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Andreev scattering and Josephson current in a one-dimensional electron liquid
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Andreev scattering and the Josephson current through a one-dimensional interacting electron liquid sand-
wiched between two superconductors are reexamined. We first present some apparently new results on the
noninteracting case by studying an exactly solvable tight-binding model rather than the usual continuum
model. We show that perfect Andreev scattering~i.e., zero normal scattering! at the Fermi energy can only be
achieved by fine-tuning junction parameters, a fine-tuning which is possible even with bandwidth mismatch
between superconductor and normal metal. We also obtain exact results for the Josephson current, which is
generally a smooth function of the superconducting phase difference except when the junction parameters are
adjusted to give perfect Andreev scattering, in which case it becomes a sawtooth function. We then observe
that, even when interactions are included, all low-energy properties of a junction (E!D, the superconducting
gap! can be obtained by ‘‘integrating out’’ the superconducting electrons to obtain an effective Hamiltonian
describing the metallic electrons only with a boundary pairing interaction. This boundary model provides a
suitable starting point for bosonization-renormalization group-boundary conformal field theory analysis. We
argue that total normal reflection and total Andreev reflection correspond to two fixed points of the boundary
renormalization group. For repulsive bulk interactions the Andreev fixed point is unstable and the normal one
stable. However, the reverse is true for attractive interactions. This implies that a generic junction Hamiltonian
~without fine-tuned junction parameters! will renormalize to the normal fixed point for repulsive interations but
to the Andreev one for attractive interations. An exact mapping of our tight-binding model to the Hubbard
model with a transverse magnetic field is used to help understand this behavior. We calculate the critical
exponents, which are different at these two different fixed points.
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I. INTRODUCTION

One of the fascinating consequences of superconduct
is the phenomenon of Andreev scattering at a normal-me
superconductor (NS) junction. This corresponds to an in
coming electron from the normal side being reflected back
a hole, thereby producing an additional Cooper pair in
superconductor condensate. Both normal and Andreev
flections are expected to occur in a realisticNS junction, in
addition to quasiparticle transmission into the superc
ductor. If the gap is large enough, the latter’s propagatio
suppressed and squared reflection amplitudes add up to
through probability current conservation. Building up on A
dreev reflection, one arrives at the related phenomenon o
Josephson current, in which the normal region of
superconductor–normal-metal–superconductor (SNS) junc-
tions carries a supercurrent driven by the gap phase di
ence between left and right superconductors.

While the original work in this field1–4 treated the norma
metal within the Fermi liquid framework~i.e., essentially
ignored interactions!, the effect of interactions for the case
a one-dimensional metal between two superconductors
been treated recently by several groups5–8 using bosonization
and renormalization group methods. The methods and c
clusions of these works are closely related to previous w
on tunneling through a single impurity in a quantum wire9
PRB 620163-1829/2000/62~2!/1433~13!/$15.00
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We have chosen to reexamine this subject in both non
teracting and interacting cases because we feel that prev
treatments have missed some interesting physics. In par
lar, most of the standard work on the noninteracting case
essentially ignored band structure effects, using a free e
tron model with a pairing potential that varies abrup
across the junction, together with a scattering potential at
interface. A more recent paper10 considers the case where th
Fermi velocity is different on theS andN side. The conclu-
sion of this work is that, at the Fermi energy, there is perf
Andreev reflection~and therefore 0 normal reflection! when
the scattering potential and velocity mismatch are abs
Both of these effects serve to increase the normal scatte
amplitude in an additive way. We arrive at qualitatively d
ferent conclusions by explicitly including band structure
the form of an exactly solvable one-dimensional tigh
binding model. Related work using a tight-binding mod
appeared earlier.11 It considered one-dimensional SSS jun
tions and SS junctions~where the length of the interface i
much less than the superconducting coherence length!. Here
we consider long SNS junctions. Before adding interactio
the Hamilltonian is

H2mN5(
j

@~2t j , j 11c j s
† c j 11s1D jc j↑

† c j↓
† 1H.c.!

1~Vj2m!c j s
† c j s#. ~1.1!
1433 ©2000 The American Physical Society
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1434 PRB 62AFFLECK, CAUX, AND ZAGOSKIN
The chemical potential,m, is assumed to lie within the ban
on the normal sideumu,2t and H.c. stands for Hermitian
conjugate. Here the interface is chosen to lie between sit
and 1 with the superconductor on the negativex axis and the
normal metal on the positivex axis so that

t j , j 115H t j .0,

t9 j 50,

t8 j ,0,

Vj5Vd j 1 ,

D j5H D j <0,

0 j .0.
~1.2!

D j represents the pairing interaction which exists on the
perconducting side (j <0) only. For simplicity we consider
both normal and superconducting sides to be one dim
sional, but see below. The notion of a ‘‘perfect junction
becomes less clear in such a model. In the particle-hole s
metric casem5V50, we find that there is always som
normal scattering at the Fermi energy unless the interf
tunneling parametert9 is fine-tuned to a particular value. I
the limit uDu!t,t8, this particular value becomes

t95Att8. ~1.3!

For general values of the chemical potential we find that b
t9 and the normal scattering intensityV must be fine-tuned in
order to achieve perfect Andreev reflection. For example
the particle-hole symmetric case it is possible to get per
Andreev reflection even with Fermi velocity mismatcht
Þt8) provided thatt9 is adjusted to the right value. It i
worth emphasizing that the case of infinite interface tunn
ing t9@t,t8 does notcorrespond to perfect Andreev refle
tion as one might naively suppose, but instead to zero
dreev reflection. The physical reason is that, in this limit, t
electrons get trapped at the interface on sites 0 and 1, e
tively decoupling all sites withj ,0 from all sites with j
.1. In this limit the normal side does not ‘‘feel’’ the pairin
and hence exhibits no Andreev reflection.

We are not aware of any previous explicit calculation
the Josephson current for such an interface model in the
of a long SNS junction, which we perform here. We consid
two, possibly different, interfaces separated by a distanc
l lattice sites with the pairing potentials having a phase
ferencex. The ~zero temperature! Josephson current is de
fined from the derivative of the ground-state energy w
respect to the phase difference

I ~x!52e
d

dx
E0 . ~1.4!

While the ground-state energy is obtained by summing o
all states below the Fermi surface, we show explicitly that
derivative with respect tox only depends on quantities de
fined at the Fermi surface, being insensitive to the detail
the band structure. When the junction parameters are fi
tuned to give perfect Andreev reflection we find that t
Josephson current is a sawtooth function ofx:
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I ~x!→ ev f

p l
x ~mod 2p!, ~1.5!

with steps of size 2ev f / l occurring atx5(2n11)p. For
any other choice of junction parameters the Josephson
rent is a smooth function ofx. For example, in the limit of a
weak junction,t9!t,t8, we find

I ~x!}~ t9!4sinx. ~1.6!

While these formulas are well-known results, our method
fact allows us to calculate exactly the zero-temperature
sephson current in the general case of arbitrary amount
normal versus Andreev reflection, independently at e
boundary. The full crossover between the above two limits
thus described.

