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Condensate, momentum distribution, and final-state effects in liquid4He
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We present benchmark, high precision measurements of the dynamic structure factorJ(Q,y) of liquid 4He
at several temperatures over a wide wave vector transfer range 15<Q<29 Å21. J(Q,y) is very different in
the superfluid phase belowTl and in the normal phase aboveTl whereTl52.17 K. BelowTl , J(Q,y)
contains a pronounced additional contribution neary50 that is asymmetric abouty50, reflecting a condensate
contribution modified by asymmetric final-state~FS! effects. The asymmetry inJ(Q,y) is direct qualitative
evidence of a condensate. We analyze the data at allT using the same model ofJ(Q,y) consisting of a
condensate fractionn0, a momentum distributionn* (k) for statesk.0 above the condensate, and a FS
broadening functionR(Q,y). We find a condensate fraction given byn0(T)5n0(0)@12(T/Tl)g# with
n0(0)5(7.2560.75)% andg55.561.0 for T,Tl , which is 30% below existing observed values, andn0

5(060.3)% for T.Tl . We determinen(k) in both phases. Then* (k) is significantly narrower than a
Gaussian in both superfluid and normal4He and narrowest in the normal phase. The final-state function is
determined from the data and is the same within precision above and belowTl . The precise form ofR(Q,y)
is important in determining the value ofn0(T) below Tl . When independent, theoreticalR(Q,y) are used in
the analysis, then0(T) is found to be the same as or smaller than the above value.
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I. INTRODUCTION

Superfluidity and Bose-Einstein condensation~BEC! in
Bose gases and liquids are a topics of great current inte
Superfluidity in liquid 4He has a long and rich history o
study1–8 and BEC has recently been demonstrated spect
larly in dilute Bose gases.9–13 Einstein14 first showed that a
gas of particles obeying the statistics proposed by Bo15

could condense into a state having macroscopic occupa
of a single-particle quantum state~BEC! below a critical
temperatureTc . In the 1930s superfluidity was discovere
in1–3 liquid 4He below a temperatureTl52.17 K. London16

proposed that this superfluidity was associated with B
with Tl5Tc .

Superfluidity can be readily demonstrated in liquid4He
today. However, because liquid4He is a strongly interacting
fluid, the fraction of the fluid condensed in the zero mome
tum state is small,17–20,8 less than 10%. For this reason an
also because of the strong interaction,21,22 BEC in superfluid
4He is difficult to observe. Measurements to date6,7 are sum-
marized below. Unambiguous identification of a condens
in liquid 4He and accurate determination of the condens
fraction n0(T) remain important goals today.

In contrast, BEC has been unambiguously demonstra
in dilute gases of trapped alkali-metal atoms.9–12 In this case,
the gas is dilute and weakly interacting so that nearly 10
of the gas is condensed into the lowest single particle sta
low T. These condensed gases show remarkable prope
but superfluidity, stable persistent flow, is difficult to dem
onstrate. Clear observation of superfluidity in trapped B
gases is an important research goal today.

The aim of the present investigation is to determine
condensate fractionn0(T), the momentum distributionn(k),
PRB 620163-1829/2000/62~21!/14337~13!/$15.00
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and the final-state functionR(Q,y) in liquid 4He accurately
as a function of temperature. The most direct method to
serven0(T) is by neutron inelastic scattering at high ener
(\v) and momentum (\Q) transfer.23,24 The quantity ob-
served is the dynamic structure factor~DSF! S(Q,v).6,7 At
highv andQ, S(Qv) depends on single-atom properties a
the energy transferv is Doppler broadened by the atom
momentum distributionn(k). From this broadening,n(k) is
measured andn0(T) is determined.

Specifically, provided there are no perfectly hard core
teractions, S(Q,v) at Q→` reduces to the impulse
approximation6 ~IA !,

SIA~Q,v!5E dkn~k!d~v2vR2vR•k!, ~1!

where\k is the 4He atom momentum in the fluid,n(k) is
the momentum distribution, and\vR5\2Q2/2m and vR
5\Q/m are the free4He atom recoil energy and velocity
respectively.SIA(Q,v) depends solely onn(k).

At finite Q, interactions of the recoiling atom with it
neighbors, denoted final-state~FS! effects, contribute to
S(Q,v). The observedS(Q,v) is then21,6,7

S~Q,v!5E dv8SIA~Q,v8!R~Q,v2v8!. ~2!

Equation~2! may be regarded as the definition21 of the FS
broadening function R(Q,v). At finite Q ~e.g., Q
.20 Å21) R(Q,v) has a significant width andR(Q,v)
→d(v) asQ→`.

When there is a condensate,n(k) contains a termn0d(k).
This term leads to a termSIA(Q,v)5n0d(v2vR) in the IA
14 337 ©2000 The American Physical Society
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in Eq. ~1! and a termS(Q,v)5n0R(Q,v2vR) in the ob-
served DSF in Eq.~2!. S(Q,v) is conveniently expressed i
terms of they-scaling variabley5(v2vR)/vR and the func-
tion J(Q,y)[vRS(Q,v), which peaks aty50 and is ap-
proximately independent ofQ. In J(Q,y) the term arising
from the condensate is

n0R~Q,y!. ~3!

A specific goal here is to demonstrate that then0R(Q,y)
term can be observed in the data and is a direct signatur
the condensate.

Measurement ofn0(T) by neutron scattering has a lon
history, which is reviewed by Sokol,25 Glyde,6 Silver and
Sokol,26 Glyde and Svensson,27 Svensson and Sears,28

Svensson,29 and others. Early measurements, discussed
Martel et al.,30 produced a wide range ofn0 values, 2%
<n0<17%. Searset al.31 developed a method for treatin
FS effects based on an additive expansion22 of R(Q,v),
which led to the first consistent values ofn0. With this
method Searset al.31 and Mook32 obtained n0(0)5(13.9
62.3)%, andn0(0)5(1163)%, respectively. In pioneering
measurements using the IPNS spallation neutron sourc
go to higher Q values and analyzing the data using t
convolution21 form ~2! of S(Qv) with the FS function cal-
culated by Silver,33,26 Sokol and collaborators25,34–37obtain
n0510.061.25% at low temperature~0.35 K!.

