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Andreev scattering and the Josephson current through a one-dimensional interacting electron liquid sand-
wiched between two superconductors are reexamined. We first present some apparently new results on the
noninteracting case by studying an exactly solvable tight-binding model rather than the usual continuum
model. We show that perfect Andreev scattering., zero normal scatteringt the Fermi energy can only be
achieved by fine-tuning junction parameters, a fine-tuning which is possible even with bandwidth mismatch
between superconductor and normal metal. We also obtain exact results for the Josephson current, which is
generally a smooth function of the superconducting phase difference except when the junction parameters are
adjusted to give perfect Andreev scattering, in which case it becomes a sawtooth function. We then observe
that, even when interactions are included, all low-energy properties of a junéier ( the superconducting
gap can be obtained by “integrating out” the superconducting electrons to obtain an effective Hamiltonian
describing the metallic electrons only with a boundary pairing interaction. This boundary model provides a
suitable starting point for bosonization-renormalization group-boundary conformal field theory analysis. We
argue that total normal reflection and total Andreev reflection correspond to two fixed points of the boundary
renormalization group. For repulsive bulk interactions the Andreev fixed point is unstable and the normal one
stable. However, the reverse is true for attractive interactions. This implies that a generic junction Hamiltonian
(without fine-tuned junction parametgnsill renormalize to the normal fixed point for repulsive interations but
to the Andreev one for attractive interations. An exact mapping of our tight-binding model to the Hubbard
model with a transverse magnetic field is used to help understand this behavior. We calculate the critical
exponents, which are different at these two different fixed points.

I. INTRODUCTION We have chosen to reexamine this subject in both nonin-
teracting and interacting cases because we feel that previous
One of the fascinating consequences of superconductivitifeatments have missed some interesting physics. In particu-
is the phenomenon of Andreev scattering at a normal-metallar, most of_the standard work on the noninteracting case has
superconductor NS) junction. This corresponds to an in- essentially |gn_0red ban.d. structure _effects, using a free elec-
coming electron from the normal side being reflected back afon model with a pairing potential that varies abruptly
a hole, thereby producing an additional Cooper pair in th across the junction, together with a scattering potential at the

Snterface. A more recent pap@considers the case where the
superconductor condensate. Both normal and Andreev rg=q; velocity is different on th&andN side. The conclu-
flections are expected to occur in a realiti§ junction, in

" N TN sion of this work is that, at the Fermi energy, there is perfect
addition to quasiparticle transmission into the superconangreev reflectioniand therefore 0 normal reflectipwhen
ductor. If the gap is large enough, the latter's propagation ighe scattering potential and velocity mismatch are absent.
suppressed and squared reflection amplitudes add up to oR®th of these effects serve to increase the normal scattering
through probability current conservation. Building up on An- amplitude in an additive way. We arrive at qualitatively dif-
dreev reflection, one arrives at the related phenomenon of thfierent conclusions by explicitly including band structure in
Josephson current, in which the normal region of athe form of an exactly solvable one-dimensional tight-
superconductor—normal-metal-superconduc®N§ junc-  pinding model. Related work using a tight-binding model
tions carries a supercurrent driven by the gap phase differappeared earliet: It considered one-dimensional SSS junc-
ence between left and right superconductors. tions and SS junctionévhere the length of the interface is
While the original work in this field treated the normal much less than the superconducting coherence lgnigdre
metal within the Fermi liquid frameworki.e., essentially we consider long SNS junctions. Before adding interactions,
ignored interactions the effect of interactions for the case of the Hamilltonian is
a one-dimensional metal betweenoit;%o superconductors has
been treated recently by several grolipsising bosonization N gt gt ot
and renormalization group methods. The methods and con- H 'LLN_; (s adiotieaot A8 HH.C)
clusions of these works are closely related to previous work
on tunneling through a single impurity in a quantum wire. +(Vj= ) ¥l ;0] (1.1
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The chemical potentiajy, is assumed to lie within the band evy

on the normal sidéu|<2t and H.c. stands for Hermitian l(x)——yx (mod 2m), (1.9
conjugate. Here the interface is chosen to lie between sites 0

and 1 with the superconductor on the negatiaxis and the with steps of size @/l occurring aty=(2n+1)x. For

normal metal on the positive axis so that any other choice of junction parameters the Josephson cur-
rent is a smooth function of. For example, in the limit of a
t j>0, weak junctiont”<t,t’, we find
tijea={ " 1=0, 1) (1) *siny. (1.6
t" j<O,

While these formulas are well-known results, our method in
fact allows us to calculate exactly the zero-temperature Jo-

Vi=Véj, sephson current in the general case of arbitrary amounts of

. normal versus Andreev reflection, independently at each

A= A j=0, (1.2 boundary. The full crossover between the above two limits is
1o j>o. ' thus described.

One approach which we shall make much use of in this
A; represents the pairing interaction which exists on the supaper is that of an effective field theory, whereby the super-
perconducting sidej&0) only. For simplicity we consider conducting side is replaced by a particular boundary contri-
both normal and superconducting sides to be one dimerbution on the normal side. There are several reasons why it is
sional, but see below. The notion of a “perfect junction” convenient to “integrate out” the electrons on the supercon-
becomes less clear in such a model. In the particle-hole syntiucting side of the junction in such a way as to obtain an
metric caseu=V=0, we find that there is always some effective Hamiltonian for the electrons on the normal side.
normal scattering at the Fermi energy unless the interfachis is a very natural thing to do considering the fact that the
tunneling parametet” is fine-tuned to a particular value. In superconducting electrons have a gap in their spectrum: if we

the limit |A|<t,t’, this particular value becomes consider physics at energy scales small compared to the gap
we expect to obtain a simple effective action without any
t"=tt'. (1.3)  retarded interactiongThis may break down for nos-wave

pairing where the gap vanishes in certain directions; we do
For general values of the chemical potential we find that botthot consider that case herd&he resulting effective Hamil-
t” and the normal scattering intensiymust be fine-tuned in  tonian (for a single junctionis
order to achieve perfect Andreev reflection. For example, in
the particle-hole symmetric case it is possible to get perfect