One approach which we shall make much use of in t
paper is that of an effective field theory, whereby the sup
conducting side is replaced by a particular boundary con
bution on the normal side. There are several reasons why
convenient to ‘‘integrate out’’ the electrons on the superco
ducting side of the junction in such a way as to obtain
effective Hamiltonian for the electrons on the normal sid
This is a very natural thing to do considering the fact that
superconducting electrons have a gap in their spectrum: if
consider physics at energy scales small compared to the
we expect to obtain a simple effective action without a
retarded interactions.~This may break down for non-s-wave
pairing where the gap vanishes in certain directions; we
not consider that case here.! The resulting effective Hamil-
tonian ~for a single junction! is

H2mN52t(
j >1

@~c j s
† c j 11s1H.c.!2mc j s

† c j s#

1@DBc1,↑
† c1,↓

† 1H.c.#1VBc1s
† c1s . ~1.7!

The effective boundary pairing interactionDB and effective
boundary scattering potentialVB depend on all the param
eters of the superconductor and the junctiont8, D, t9, V.
Beginning from our interface model of Eq.~1.1! we deter-
mine explicitly the parametersDB and VB of the boundary
model and check that low-energy properties are faithfu
reproduced. Of course, we again find with the boundary p
ing model that perfect Andreev reflection only occurs if t
boundary parameters are fine-tuned. In particular, for
particle-hole symmetric casem5VB50, the condition is

uDBu5t. ~1.8!

Note that it isnot DB→` as one might naively suppose.
One advantage of the boundary model is that it sho

arise from much more general, and more realistic, interf
models. While the simple form of Eq.~1.1!, quadratic in
fermion operators, is the result of a mean field approximat
to a more realistic model with pairing or electron-phon
interactions on the superconducting side, we expect that
effective Hamiltonian of Eq.~1.7! will still be valid at ener-
gies small compared to the gap when the interactions on
superconducting side are treated more accurately. Furt
more, it is more or less obvious that the same effect
Hamiltonian arises when the one-dimensional normal m
is coupled to a three-dimensional superconductor. This is
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important generalization since superconductivity is not
lieved to occur in a strictly one-dimensional system.

More generally we wish to add interactions to our Ham
tonian on the normal side which we assume to be one dim
sional. A simple choice would be an on-site~Hubbard! inter-
action for all sitesj >1:

H→H1H int ,

H int5
U

2 (
j >1

~nj21!2, ~1.9!

wherenj is the total electron number operator at sitej. We
could also consider longer range density-density interactio
We will be interested in the case of both repulsive and
tractive bulk interactions; the latter may arise in a lo
energy effective theory from phonon exchange. The nega
U Hubbard model has a gap for spin excitations which c
be eliminated by considering longer range interactions.
will discuss both cases with zero and nonzero spin g
These interactions can be treated essentially exactly, at
energies, using bosonization, renormalization group,
conformal field theory techniques. It is a major purpose
this paper to discuss how to generalize these technique
the interface model. We argue that this is best done by i
grating out the superconducting electrons to obtain
boundary model of Eq.~1.7! with the bulk interactions,H int
added.~More generally, we might also obtain additional i
teractions at the boundary. These can be treated in the s
framework.! Indeed, this approach seems to be more or l
forced upon us by the renormalization group philosophy
integrating out high-energy modes to obtain an effect
low-energy Hamiltonian. Having performed the initial ste
of integrating out the gapped degrees of freedom on the
perconducting side we may then proceed to analyze the
fective Hamiltonian with bulk and boundary terms usi
general methods developed to deal with quantum impu
problems.12 Of course, our results will only be valid at ene
giesE!D.

The boundary renormalization group approach leads
the conclusion that the boundary interactions will renorm
ize to a fixed point corresponding to a conformally invaria
boundary condition. It appears likely that there are only t
such boundary conditions that occur in this problem, in
particle-hole symmetric case (m5V5VB50) corresponding
to a free boundary condition~BC!, DB50 which preserves
electron number and therefore has no Andreev reflection
to an ‘‘Andreev boundary condition’’ for which there is pe
fect Andreev reflection. Which of these boundary conditio
is stable under renormalization group transformations
pends on the sign of the bulk interactionsU. We find that the
free BC is stable for repulsive bulk interactions but the A
dreev BC is stable for attractive bulk interactions (U,0).
We calculate the various critical exponents associated w
these critical points. It is important to realize that critic
exponents are characteristic of a particular fixed point
are different at the free and Andreev fixed points. Thus,
instance with repulsive bulk interactions, if we started w
bare interface parameters that put the interface close to
Andreev fixed point then the exponents characterizing
initial flow away from the Andreev fixed point at high tem
-
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perature are different than the exponents characterizing
flow towards the free fixed point at low temperature. Ho
ever, it should be emphasized that for a generic choice
bare interface parameters the Hamiltonian will not be n
the Andreev fixed point; this requires fine-tuning. The situ
tion is similar in the nonparticle-hole symmetric case exc
we now get lines of fixed points with either 0 or perfe
Andreev reflection.

Andreev reflection~equivalently Cooper pair tunneling! at
the interface between a superconductor and a chiral, s
polarized Luttinger liquid was considered in the context
quantum Hall edge states by Fisher.13 The first work that we
are aware of on Andreev scattering in nonchiral, non-sp
polarized Tomonaga-Luttinger liquids5 attempted to apply
boundary RG techniques without explicitly integrating o
the superconducting side and without taking into account
effect of the BC’s on the exponents. This led to incorre
predictions for the exponent governing the Josephson
rent. The authors of Ref. 6 used a method closely relate
ours but applied it to a different geometry: a closed norm
ring in contact with superconductors at two points. Taka7

corrected some of the earlier results in Ref. 5 for the ex
nent governing the Josephson current using methods es
tially equivalent to ours but without explicitly invoking th
concept of integrating out the superconducting side. We
tend Takane’s result by introducing the conceptually imp
tant and very useful notion of integrating out the superc
ducting electrons thus making clear the relationship betw
the interface problem, other quantum impurity problems a
boundary conformal field theory. This facilitates a more ge
eral discussion of the universal critical behavior. In particu
we discuss the behavior of the Josephson current in the
cinity of the Andreev fixed point, obtaining quite differen
results than those in Ref. 5, and discussing how the fu
tional dependence of the current on the superconduc
phase difference crosses over between sawtooth and sm
forms.

Given the difficulty of achieving perfect Andreev scatte
ing in the noninteracting case our conclusion is quite rema
able that, with attractive bulk interactions, a generic interfa
will renormalize to perfect Andreev scattering asT→0. It
must be admitted that this conclusion is based on an
proven but widely made assumption about RG flows a
fixed points in the boundary sine-Gordon model which ari
here after bosonization. In order to make some of our rat
unintuitive results seem more plausible we discuss an e
mapping of our boundary pairing model~in the particle-hole
symmetric case! into a Hubbard model with a bulk magnet
field and a transverse boundary magnetic field. In the tra
formed model the Andreev boundary condition correspo
to one in which the boundary electron has a frozen transv
spin polarization.