In this study, we take advantage of the high flux IS
neutron scattering facility and the MARI instrument at Ru
erford Appleton Laboratory to measureS(Q,v) with high
statistical precision over a range ofQ values 15<Q
<29 Å21. High precision over a wideQ range allows us to
determine several parameters in model fits ofS(Q,v) to the
data. SinceR(Q,v) is changing rapidly in thisQ range, we
can identifyR(Q,v) in the data. Particularly, we can sep
rate it from n0 and n(k), which are independent ofQ. In
earlier measurements38 we determined the momentum distr
bution in normal4He atT52.3 K and found thatn(k) dif-
fers significantly from a Gaussian with high occupation
low k states. We also determined the condensate fraction0
in superfluid4He atT51.6 K, findingn05(662)%.39 The
R(Q,v) at T51.6 K and 2.3 K was found to be the sam
within experimental precision.39 In the present paper, we ad
measurements atT50.5 K, 1.3 K, and 3.5 K and analyz
the data using an improved procedure which is the sam
all T. We find n0(T)5n0(0)@12(T/Tl)g# with n0(0)
5(7.2560.75)% andg55.561.0 in the superfluid phas
and n050 in the normal phase using the same model.
find thatn* (k) for states above the condensate in superfl
4He ~excluding the condensate induced portions! is less
sharply peaked thann(k) in normal 4He.

In Secs. II and III, we describe the theoretical backgrou
of the data analysis and the models used to representn(k)
and R(Q,v). The data collection and reduction procedur
are described in Sec. IV. The results are presented and
cussed in Secs. V and VI, respectively.

II. THEORY AND ANALYSIS

In this section we describe the method used to analyze
data and extract the condensate fraction, the momentum
of
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tribution, and the FS broadening function. We begin with t
expressions for the dynamic structure factor on which
method is based. The method consists, essentially, of cu
lative expansion of the intermediate DSF and fitting the
panded DSF to the data to obtain the expansion coefficie
In this way, empirical expressions for the components of
DSF are obtained. We fit the same expressionsat all T both
above and below Tl . The method was set out in detail b
Glyde6,40 and was discussed recently in a similar context
Azuahet al.39

At high wave vector transfer, where the static structu
factor S(Q) has saturated toS(Q)51, the observed DSF
S(Q,v) reduces to the incoherent DSF

Si~Q,v!5
1

2pE2`

`

dteivtSi~Q,t !. ~4!

At constantQ, Si(Q,v) is a broad peak inv centered atvR
with width proportional tovR where, as in Eq.~1!, vR
5\Q2/2m and vR5\Q/m are the free atom recoil energ
and velocity, respectively.Si(Q,v) and Si(Q,t) can be
scaled to approximatelyQ-independent forms ifv and t are
replaced by they scaling variabley5(v2vR)/vR and its
conjugate length s5vRt, respectively. The nearly
Q-independent forms areJ(Q,y)5vRS(Q,v) and

J~Q,s![eivRtSi~Q,t !5K Ts expF2 i E
0

s

ds8kQ~s8!G L .

~5!

In the second expression, useful at short timest ~short s
5vRt), Tt(Ts) is the time ordering operator and\kQ

5\(k•Q̂) is the struck atom momentum alongQ. The Fou-
rier transform~4! is then

J~Q,y!5
1

2pE2`

`

dseiysJ~Q,s!. ~6!

We express all the present results in the formJ(Q,y). We
note thatJ(Q,s) depends solely on the momentum\kQ of
the struck atom projected alongQ.

The IA is obtained by approximatingkQ(s8) by its initial
valuekQ(0)5kQ for all s8 in Eq. ~5!, i.e.,

JIA~s!5^e2 ikQs&. ~7!

This assumes that the struck atom momentumkQ is constant
and not changed from its initial value by interaction as t
struck atom recoils~no final-state interactions!. Since the
one-body density matrix~OBDM! is defined as n(r )
5^C1(0)C(r )&/n5^e2 ik"r&, where n5N/V, we see also
that JIA(s) is the OBDM for displacementsr5sQ̂ projected
alongQ. The Fourier transform of the OBDM is the mome
tum distributionsn(k). Thus,

JIA~y!5
1

2p K E dseiyse2 ikQsL ~8!

5E dkn~k!d~y2kQ!
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is the momentum distributionn(k) for a momentum variable
y projected alongQ̂, i.e.,

JIA~y!5n~y!5E dkxdkyn~kx ,ky ,y!, ~9!

where thez axis is chosen alongQ̂. JIA(y)5n(y) is denoted
the longitudinal momentum distribution.

When interactions between the recoiling struck atom a
its neighbors are important, the fullJ(Q,s) in Eq. ~5! can be
formally expressed as21

J~Q,s!5JIA~s!R~Q,s!, ~10!

which, as in Eq.~2!, defines the FS functionR(Q,s). The
Fourier transform of Eq.~10! is

J~Q,y!5
1

2pE dseiysJIA~s!R~Q,s!. ~11!

Below we introduce models for the OBDMJIA(s)
5n(s) and the FS functionR(Q,s) based on expressions~7!
and ~5!, respectively.

III. MODEL J IA „s… AND R„Q,s…

The model OBDMJIA(s) and FS functionR(Q,s), that
we use to fit to the data are described in detail by Glyd40

and Azuahet al.39 When a Bose system has a condensate
is convenient to separate its properties into ‘‘condensa
and ‘‘above the condensate’’ components.41,42,5–7The com-
ponent arising from the condensate contains the sing
behavior—such as a sharp peak in the response functio
d function in n(k), and a long range component in th
OBDM. The states above the condensate contribute reg
behavior characteristic of a normal fluid. Specifically, t
condensate contributes ‘‘off-diagonal long range order’’
JIA(s). This is a constant term inJIA(s) of magnituden0, the
condensate fraction. Also, when there is a condensate,
siparticles can be excited out of and into the condensat
states above the condensate. At lowk, these quasiparticle
excitations have a linear dispersion and in liquid4He are part
of the coupled quasiparticle/phonon excitation. These exc
tions contribute a termn0f (s) to JIA(s) which is also long
range ins but not constant. The contribution from the stat
above the condensate is short range ins. This ‘‘normal’’
component, which we denote byn* (s), can be well de-
scribed by a cumulant expansion of Eq.~7! in powers ofs.
The model OBDM containing these three components is

JIA~s!5n~s!5n0@11 f ~s!#1A1n* ~s!. ~12!

Here A1 is a constant chosen so thatn(k) is normalized to
unity @JIA(0)51#.

To specify f (s), we note that the three-dimensional~3D!
momentum distributionn(k) obtained by Fourier transform
ing Eq. ~12! is

n~k!5n0@11 f ~k!#1A1n* ~k!. ~13!

The coupling termf (k) betweenk50 and kÞ0 states,
which leads to enhanced occupation of low moment
d

it
’’

ar
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a-
to

a-
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states, has been derived ink space by expressingn(k) in
terms of the quasiparticle/phonon response function.42,6,7

This gives

n0f ~k!5F n0mc

2\~2p!3n

1

uku
cothS c\uku

2kBT D Ge2k2/(2kc
2). ~14!