- _ i _ ot
Andreev reflection even with Fermi velocity mismatch ( H—uN= tgl (ot +10THC)— mipj,tj6]
#1') provided thatt” is adjusted to the right value. It is
worth emphasizing that the case of infinite interface tunnel- +[AB¢/J{J z/f{’l+ H.C.]+VBI,[IL,I//10.. 1.7

ing t">t,t’ does notcorrespond to perfect Andreev reflec- h ve bound N . d .
tion as one might naively suppose, but instead to zero Anlhe effective boundary pairing interactidrs and effective

dreev reflection. The physical reason is that, in this limit, twoPoUndary scattering potentials depend on all the param-
electrons get trapped at the interface on sites 0 and 1, effe€€rs of the superconductor and the juncttén A, t", V.
tively decoupling all sites witj<0 from all sites withj  Bedinning from our interface model of EqL.1) we deter-
>1.'In this limit the normal side does not “feel” the pairing Mine explicitly the parameterag and Vg of the boundary
and hence exhibits no Andreev reflection. model and check that low-energy properties are faithfully
We are not aware of any previous explicit calculation offeProduced. Of course, we again find with the boundary pair-

the Josephson current for such an interface model in the caddd model that perfect Andreev reflection only occurs if the
of a long SN junction, which we perform here. We considerPoundary parameters are fine-tuned. In particular, for the
two, possibly different, interfaces separated by a distance dfarticle-hole symmetric case=Vg=0, the condition is
| lattice sites with the pairing potentials having a phase dif- A=t (1.9
ferencey. The (zero temperatujeJosephson current is de- BT ’
fined from the derivative of the ground-state energy withNote that it isnot Ag—c as one might naively suppose.
respect to the phase difference One advantage of the boundary model is that it should
arise from much more general, and more realistic, interface
models. While the simple form of Eq1.1), quadratic in
I(X):ZeaEO' (1.4) fermion operators, is the result of a mean field approximation
to a more realistic model with pairing or electron-phonon
While the ground-state energy is obtained by summing oveinteractions on the superconducting side, we expect that the
all states below the Fermi surface, we show explicitly that itseffective Hamiltonian of Eq(1.7) will still be valid at ener-
derivative with respect ty only depends on quantities de- gies small compared to the gap when the interactions on the
fined at the Fermi surface, being insensitive to the details ofuperconducting side are treated more accurately. Further-
the band structure. When the junction parameters are finanore, it is more or less obvious that the same effective
tuned to give perfect Andreev reflection we find that theHamiltonian arises when the one-dimensional normal metal
Josephson current is a sawtooth functionyof is coupled to a three-dimensional superconductor. This is an
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important generalization since superconductivity is not beperature are different than the exponents characterizing the
lieved to occur in a strictly one-dimensional system. flow towards the free fixed point at low temperature. How-
More generally we wish to add interactions to our Hamil- ever, it should be emphasized that for a generic choice of
tonian on the normal side which we assume to be one dimerpare interface parameters the Hamiltonian will not be near
sional. A simple choice would be an on-sitéubbard inter-  the Andreev fixed point; this requires fine-tuning. The situa-
action for all sitesj=1: tion is similar in the nonparticle-hole symmetric case except
we now get lines of fixed points with either O or perfect

H—H+Hin, Andreev reflection.
Andreev reflectioiequivalently Cooper pair tunnelingt
H. :E S (ni-1)? (1.9 the interface between a superconductor and a chiral, spin-
2 s ' ' polarized Luttinger liquid was considered in the context of

quantum Hall edge states by FisH&iThe first work that we

wheren; is the total electron number operator at gitéVe  are aware of on Andreev scattering in nonchiral, non-spin-
could also consider longer range density-density interactiongolarized Tomonaga-Luttinger liquitisattempted to apply
We will be interested in the case of both repulsive and atboundary RG techniques without explicitly integrating out
tractive bulk interactions; the latter may arise in a low-the superconducting side and without taking into account the
energy effective theory from phonon exchange. The negativeffect of the BC's on the exponents. This led to incorrect
U Hubbard model has a gap for spin excitations which carpredictions for the exponent governing the Josephson cur-
be eliminated by considering longer range interactions. Weent. The authors of Ref. 6 used a method closely related to
will discuss both cases with zero and nonzero spin gapours but applied it to a different geometry: a closed normal
These interactions can be treated essentially exactly, at lowng in contact with superconductors at two points. Takane
energies, using bosonization, renormalization group, andorrected some of the earlier results in Ref. 5 for the expo-
conformal field theory techniques. It is a major purpose ofnent governing the Josephson current using methods essen-
this paper to discuss how to generalize these techniques tially equivalent to ours but without explicitly invoking the
the interface model. We argue that this is best done by inteconcept of integrating out the superconducting side. We ex-
grating out the superconducting electrons to obtain theend Takane’s result by introducing the conceptually impor-
boundary model of Eq.1.7) with the bulk interactionstH;,;  tant and very useful notion of integrating out the supercon-
added.(More generally, we might also obtain additional in- ducting electrons thus making clear the relationship between
teractions at the boundary. These can be treated in the sartige interface problem, other quantum impurity problems and
framework) Indeed, this approach seems to be more or lespoundary conformal field theory. This facilitates a more gen-
forced upon us by the renormalization group philosophy oferal discussion of the universal critical behavior. In particular
integrating out high-energy modes to obtain an effectivewe discuss the behavior of the Josephson current in the vi-
low-energy Hamiltonian. Having performed the initial step cinity of the Andreev fixed point, obtaining quite different
of integrating out the gapped degrees of freedom on the suesults than those in Ref. 5, and discussing how the func-
perconducting side we may then proceed to analyze the efional dependence of the current on the superconducting
fective Hamiltonian with bulk and boundary terms using phase difference crosses over between sawtooth and smooth
general methods developed to deal with quantum impuritforms.
problems'? Of course, our results will only be valid at ener-  Given the difficulty of achieving perfect Andreev scatter-
giesE<A. ing in the noninteracting case our conclusion is quite remark-

The boundary renormalization group approach leads t@ble that, with attractive bulk interactions, a generic interface
the conclusion that the boundary interactions will renormal-will renormalize to perfect Andreev scattering &is-0. It
ize to a fixed point corresponding to a conformally invariantmust be admitted that this conclusion is based on an un-
boundary condition. It appears likely that there are only twoproven but widely made assumption about RG flows and
such boundary conditions that occur in this problem, in thefixed points in the boundary sine-Gordon model which arises
particle-hole symmetric casgu&V=Vg=0) corresponding here after bosonization. In order to make some of our rather
to a free boundary conditioBC), Ag=0 which preserves unintuitive results seem more plausible we discuss an exact
electron number and therefore has no Andreev reflection anghapping of our boundary pairing modéh the particle-hole
to an “Andreev boundary condition” for which there is per- symmetric caseinto a Hubbard model with a bulk magnetic
fect Andreev reflection. Which of these boundary conditionsfield and a transverse boundary magnetic field. In the trans-
is stable under renormalization group transformations deformed model the Andreev boundary condition corresponds
pends on the sign of the bulk interactiddsWe find that the  to one in which the boundary electron has a frozen transverse
free BC is stable for repulsive bulk interactions but the An-spin polarization.
dreev BC is stable for attractive bulk interactiorid<0). In the next section we give the solution of the interface
We calculate the various critical exponents associated witland boundary models and discuss their equivalence, in the
these critical points. It is important to realize that critical case of zero bulk interactions. Most of the details of the
exponents are characteristic of a particular fixed point an@&quivalence are relegated to an appendix. In Sec. Ill we con-
are different at the free and Andreev fixed points. Thus, forsider anS;NS, system and calculate the Josephson current.
instance with repulsive bulk interactions, if we started within Sec. IV we include bulk interactions in the boundary
bare interface parameters that put the interface close to theodel and determine phase diagrams and critical exponents.
Andreev fixed point then the exponents characterizing thén Sec. V we discuss the exact mapping onto the Hubbard
initial flow away from the Andreev fixed point at high tem- model with bulk and boundary magnetic fields.
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A A ANV In other words, our lattice interface model is defined by the
cetetet’’etete ... BdG equations2.2) with the choice of parameters in Eq.
21 0 1 2 3 1.2.

