ofQ, we may divide this error on the parameter by
work was supported in part by the National Science FoundayNg. This gives No=19), for examplen,=(5.7+0.3)%
tion through Research Grant Nos. INT-9314661 and DMR-0r a standard deviation a#=0.3%. Similarly, we obtain
9623961 and by the U.K. Engineering and Physical Science,=0.884£0.01. In a previous pap&rwe determined the
Research Council. We acknowledge the scientific support ogrror from the fluctuation of the parameter wigrbut did not
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the staff at the ISIS facility. divide by yNg.
As noted in the text the functiof(k) contains a cutoff
APPENDIX parametek. which is not known with certainty. This uncer-

tainty adds an additional errgto n, especially. We may
In this appendix we discuss how the errors in the fittingincorporate this uncertainty in the errormf as follows. The
parametersng, a,,a,, ag,a3,a54,dq, listed in Table | are k. lies in the range 08k.<0.7 A~! with perceived best
established. First, the error bars shown in Fig. 4 on theswalue k,=0.5 A™1. At Q=275 A" and T=1.6 K, we
parameters at a give@ value are errors calculated by the find nqy varies fromng,=(6.37-1.12)%k.=0.3) to ng_
fitting programrRrILLS that was used to find the values of the =(6.10+1.03)%K.=0.7). This is a typical change with. .
parameters themselves. These error bars reflect the statistigsdsuming that the standard deviatiorof both ngy andng,
error o; in the observed data points,=Jy,d Q,Y;) £ o7 . is the same as obtained above fpge=5.7%(K.=0.5) (i.e.,
As a check, we determined the errors at a gi@@mde- ¢=0.3), theny values range frommg —o<ng<ngyto.
pendently from the mean square deviatiph of the data This gives an average valuagy=[(Ngy+ o)+ (NoL
pointsd; from the fitted functionj;=J(Q,y). We definey? —0)]/2=5.9% and sprea®=207=[ngy+o—(Ng.—0)]
as or o= (Ngy—Ng )2+ 3=0.5%. Including the uncertainty
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in k., we obtain a condensate fractiog=ngy, * o7=(5.9
+0.5)% with act=0.5% total standard deviation. Whi&p

is changed fromk,=0.5 to 0.3, the best fity, parameters
change by approximately 1%. There is no change fiqm
=0.5to 0.7. This procedure is an approximation to the gen
eral method of evaluating® as a function ok, andn, and
determining values of, at which X2=Xﬁ1+ 1/N over the
range 0.3<k.<0.7.
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Forngy we round the result tog=(6.0=0.75)%, allowing
an additional error of 0.25% for error in the form 6fk).
The error £0.75% arises from 0.3% statistical error and
0.45% for uncertainty in the functiof(k). It is less than the
error quoted previousl§? which was too large in both the
statistical error and in the uncertainty arising fréqn The
present error arises predominantly from uncertainty in the
nof (k) term.
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