The term in square brackets in Eq.~14! is the derived expres
sion valid at lowk. We have multiplied the derived expres
sion by a Gaussian function to cut offf (k) at higherk since
f (k) must vanish before the end of the phonon regionk
.0.7 Å21. We have selectedkc50.5 Å21. A reasonable
lower limit of kc is kc50.3 so that 0.3<kc<0.7 Å21. The
n0f (s) in Eq. ~9! is obtained by Fourier transformingn0f (k)
numerically.

The n* (s) follows by expanding Eq.~7! in cumulants.40

We retain terms up tos6,

n* ~s!5expF2
ā2s2

2!
1

ā4s4

4!
2

ā6s6

6!
G , ~15!

where

ā25^kQ
2 &, ā45^kQ

4 &23^kQ
2 &2,

ā65^kQ
6 &215̂ kQ

4 &^kQ
2 &130̂ kQ

2 &3

are cumulants ofn(s). The modelJIA(s) therefore has four
parametersn0 , ā2 , ā4, andā6 that are obtained by fitting
to experiment. As noted,A1 is determined by normalizing
n(k), i.e., requiring n(s50)51. A typical JIA(s) at T
51.6 K showing the three componentsn0 , n0@11 f (s)#,
and the full n(s) is displayed in Fig. 1. Ats50, f (0)
50.28 andf (s) contributes approximates 15% of the co
densate weight.

The model final-state functionR(Q,s) can be obtained by
cumulant expansion ofJ(Q,s) in Eq. ~5! and the definition
~10! ~see Appendix A of Azuahet al.39 and references
therein for a full discussion!. Up to powerss6, this expansion
is

R~Q,s!5expF i b̄3s3

3!
1

b̄4s4

4!
2

i b̄5s5

5!
2

b̄6s6

6!
1•••G .

~16!

Expressions for the coefficientsb̄n are

b̄35ā3 /lQ,

b̄45ā4~lQ!2,

b̄55ā52/~lQ!31ā54/lQ, ~17!

b̄65ā62/~lQ!41ā64/~lQ!2,

where the ān are independent ofQ and l5\2/m
51.0443 meV Å2 in liquid 4He.

Expressions for theān can be obtained from the momen
of J(Q,y) and results up toā64 have been derived.40,22 The
lowest two areā35^¹2v(r )&/6 and a45^(¹v)2&/3 where
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v(r ) is the total potential experienced by the struck ato
The momentsR̄n5*dyynR(Q,y) of R(Q,y) areR̄n5b̄n up
to n55. Given the Q dependence of theb̄n , clearly
R(Q,s)→1 for Q→` and the IA is obtained atQ→`.

We treat theb̄n as parameters to be determined by fits
data at eachQ value. The dependence ofb̄n(Q) on Q there-
fore emerges from the fit to the data. We found thatb̄4 was
very small and we setb̄450 for simplicity. This appears to
be an accidental zero in liquid4He sinceb̄4 was not negli-
gible in liquid neon.43 A calculation of ā4 /l confirms that
b̄4 is small in helium.39 The R(Q,s) therefore has three pa
rametersb̄3 , b̄5, andb̄6. From theQ dependence ofb̄5(Q)
that emerged from the fit, we found that the first te
ā52/(lQ)3 dominated theā54/(lQ) term and ā54(lQ)
could be neglected, while inb̄6(Q) the second term
ā64/(lQ)2 dominated andā62(lQ)4 could be neglected
Again, these are empirical findings.

In summary,JIA(s)R(Q,s) has a total of seven param
eters: n0 , ā2 , ā4, and ā6 which determine the OBDM,
JIA(s), andb̄3 , b̄5, andb̄6 which determines the FS func
tion R(Q,s) with ā54 and ā62 found to be negligible.

IV. DATA COLLECTION AND REDUCTION

The measurements were carried out at the ISIS pu
spallation neutron source at the Rutherford Appleton La

FIG. 1. Upper frame: Model one-body density matrixn(s)
5n0@11 f (s)#1A1n* (s), ~solid line! showing the componentsn0

~dotted line!, andn0@11 f (s)# ~dashed line! for n056% andn* (s)

in Eq. ~15! with ā250.884 Å22, ā450.47 Å24, and ā6

51.03 Å26 obtained from fits to data atT51.6 K ~see Table I!.
R(Q,s) ~in Å21) is the FS function~16! for Q529 Å21. Lower
frame: The correspondingn* (k) andn0f (k) in momentum space.
.

d
-

ratory in the United Kingdom. The instrument used was
high energy direct geometry chopper spectrometer MA
with incident energies up to 1000 meV possible. More th
900 3He gas detectors provide an almost continuous cov
age of scattering anglesf between 3° and 135° in steps o
0.43°. This makes it possible to measure a large rang
momentum and energy transfer in a single experime
scan. Due to the pulsed nature of the source, data collec
is performed in time-of-flight~TOF! mode in which the time
of arrival of a neutron in the detector, measured from wh
the neutrons leave the moderator, determines its energy
or gain after scattering from the sample. The moment
transfer depends on the TOF and the scattering angle o
neutron.

A high purity sample of4He gas was condensed into
cylindrical aluminum can of length 5.5 cm and diameter
cm placed inside a standard3He ‘‘SORPTION’’ cryostat. To
minimize multiple scattering of neutrons within the samp
the cylindrical sample volume was split into six smaller c
lindrical sections using highly neutron absorbing boron
tride disks. Sample temperatures were determined usin
calibrated germanium resistance sensor and controlled u
a Lakeshore temperature controller which achieved temp
ture stabilities of 0.01 K or better. Measurements were m
at sample temperatures of 0.5, 1.3, 1.6, 2.3, and 3.5 K an
saturated vapor pressure~SVP!. A second data set at 1.6 K
and 2.3 K was also collected at an earlier time when
instrument was in a particularly stable condition and so th
temperatures were chosen to perform theQ-dependent analy-
sis. As an independent check, the resistance thermom
readings were compared to the vapor pressure readings o
sample. In order to cover the (Q,v) range of interest, an
incident neutron energy of 755 meV was employed. A m
surement was also made with the sample cell empty to
termine the sample-independent background scattering.

The collected data in TOF were then converted to ene
transfer (\v) at constant scattering angle using standard p
cedures. The reader is referred to the recent article
Andersenet al.44 for a detailed discussion of the data tran
formation from TOF toS(f,v) and then toS(Q,v).

In this article we have made use of the inherent scal
property of the scattering function withQ in the IA generally
known asy scaling and referred to in the last section. In t
IA, the scattering function can be portrayed as the longitu
nal momentum distributionJIA(y) and does not depend onQ
and v separately. However, at moderateQ where the IA
does not apply,y scaling is still approximately observed an
it is useful to present the data as a generalized longitud
momentum distributionJ(Q,y)5(\Q/m)S(Q,v) ~as dis-
cussed in Sec. II!, which is weaklyQ dependent as a result o
FS effects. The experimental data were transformed
J(Q,y) for Q520 to 29 Å21 in steps of 0.5 Å21 and
samples of the data are shown in Figs. 2 and 3. The statis
accuracy of the data is very high.

