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Relativistic theory for the nuclear spin-lattice relaxation rate in ferromagnetic metals
with application to 5d impurities in bcc Fe
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A relativistic theory for the nuclear spin-lattice relaxation rafd{) ! in ferromagnetic metals is presented
that includes in particular the electric quadrupolar and the core polarization contributions. Because it is for-
mulated within the framework of the spin-polarized relativistic version of the Korringa-Kohn-Rostoker method
of band structure calculations it can be applied in principle to any kind of system. Here an application of the
theory to 5 impurities(Lu—Hg) in ferromagnetic bcc Fe is presented. While the core polarization contribution
turned out to be negligible in all cases, the electric quadrupolar contribution was found to be of the same order
of magnitude as the magnetic dipolar one in the case of Lu, Hf, Ir, and Au.

[. INTRODUCTION demonstrated by an application to the alloy system

The magnetic hyperfine field and the nuclear spin-latticeAgXPtl*x’ this allows us in particular to deal with disordered

relaxation rateR are the most prominent hyperfine interac- alloys that lack the Bloch translation symmeffyThe tre-

tion parameters for ferromagnetic solids. While the ﬁrstmendous flexibility of the Green's function approach has

guantity is a ground-state property, the second one is relate%So been exploited by Akait al, who improved their pre-

to low-lying excitations at the Fermi level. Previous theoret-1°0YS works by taking into account the distortion of the first

ical investigations for paramagnetic systems have shown th Sthe" of host Fe atoms around the |m2pur|ty by means of the

if electron-electron interaction is ignoreld,can be expressed echnique developed by thelibn group:~ In addition, scalar

in terms of the squared anaular momentum resolved densitrelativistic effects were included properly to treat heavy ele-
q 9 ents alsd>2® This approach allowed us to determine the

of states(DOS) at the Fermi energy. For that reason themagnetic dipolar contribution to the nuclear spin-lattice re-

relaxation rate is a very sensitive probe for the electroniq . . " ; .
. . axation rate R,,,4 Of impurities with atomic numbeiZ
structure around the Fermi level, and a small perturbation on 9

the DOS could easily change by an order of magnitude. :t'l'_?'? ?nd 7|2_8]? |rF1zbcc FTehus!ng thf conve:tlolnil_l _n(?[_nrel-
This implies that a realistic and reliable approach must b IVIStic Tormulas 10MRmaq. Th€ IMportance of refatvistic

used to calculat® a goal that has been reached in severaFffeCtS for the spin-lattice relaxation rates in solid transition-
steps during the Iést decades. metal systems has been demonstrated by Ebert and?Akai.

Heitler and Teller were the first who discussed the most' Nese authors did nonrelativistic and relativistic KKR GF

prominent spin-lattice relaxation mechanism in metals: the&@lculations for pure transition metals and alloys in the para-
magnetic interaction between the nuclei and the conductiomagnetic state. In addition they extended the fully relativistic
electrons: The theory of the nuclear spin relaxation processformalism for the magnetic dipolar contribution Rto deal

and the main driving mechanisms were clarified in the fol-with magnetic solids as well.

lowing yearé~’ and after that, a lot of estimations and cal-  In the following an application as well as an extension of
culations of the relaxation rate were done. On the basis dhis fully relativistic formalism is presented that accounts for
scalar relativistic linear muffin-tin orbitalLMTO) band the electric quadrupolar and core polarization contributions
structure calculations, several authors calculated the relalRq and R, respectively, to the nuclear spin-lattice relax-
ation rate in pure cubic and hexagonal closed padked)  ation rate in magnetic metals. Because it is based on the
transition metal€-'® Masudaet al'® made estimations for spin-polarized and fully relativistidSPR KKR Green’s