FIG. 1. The interface model. Dots represent lattice sites, labeled The calculation of the normal and Andreev reflection co-
by integers. On the left is the superconductor, with gamnd  efficients in the lattice interface model is nothing but an ex-
bandwidtht’. It is coupled to a normal metal with bandwidth ~ ercise in elementary quantum mechanics. Namely, it is per-
through a junction of strengtif, with a local potentiaV to tune the ~ formed by choosing an appropriate ansatz for the wave

normal scattering rate at the contact. functions, after which solving for the matching conditions of
the eigenstates at the interface yields all the desired informa-
Il. THE LATTICE INTERFACE tion.
AND BOUNDARY MODELS Let us implement this procedure by taking a simple trav-

In this section, we consider various lattice models of nor-e”mg wave solution to the Bogoliubov—de Gennes equations

mal metal-superconductor contacts in the case of zero buI£<2'2) '
interactions. The generic Hamiltonian for all of these will be
Eq. (1.1), with various geometries, sets of hopping strengths, B
and potentials specified along the way. The calculation pro- Uaj =
cedure is similar to the usual one used in dealing with con-
tinuum models: the wave functions are found for each sector,

aj = [

e '+ Rye'Y, =1,

The P+ (—1)Te ", j=<O0,

—1)i i7] i
and the matching conditions at the contacts yield consistency (—1)'Rpe™, =1
equations from which the various reflection-transmission co-
efficients are obtained.

We start by performing the Bogoliubov—de Gennes trans!n the above equation, the quasimomegtand & will turn
formation out to be complex for the region of parameters we will be
concentrating on, namely at energies below the supercon-
_ x 1t ducting gap. This means that the wave function amplitudes
Vo= ; [UajYao™ V% Yool (2.9) U,; andv ,; are exponentially decaying on the left-hand side.
o _ i The rest of the procedure is then a simple matter of sub-
where the quasiparticle operators satisf.,,v, .}  stituting Eq.(2.3) in Eq. (2.2 and carrying out the necessary
= 84a' 04507, 0==1is a spin index, and is a(rea) quasi-  algebra. The energy is
momentum index. We obtafby requiring the Hamiltonian
to be diagonal i=Ey+3 ,e,7! 7.,) the following lattice €,=—2tcosa— u, (2.9
Bogoliubov—de Gennes equations:

. , . 2.3
TAeﬂBJ_,_(_l)JTAeﬂBI, j<0 23

while the other parameters in E@.3) are given by

€Uaj =~ qUgj1— tjjaaUajr a1 H(Vj— m)Ugy+Aju ), cosy=cosa+ ult,
€aVaj=ljj-10aj- 1T lj410aj+1— (Vj= m)vaj+ AT Uy .
(2.2
The solutions of these equations in two particular geometries
are presented below. The emphasis is put on the calculation
of the Andreev reflection coefficient and on the low-energy
properties of the system.

2t'cosB= (2t cosa+ u)’—|A]?— u,

2t'cosé= (2t cosa+ u)?—|A|?+ u. (2.5

Although all reflection and transmission coefficients can
be calculated explicitly, a simpler form for these expressions
is obtained if we are interested primarily in the scattering of
particles whose energy is very small compared to the super-

As a simple toy model for &l Sinterface, we consider the conducting energy gap. The—0 limit gives
geometry depicted in Fig. 1. This tight-binding model is one
of free electrons in which a nonvanishing superconducting o ) _
order parameter has been induced by an unspecified mecha- COSa=—=C0Sy==7, Sina=SIiNy= V1—pllat,
nism on the left-hand sites of the lattice only. Although it is

A. The lattice interface model

a straightforward lattice version of the ubiquitous continuum cosB=—(cosd)* = —i|A|/2t" — pl2t’
one-dimensional models used in Ref. 4 and numerous subse- '
quent work, let us underline that our model includes some sinB=(sin8)* = V1—(i|A|+ u)J4t'2, (2.6)

additional features, namely, different bandwidttts on the
normal and superconducting sides, and an arbitrary couplingnd allows us to write the following expression for the An-
t” together with a local scattering potentiaht the interface. dreev reflection coefficient:

Rl _ 7iXtt”2 V1—p?l4t[ —|Al/t' +sinB+sin 8]
c—o=ie I X— . — .
Ale=0 ' 2= 24+ [V— pl2— (121t )@ PV — wl2+ (12t )€l ?]

2.7
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In the above,y is the phase of the order paramet&r \A
=|A|e'X. Note that the reflection coefficients moreover obey A
the sum rulgR,|2+|Ry|2=1 at half-filling, in view of the e i e it e
conservation of the currentt;; (U}, 1Uqj— 051104 1 2 3

—c.cl.
This low-energy Andreev reflection coefficient, as a func-
tion of the bandwidths,t’ and of the strength of the pairing

A, as well as of the tunneling strengthand local scattering . . . . .
. . | ; 2 _one in which we consider a system with a boundary obtained
potential V, obeys some simple but interesting properties.

- ) - ~'by “integrating out” the superconducting side, yielding an
Imagining for example a generic experimental setup in ffecti - ial localized at the original |
which variations irt” andV can be implemented, we can ask e”ectlve plgilrlng po'gﬁntlla oca |_zde atthe 0r|_g||na contact. r?
how R,|.—o behaves. A simple variation yields that the op- all generality, we will also consider a potential present at the

FIG. 2. The boundary model. The superconductor has been re-
placed by effective boundary potentidlg andVg.

timal amplitude is achieved for boundary. .
What we could call the lattice boundary model can be
"o directly defined through the BdG equatiof&.2), but our
Vmax:ﬁ +—(e'P+c.c). (2.9 system(illustrated in Fig. 2 is now taken to live on the axis
2 2t of positive integers, with a boundary pt0 having on-site

pairing Ag and potentialVg on the first site. The hopping
strength is taken to bebetween all sites. For the moment,
we will perform all the relevant calculations from scratch,