In the next section we give the solution of the interfa
and boundary models and discuss their equivalence, in
case of zero bulk interactions. Most of the details of t
equivalence are relegated to an appendix. In Sec. III we c
sider anS1NS2 system and calculate the Josephson curre
In Sec. IV we include bulk interactions in the bounda
model and determine phase diagrams and critical expone
In Sec. V we discuss the exact mapping onto the Hubb
model with bulk and boundary magnetic fields.
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II. THE LATTICE INTERFACE
AND BOUNDARY MODELS

In this section, we consider various lattice models of n
mal metal-superconductor contacts in the case of zero
interactions. The generic Hamiltonian for all of these will
Eq. ~1.1!, with various geometries, sets of hopping strengt
and potentials specified along the way. The calculation p
cedure is similar to the usual one used in dealing with c
tinuum models: the wave functions are found for each sec
and the matching conditions at the contacts yield consiste
equations from which the various reflection-transmission
efficients are obtained.

We start by performing the Bogoliubov–de Gennes tra
formation

c j s5(
a

@ua jgas2sva j* ga2s
† #, ~2.1!

where the quasiparticle operators satisfy$gas ,ga8s8
† %

5daa8dss8 , s561 is a spin index, anda is a ~real! quasi-
momentum index. We obtain,2 by requiring the Hamiltonian
to be diagonal (H5E01(aeagas

† gas) the following lattice
Bogoliubov–de Gennes equations:

eaua j52t j j 21ua j 212t j j 11ua j 111~Vj2m!ua j1D jva j ,

eava j5t j j 21va j 211t j j 11va j 112~Vj2m!va j1D j* ua j .

~2.2!
The solutions of these equations in two particular geomet
are presented below. The emphasis is put on the calcula
of the Andreev reflection coefficient and on the low-ener
properties of the system.

A. The lattice interface model

As a simple toy model for aNS interface, we consider the
geometry depicted in Fig. 1. This tight-binding model is o
of free electrons in which a nonvanishing superconduct
order parameter has been induced by an unspecified me
nism on the left-hand sites of the lattice only. Although it
a straightforward lattice version of the ubiquitous continuu
one-dimensional models used in Ref. 4 and numerous su
quent work, let us underline that our model includes so
additional features, namely, different bandwidthst,t8 on the
normal and superconducting sides, and an arbitrary coup
t9 together with a local scattering potentialV at the interface.

FIG. 1. The interface model. Dots represent lattice sites, lab
by integers. On the left is the superconductor, with gapD and
bandwidth t8. It is coupled to a normal metal with bandwidtht
through a junction of strengtht9, with a local potentialV to tune the
normal scattering rate at the contact.
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In other words, our lattice interface model is defined by t
BdG equations~2.2! with the choice of parameters in Eq
~1.2!.

The calculation of the normal and Andreev reflection c
efficients in the lattice interface model is nothing but an e
ercise in elementary quantum mechanics. Namely, it is p
formed by choosing an appropriate ansatz for the w
functions, after which solving for the matching conditions
the eigenstates at the interface yields all the desired infor
tion.

Let us implement this procedure by taking a simple tra
elling wave solution to the Bogoliubov–de Gennes equati
~2.2!:

ua j5H e2 ia j1RNeia j , j >1,

TNe2 ib j1~21! jTN8 e2 id j , j <0,

va j5H ~21! jRAeig j , j >1,

TAe2 ib j1~21! jTA8e2 id j , j <0.
~2.3!

In the above equation, the quasimomentab andd will turn
out to be complex for the region of parameters we will
concentrating on, namely at energies below the superc
ducting gap. This means that the wave function amplitu
ua j andva j are exponentially decaying on the left-hand sid

The rest of the procedure is then a simple matter of s
stituting Eq.~2.3! in Eq. ~2.2! and carrying out the necessa
algebra. The energy is

ea522t cosa2m, ~2.4!

while the other parameters in Eq.~2.3! are given by

cosg5cosa1m/t,

2t8cosb5A~2t cosa1m!22uDu22m,

2t8cosd5A~2t cosa1m!22uDu21m. ~2.5!

Although all reflection and transmission coefficients c
be calculated explicitly, a simpler form for these expressio
is obtained if we are interested primarily in the scattering
particles whose energy is very small compared to the su
conducting energy gap. Thee→0 limit gives

cosa52cosg52
m

2t
, sina5sing5A12m2/4t2,

cosb52~cosd!* 52 i uDu/2t82m/2t8,

sinb5~sind!* 5A12~ i uDu1m!2/4t82, ~2.6!

and allows us to write the following expression for the A
dreev reflection coefficient:

d

RAue505 ie2 ix
tt92

t8

A12m2/4t2@2uDu/t81sinb1sind#

t22m2/41@V2m/22~ t92/t8!eib#@V2m/21~ t92/t8!eid#
. ~2.7!
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In the above,x is the phase of the order parameterD
5uDueix. Note that the reflection coefficients moreover ob
the sum ruleuRAu21uRNu251 at half-filling, in view of the
conservation of the currentt j j 11@ua j 11* ua j2va j 11* va j

2c.c.#.
This low-energy Andreev reflection coefficient, as a fun

tion of the bandwidthst,t8 and of the strength of the pairin
D, as well as of the tunneling strengtht9 and local scattering
potential V, obeys some simple but interesting properti
Imagining for example a generic experimental setup
which variations int9 andV can be implemented, we can as
how RAue50 behaves. A simple variation yields that the o
timal amplitude is achieved for

Vmax5
m

2
1

t92

2t8
~eib1c.c.!. ~2.8!

~Here c.c. denotes complex conjugate.! Subsequently tuning
t9 yields a maximum at

t9max
2 52tt8

A12m2/4t2

2uDu/t81~sinb1c.c.!
. ~2.9!

In the limit uDu!t,t8, these conditions become

V5
m

2
F12

t92

t82G , t925tt8A 12m2/4t2

12m2/4t82 . ~2.10!

It can be easily shown that these are the same condit
necessary forperfect tranmissionat e50 in the case of a
normal interface~D50!. In the particle-hole symmetric cas
Eq. ~2.9! simplifies to

t9max
2 5tt8FA11

uDu2

4t82
1

uDu

2t8
G . ~2.11!

Tuning the parameters in such a way, we find perfect A
dreev reflection, i.e.,

RAue50,Vmax,t
max9 5 ie2 ix. ~2.12!

In terms of left and right movers in the continuum limit o
Eq. ~2.3!, defined in Sec. IV, this corresponds to

CR↑~0!52 ieixCL↓
† ~0!, CR↓~0!5 ieixCL↑

† ~0!,
~2.13!

which are simply the perfect Andreev conditions usually i
posed.

Thus, pure Andreev boundary conditions are obtainabl
the lattice interface model by simply tuning two paramet
in the general non-particle-hole symmetric case. For
particle-hole symmetric case, it is enough to tune one par
eter.

B. The lattice boundary model

At energies below the superconducting gap, all wa
functions incident on theNS interface from the normal side
are eventually reflected back through either normal or A
dreev reflection processes. The vanishing of the transmis
coefficients opens the door to the formulation of a differe
approach than that adopted in the interface model, nam
y
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one in which we consider a system with a boundary obtai
by ‘‘integrating out’’ the superconducting side, yielding a
effective pairing potential localized at the original contact.
all generality, we will also consider a potential present at
boundary.