The observedJ(Q,y) consists of a convolution of the
underlying momentum distribution, the FS function, and t
instrumental resolution function. Hence, for a quantitat
analysis of the data, the instrumental resolution funct
must be accurately known. We have used a Monte Ca
simulation method to calculate the instrumental resoluti
In this method, the neutron scattering experiment is sim
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FIG. 2. ObservedJ(Q,y) including the instrument resolution in liquid4He at SVP at the temperatures indicated. Upper frame shows
J(Q,y) is similar atT52.3 andT53.5 K in normal 4He and similar atT50.5 K, 1.3 K and 1.6 K in superfluid4He. The lower frame
shows thatJ(Q,y) is very different in superfluid and normal4He (Tl52.17 K). J(q,y) in the superfluid shows direct evidence of th
condensate termn0R(Q,y): an increased peak height aty50 and a right-left asymmetry aroundy50.
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lated using the known instrument parameters, sample
geometry, and an estimate for the sample scattering func
The incident neutron beam characteristics were modeled
ing the Ikeda-Carpenter45 speed and time distribution func
tion with the adjustable parameters determined from a fi
the experimental monitor peaks before and after the sam
The simulation results are obtained in TOF and are t
treated in the same way as the experimental data. The r
is a convolution between the instrumental resolution funct
I (Q,y), and the model scattering function input to the sim
lation. I (Q,y) is then simply deconvoluted from the simul
tion. The resulting instrumental resolution function is sho
as a dashed line in the top left frame of Fig. 3. We obse
that I (Q,y) narrows significantly with increasingQ and is
quite small at largeQ, thus increasing the reliability of the
data.
ell
n.
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V. RESULTS

The dynamic structure factorJ(Q,y)5vRS(Q,v) was
determined at 28Q values in the range 15<Q<29 Å at five
temperaturesT50.5 K, 1.3 K, 1.6 K, 2.3 K, and 3.5 K.
Figure 2 shows the observedJ(Q,y) at Q528.5 Å21 as a
function of energy transfer,y, including the instrument reso
lution function~see Fig. 3!. In the upper frame, theJ(Q,y) at
the three temperaturesT50.5 K, 1.3 K, and 1.6 K in the
superfluid phase (T,Tl52.17 K) are shown together
These J(Q,y) are clearly all very similar. AtT50.5 K
J(Q,y) is slightly higher in the peak region,y50, where the
term n0R(Q,y) makes its largest contribution. This reflec
the somewhat larger condensate fraction atT50.5 K. The
two J(Q,y) in normal 4He atT52.3 and 3.5 K are plotted
together and are also very similar to each other. The p
height at 3.5 K is slightly lower, reflecting a small broade
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FIG. 3. Data with fits of the modelJ(Q,y) given by Eqs.~11!, ~12!, and ~16! ~solid lines! to the data. The dotted line is the MAR
instrument resolution function.
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ing of n(k) betweenT52.3 K and 3.5 K.
In the lower frame of Fig. 2,J(Q,y) at T50.5 K and

T52.3 K are plotted together. There we see a marked
ference in theJ(Q,y) between these two temperatures ar
ing from the condensate termn0R(Q,y) at T50.5 K, which
is absent in the normal phase. Whilen0R(Q,y) contributes
predominantly at the peak (y50), it also contributes in the
wings of J(Q,y). This leads to right-left asymmetry in
J(Q,y) aroundy50 at T50.5 K relative toJ(Q,y) at 2.3
K. For example, aty.1.0 Å21 the right-hand side~RHS! of
J(Q,y) at 0.5 K is lower than the LHS relative to the 2.3
J(Q,y). At y.2.5 Å21, the RHS ofJ(Q,y) at 0.5 K is
higher than the LHS relative to the 2.3 K case. This asy
metry at 0.5 K reflects the asymmetry inR(Q,y). The lon-
gitudinal momentum distributionn(y) is an even function of
y and must be symmetric abouty50. At 2.3 K, all of
R(Q,y) is folded with the much broadern(y) and this
smears out asymmetric features over widey intervals in
J(Q,y) so that they cannot be seen. AtT50.5 K the
n0R(Q,y) term appears ‘‘unfolded’’ and the asymmetry
R(Q,y) can be seen in the data. In this way, the data sh
directly features expected for a condensate.

Figure 3 shows the observedJ(Q,y) at 28.5 Å21 ~and
f-
-

-

w

25.0 Å21) along with the fit of the modelJ(Q,y) from Eqs.
~11!, ~12!, and ~16! as solid lines. The dotted line is th
MARI instrument resolution function, which is narrow rela
tive to bothJ(Q,y) andR(Q,y). Both the data and the fitted
modelJ(Q,y) include the instrument resolution. The fits a
excellent. In the superfluid phase the fittedJ(Q,y) lies mar-
ginally below the data in the peak region,y50. Again,
n0R(Q,y) contributes both in the peak region and away fro
the peak. Since there are many points in the wings, the w
play an important role in determiningn0R(Q,y). Appar-
ently, the best fit total function at ally including n0R(Q,y)
selects a combinedn* (k), R(Q,y), and n0 that is some-
what low aty50.

The seven fitted parameters obtained from fits to data
T51.6 K for 19 Q values betweenQ520 Å21 and
29 Å21 are shown in Fig. 4. The parameters a
n0 , ā2 , ā4, andā6 which determine the OBDMn(s) and
b̄3 , b̄5, and b̄6 which determineR(Q,s). From Fig. 4~a!,
we see that the fitted values ofn0 are essentially independen
of Q—as they should be. Similarly, we see in Fig. 4~b! that
the fitted values ofā2 , ā4, andā6 are found to be indepen
dent of Q. The error bars shown are the error bars th
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FIG. 4. Fitting parameters obtained from fits of the mod
JIA(s)R(Q,s) to data atT51.6 K over a wideQ range giving final

values n050.0660.075, ā250.88460.02 Å22, ā550.47

60.04 Å24, ā651.0360.10 Å26 in JIA(s) and ā3 /l52.43

60.25 Å24, ā52/l3525606300 Å28, and ā64/l25215
625 Å28 in R(Q,s). The fluctuation of the points withQ reflects
the counting statistical error.
emerge from theFRILLS fitting package that we use. Thes
error bars are consistent with an independent determina
of the error bars on an individual parameter as discusse
the Appendix and with the fluctuation of the parameters w
Q.