the relaxation rate of @, 4d, and & transition impurities in ~ function scheme it is applicable for paramagnetic and ferro-
bce Fe, based on the theoretical work by Morty#&anamori  magnetic systems and also for pure metals, impurities in
and co-workers madab initio calculations of relaxation metals, or disordered alloys. This is demonstrated by an ap-
rates of impurities in bcc F¥ These calculations were im- plication of this theory to 8 impurities in ferromagnetic bcc
proved and extended by Akat al. using the spin-polarized Fe, for which the distortion of the surrounded host atoms has
Korringa-Kohn-Rostoker (KKR) Green’s function (GF) been accounted for using the technique developed by the
method for impurity defect-2* John et al. developed a Juich group?* The SPR KKR GF method for impurity sys-
fully relativistic formulation for the magnetic dipolar contri- tems is described shortly in Sec. Il A, and in Sec. 1B the
bution toR in the case of ordered paramagnetic systems antbrmula for the relaxation rate is explained briefly. The for-
did corresponding calculations for transition metals using thenulas of Ry and R, are derived, in Secs. IIC and 11D,
LMTO method?? Ebertet al. developed a similar formula- respectively. In Sec. Il the results of applying this theory to
tion making use of the KKR Green’s function scheme tocalculate the relaxation rate ofdSimpurities in bcc Fe are
describe the underlying electronic structure. As could bepresented and discussed.
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Il. THEORETICAL APPROACH events in the system in a self-consistent wasccordingly,
the indicesn and m label the various atomic sites in the
system.

To describe the underlying electronic structure of the sys-  With the Green’s function of the host system set up using
tems investigated their band structure has been calculated Igg. (3), the corresponding Green’s function for an impurity
means of the spin-polarized relativistic KKR method. Thesesystem can be set up by application of the Dyson equation.
calculations were based on the relativistic version of the spiThe perturbation caused by the impurity atenis then ex-

density functional theorySDFT). Within this approach, the pressed by the perturbed Green's funct®g(r 1", E) of the
single-site Dirac-Kohn-Sham equation atoma:

A. Electronic structure calculations

2
—4aiﬁ+%«ﬂ—n+VG>ﬂwﬁEr=BmﬁE>(D G (F, [ E)=Gy(r,[",E)

has to be solved as a first step. The quantiéigand 8 are j 3.1 =~ =, > o I
. ) ! . ; . +
the usual Dirac matricé®and| is the 4< 4 identity matrix. dr"Go(r, " BJAV(Ir)Gy(rr . B),

The potentialV(r) consists of the Hartree terM(r), the 7

spin-averaged palt,. of the exchange-correlation potential, _ . _
and its spin-dependent pa¥,,;,. This last term is given by Wwhere AV(r)=V(r)—Vy(r) is the potential perturbation
caused by the impurity atoA1.For the extent of the potential
V... =Bo- dEfC ) distortion AV(r) three different cases have been considered:
spin ’ the impurity atom alon€0 shell, the impurity plus the first
. shell of nearest-neighbor Fe atoidsshel), and the impurity
wherem is the spin magnetizatioff.To set up the exchange- plus the first and the second shells of nearest-neighbor Fe
correlation potential, the parametrization given by Vosko,atoms(2 shell3. For the three sets of calculations presented

Wilk, and Nusair has been us&d. ~ below, we have allowed perturbed potentials for every atom
Within the SPR KKR formalism the corresponding of the corresponding clusters, which consist of 1, 9, and 15
Green’s function for a pure systehos) is given by atoms, respectively. A geometric relaxation around the im-
purities has not been allowed. Finally, the angular momen-
Go(r,r',E)= > Z\(r, -E)TRanZ:r(FFn E) tum expansion for the valgnce band states has .been trun_cated
AA' at | ,ax=2 and the occupiedl levels have been included in
the core partsee below
— > ZA(r- ,E)\]X(F> E)Snms (3  Apart from the faqldi_tional complexity _introduced by_work-
A ing on a fully relativistic level, the technique to deal with Eq.

(7) is just the same as for the scalar relativistic case. For

where the function®, andJ, are the regular and irregular .
onsA A g 9 further details we therefore refer to reader to Refs.24 and 33.

solutions of Eq(1), respectively. The indeA =(«,u) rep-
resents the spin-orbit and magnetiqte quantum numbers.