(Here c.c. denotes complex conjugatsubsequently tuning
t” yields a maximum at

N deferring the explicit connection with the previous interface

t"2 =2tt’ : . (2.9  model until later.
—|A|/t"+(sinB+c.c) In the same way as for the interface model, we can cal-
In the limit |A|<t,t’, these conditions become culate the normal and Andreev reflection coefficients by

simple quantum mechanics. Of primary interest is the An-
2 1— pu2/4t2 dreev one, which is readily obtained by using the ansatz
1—,—2}, t"e=tt' \| ————5. (2.10 o o o
t 1-pol4t ui=e '"+R€eY, v,=(—1)IReY (219
It can be easily shown that these are the same conditiong the lattice BAG equationé2.2) in the geometry just de-
necessary foperfect tranmissiorat €=0 in the case of a gcriped. We find againe,= — 2t cosa—u with cosy

normal interfacA=0). In the particle-hole symmetric case, —cosqa+ uit, together with
Eq. (2.9 simplifies to

)2
V=—
2

5 _ A}t sina
2 , Al |A| Ry=2i 5 . . (2.19
t = It 1+ p“'; . (2.11 |AB| +(te”'*+Vp)(—te 'Y+ Vp)
Tuning the parameters in such a way, we find perfect An-Wh'Ch’ at zero energy, becomes
dreev reflection, i.e., . , A%t 1- 12402 016
i e—0=2I . .
Ral =0t =1€7'%. (2.12 A0 | Mgl 4+ V(Ve— p) + 2

In terms of left and right movers in the continuum limit of

Eq. (2.3, defined in Sec. IV, this corresponds to The modulus of this coefficient is plotted in Fig. 3 at

half-filling, as a function of the boundary pairingg and
Vg (0)=—ie™W (0), Wg (0)=ieX¥] (0),
(2.13

which are simply the perfect Andreev conditions usually im-
posed.

Thus, pure Andreev boundary conditions are obtainable in
the lattice interface model by simply tuning two parameters
in the general non-particle-hole symmetric case. For the
particle-hole symmetric case, it is enough to tune one param-
eter. 5.

27~

B. The lattice boundary model

At energies below the superconducting gap, all wave
functions incident on th&l S interface from the normal side
are eventually reflected back through either normal or An-
dreev reflection processes. The vanishing of the transmission
coefficients opens the door to the formulation of a different FIG. 3. |R,| for the boundary model at half-filling, plotted over
approach than that adopted in the interface model, namelyhe range 6<|Ag|/t<5 and—3<Vg/t<3.
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1t ) t//2
Ag — e'X—,. (2.22
0.8} NS

It is important to note that these formulas hold &¢|A|, so

0.6} one should not be surprised that a small bulk pairing still
produces a significant boundary pairing, with a finite amount

0.4} of Andreev reflection. The limits of zero energy and zero
pairing do not commute.

0.2l The above formulas allow one to move freely between

interface and boundary formulations of thkS problem, as

long as the low-energy sector of the theory is considered.
1 2 3 4 5 They will be used in the next section, which is devoted to the
FIG. 4. |R| plotted againstA 4|/t for Vg /t=0, 1, 2, and 4top calculation of the Josephson current irs &l Sjunction.

to bottom). Here we have sgi=0.

Ill. JOSEPHSON CURRENT

boundary scattering potentidz. The maximal amplitude
has unit modulus, and such a maximum occurs for an
choice of filling in view of a similar optimization property to
the one in the interface model. Namely, tunidg and Ag
yields a maximum amplitude at

From the considerations of the earlier sections, we see
¥hat the problem of ai$;NS, superconducting junction can
be investigated within a double boundary framework, pro-
vided we are interested only in energies much smaller than
the gaps on either side. We consider oplyVg=0 in this

_ _ Y section. If we imagine integrating out both the left and right
Vema— 412, |Aglme— V1= p74t%, (217 superconductors, we obtain a lattice model with two bound-
and this once again produces the perfect Andreev conditiorary pairings, which we dub the boundary junction model.
iy Namely, we take this to be the model of free electrons in the
—le (218 pyik, with pairingsAg andA, at the right and left ends. It is
important to realize thahg | areboundarypairings, whose
influence on the reflection coefficients has been explained in

- e ; ._detail in the previous section. One should be careful not to
i(:nogefsfltfleer]rgtr?t half-filling, plotted against the boundary pair confuse them with bulk pairings, which have an altogether

The equivalence of formula&.7) and (2.16 for the ef- different effect[the two are related, of course, by the rela-

fective low-energy Andreev reflection coefficients comestiOnShiIO (2.19]. We thus define the system on sites

from the fact that, as mentioned before, the lattice boundary’ - "
model is obtainable by integrating out the gapped side of the A=A A = AoeiX 3.1)
interface model. This procedure is outlined in the Appendix, == Im1TERE '

in which the explicit relationship between interface andwith Ag R (that is, we have put all the superconducting
boundary pairings and potentials is derived. At low energiesphase difference on the right pairing

Rl

€=0Vgmax:ABmax

Figure 4 shows the influence of a progressively stronge
boundary scattering potentiglg on the Andreev reflection

| —1 and take

this correspondence reads Solving the lattice BAG equations by using the ansatz
n2 . . .
AB:t_ B H+sinﬁ+sin5 , U,j=A,sinaj+B,cosaj,
2t’ t’ ,
v,4j=(—1)(C,sinaj+D ,cosaj) (3.2
"2
Vg=V+—| = —ising+isiné (2.19 with e= — 2t cosa yields after a certain amount of algebra
® 2t [t/ ' ' the condition for the allowed quasiparticle momentdwe

have chosehto be odd. We find(for convenience, we have
sett=1 in what follows

"2
AB:eiXtt_’[ TF[A[ZA2— |Al2']. (2.20 0=sirfal + 2AgA cosysira— (Ag+A?)sira(l — 1)
+A2AZsira(l—2). (3.3

In the particle-hole symmetric case, this means that

The interesting aspect of this formula comes from its be- L ,
havior in various limits. Contrary to simple intuition, a large USINg @ generalization of the approach used in Ref. 13 to

bulk pairing|A[>t’" on the superconducting side induces gtreat the problem of free electrons on a tight-binding chain

small boundary pairingAs, according to the limit with a boundary scattering potential, we can conveniently
8 find the closed form solution. First of all, let us write the

o2 allowed momenta in terms of energy-dependent phase shifts
AB — e'Xm, (22]) 6i as
[A]>t!
whereas a smallA|<t’ yields a boundary pairing whose . _ TN dne (3.4
n+t — .

amplitude depends on the hopping parameters exclusively:
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where = refers to the two independent sets of Andreev lev- cog28—g)=cosh, (3.6
$i|ZidI§beled by the integer. Substituting this into Eq(3.3 where the functiong andh are defined by
f,c08 25+ f,sin 26="13, cosg= f1 cosh= fs _ 3.7