Figure 4~c! shows the fittedb̄3 , b̄5, and b̄6 values as
functions ofQ. We foundb̄4 was small~zero within statis-
tical error! and we setb̄450. From the upper frame, we se
that the fittedQb̄3 is independent ofQ as expected from Eq
~17!. The fitted value of ā3 /l52.4360.10 Å21 in b̄3

5ā3 /lQ is shown as the dashed line in Fig. 4~c!. From the
fits, we find thatb̄5 is dominated by its second term in Eq

TABLE I. Parameters in the functionJ(Q,s)5n(s)R(Q,s)
given by Eqs. ~12! and ~16! obtained by fitting to data atT
51.6 K and 2.3 K (l5\2/m51.0443 meV Å2512.12 K Å2). In

the fits we found thatā4 , ā54, andā62 in Eq. ~17! were small~zero
within statistical error! and set these coefficients to zero. The co
responding kinetic energies are^K&514.4560.3, ^K&514.760.3,
and ^K&516.360.3 K atT50.5, 1.6, and 2.3 K, respectively.

T n0 ā2 ā4 ā6 ā3 /l ā52/l3 ā64/l2

~K! ~%! (Å22) (Å24) (Å26) (Å24) (Å28) (Å28)

1.6 6.060.75 0.884 0.47 1.03 2.43 2560 215
60.02 60.05 60.1 60.25 6300 625

2.3 0 0.897 0.46 0.38 3.3 2000 155
60.02 60.05 60.04 60.3 6300 620

l
FIG. 5. Upper frame: Observed momentum distributi

A1n* (k) abovethe condensate atT51.6 K ~solid line! and atT
52.3 K ~dotted line!. Open circles and open triangles are the c
responding quantities calculated by Ceperley and Pollock~Ref. 20!
using PIMC methods atT51.54 K and 2.50 K. Lower frame: Ob
servedn* (k) at T51.6 K andT52.3 K both normalized to unity
for comparison of the shape.
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~17!, b̄55ā52/(lQ)3. That is,b̄5Q3 is largely independen
of Q. Similarly, b̄6 is dominated by its first term in Eq.~17!,
sinceb̄6Q2 is independent ofQ. While the plots in Fig. 4~c!

display theQ dependence ofb̄n(Q) that emerge from the fits
well, the ān are most accurately obtained by plotting t
b̄n(Q) so that they have a slope and intercept. For exam
a plot ofb̄6Q45ā621ā64Q

2 vs Q2 givesā64 as the slope and
ā62 as the intercept.

Values of the fitted parameters obtained from fits at the
largestQ values at temperatures ofT51.6 K and 2.3 K are
listed in Table I. The data at the largestQ values are the mos
precise. Also, the data atT51.6 K and 2.3 K are the mos
precise as discussed in Sec. IV, so that the paramete
these temperatures are quoted. The same model was fitt
all T. The calculation of the errors in the parameters is d
cussed in the Appendix.

The momentum distributionA1n* (k) for k values above
the condensate calculated from the fitted parameters in
perfluid 4He at T51.6 K and in normal4He at 2.3 K is
shown in the upper frame of Fig. 5. AtT52.3 K, we find
n05(060.3)% andn* (k)5n(k) (A151). Bothn* (k) are
much sharper than a Gaussian. The fittedn(k) at T
52.3 K shown in Fig. 5 agrees with our previou
determination.38 The A1n* (k) at T51.6 K ~solid line! lies
below theT52.3 K n(k) partly becauseA1.0.93. In the
lower frame of Fig. 5 we have normalizedn* (k) at both
temperatures to unity so that the observed shape ofn* (k) at
T51.6 and 2.3 K can be compared. Then* (k) is sharper in
normal 4He than in superfluid4He. The fraction that con-
denses into thek50 state belowTl appears to come from

FIG. 6. Upper frame: Observed OBDMn(s) at T51.6 K and
T52.3 K. Lower frame: Observed final-state broadening funct
at T51.6 K andT52.3 K.
e,

9

at
at

-

u-

the low k states inn* (k) just aboveTl . We emphasize tha
the n0f (k) term is not included in Fig. 5.

The path integral Monte Carlo~PIMC! n* (k) in normal
4He ~Ref. 20! is shown in the upper frame of Fig. 5 an
agrees very well with our experimentaln* (k), as noted ini-
tially by Azuah et al.38 The agreement between PIMC an
the present observedn* (k) is also good belowTl . There is
some discrepancy, much of which comes from a differen
in normalization ofA1n* (k) since the PIMC calculations
find n058.5% atT51.54 K and we observen056.0% at
T51.6 K. There is no evidence of anf (k) term in the PIMC
results.

n

FIG. 7. Variation of the fittedA1n* (k) and R(Q,y) functions
for fixed input n0 values showing the smooth variation of the
fitted functions withn0. The n050.06 value gives the best overa
fit ~lowestx2).

FIG. 8. Temperature dependence ofn0(T). The circles are ob-
tained using the present fittedR(Q,y) for T51.6 K ~see Fig. 6! at
all T, the fittedn* (k) for T51.6 K belowTl , and then(k) for
T52.3 K aboveTl . The squares are obtained as above but us
n* (k) for T51.6 K at allT. The error bars shown reflect the erro
in the T dependence only. The solid and dashed lines are guide
the eye.
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The upper frame of Fig. 6 shows the OBDMn(s)
5n0@11f(s)#1A1n* (s) at T52.3 K andT51.6 K display-
ing the condensate termn0@11 f (s)# at 1.6 K, particularly.
The FS functionR(Q,y) at these two temperatures is show
in the lower frame. Clearly,R(Q,y) is effectively indepen-
dent of temperature as expected for a function that depe
on interactions in the fluid. We have used the 1.6 KR(Q,y)
in all further analysis.

To verify thatn0 is well determined in our fits with a tota
of seven parameters, we fixedn0 at the valuesn050.03,
0.05, and 0.07 and refitted forn* (k) and R(Q,y) at T
51.6 K. TheA1n* (k) andR(Q,y) for these fixed values o
n0 are shown in Fig. 7. Then* (k) and R(Q,y) change
smoothly and consistently with then0 value selected, show
ing that n* (k) and R(Q,y) are reliably determined as
function ofn0 in a statistical sense. The converse should a
be true. The lowest globalx2 and best fit was obtained fo
n050.06.

FIG. 9. Condensate fractionn0(T) observed here~full circles!
and by Sosnicket al. ~Ref. 34! ~squares! compared with those cal
culated by Ceperley and Pollock~Ref. 20! ~PIMC! and by Kalos
et al. ~Ref. 18! and Whitlock and Panoff~Ref. 19!, Green function
Monte Carlo~GFMC!.