What we could call the lattice boundary model can
directly defined through the BdG equations~2.2!, but our
system~illustrated in Fig. 2! is now taken to live on the axis
of positive integers, with a boundary atj 50 having on-site
pairing DB and potentialVB on the first site. The hopping
strength is taken to bet between all sites. For the momen
we will perform all the relevant calculations from scratc
deferring the explicit connection with the previous interfa
model until later.

In the same way as for the interface model, we can c
culate the normal and Andreev reflection coefficients
simple quantum mechanics. Of primary interest is the A
dreev one, which is readily obtained by using the ansatz

ua j5e2 ia j1RNeia j , va j5~21! jRAeig j ~2.14!

in the lattice BdG equations~2.2! in the geometry just de-
scribed. We find againea522t cosa2m with cosg
5cosa1m/t, together with

RA52i
DB* t sina

uDBu21~ te2 ia1VB!~2te2 ig1VB!
~2.15!

which, at zero energy, becomes

RAue5052i
DB* tA12m2/4t2

uDBu21VB~VB2m!1t2
. ~2.16!

The modulus of this coefficient is plotted in Fig. 3
half-filling, as a function of the boundary pairingDB and

FIG. 2. The boundary model. The superconductor has been
placed by effective boundary potentialsDB andVB .

FIG. 3. uRAu for the boundary model at half-filling, plotted ove
the range 0<uDBu/t<5 and23<VB /t<3.
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1438 PRB 62AFFLECK, CAUX, AND ZAGOSKIN
boundary scattering potentialVB . The maximal amplitude
has unit modulus, and such a maximum occurs for a
choice of filling in view of a similar optimization property t
the one in the interface model. Namely, tuningVB and DB
yields a maximum amplitude at

VBmax5m/2, uDBumax5tA12m2/4t2, ~2.17!

and this once again produces the perfect Andreev condi

RAue50,VBmax,DBmax
5 ie2 ix. ~2.18!

Figure 4 shows the influence of a progressively stron
boundary scattering potentialVB on the Andreev reflection
coefficient at half-filling, plotted against the boundary pa
ing strength.

The equivalence of formulas~2.7! and ~2.16! for the ef-
fective low-energy Andreev reflection coefficients com
from the fact that, as mentioned before, the lattice bound
model is obtainable by integrating out the gapped side of
interface model. This procedure is outlined in the Append
in which the explicit relationship between interface a
boundary pairings and potentials is derived. At low energ
this correspondence reads

DB5
t92

2t8
F2

uDu

t8
1sinb1sindG ,

VB5V1
t92

2t8
Fm

t8
2 i sinb1 i sindG . ~2.19!

In the particle-hole symmetric case, this means that

DB5eix
t92

t8
@A11uDu2/4t822uDu/2t8#. ~2.20!

The interesting aspect of this formula comes from its
havior in various limits. Contrary to simple intuition, a larg
bulk pairing uDu@t8 on the superconducting side induces
small boundary pairingDB , according to the limit

DB →
uDu@t8

eix
t92

uDu
, ~2.21!

whereas a smalluDu!t8 yields a boundary pairing whos
amplitude depends on the hopping parameters exclusive

FIG. 4. uRAu plotted againstuDBu/t for VB /t50, 1, 2, and 4~top
to bottom!. Here we have setm50.
y

n

r

-

s
ry
e
,

s,

-

:

DB →
uDu!t8

eix
t92

t8
. ~2.22!

It is important to note that these formulas hold fore!uDu, so
one should not be surprised that a small bulk pairing s
produces a significant boundary pairing, with a finite amo
of Andreev reflection. The limits of zero energy and ze
pairing do not commute.

The above formulas allow one to move freely betwe
interface and boundary formulations of theNS problem, as
long as the low-energy sector of the theory is consider
They will be used in the next section, which is devoted to
calculation of the Josephson current in aSNSjunction.

III. JOSEPHSON CURRENT

From the considerations of the earlier sections, we
that the problem of anS1NS2 superconducting junction ca
be investigated within a double boundary framework, p
vided we are interested only in energies much smaller t
the gaps on either side. We consider onlym5VB50 in this
section. If we imagine integrating out both the left and rig
superconductors, we obtain a lattice model with two bou
ary pairings, which we dub the boundary junction mod
Namely, we take this to be the model of free electrons in
bulk, with pairingsDR andDL at the right and left ends. It is
important to realize thatDR,L areboundarypairings, whose
influence on the reflection coefficients has been explaine
detail in the previous section. One should be careful no
confuse them with bulk pairings, which have an altogeth
different effect@the two are related, of course, by the rel
tionship ~2.19!#. We thus define the system on site
1, . . . ,l 21 and take

D1[DL , D l 21[DReix, ~3.1!

with DR,LPR ~that is, we have put all the superconductin
phase difference on the right pairing!.

Solving the lattice BdG equations by using the ansatz

ua j5Aasina j 1Bacosa j ,

va j5~21! j~Casina j 1Dacosa j ! ~3.2!

with e522t cosa yields after a certain amount of algeb
the condition for the allowed quasiparticle momentaa ~we
have chosenl to be odd!. We find~for convenience, we have
set t51 in what follows!

05sin2a l 12DRDLcosxsin2a2~DR
21DL

2!sin2a~ l 21!

1DR
2DL

2sin2a~ l 22!. ~3.3!

Using a generalization of the approach used in Ref. 13
treat the problem of free electrons on a tight-binding ch
with a boundary scattering potential, we can convenien
find the closed form solution. First of all, let us write th
allowed momenta in terms of energy-dependent phase s
d6 as

an65
pn

l
1

dn6

l
, ~3.4!
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where6 refers to the two independent sets of Andreev le
els, labeled by the integern. Substituting this into Eq.~3.3!
yields

f 1cos 2d1 f 2sin 2d5 f 3 ,

f 1512~DR
21DL

2!cos 2a1DR
2DL

2cos 4a,

f 252~DR
21DL

2!sin 2a1DR
2DL

2sin 4a,

f 35~12DR
2 !~12DL

2!14DRDLsin2a cosx. ~3.5!

Noting that f 3
2< f 1

21 f 2
2 throughout the parameter space

lows us to write this as
d

he
n
ffe
a
ra
is

al
if
at
-
he

th
ly

la
n

- cos~2d2g!5cosh, ~3.6!

where the functionsg andh are defined by

cosg5
f 1

Af 1
21 f 2

2
, cosh5

f 3

Af 1
21 f 2

2
. ~3.7!

Studying carefully the various functions along paths in t
parameter space yields a consistent choice of branches
the inverse trigonometric functions. This leads to the fin
answer for the phase shifts, which we write as

d65~g6h!/2, ~3.8!

where
g55
22p2g̃, a,ã,

g̃, ã,a,p2ã, g̃5sgn~a2p/2!arccos
f 1

Af 1
21 f 2

2
,

2p2g̃, ã,a,

ã5 1
2 Re$arccos12 ~DR

221DL
22!%, h5arccos

f 3

Af 1
21 f 2

2
, ~3.9!
/
ce.
-
n-

-
of

to
imit
e.,
c-

iven

i’s

n
rmi
and all arccos functions have their image in@0,p#. The phase
shifts are analytic except at the bottom and top of the ban
the perfect Andreev points, whereg suffers a branch jump.