N V413
Studying carefully the various functions along paths in the
f,=—(A2+A2)sin 2a+AZAZsin 4a, parameter space yields a consistent choice of branches for

the inverse trigonometric functions. This leads to the final
f3=(1—A2R)(1—AE)+4ARA,_sin2a cosy. (3.5 answer for the phase shifts, which we write as

f1=1—(A%+A?)cos 2o+ AZAZcos 4,

Noting thatf3<f2+f3 throughout the parameter space al- 0x=(9=h)/2, 38
lows us to write this as where

—27—-0, a<u,

f
g=¢0, a<a<w—7, G=sgna—mw/2)arccos ! ,
f2+f

NN

fa

= 3Re{arccog (AR%+A[ %)}, h=arccos (3.9

and all arccos functions have their imagg @yr]. The phase where ke=w(N+21/2)/I, ex=€(kg), €9=€(0)=-2,
shifts are analytic except at the bottom and top of the band atr= €’ (kg). The crucial thing to notice here is that thd 1/
the perfect Andreev points, whegesuffers a branch jump. terms are functions of data exclusively at the Fermi surface.
Knowing the phase shifts allows us to compute all theWhile the #5 term is well known to correspond to the finite-
energy levels, and understand their behavior as a function afize contribution from open boundary conditions for a con-
the boundary pairings and the superconducting phase diffeformal field theory with central charge=2 similar to the
encey. One recovers the usual picture wherein the levels arpresent ondeach spinful chiral fermion carries a unit con-
separated by finite gaps on an energy versus phase diagrafaymal chargg, the other terms depending on the squares of
except at the perfect Andreev points, where the gaps vanisthe phase shifts & give the change ity coming from the
The reason why it is so convenient to solve for the al-effect of the boundary pairings. Th@(1%) term, given by
lowed quasiparticle momenta in terms of these phase shift;umi’s theorem, depends, however, éracross the whole
is that this procedure allows us to write the ground-statdilled part of the band.

energy straightforwardly in a lLexpansion. Again, the deri- This expression for the ground-state energy allows us to
vation is very similar to the one in Ref. 15, and we refer thewrite the Josephson current at zero temperature in the limit
reader there for the missing details. of largel, in the presence of arbitrary boundary pairings, i.e.,

The ground-state energy can be written as the sum of theith an arbitrary amount of normal versus Andreev reflec-
individual energies of the occupied Andreev levels. Namelytion on either edge. Namely, the Josephson current is given
b
N y
Eo= el an]. 3.1 d
0= 2, 2 an] (310 (0 =2eEo. (312
X
In the limit of largel, we can use a Euler-MacLaurin formula Upon calculating this derivative, one easily sees that Fumi's
to transform this sum into an integral. Subsequently expandtheoremO(1°) term does not contribute th(y), since the

ing to order 1V, we get sum of the phase shifts is independentyofor any energy
cdk 1 [in Eqg. (3.8), only h depends ony]. Thus, the Josephson
EO:ZIf FUK (k) + _f fdf[ 5. (e)+ 5 (6)] current is Control!ed exclusively by parameters at the Fermi
0o T ) e surface, and is given by the general expression
w18, (kg) 2+ 16 (kp)\2 1 evZ siny arcco§g(cosy)/[§2(1) + A% 2]Y?]
T2l | T2l Tw ) T 100=—r4a ’

T A A Sif(/2)5cog(x/2)]+ A2
(3.1 (3.13
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6 g(cosy)
arcco ~ ~ Y. (3.16
] %[@2<1>+A2v.%]1’2 *
We may Taylor expand thg dependence of the other factors
4 near| x|~ 7 since they give essentially a constant elsewhere.
Thus
3
2 2
ve(m—1x|)
2 "g(co§§>~4(1—AR)(1—AL)+ %,
1 (3.17)
giving
0.5 1 1.5 2 2.5 3
. o . F 7| x|
FIG. 5. Josephson current in the symmetric junction as a funcd (x) = —I)( > > ) |)(|<7T.
tion of x, in units of e/«l. The five plots are, respectively, for ™ \/(77_|X|) T4(2-Ar— A vk
|Ag|/t=1, 0.9, 0.8, 0.6, and 0.3. (3.18
_ Note that the last factor vanishes| gt— 7 but approaches 1
where we have defined for m—|x|>|2—Ag—A.|. For small|2—Ag—A,| we find
- 2 2 2 that the maximum current occurs at
9(y)=(1-AR)(1-Af)+ARA vRY, "
2(2— A —Ap)
- _ ~ 13 L TR
R=(Ar—AD)(1+AgA)). ™ lxul=m { o (319
This function reproduces the well-known behaviors in theand has a value
limiting cases of perfect or very weak Andreev reflection: the -
fine-tuning for perfect Andreev reflection on both sides of S 312(2-A, —Ap) (3.20
the junction corresponds to settidgg=A, =1, which, when ¢ 2 TUE ' '

substituted in Eq(3.13), yields . o .
a3-13.y Now let us consider the justification for these approxima-

evg tions. First note that
) — X Ixl<= (3.14
Ag.AL—1 G(cosy) ) )
y . iy - ~5 51— Lcosxy+O(€7)][1+0(e)],
(Ishii's sawtooth, while on the other hand, for small pairing, [92(1)+A%2]Y?
we recover the siy behavior (3.21
ev’ where, for convenience, we have defined
I(x) — ARA siny. (3.19
NI e=(2— A —AR)/v. (3.22
Thus,

It is instructive to plot Eq(3.13 in various regimes. Tak-
ing symmetric pairingA\g=A = Ag to start with, we can see ~
g sy p Pr=A =Ap e % 5(cosy)

how Ishii’'s sawtooth is rounded off progressively to a gin o —
[G%(1) +A%0E]"2

function asAg is taken from 1(perfect Andreeyto smaller
and smaller valuesi.e., for progressively more normal re-
flection at the contactsThis is illustrated in Fig. 5.

It is important to note that the expressi@®13 for the
Josephson current is valid for independent arbitrary values of _ e
the boundary pairings, and thus covers the case of asymmet- arccog—1+9)~m V2s. (3.24
ric junctions already studied, for example, in Ref. 21. In thisThus, neat x|~ = we may write
work, the shape of the current-phase relationship was still the
sawtooth function, with critical current depending on the T(cosy) . 2
asymmetry between the pairings. The sawtooth result implies ar€Co$— ~ 515 =™ V(7= [x[)*+O0(€).

. " . [G9(1) +A“vg]

that effective perfect Andreev conditions were imposed, and (3.25
thus that no normal reflection occurred at the contacts. Our '
expression for the current in a long junction thus covers aNoting that, at the maximungy , (7—|x]) = €3 we see that
wider regime than the one in Ref. 21. When plotting Eq.in this range ofy:
(3.13 for various asymmetries, the graphs look very similar
to Fig. 5. T(cosy)

The formidable looking expressid8.13 can be consid- arc 0%[@]2(1)4-521)2]1/2
erably simplified whemA| ~Ag~1. We first state the ap- F
proximations and then justify them afterwards. We can apThus our simple approximation to arccos is everywhere
proximate valid. The other corrections from expanding ygiim the nu-

=x+0(€?), (3.23

except neaty|~m where arccos becomes singular, behav-
ing as

~x[1+0(¥®]. (3.2
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merator in Eq(3.13 and the expression in the denominator Here the bosons and dual bosons are written in terms of left-

give multiplicative corrections ofO(e) or O(7—|x|)?
which is O(e*®) nearyy, .