FIG. 10. Final-state broadening functions atQ523 Å21:
present observed~solid line!, and calculated by Silver~Ref. 33!
~open circles!, by Carraro and Koonin~Ref. 46! ~dotted line!, and
by Mazzantiet al. ~Ref. 47! ~dashed line!.
ds

o

Using the best fitR(Q,y) at T51.6 K ~see Fig. 6! at all
temperatures we refitted to getn0(T) as a function ofT. In
the fit, n* (k) shown in Fig. 5 forT51.6 K was used for
T,Tl and n* (k) for T52.3 K was used forT.Tl . The
resultingn0(T) are shown by the open circles in Fig. 8. Th
squares in Fig. 8 were obtained in the same way except
n* (k) obtained forT51.6 K was used at allT, T.Tl and
T,Tl . Clearly a smoothn0(T) is obtained. Also we find
n050 in normal 4He even ifn* (k) at T,Tl is used. The
error bars onn0(T) in Fig. 8 are the statistical error in theT
dependence ofn0(T) only. At T50.5 K we find n05(7.2
60.5)% ~see the Appendix! and a fit to theT dependence
gives

n0~T!5n0~0!@12~T/Tl!g# ~18!

with n0(0)5(7.2560.75)% andg55.561.0.
Finally, Fig. 9 compares the presentn0(T) shown in Fig.

8 ~see parameters in Table I! with Monte Carlo~MC! values
and previous measurements by Sosnicket al.34 As noted the
total error in the presentn0 is 60.75% ~see the Appendix!.
These values are discussed below.

VI. DISCUSSION

From fits to data, we have obtained a condensate frac
of n05(7.2560.75)% atT50 K and theT dependence of

FIG. 11. Condensate fractionn0(T) obtained by fitting the
present data using different FS functionsR(Q,y): the present ob-
servedR(Q,y) ~solid line and open circles!, andR(Q,y) calculated
by Silver ~solid line and triangles!, by Carraro and Koonin~dotted
line and squares!, and by Mazzantiet al. ~dashed line and squares!.
In the upper frame the present observed momentum distribu
n* (k) is used (T51.6 K) for T,Tl , the presentn(k) (T
52.3 K) for T.Tl . In the lower frame the PIMCn* (k) calcu-
lated by Ceperley and Pollock~Ref. 20! is used@T51.54 K n* (k)
for T,Tl ; T52.5 K n(k) for T.Tl#. n0(T) is clearly sensitive
to R(Q,y) but not greatly sensitive ton* (k).



-

n

f

ui

t

d
ve

ve

on

is

s

per

:

-

14 346 PRB 62H. R. GLYDE, R. T. AZUAH, AND W. G. STIRLING
n0(T) shown in Fig. 9. This compares with (1061.25)%
found by Sokol and collaborators and (960.01)% at T
50 K calculated by Whitlock and Panoff19 and by Kalos
et al.18 using GFMC methods. Ceperley and Pollock20 using
PIMC methods find@(8 –9)61#% at lowT and the tempera
ture dependence shown in Fig. 9.

We fitted the same model momentum distributio
n0@d(k)1 f (k)#1A1n* (k), to the data at allT, wheren0 is
the fitted condensate fraction andA1 follows from normaliz-
ing n(k). In normal 4He, we foundn050 with A151 and
n* (k) for statesk above the condensate atT52.3 K the
same as determined previously.38 This n* (k) in normal 4He
broadens only marginally betweenT52.3 K and T
53.5 K. In normal4He, n* (k) shows a large occupation o
low k states and is much more sharply peaked at lowk than
a Gaussian, as might be expected in a cold quantum liq
PIMC calculations ofn* (k) agree well with our observed
n* (k) ~see Fig. 5! as noted previously.38

Below Tl the fit gives a finiten0(T) and A1.0.91 atT
50.5 K. The fittedn* (k) at T,Tl is also not Gaussian bu
is not so sharply peaked at lowk as in normal4He. The high
occupation of lowk states in normal4He has apparently
dropped in part into the condensate atT,Tl . The fitted
n* (k) at T,Tl also agrees well with the PIMCn* (k) al-
though the PIMC result is slightly more sharply peake
However, both PIMC calculations and the present obser

FIG. 12. Data atQ528.5 Å21 and T50.5 K ~open circles!
with fitted J(Q,y) given by Eqs.~10!, ~11!, ~12!, and ~16! ~solid
line!. Upper frame: best overall fit giving lowestx2 and n0

5(7.0060.78)%. Middle frame:n0 reset atn058% to fit in peak
region alone with other parameters unchanged. Lower framen0

preset atn059% andn* (k) refitted.
,

d.

.
d

n* (k) show a clear broadening ofn* (k) as T is decreased
throughTl . Below Tl , there is also then0f (k) component
shown in Fig. 1 which contributes at very lowk values.

We find that the value ofn0(T) belowTl obtained in our
fits is not sensitive to reasonable variation ofn* (k). For
example, we find the samen0(T) using our fittedn* (k) for
normal 4He, the PIMCn* (k), and our fittedn(k) for T
,Tl .

The termn0f (k) coupling the condensate to states abo
the condensate is highly localized neark50 and its Fourier
transformn0f (s) is long range ins ~see Fig. 1!. When con-
voluted withR(Q,y) at the presentQ values, this term can-
not be distinguished fromn0d(k). This term has a firm the-
oretical foundation6,7,42 at low k ~e.g., k&0.2 Å21) and
must be included. However, its behavior at higherk is not
well known. It must vanish by the end of the phonon regi
of the phonon-roton excitations (k.0.7 Å21). We have
added a Gaussian cutoff with parameterkc50.5 Å to bring
n0f (k) smoothly to zero byk.0.7 Å21. With this kc value
n0f (s) contributes approximately 15% ton0@11 f (s)# in the
range 2.5<s<4.5 Å over which n0 is measured in the
present method. Specifically, atT50.5 K and Q
528.5 Å21 shown in Fig. 2,n0 increases fromn05(7.00
60.78)% ton05(8.1060.95)% if then0f (s) term is not
included at all. Ifkc is reduced fromkc50.5 tokc50.3, n0
increases ton057.3%. The latter sensitivity tokc is included
in the present quoted error ofn0. In PIMC calculationsn0 is
determined by the height ofn(s) at larges. At large enough
s(s>6 Å), f (s) is small and does not contribute to th
height. The essential issue is thatn0f (s) does contribute to
n0@11 f (s)# in the range 2.5<s<4.5 Å that we can acces
in experiment to determinen0, and it must be included.

To test the sensitivity ofn0(T) to the FS function
R(Q,y), we refitted those data using the present modeln(k)
in Eq. ~10! combined with the R(Q,y) calculated by
Silver,33,26by Carraro and Koonin,46 and by Mazzantiet al.47

The FS functions are shown in Fig. 10 and then0(T) ob-
tained using these functions are shown in Fig. 11. The up
frame of Fig. 11 showsn0(T) obtained for the fourR(Q,y)
when the present observedn* (k) is used inn(k). The lower

FIG. 13. Momentum distributionn(k) obtained by fitting to data
at T51.6 K (T,Tl) if n0 is fixed atn050 solid line. The dotted
line is the correspondingn(k) at T52.3 K. The triangles are cal
culated~PIMC! values~Ref. 20! at T52.5 K.
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frame of Fig. 11 shows then0(T) obtained when the PIMC
n* (k) is used. Clearly,n0(T) does depend sensitively on th
R(Q,y) used.