Knowing the phase shifts allows us to compute all t
energy levels, and understand their behavior as a functio
the boundary pairings and the superconducting phase di
encex. One recovers the usual picture wherein the levels
separated by finite gaps on an energy versus phase diag
except at the perfect Andreev points, where the gaps van

The reason why it is so convenient to solve for the
lowed quasiparticle momenta in terms of these phase sh
is that this procedure allows us to write the ground-st
energy straightforwardly in a 1/l expansion. Again, the deri
vation is very similar to the one in Ref. 15, and we refer t
reader there for the missing details.

The ground-state energy can be written as the sum of
individual energies of the occupied Andreev levels. Name

E05 (
n51

N

(
6

e@an6#. ~3.10!

In the limit of largel, we can use a Euler-MacLaurin formu
to transform this sum into an integral. Subsequently expa
ing to order 1/l , we get

E052l E
0

kFdk

p
e~k!1

1

pEe0

e f
de@d1~e!1d2~e!#

1
pvF

l F1

2 S d1~kF!

p D 2

1
1

2 S d2~kF!

p D 2

2
1

12G ,
~3.11!
at

of
r-

re
m,
h.
-
ts,
e

e
,

d-

where kF5p(N11/2)/l , eF5e(kF), e05e(0)522,
vF5e8(kF). The crucial thing to notice here is that the 1l
terms are functions of data exclusively at the Fermi surfa
While the 1

12 term is well known to correspond to the finite
size contribution from open boundary conditions for a co
formal field theory with central chargec52 similar to the
present one~each spinful chiral fermion carries a unit con
formal charge!, the other terms depending on the squares
the phase shifts atkF give the change inE0 coming from the
effect of the boundary pairings. TheO( l 0) term, given by
Fumi’s theorem, depends, however, ond across the whole
filled part of the band.

This expression for the ground-state energy allows us
write the Josephson current at zero temperature in the l
of largel, in the presence of arbitrary boundary pairings, i.
with an arbitrary amount of normal versus Andreev refle
tion on either edge. Namely, the Josephson current is g
by

I ~x!52e
d

dx
E0 . ~3.12!

Upon calculating this derivative, one easily sees that Fum
theoremO( l 0) term does not contribute toI (x), since the
sum of the phase shifts is independent ofx for any energy
@in Eq. ~3.8!, only h depends onx#. Thus, the Josephso
current is controlled exclusively by parameters at the Fe
surface, and is given by the general expression

I ~x!5
evF

2

p l
DRDL

sinx arccos@ g̃~cosx!/@ g̃2~1!1D̃2vF
2 #1/2#

A4DRDLsin2~x/2!g̃@cos2~x/2!#1D̃2
,

~3.13!
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where we have defined

g̃~y![~12DR
2 !~12DL

2!1DRDLvF
2y,

D̃[~DR2DL!~11DRDL!.

This function reproduces the well-known behaviors in t
limiting cases of perfect or very weak Andreev reflection: t
fine-tuning for perfect Andreev reflection on both sides
the junction corresponds to settingDR5DL51, which, when
substituted in Eq.~3.13!, yields

I ~x! →
DR ,DL→1

evF

p l x, uxu,p ~3.14!

~Ishii’s sawtooth!, while on the other hand, for small pairing
we recover the sinx behavior

I ~x! →
DR ,DL!1

evF
3

p l DRDLsinx. ~3.15!

It is instructive to plot Eq.~3.13! in various regimes. Tak-
ing symmetric pairingDR5DL5DB to start with, we can see
how Ishii’s sawtooth is rounded off progressively to a sinx
function asDB is taken from 1~perfect Andreev! to smaller
and smaller values~i.e., for progressively more normal re
flection at the contacts!. This is illustrated in Fig. 5.

It is important to note that the expression~3.13! for the
Josephson current is valid for independent arbitrary value
the boundary pairings, and thus covers the case of asym
ric junctions already studied, for example, in Ref. 21. In t
work, the shape of the current-phase relationship was still
sawtooth function, with critical current depending on t
asymmetry between the pairings. The sawtooth result imp
that effective perfect Andreev conditions were imposed, a
thus that no normal reflection occurred at the contacts.
expression for the current in a long junction thus cover
wider regime than the one in Ref. 21. When plotting E
~3.13! for various asymmetries, the graphs look very simi
to Fig. 5.

The formidable looking expression~3.13! can be consid-
erably simplified whenDL'DR'1. We first state the ap
proximations and then justify them afterwards. We can
proximate

FIG. 5. Josephson current in the symmetric junction as a fu
tion of x, in units of e/p l . The five plots are, respectively, fo
uDBu/t51, 0.9, 0.8, 0.6, and 0.3.
f
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arccosF g̃~cosx!

@ g̃2~1!1D̃2vF
2 #1/2G'x. ~3.16!

We may Taylor expand thex dependence of the other facto
nearuxu'p since they give essentially a constant elsewhe
Thus

g̃S cos2
x

2D'4~12DR!~12DL!1
vF

2~p2uxu!2

4
,

~3.17!

giving

I ~x!'
evF

p l
x

p2uxu

A~p2uxu!214~22DR2DL!2/vF
2

, uxu,p.

~3.18!

Note that the last factor vanishes atuxu→p but approaches 1
for p2uxu@u22DR2DLu. For smallu22DR2DLu we find
that the maximum current occurs at

p2uxMu'p1/3F2~22DL2DR!

vF
G2/3

~3.19!

and has a value

I c5
evF

l H 12
3

2 F2~22DL2DR!

pvF
G2/3J . ~3.20!

Now let us consider the justification for these approxim
tions. First note that

g̃~cosx!

@ g̃ 2~1!1D̃2vF
2 #1/2

5@cosx1O~e2!#@11O~e2!#,

~3.21!

where, for convenience, we have defined

e[~22DL2DR!/vF . ~3.22!

Thus,

arccosF g̃~cosx!

@ g̃2~1!1D̃2vF
2 #1/2G5x1O~e2!, ~3.23!

except nearuxu'p where arccos becomes singular, beha
ing as

arccos~211d!'p2A2d. ~3.24!

Thus, nearuxu'p we may write

arccosF g̃~cosx!

@ g̃2~1!1D̃2vF
2 #1/2G'p2A~p2uxu!21O~e2!.

~3.25!

Noting that, at the maximumxM , (p2uxu)}e2/3 we see that
in this range ofx:

arccosF g̃~cosx!

@ g̃2~1!1D̃2vF
2 #1/2G'x@11O~e2/3!#. ~3.26!