In the case of perfect Andreev reflection at both bound-

aries, we can in fact solve for the ground-state endemnd

thus the Josephson currgrexactly for arbitrary junction

length | and filling. PuttingAg=A,=t(=1) in Eqg. (3.3

directly yields after simple algebra the allowed quasiparticl

momenta for the two sets of Andreev levels. We find

mn= x/2
=1

(3.27

and right-moving components as

$(t,X) = (t+X) + Pr(t—X),

(1) = L (t+X) = Pr(t—x). 4.3
eThe Lagrangian has conventional normalization
L=(UD[d,¢c0" Pl + (L[, ds]. (4.4

Here we follow the conventions of Ref. 14. Unfortunately,
various other bosonization conventions are frequently used.
In particular, the compactification radR. s, which depend

The ground-state energy is then again the sum of the enegy the bulk interactions, are often removed from the
gies of all occupied levels, which now becomes a simpléyssonization formulas by rescaling the bosons, resulting in

geometric progression

N

Eo=—2t Z [cosa, +cosa_ ]
n=1

sinf N/2(1— 1)Jcod mw(N+ 1)/2(1 - 1)]
t sit#2(0—1)]

xcoﬁ (|x|<m). (3.29

The Josephson current is then, for arbitrary lergimd oc-
cupation numbeN,

_ Adet si wN/2(1 —1)]cog w(N+1)/2(1 —1)]
{0=1=7 sifm/2(1—1)]

XSinL(|X|<7T).

2(1-1) (329

One can explicitly check that the largémit reproduces Eq.

(3.14.

IV. RENORMALIZATION GROUP ANALYSIS
OF THE INTERACTING CASE

an unconventional normalization of the two terms in the La-
grangian. The resulting normalization constants are some-
times calledg, .. The relationship between parametgys,
used in Refs. 6-9, the parametéts , used in Ref. 5 and
our parameters is

R2 1 1
e g, 2Ky,
In the case of S(2) symmetry,R,=1/\/27. For repulsive
bulk interactionsR,>1/\/27 and for attractive bulk interac-
tions R.<1/\27. In the case of attractive interactions, there
may be a gap for spin excitations depending on the detailed
form of the bulk interactions. This occurs, for example, for
the attractive Hubbard model. The presence of a bulk spin
gap makes very little difference to our analysis. Essentially,
we may just dropps from our formulas. We consider both
cases below.

Free boundary conditions, which occur fog=0, corre-

spond td°

(4.5

P (0)=e"""yg(0), (4.6)

where the phas® depends on the boundary scattering po-
tential Vg . Note that these boundary conditions correspond

In a standard way the bulk Hamiltonian can be approxi-to only normal reflection, and thus zero Andreev reflection,
so in this context it is appropriate to refer to them as “nor-

mated in the continuum limit, valid at low energies, by a>>~ '~ > ) )
quantum field theory, corresponding to a TomonagaMa!" BC'S. In bosonized form these BC's become
#c(0)=R:0, ¢50)=0. (4.7)

Luttinger liquid describing gapless charge and spin bosons.
The first step is to write the lattice fermion operators in terms
of left and right moving continuum fermion operators It is crucial to realize that these equations imply tifg{.
. : may be regarded as the analytic continuatiorppf s to the
Pio~e” MFYy (X) + *F Y (%), (4.1 negativex axis '
wherekg is the Fermi wave vector angl r are assumed to

vary slowly on the scale of the lattice spacifwghich is set to
1). The resulting continuum Hamiltonian is then bosonized

er(X) =~ dcL(—X)+RcH,

in terms of charge and spin bosa, s with associated ve- PRX) == ot (=X), (X=0). 4.8
locities, v s and compactification radiR. . We will nor-  In particular, this implies

mally set these velocity parameters to 1. The continuum fer- _

mion fields are written $c(0)—2¢(0)—R.0. (4.9

We now wish to consider the bosonized form of the bound-
ary scattering potentiab:Vg and boundary pairing interac-
tion, «Ag in Eq. (1.7). The scattering potential is propor-
tional to d,¢.(0). This has scaling dimension 1 and hence is
marginal. Note that boundary interactions are relevant if their
dimension isd<1 and irrelevant ifd>1. This is different

. c ~ bs P

¢RT’l~eXL{ i (2%6 - cha‘bciziRss + WRS?;ss) } 4.2
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than for bulk interactions ifl1+1) dimensions due to the potentially relevant interaction corresponds to normal scat-
fact that boundary interactions are only integrated over timetering and modified hopping near the interface. This corre-
not space. Thus a boundary scattering potential leads to sponds to adding a term
line of fixed points, characterized by a phase shift.

On the other hand, the boundary pairing interaction leads SH=Vy (0)ihr,(0)+H.c. (4.13

to the term
to the Hamiltonian obeying the Andreev BCV( may be

complex) Using the Andreev boundary condition, and let-

* _af ; ~
AgePdatrgt H.cox| Aglsin 27R:4c(0) ting 6 be the phase o/, this term reduces to

+ X]COE{ ¢s(0)/Rs]
—Agcog4mR b, (0)—2mRZ26+ x],

4.1
) (410 of dimension 1/(2rR2). This is irrelevant for attractive bulk
where the BC of Eq(4.7) was used in the last step ands  jnteractions, but relevant in the repulsive case. Thus we con-
the phase ofdg. This operator has dimensionm®R; and  clude that the Andreev BC represents an attractive fixed
hence is irrelevant for repulsive bulk interactions but rel-point with attractive bulk interactions, so that our assumption
evant for attractive bulk interactions. Thus we reach the imthat a boundary pairing interaction leads to a flow to the
portant conclusion that a weak boundary pairing interactiolndreev BC forR,< 1/y/27 is consistent. On the other hand,
Ag becomes progressively less importanfas0 in the case i the case of repulsive bulk interactions we expect an RG
of repulsive bulk interactions. This Implles that the Effectivef|ow from the Andreev fixed point to the normal fixed point.
coupling of the superconductor to the Luttinger liquiti  For the noninteracting case, both fixed points are marginal
renormalizes to 0 sincAg (t")?. and no renormalization occurs. There is a line of fixed points
In the case of attractive bulk interactioRg<1/y27 the  connecting normal and Andreev fixed points along which the
free boundary condition is an unstable fixed point. The “ob-ratio of normal to Andreev scattering varies continuously.
vious” guess is that the Hamiltonian renormalizes to aThis behavior is very analogous to the back-scattering prob-
boundary fixed point corresponding to the boundary condifem for a single impurity in a quantum wire.
tion The behavior of the Josephson current in the case of at-
tractive bulk interactions is especially interesting. From Sec.
$:(0)=—(x+72)27R,, $0)=0. (4.11) Il we see, that for the noninteracting case, the Josephson
N . ] current is a sawtooth function of amplituéer /| when the