The R(Q,y) calculated by Carraro and Koonin46 yields
n0(T) values close to those obtained using the experime
R(Q,y). However,n0(T) obtained using the Silver33,26 and
Mazzantiet al.47 R(Q,y) are much lower,n0<4%. In nor-
mal 4He we findn050 independent of the FS function use

The calculatedR(Q,y) are narrower and have a high
peak aty50 than our observedR(Q,y). We believe that the
width at half height ofR(Q,y) is an important factor in
setting the correspondingn0 value obtained—a narrow
R(Q,y) leads to a smallern0. For example, the Carraro an
Koonin ~CK! R(Q,y) is somewhat broader in the half heig
region than the other two calculatedR(Q,y). Secondly, the
accuracy ofR(Q,y) at largey where R(Q,y) oscillates is
very important. An accurateR(Q,y) for y>1.5 Å21 is
needed forn0R(Q,y) to select its full value in the fit. The
oscillations in the CK and our observedR(Q,y) have similar
amplitudes. Also, we found that the calculatedR(Q,y) all
peaked at highery values than the observedJ(Q,y). Since
n(y) is symmetric iny, the peak position ofJ(Q,y) is set by
R(Q,y). If this position is not correct, a poor fit is obtaine
and then0R(Q,y) term does not assume its full value in th
fit. The last two factors appear to be responsible for the
n0 obtained for the Silver and the Mazzantiet al. R(Q,y).

In contrast, the observedR(Q,y) could be too broad nea
y50. There is no clear impetus for a narrowerR(Q,y) ex-
cept that the fits to data shown in Fig. 3 fall margina
below the data aty50 for T,Tl . Since then* (k) agrees
well with PIMC values, the lowJ(Q,y) at y50 probably
results fromR(Q,y). In this casen0 might be too large to
compensate. To explore the connection withn0, we replot
the Q528.5 Å21 andT50.5 K data refitted with different
n0 values in Fig. 12. The top frame shows the best fit~lowest
x2) giving n057.00%. The middle frame shows the same
with n0 alone artificially increased to 8%. A change ofn0 of
1% provides good agreement aty50 and gives the magni
tude of possible error inn0. However, if we increasen0
further to 9% and refitn* (k), the fit again falls marginally
below the data neary50, as shown in the lower frame o
Fig. 12. The chief point is thatn0R(Q,y) contributes at ally
values, not justy50. Then0 follows from the best fit over
the whole range ofy values. The fact that the Carraro an
Koonin46 R(Q,y), which has a high peak aty50, and the
observedR(Q,y), which is much lower aty50, give similar
n0 values supports this picture. A fit that is low aty50 does
not mean thatn0 is too low or too high, probably only tha
R(Q,y) is somewhat too broad.

If we fix n050 and refit the data in the superfluid phase
obtainn(k) andR(Q,y) it is possible to obtain a reasonab
fit. However, then(k) obtained is unrealistic as shown
Fig. 13. A large change inn(k) betweenT52.3 K andT
51.6 K is required, for example. Then(k) must sharpen
dramatically at lowk over a small temperature interval of 0
K between 2.3 K and 1.6 K. This would be most unexpec
in a cold quantum liquid where the thermal contributionT
.2 K) is already small compared to the zero point ene
~e.g.,^K&.15 K). Thus, while the data can always be fitt
without a condensate, the result is physically unrealistic.
al

w

t

d

y

The presentR(Q,y) has three terms,

R~Q,s!5expF is3

3!

ā3

lQ
2

is5

5!

ā52

~lQ!3
2

s6

6!

ā64

~lQ!2G ~19!

and depends on three parametersā3 , ā52, and ā64. As
noted above, we found from the fits thatā4 , ā54, andā62 in
Eq. ~17! were small~zero within statistical error! and we set
these coefficients equal to zero. A fittedR(Q,y) with only
three terms may not be sufficiently flexible. To test this w
increased the number of terms retained, up tos10, indepen-
dently of whether the coefficients could be meaningfully d
termined in a fit to data. We found that a significantly na
rower R(Q,y) was not obtained without also leading
unrealistic behavior ofR(Q,y) at largey. Thus the width of
R(Q,y) appears to be largely set by the functional form
Eq. ~16!.

The expansion ofR(Q,s) in Eq. ~16! has the correct
structure to satisfy the first six momentsR̄n
5*dyynR(Q,y), of R(Q,y). In particular, the zeroth, first
and second momentsR̄051, R̄15R̄250 are automatically
satisfied by Eq.~16! because there are no terms ins or s2. To
obtain the correct values ofR̄35b̄35ā3 /lQ and R̄45b̄4

5ā4 /(lQ)2 requires that the correct values ofā3 and ā4

emerge from the fit. We findā3 /l52.560.2 Å24 from our
fit compared with a valueā3 /l55.160.5 Å24 calculated
using PIMC methods39 and a valueā3 /l55.55 Å24 calcu-
lated by Rinatet al.48 The coefficientā3 is somewhat below
the expected value. In the fit, there is some compensa
betweenb̄3 andb̄5. Similarly, the fitted value ofā4 /l2 is in
reasonable agreement but somewhat below the calcul
value.39 While the presentR(Q,y) satisfies many momen
relations and provides an excellent representation of FS
fects, the three terms retained up tos6 appear to simulate
higher power terms not retained in the series. That is,
values of the coefficients adjust to best reproduce the wh
series. Thus, while the functionR(Q,y) is well represented,
the coefficient of each term in the truncated series may
correspond to the value expected if the whole series w
retained.

We recently became aware of the extensive diffus
Monte Carlo calculations of liquid helium by Moroniet al.50

They find a condensate fraction ofn057.17% atT50 K
and SVP, lower than previous MC values but in excelle
agreement with the present observed value. Their momen
distribution and OBDM are similar to those found here b
n(k) has a ‘‘shoulder’’ at approximatelyk.2 Å21 that is
not observed here.