Thus our simple approximation to arccos is everywh
valid. The other corrections from expanding sinx in the nu-

c-
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merator in Eq.~3.13! and the expression in the denominat
give multiplicative corrections ofO(e) or O(p2uxu)2

which is O(e4/3) nearxM .
In the case of perfect Andreev reflection at both bou

aries, we can in fact solve for the ground-state energy~and
thus the Josephson current! exactly for arbitrary junction
length l and filling. PuttingDR5DL5t(51) in Eq. ~3.3!
directly yields after simple algebra the allowed quasiparti
momenta for the two sets of Andreev levels. We find

an65
pn6x/2

l 21
. ~3.27!

The ground-state energy is then again the sum of the e
gies of all occupied levels, which now becomes a sim
geometric progression

E0522t (
n51

N

@cosa11cosa2#

524t
sin@pN/2~ l 21!#cos@p~N11!/2~ l 21!#

sin@p/2~ l 21!#

3cos
x

2~ l 21!
~ uxu,p!. ~3.28!

The Josephson current is then, for arbitrary lengthl and oc-
cupation numberN,

I ~x!5
4et

l 21

sin@pN/2~ l 21!#cos@p~N11!/2~ l 21!#

sin@p/2~ l 21!#

3sin
x

2~ l 21!
~ uxu,p!. ~3.29!

One can explicitly check that the largel limit reproduces Eq.
~3.14!.

IV. RENORMALIZATION GROUP ANALYSIS
OF THE INTERACTING CASE

In a standard way the bulk Hamiltonian can be appro
mated in the continuum limit, valid at low energies, by
quantum field theory, corresponding to a Tomona
Luttinger liquid describing gapless charge and spin boso
The first step is to write the lattice fermion operators in ter
of left and right moving continuum fermion operators

c j s'e2 ikFxcLs~x!1eikFxcRs~x!, ~4.1!

wherekF is the Fermi wave vector andcL,R are assumed to
vary slowly on the scale of the lattice spacing~which is set to
1!. The resulting continuum Hamiltonian is then bosoniz
in terms of charge and spin boson,fc,s with associated ve-
locities, vc,s and compactification radiiRc,s . We will nor-
mally set these velocity parameters to 1. The continuum
mion fields are written

cL↑,↓'expF2 i S fc

2Rc
1pRcf̃c6

fs

2Rs
6pRsf̃sD G ,

cR↑,↓'expF i S fc

2Rc
2pRcf̃c6

fs

2Rs
7pRsf̃sD G . ~4.2!
-

e

r-
e

-

-
s.
s

d

r-

Here the bosons and dual bosons are written in terms of
and right-moving components as

f~ t,x!5fL~ t1x!1fR~ t2x!,

f̃~ t,x!5fL~ t1x!2fR~ t2x!. ~4.3!

The Lagrangian has conventional normalization

L5~1/2!@]mfc]
mfc#1~1/2!@]mfs]

mfs#. ~4.4!

Here we follow the conventions of Ref. 14. Unfortunate
various other bosonization conventions are frequently us
In particular, the compactification radii,Rc,s , which depend
on the bulk interactions, are often removed from t
bosonization formulas by rescaling the bosons, resulting
an unconventional normalization of the two terms in the L
grangian. The resulting normalization constants are so
times calledgr,s . The relationship between parametersgr,s
used in Refs. 6–9, the parametersKr,s used in Ref. 5 and
our parameters is

pRc,s
2 5

1

gr,s
5

1

2Kr,s
. ~4.5!

In the case of SU~2! symmetry,Rs51/A2p. For repulsive
bulk interactionsRc.1/A2p and for attractive bulk interac
tionsRc,1/A2p. In the case of attractive interactions, the
may be a gap for spin excitations depending on the deta
form of the bulk interactions. This occurs, for example, f
the attractive Hubbard model. The presence of a bulk s
gap makes very little difference to our analysis. Essentia
we may just dropfs from our formulas. We consider bot
cases below.

Free boundary conditions, which occur forDB50, corre-
spond to16

cL~0!5e2 iucR~0!, ~4.6!

where the phaseu depends on the boundary scattering p
tential VB . Note that these boundary conditions correspo
to only normal reflection, and thus zero Andreev reflectio
so in this context it is appropriate to refer to them as ‘‘no
mal’’ BC’s. In bosonized form these BC’s become

fc~0!5Rcu, fs~0!50. ~4.7!

It is crucial to realize that these equations imply thatfRc,s
may be regarded as the analytic continuation offLc,s to the
negativex axis

fcR~x!52fcL~2x!1Rcu,

fsR~x!52fsL~2x!, ~x.0!. ~4.8!

In particular, this implies

f̃c~0!→2fLc~0!2Rcu. ~4.9!

We now wish to consider the bosonized form of the boun
ary scattering potential,}VB and boundary pairing interac
tion, }DB in Eq. ~1.7!. The scattering potential is propor
tional to]xfc(0). This has scaling dimension 1 and hence
marginal. Note that boundary interactions are relevant if th
dimension isd,1 and irrelevant ifd.1. This is different
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than for bulk interactions in~111! dimensions due to the
fact that boundary interactions are only integrated over tim
not space. Thus a boundary scattering potential leads
line of fixed points, characterized by a phase shift.

On the other hand, the boundary pairing interaction le
to the term

DB* eabcLacRb1H.c.}uDBusin@2pRcf̃c~0!

1x#cos@fs~0!/Rs#

→DBcos@4pRcfLc~0!22pRc
2u1x#,

~4.10!

where the BC of Eq.~4.7! was used in the last step andx is
the phase ofDB . This operator has dimension 2pRc

2 and
hence is irrelevant for repulsive bulk interactions but r
evant for attractive bulk interactions. Thus we reach the
portant conclusion that a weak boundary pairing interact
DB becomes progressively less important asT→0 in the case
of repulsive bulk interactions. This implies that the effecti
coupling of the superconductor to the Luttinger liquidt9
renormalizes to 0 sinceDB}(t9)2.

In the case of attractive bulk interactionsRc,1/A2p the
free boundary condition is an unstable fixed point. The ‘‘o
vious’’ guess is that the Hamiltonian renormalizes to
boundary fixed point corresponding to the boundary con
tion

f̃c~0!52~x1p/2!/2pRc , fs~0!50. ~4.11!

Note that the boundary condition on the spin boson is
changed. This is surely a reasonable assumption since
boundary interaction does not involve the spin boson. In f
this boundary condition is fixed by SU~2! symmetry. On the
other hand, we are assuming that the effect of the relev
boundary sine-Gordon interaction is to pin the dual cha
bosonf̃c(0) corresponding to a semiclassical analysis of
interaction at largeDB . We note that the analogous assum
tion has been made in several other contexts.9,16,17It is gen-
erally believed that only Dirichlet and Neumann fixed poin
occur in the boundary sine-Gordon model for generic co
pactification radius.@We note thatf5const corresponds to
Dirichlet BC andf̃5const to a Neumann BC using the fa
that ]f̃/]t5]f/]x.# In order to shed more insight on th
assumption, we discuss, in the next section, a differ
boundary model which is equivalent to this one under
exact duality transformation. In the present context t
boundary condition corresponds to perfect Andreev refl
tion since it follows from Eq.~2.13!.