Note that the boundary condition on the spin boson is unhoundary terms are fine-tuned to give perfect Andreev scat-

changed. This is surely a reasonable assumption since thgring at the Fermi surface. Otherwisky) is a smooth
boundary interaction does not involve the spin boson. In factnction. As shown by Masloet al.? 1(y) is also a saw-

this boundary condition is fixed by $) symmetry. On the  4oth function in the presence of bulk interactions if the An-
other hand, we are assuming that the effect of the relevanjeey BC is applied to the bosonized theory, with the ampli-
boundary sine-Gordon interaction is to pin the dual charggqe replaced b)BvF/(ZwRﬁI). The sawtooth form is a
bosong(0) corresponding to a semiclassical analysis of theuniversal property of the Andreev fixed point. This univer-
interaction at largé\g . We note that the analogous assump-sality of the O(1/) term in the ground-state energy is a
tion has been made in several other contéxfs.’ It is gen-  familiar aspect of conformal field theory. In cases where the
erally believed that only Dirichlet and Neumann fixed pointshoundary parameters are not fine-tuned to the Andreev
occur in the boundary sine-Gordon model for generic compoundary condition, but instead the Hamiltonian renormal-
pactification radius\We note thaip=const corresponds to a jzes to the Andreev fixed point we expect to recover the
Dirichlet BC and¢= const to a Neumann BC using the fact same sawtooth form df(x) in the limit | —c«. However, the
that 9/ gt=d¢lax.] In order to shed more insight on this finite size corrections will smooth ou{x) since a finitel
assumption, we discuss, in the next section, a differenguts off the RG flow of the junction parametag . We ex-
boundary model which is equivalent to this one under arPect that for large enoughwe may use the expression Eq.
exact duality transformation. In the present context this(3.18 with 1—A replaced by an effective value at scale
boundary condition corresponds to perfect Andreev reflec¥Ve may identify
tion since it follows from Eq(2.13).

The consistency of this assumption can be checked by 1-Ap=Vy, (4.19

considering the renormalization group stability of the An-\ynerev is the effective normal scattering interaction intro-
dreev BC. Note that the scaling dimension of boundary opgced in our discussion of the RG stability of the Andreev
erators are different at this fixed point where we must use fiyqaq point in Eq.(4.13. This identification is reasonable

B since it can be checked, for the noninteracting case, that the
ber(X) = oL (—X) + (x+ 7/2)27R,, normal reflection amplitude vanishes linearly in-fAg|.
Thus we expect that

SHx — |Vy[sin[ e /Rc+ 0] — V[ si2¢¢ /R,
+(x+ w2)27R2+ 6], (4.149

PsR(X) =~ s (—X)  (x>0). (4.12

In this case a further boundary pairing interaction is mar- 1—|Ager(l) | ————.
ginal, corresponding to shifting the condensate phasehe | (2mR:)—1

(4.19
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Substituting this expression into E@.18 gives an approxi- boundary magnetic fields. This is related to the previously
mate expression for the Josephson current. Ascreases, studied’ S=1/2xxz chain with a transverse boundary field.
I (x) becomes a more and more rapidly varying function neaifhese latter models are perhaps easier to understand intu-

| x|~ 7. The maximum ofl (x) occurs at itively because semiclassical approximations hold to some
extent. Furthermore there is an instructive difference be-
1 tween the Hubbard chain and pure spin chain corresponding
|XM|OC7T_|2[1/(27TT11/3 (417 to a sort of breakdown of “spin-charge separation” for
¢ strong boundary fields.
and the critical current scales withas We begin with the(semi-infinitg boundary pairing of Eq.

(1.7 with the Hubbard interaction of Eq1.9 added. We

ev.UE const then apply the well-known duality transformation which
<~ o rA| 1T eard sl (4.18  changes the sign of the Hubbard coupling constarand
e ' ¢ interchanges charge and spin operators. This is essentially a

Here the factor ofvg in Eq. (3.14 has been replaced by particle-hole transformatiofor spin up electrons only
vc/27TR2, where v, is the charge velocity; this follows . it , ,

from the normalization of the finite size spectrum at the An- U= DM = &2
dreev fixed point. The smoothing bfy) for finite size junc-  This maps the hopping term into itself and the Hubbard in-
tions due to renormalization effects is quite distinct from theteraction into ¢ 1)X itself. The chemical potential term is
finite size effects that occur in the noninteracting case, dismapped into a magnetic field in tizedirection:

cussed in Sec. lll. These are suppressed by powers|df 1/ + +

and do not smooth out the sawtooth structure iify). In ialia= 1= i 0°) apthip - (5.2

particular the maximum remains pty| = 7. Thus a nonzero chemical potential, corresponding to average

We note that our resuit for the behavior of the JosephsOR,icle numbexn;)# 1 maps into a nonzero bulk magnetic
current near the Andreev fixed point is very different fromie|q in the z direction. Note however, that the dual model
that obtained in Ref. 5 although both treatments USgas zero chemical potential so it remains at half-filling.
bosonization and RG arguments. The difference arises in paf_'bnger range density-density interactions map momag-

because we take into account the Andreev BC in calculatingeyic exchange interactions. The boundary scattering term,
the RG scaling of the normal reflection amplitude and in par maps into a modified boundary field in tizedirection.
because we take into account the singular dependence of the o boundary pairing interaction is mapped into

Josephson current on the normal reflection amplitude.
In th_e case of _repu!sive bulk interactions and almost per- HB—’AEE”L%PL H.c. (5.3
fectly fine-tuned junction parameters a flow away from the
Andreev BC occurs with increasing junction length. In this This corresponds to a boundary magnetic field lying in the
case the effective parameter-1Ag(1)| increaseswith in- Xy plane, transverse to the bulk field, of magnitude g
creasing so that the sawtooth singularity is smoothed out asand direction determined by the phaseAqf.
| increases This dual model is especially easy to analyze in the case
As mentioned above, in the case of attractive bulk interWhereU <0 so that there is a spin gap in the Hubbard model.
actions a spin gap sometimes occurs, for example, iruthe The dual model, withu>0 and half-filling has a gap for
<0 Hubbard model. This has essentially no effect on thecharge excitations. The remaining gapless spin excitations
boundary RG discussed above since the spin boson did néf€ approximately described by the Heisenberg model with
play any role. Essentially the spin boson is assumed to athe appropriate magnetic fields. To make this correspon-
ways obey the Dirichlet BC¢¢(0)=0 throughout the RG dence more precise, whe¢ |>t, the correspondence holds
flow which only affects the BC's on the charge boson. In thefor the lattice models with an effective Heisenberg exchange
case where there is a spin gafy(x) is pinned at all points  interaction t?>/U. For smallerU the correspondence still
in space; this is completely compatible with the assumptiorftolds for the low-energy degrees of freedom. Even in situa-
about the BC. tions where the original spin excitations were not gapped so
We find the flow to the Andreev BC in the attractive casethat the dual charge excitations are not gapped, we might
especially remarkable because, as explained in the previo@pect some sort of correspondence with the Heisenberg
section, in the noninteracting case perfect Andreev scatteringtodel at low energies due to spin-charge separation.
can only be achieved by fine-tuning parameters. Thus, in the The xxzS=1/2 spin model with a transverse boundary
interacting case, the RG flow must “find” the special value field (but no bulk field was analyzed in Ref. 17. There it was

of the parameters at which the normal scattering vanishes.shown that the bosonized version is the boundary sine-
Gordon model with a boundary interaction which is relevant