VII. CONCLUSION

The present results show that there is definitely a cond
sate in superfluid4He. This is demonstrated by the cle
asymmetry of the observedJ(Q,y) abouty50 seen in the
superfluid phase but not seen in the normal phase~see Fig.
2!. This asymmetry arises from the termn0R(Q,y) in
J(Q,y) that appears when there is a condensate. Using
same model to fit the data above and belowTl we find a
finite n0 belowTl andn050 aboveTl, independent of mo-
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mentum distributionn* (k) and final-state functionR(Q,y)
used—althoughn0 below Tl is small when some calculate
R(Q,y) are used. Finally, a fit to the data in the superflu
without a condensate leads to a large and unrealistic cha
in n(k) betweenT52.3 K ~aboveTl) and T51.6 K ~be-
low Tl) ~see Fig. 13!. The condensate is also reflected in t
sensitivity of the results toR(Q,y) belowTl and the relative
insensitivity toR(Q,y) aboveTl .

A best fit to the data leads ton0(T)5n0(0)@1
2(T/Tl)g# with n0(0)5(7.2560.75)% andg55.561.0.
The statistical error onn0(0) is 60.3% with the remainder
of the error arising from uncertainty in the sharply peak
component of the momentum distribution; then0f (k) term
in Eq. ~13!. This value is 30% below previously accepte
values.25,34–37It agrees with a recent diffusion Monte Car
value,50 is consistent with PIMC values8,20 at finite T, but is
lower than previousT50 K Monte Carlo19,20 values, which
predictn0(0)59.0%.

The shape of the momentum distributionn* (k) was de-
termined in both phases and has much higher occupatio
low k states than a classical, Gaussiann(k). The n* (k)
broadens somewhat asT is lowered belowTl—as if some of
the low momentum occupation in the normal phase dr
into the condensate in the superfluid phase. The final-s
functionR(Q,y) was determined from the data. We find th
it is largely independent of temperature and the same in
mal and superfluid4He within precision~see Fig. 6!. The
Fourier transformR(Q,s) appears in Eq.~17! with parameter
values listed in Table I. This expression can be used to
tain R(Q,y) at higher or lowerQ values. It is less sharply
peaked neary50 than most calculatedR(Q,y) and shows
oscillations at largery values needed to satisfy the mome
relations. The condensate fraction obtained is the sam
smaller when calculatedR(Q,y) are used in the data analy
sis.
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APPENDIX

In this appendix we discuss how the errors in the fitti
parametersn0 ,ā2 ,ā4 ,ā6 ,ā3 ,ā54,ā62 listed in Table I are
established. First, the error bars shown in Fig. 4 on th
parameters at a givenQ value are errors calculated by th
fitting programFRILLS that was used to find the values of th
parameters themselves. These error bars reflect the stati
error s i in the observed data points,di5Jobs(Q,yi)6s i .

As a check, we determined the errors at a givenQ inde-
pendently from the mean square deviationx2 of the data
pointsdi from the fitted functionj i5J(Q,y). We definex2

as
ge

d

of

s
te

t
r-

b-

t
or

er-

a-
-
e

of

e

ical

x25
1

Np
(

i

N S di2 j i

s i
D 2

whereNp5N2M11, N is the number of data points,M is
the number of fitting parameters, ands i is the statistical
error ofdi . The best fit values of the parameters in the fun
tion j i5J(Q,y) are those that minimizex2. If the fit of j i to
the observed pointsdi is good, the deviation of thedi from
the functionj i will arise largely from the statistical errors i

~i.e., di2 j i.s i). In this event, the minimum valuexm
2 of x2

will be xm
2 .1.

If we assume thatx2, as a function of the fitting param
eters, is distributed as a Gaussian about the minimum v
xm

2 , then, when a parameter is moved one standard devia
away from its best value,x2 increases fromxm

2 to xm
2

11/N.49 We can determine the standard deviation of a
rameter, sayn0, by adjustingn0 until x2 increases fromxm

2

to xm
2 11/N. For example, atQ527.5 Å21 and T51.6 K

this procedure gives a standard deviation ofn0 of 61.15%.
In this casexm

2 51.0175,xm
2 11/Np51.0257 (Np5122) and

it is important to readjust all other parameters asn0 is
changed. This error agrees well with the errorn05(6.10
61.06)% calculated byFRILLS and shown in Fig. 4 atQ
527.5 Å21. We found a similar agreement of errors at oth
Q values, at other temperatures, and for other parameters
someQ values the error is large because the data set
small.

The fluctuation of the parameters withQ ~e.g.,n0) shown
in Fig. 4 arises from the statistical error in determining t
parameters. The magnitude of this fluctuation can also
used to determine the statistical error in the parameters.
example, one standard deviation of the parameter va
should cover 68% of the points shown in Fig. 4. In the ca
of n0 , n05(5.761.2)% readily covers 70% of the points i
Fig. 4~a!. This determination of the statistical error ofn0
agrees well with the other two determinations noted abov
most cases.

We have used the fluctuation of the parameters withQ
shown in Fig. 4 to determine their error. Since there areNQ
values ofQ, we may divide this error on the parameter b
ANQ. This gives (NQ519), for example,n05(5.760.3)%
or a standard deviation ofs50.3%. Similarly, we obtain
a250.88460.01. In a previous paper39 we determined the
error from the fluctuation of the parameter withQ but did not
divide by ANQ.

As noted in the text the functionf (k) contains a cutoff
parameterkc which is not known with certainty. This uncer
tainty adds an additional error~to n0 especially!. We may
incorporate this uncertainty in the error ofn0 as follows. The
kc lies in the range 0.3<kc<0.7 Å21 with perceived best
value kc50.5 Å21. At Q527.5 Å21 and T51.6 K, we
find n0 varies from n0H5(6.3761.12)%(kc50.3) to n0L
5(6.1061.03)%(kc50.7). This is a typical change withkc .
Assuming that the standard deviations of bothn0H andn0L
is the same as obtained above forn0C55.7%(kc50.5) ~i.e.,
s50.3), the n0 values range fromn0L2s,n0,n0H1s.
This gives an average valuen0M5@(n0H1s)1(n0L
2s)#/255.9% and spreadS52sT5@n0H1s2(n0L2s)#
or sT5(n0H2n0L)/21s.0.5%. Including the uncertainty
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the
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in kc , we obtain a condensate fractionn05n0M6sT5(5.9
60.5)% with asT50.5% total standard deviation. Whenkc

is changed fromkc50.5 to 0.3, the best fitān parameters
change by approximately 1%. There is no change fromkc
50.5 to 0.7. This procedure is an approximation to the g
eral method of evaluatingx2 as a function ofkc andn0 and
determining values ofn0 at which x25xm

2 11/N over the
range 0.3<kc<0.7.
:
,

an

.

ys

v.

n-

K

s.

.

-

For n0 we round the result ton05(6.060.75)%, allowing
an additional error of 0.25% for error in the form off (k).
The error 60.75% arises from 0.3% statistical error an
0.45% for uncertainty in the functionf (k). It is less than the
error quoted previously,39 which was too large in both the
statistical error and in the uncertainty arising fromkc . The
present error arises predominantly from uncertainty in
n0f (k) term.
er
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