The consistency of this assumption can be checked
considering the renormalization group stability of the A
dreev BC. Note that the scaling dimension of boundary
erators are different at this fixed point where we must us

fcR~x!5fcL~2x!1~x1p/2!/2pRc ,

fsR~x!52fsL~2x! ~x.0!. ~4.12!

In this case a further boundary pairing interaction is m
ginal, corresponding to shifting the condensate phasex. The
e,
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potentially relevant interaction corresponds to normal sc
tering and modified hopping near the interface. This cor
sponds to adding a term

dH5VNcLs
† ~0!cRs~0!1H.c. ~4.13!

to the Hamiltonian obeying the Andreev BC. (VN may be
complex.! Using the Andreev boundary condition, and le
ting u be the phase ofVN , this term reduces to

dH}2uVNusin@fc /Rc1u#}2uVNusin@2fcL /Rc

1~x1p/2!/2pRc
21u#, ~4.14!

of dimension 1/(2pRc
2). This is irrelevant for attractive bulk

interactions, but relevant in the repulsive case. Thus we c
clude that the Andreev BC represents an attractive fi
point with attractive bulk interactions, so that our assumpt
that a boundary pairing interaction leads to a flow to t
Andreev BC forRc,1/A2p is consistent. On the other han
in the case of repulsive bulk interactions we expect an
flow from the Andreev fixed point to the normal fixed poin
For the noninteracting case, both fixed points are marg
and no renormalization occurs. There is a line of fixed poi
connecting normal and Andreev fixed points along which
ratio of normal to Andreev scattering varies continuous
This behavior is very analogous to the back-scattering pr
lem for a single impurity in a quantum wire.9

The behavior of the Josephson current in the case of
tractive bulk interactions is especially interesting. From S
III we see, that for the noninteracting case, the Joseph
current is a sawtooth function of amplitudeevF / l when the
boundary terms are fine-tuned to give perfect Andreev s
tering at the Fermi surface. Otherwise,I (x) is a smooth
function. As shown by Maslovet al.,5 I (x) is also a saw-
tooth function in the presence of bulk interactions if the A
dreev BC is applied to the bosonized theory, with the am
tude replaced byevF /(2pRc

2l ). The sawtooth form is a
universal property of the Andreev fixed point. This unive
sality of the O(1/l ) term in the ground-state energy is
familiar aspect of conformal field theory. In cases where
boundary parameters are not fine-tuned to the Andr
boundary condition, but instead the Hamiltonian renorm
izes to the Andreev fixed point we expect to recover
same sawtooth form ofI (x) in the limit l→`. However, the
finite size corrections will smooth outI (x) since a finitel
cuts off the RG flow of the junction parameterDB . We ex-
pect that for large enoughl we may use the expression E
~3.18! with 12D replaced by an effective value at scalel.
We may identify

12DB}VN , ~4.15!

whereVN is the effective normal scattering interaction intr
duced in our discussion of the RG stability of the Andre
fixed point in Eq. ~4.13!. This identification is reasonabl
since it can be checked, for the noninteracting case, that
normal reflection amplitude vanishes linearly in 12uDBu.
Thus we expect that

12uDBeff~ l !u}
1

l 1/(2pRc
2)21

. ~4.16!
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Substituting this expression into Eq.~3.18! gives an approxi-
mate expression for the Josephson current. Asl increases,
I (x) becomes a more and more rapidly varying function n
uxu'p. The maximum ofI (x) occurs at

uxMu}p2
1

l 2[1/(2pRc
2)21]/3

~4.17!

and the critical current scales withl as

I c'
evcvF

2pRc
2l F12

const

l 2[1/(2pRc
2)21]/3G . ~4.18!

Here the factor ofvF in Eq. ~3.14! has been replaced b
vc/2pRc

2 , where vc is the charge velocity;5 this follows
from the normalization of the finite size spectrum at the A
dreev fixed point. The smoothing ofI (x) for finite size junc-
tions due to renormalization effects is quite distinct from t
finite size effects that occur in the noninteracting case,
cussed in Sec. III. These are suppressed by powers ofl 2

and do not smooth out the sawtooth structure ofI (x). In
particular the maximum remains atuxMu5p.

We note that our result for the behavior of the Joseph
current near the Andreev fixed point is very different fro
that obtained in Ref. 5 although both treatments u
bosonization and RG arguments. The difference arises in
because we take into account the Andreev BC in calcula
the RG scaling of the normal reflection amplitude and in p
because we take into account the singular dependence o
Josephson current on the normal reflection amplitude.

In the case of repulsive bulk interactions and almost p
fectly fine-tuned junction parameters a flow away from t
Andreev BC occurs with increasing junction length. In th
case the effective parameter 12uDB( l )u increaseswith in-
creasingl so that the sawtooth singularity is smoothed out
l increases.

As mentioned above, in the case of attractive bulk int
actions a spin gap sometimes occurs, for example, in thU
,0 Hubbard model. This has essentially no effect on
boundary RG discussed above since the spin boson did
play any role. Essentially the spin boson is assumed to
ways obey the Dirichlet BC,fs(0)50 throughout the RG
flow which only affects the BC’s on the charge boson. In t
case where there is a spin gap,fs(x) is pinned at all points
in space; this is completely compatible with the assumpt
about the BC.

We find the flow to the Andreev BC in the attractive ca
especially remarkable because, as explained in the prev
section, in the noninteracting case perfect Andreev scatte
can only be achieved by fine-tuning parameters. Thus, in
interacting case, the RG flow must ‘‘find’’ the special valu
of the parameters at which the normal scattering vanishe

V. DUALITY TRANSFORMATION

In an effort to make more plausible the conjectures ab
RG flows in the previous section and in order to make c
tact with previous work on quantum impurity problems w
present in this section an exact duality transformation fr
the lattice boundary pairing model with bulk interactions
the previous section to a lattice model with both bulk a
r
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boundary magnetic fields. This is related to the previou
studied17 S51/2xxz chain with a transverse boundary fiel
These latter models are perhaps easier to understand
itively because semiclassical approximations hold to so
extent. Furthermore there is an instructive difference
tween the Hubbard chain and pure spin chain correspon
to a sort of breakdown of ‘‘spin-charge separation’’ f
strong boundary fields.

We begin with the~semi-infinite! boundary pairing of Eq.
~1.7! with the Hubbard interaction of Eq.~1.9! added. We
then apply the well-known duality transformation whic
changes the sign of the Hubbard coupling constantU and
interchanges charge and spin operators. This is essentia
particle-hole transformationfor spin up electrons only:

c j↑→~21! jc j↑
† , c j↓→c j↓ . ~5.1!

This maps the hopping term into itself and the Hubbard
teraction into (21)3 itself. The chemical potential term i
mapped into a magnetic field in thez direction:

c j a
† c j a→12c j a

† ~sz!abc j b . ~5.2!

Thus a nonzero chemical potential, corresponding to aver
particle number̂ nj&Þ1 maps into a nonzero bulk magnet
field in the z direction. Note however, that the dual mod
has zero chemical potential so it remains at half-fillin
Longer range density-density interactions map intoz-z mag-
netic exchange interactions. The boundary scattering te
VB maps into a modified boundary field in thez direction.
The boundary pairing interaction is mapped into

HB→DB* c1↑
† c1↓1H.c. ~5.3!