V. DUALITY TRANSEORMATION along the entire bullkxz critical line and it was conjectu_red
that an RG flow to the Neumann BC occurs. In the particular
In an effort to make more plausible the conjectures aboutase of thexx model this can be proven exactly using Ising
RG flows in the previous section and in order to make conmodel duality transformation’$. The semiclassical interpre-
tact with previous work on quantum impurity problems we tation of the Neumann BC in this case is that the boundary
present in this section an exact duality transformation fromspin is polarized in the direction of the boundary field. This
the lattice boundary pairing model with bulk interactions of analysis can be easily extended to include a bulk magnetic
the previous section to a lattice model with both bulk andfield in the z direction. As shown in Ref. 17, the dimension
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of the transverse boundary field istTR?> whereR is the APPENDIX: INTEGRATING OUT
compactification radius of the boson in the spin chédiro THE SUPERCONDUCTING ELECTRONS

fix our conventions, the transverse staggered correlation ex- | this appendix, we outline the steps leading to the cor-
ponent is also 2R?)) This becomes marginal for the isotro- respondence between the parameters in the interface and
pic xxx model but is relevant along the entiteero field  poundary models. Let us thus consider the interface model,
xxzcritical line. The dependence of the radius on a magnetigyhich has nonzero gap on sitgs:0. Our strategy will con-
field applied to the Heisenberg model has been calculategist in integrating these out. For simplicity, let us use the
from the Bethe ansafZ:*’ The effect is again to decrease the notationy®, for the fields on site one. Omitting all sites with
radius, hence making the transverse boundary field relevanjt>1 for ease of notation. we can write down the contribu-
Thus it is again natural to conjecture a flow to a fixed boundsjgn to the imaginary-time action coming from the gapped

ary spin polarized in the direction of the boundary field. 5jje and its coupling to the boundary fields:
Thus, flow to the Andreev BC in the boundary pairing model

is dual to flow to a fixed spin BC in the boundary field 1
model. +_ T ;

This analysis can be extended to more general modelsS B % [(jso Yiglwlllo=pldjo(w)
with longer range bulk interactions. In particular, we may
consider cases in which the spin excitations are not gapped gt _ + T
in the original model so that charge excitations are not Tt (@)ol0)+ A5 (@) g (- w) +H.cl
gapped in the dual model. Again it seems plausible that even
a weak transverse boundary field produces a flow to a polar- _[_tnl/j? () Pou( @) + H_C_]J_ (A1)
ized spin boundary fixed point. However, we now encounter 7 7
another interesting phenomenon. If the boundary field is too
strong it suppresses this RG flow. This can be seen from theourier transforming asy;,= (2/m) [ gdk sink(j—1),(K)
fact that, in the limit of a very strong transverse boundary(for j<0) and using the Bogoliubov transformation
field, one electron gets trapped on the first site with probabil-

ity 1 in a state with spin polarized along the transverse field (k) uk) —ov*(K) 7+ (w,K)
direction. Since the hopping term adds or removes an elec- ( T ):< . ( + )
tron from site 1 it produces a high-energy state, with energy Y1 (- k) v(k) u*(k) 7-(= k)

of order the boundary fielfAg|. All such processes are sup- (A2)

pressed fofAg|>t meaning that the first site decouples from where
all the others which therefore obey a free BC. Thus, in the
finite U model the spin-polarized Neumann BC should not be ,
thought of as occurring at infinite boundary field, but rather e o e(k) 1 (k)
at a finite value. On the other hand, in the Heisenberg model ~ 4(K)= 2 1t E(k)’ v(k)= 2 1= E(k)’
we may indeed think of the spin polarized fixed point as (A3)
occurring at infinite boundary field since the magnetic ex-
change interaction is not suppressed by the strong field. Thusnd e(k) = — 2t’ cosk—u and E(k) = e?(k) +[A[?, we ar-
we see that the limiy -~ and|Ag|—o do not commute. rive at the form

The above observation provides another way of under-

standing the perhaps surprising discovery in the previous 1 2
sections that the Andreev fixed point does not occurat st==> —f dk{ 7! (w,k)[io+E(K)]7,(w,k)
boundary pairing strength but rather at a fine-tuned finite B oy ™o
value. In this model at very stronlyg we may think of a sort ot * B % Bt
of Andreev bound state occurring on the first site corre- XU (@ 0L () g (@) o™ (K) gy
sponding to a linear combination of the vacuum and filled ><(—w)]sink—t”ni(w,k)[u*(k) llfi(w)
state:
_ +0* (K95, (= w)]sink+H.c]}. (A4)
|0y +eX[1,1). (5.4

Since the hopping term always turns this Andreev boundntegra\ting out they fields finally gives the boundary action

state into a state with a single electron at site 1 it produces a

high-energy state and its effects are therefore suppressed 1 . B B
when |Ag|>t. In the original SN interface model we may =3 % {liwci(w)~ca(@)191, (@) ¢1,(w)
think of the Andreev bound state as blocking electron trans-
port across the interface and hence suppressing Andreev +[cy(@)AyT, () yF T(—w)+H.cl}, (A5)
scattering.
where the coefficients;(w), appearing respectively in front
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16t'%"2 Ag=Ac;(w—0), Vg=V—-Cy(w—0). (A8)

— -4
CZ((’)) \/m ImM ,LLCl((!)) (A6)
in which Taking the limit explicitly reproduces Eq92.19. The
frequency-dependent terms are suppressed by powers of
— ] _ o1 ) 2 / 2 2 o/|A| and have thus been ignored at energies well below the
M_\/ 20+ ptiNo™ 4| +\/2t TuriNe +|A(|A'7) gap. Furthermore, in the presence of interactions, we expect
the above procedure to work as well, namely that the final
The desired correspondence between the interface ardsult is simply some effective boundary pairing and scatter-
boundary parameters thus takes the fdgwhen w—0) ing potentials.
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