This corresponds to a boundary magnetic field lying in
xy plane, transverse to the bulk field, of magnitude 2uDBu
and direction determined by the phase ofDB .

This dual model is especially easy to analyze in the c
whereU,0 so that there is a spin gap in the Hubbard mod
The dual model, withU.0 and half-filling has a gap for
charge excitations. The remaining gapless spin excitati
are approximately described by the Heisenberg model w
the appropriate magnetic fields. To make this corresp
dence more precise, whenuUu@t, the correspondence hold
for the lattice models with an effective Heisenberg exchan
interaction t2/U. For smaller U the correspondence sti
holds for the low-energy degrees of freedom. Even in sit
tions where the original spin excitations were not gapped
that the dual charge excitations are not gapped, we m
expect some sort of correspondence with the Heisenb
model at low energies due to spin-charge separation.

The xxzS51/2 spin model with a transverse bounda
field ~but no bulk field! was analyzed in Ref. 17. There it wa
shown that the bosonized version is the boundary s
Gordon model with a boundary interaction which is releva
along the entire bulkxxz critical line and it was conjectured
that an RG flow to the Neumann BC occurs. In the particu
case of thexx model this can be proven exactly using Isin
model duality transformations.18 The semiclassical interpre
tation of the Neumann BC in this case is that the bound
spin is polarized in the direction of the boundary field. Th
analysis can be easily extended to include a bulk magn
field in thez direction. As shown in Ref. 17, the dimensio
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of the transverse boundary field is 2pR2 where R is the
compactification radius of the boson in the spin chain.~To
fix our conventions, the transverse staggered correlation
ponent is also 2pR2.! This becomes marginal for the isotro
pic xxx model but is relevant along the entire~zero field!
xxzcritical line. The dependence of the radius on a magn
field applied to the Heisenberg model has been calcula
from the Bethe ansatz.19,20The effect is again to decrease th
radius, hence making the transverse boundary field relev
Thus it is again natural to conjecture a flow to a fixed bou
ary spin polarized in the direction of the boundary fie
Thus, flow to the Andreev BC in the boundary pairing mod
is dual to flow to a fixed spin BC in the boundary fie
model.

This analysis can be extended to more general mo
with longer range bulk interactions. In particular, we m
consider cases in which the spin excitations are not gap
in the original model so that charge excitations are
gapped in the dual model. Again it seems plausible that e
a weak transverse boundary field produces a flow to a po
ized spin boundary fixed point. However, we now encoun
another interesting phenomenon. If the boundary field is
strong it suppresses this RG flow. This can be seen from
fact that, in the limit of a very strong transverse bounda
field, one electron gets trapped on the first site with proba
ity 1 in a state with spin polarized along the transverse fi
direction. Since the hopping term adds or removes an e
tron from site 1 it produces a high-energy state, with ene
of order the boundary fielduDBu. All such processes are sup
pressed foruDBu@t meaning that the first site decouples fro
all the others which therefore obey a free BC. Thus, in
finite U model the spin-polarized Neumann BC should not
thought of as occurring at infinite boundary field, but rath
at a finite value. On the other hand, in the Heisenberg mo
we may indeed think of the spin polarized fixed point
occurring at infinite boundary field since the magnetic e
change interaction is not suppressed by the strong field. T
we see that the limitU→` and uDBu→` do not commute.

The above observation provides another way of und
standing the perhaps surprising discovery in the previ
sections that the Andreev fixed point does not occur a`
boundary pairing strength but rather at a fine-tuned fin
value. In this model at very strongDB we may think of a sort
of Andreev bound state occurring on the first site cor
sponding to a linear combination of the vacuum and fil
state:

u0&1eixu↑,↓&. ~5.4!

Since the hopping term always turns this Andreev bou
state into a state with a single electron at site 1 it produce
high-energy state and its effects are therefore suppre
when uDBu@t. In the original SN interface model we ma
think of the Andreev bound state as blocking electron tra
port across the interface and hence suppressing And
scattering.
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APPENDIX: INTEGRATING OUT
THE SUPERCONDUCTING ELECTRONS

In this appendix, we outline the steps leading to the c
respondence between the parameters in the interface
boundary models. Let us thus consider the interface mo
which has nonzero gap on sitesj <0. Our strategy will con-
sist in integrating these out. For simplicity, let us use t
notationc1s

B for the fields on site one. Omitting all sites wit
j .1 for ease of notation, we can write down the contrib
tion to the imaginary-time action coming from the gapp
side and its coupling to the boundary fields:

S15
1

b (
vn

H S (
j <0

c j s
† ~v!@ iv2m#c j s~v!

1@2t8c j 21s
† ~v!c j s~v!1Dc j↑

† ~v!c j↓
† ~2v!1H.c.# D

2@2t9c1s
B †~v!c0s~v!1H.c.#J . ~A1!

Fourier transforming asc j s5(2/p)*0
pdk sink(j21)cs(k)

~for j <0) and using the Bogoliubov transformation

S c↑~v,k!

c↓
†~2v,k!

D 5S u~k! 2v* ~k!

v~k! u* ~k!
D S h1~v,k!

h2
† ~2v,k!

D ,

~A2!

where

u~k!5
eix

A2
A11

e~k!

E~k!
, v~k!5

1

A2
A12

e~k!

E~k!
,

~A3!

and e(k)522t8cosk2m and E(k)5Ae2(k)1uDu2, we ar-
rive at the form

S15
1

b (
vn

2

pE0

p

dk$hs
†~v,k!@ iv1E~k!#hs~v,k!

3@2t9h1
† ~v,k!@u* ~k!c1↑

B ~v!2v* ~k!c1↓
B †

3~2v!#sink2t9h2
† ~v,k!@u* ~k!c1↓

B ~v!

1v* ~k!c1↑
B †~2v!#sink1H.c.#%. ~A4!

Integrating out theh fields finally gives the boundary actio

SB5
1

b (
vn

$@ ivc1~v!2c2~v!#c1s
B †~v!c1s

B ~v!

1@c1~v!Dc1↑
B †~v!c1↓

B †~2v!1H.c.#%, ~A5!

where the coefficientsci(v), appearing respectively in fron
of the pairinglike and potential-like amplitudes, are given

c1~v!52
4t92

Av21uDu2
Im M 22,
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c2~v!52
16t82t92

Av21uDu2
Im M 242mc1~v! ~A6!

in which

M[A22t81m1 iAv21uDu21A2t81m1 iAv21uDu2.
~A7!

The desired correspondence between the interface
boundary parameters thus takes the form~whenv→0)
B

ev

di,
nd

DB5Dc1~v→0!, VB5V2c2~v→0!. ~A8!

Taking the limit explicitly reproduces Eqs.~2.19!. The
frequency-dependent terms are suppressed by power
v/uDu and have thus been ignored at energies well below
gap. Furthermore, in the presence of interactions, we ex
the above procedure to work as well, namely that the fi
result is simply some effective boundary pairing and scat
ing potentials.
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