Z, (and alsal,) is a bispinor of the forrff B. Formulas for the total and magnetic nuclear spin-lattice
relaxation rate

The nuclear spin-lattice relaxation process in metals is
due to magnetic¢dipolan and electric(quadrupolar interac-
tions between the nuclei and the conduction electrons. The
whereg, andf, are the major and minor radial wave func- hyperfine Hamiltoniart, that describes, in a relativistically
tions, respectively, ang is the spin-angular function correct form, the interaction between these electrons and a

nucleus with spin moment, gyromagnetic ratioy,,, and
X“H= 2 C(l}j ;M—ms,mS)Ylf"mS(F)Xm . (5) electric quadrupolar momeetQ is given by
mg=*+1/2 s

9.(r,E)x*(r)
, (4)

Z\(r,E)= .
“r)<ﬁm£uhm

If Vpin in Eq. (1) is not zero, thenx is not a good guantum Hnt=Hmagt Ha 8
number. This applies to ferromagnetic systems and for this .
case, the former functions must be replaced by with

gK'K(riE)XZ’(F) > FXF

; - Hmao=€a-A=eyfha- —, 9
ZATE)=2 ZuaE)=| ¢ (r Bt ) | © mag= € AZeyhia = ©
A, k' Kk 1 — !

i.e., Z, has no unique spin-angular character but it is a su- e’Q 5 s 3xixj—r25
perposition of various coupled contributions with spin- "tQ~ _iEj m[i(h'i“i'i)_| 5ij] ¢5
angular characteh’.*? Fortunately it is sufficient to restrict ' (10)
this coupling toA’'=(«,x) and (—x—1,u).

Finally, the quantityri"A", in Eq. (3) is the so-called scat- Adopting the spin-temperature approximation the relaxation

tering path operator that represents all multiple scatteringime T, is given ad*

ij
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1 S Wom (Ep— Eq )2 to the relaxation rate in one single term. Finally, one should

—_— = ’ > , (11 mention that the scattering path operatar,/(Eg) in Eq.

T 23 mEm (14) is site diagonalthe corresponding index has been sup-
with pressey] representing the local electronic properties of the

nuclear site. For the applications to be presented here, this

27 5 will be the site of the impurity atom.
Wi == 2 Km'K'[Hi mK)Pke T 6(Ey— Er)
k,k’

C. Formula for the electric quadrupolar nuclear spin-lattice
X 6(Exr—Eg). (12 relaxation rate

For a Zeeman spectrunk,,, are the nuclear Zeeman ener-  The electric quadrupolar relaxation rate of many nuclei is
gies, andW, v is the total transition probability per unit normally expected to be smaller than the magnetic one, and
time for a transition from the nuclear Zeeman lef@) to  for this reason, usually not much attention is paid to it. Blo-
the level|m’). The state vectorkk) and|k’) represent oc- embergen and Rowland pointed out that the electric quadru-
cupied and unoccupied electronic valence levels, respegolar interaction should be included in the total relaxation
tively. Because there are no cross terms between the magate, because for certain nuclei this rate could be as important
netic and the electric interactions, the total relaxation rateas the magnetic ratéMitchell was one of the first who made
R=(TT,) ! can be divided into two distinct contributions: numerical approximations of the electric quadrupolar relax-
ation rate in metals using approximate Bloch wave
i) _ (13) functions? Johnet al. published a relativistic formula for the
T 0 electric quadrupolar relaxation ratand also for the mag-

netic rate in cubic metals in the framework of the relativistic

Ebertet al. derived an expression fRp,g, in @ Ze€man | \ito method and applied it to transition metafMarken-
spectrum, on the basis of the spin-polarized relativistic KKRyqf ot a1, adapted and applied this formula to calculate the
Green's function scherfeusing Eqs(3), (7), (9), (11), and  gjectric relaxation rate in hcp transition metist®Here, we

(12): present a derivation of the relativistic formula of this rate
Aokl within the SPR KKR GF scheme.
R __T'BYn S iy (Ep) The electric quadrupolar relaxation rate comes from the
mag 2 AAN'\E=F . . .
T AAT AT AT interaction between the electric quadrupolar moment of the
. nucleus and the electric field gradient of the charge density
XIm 7pnam(ER)LAma(ER)Vina (ER), (14 of the valence electrons at the nucleus. The Hamiltofign
of this interaction can be written in the conventional

+

mag

1
R= Rmag+ RQ: (T_Tl

where the matrix elements, ., are given by

form:*12:34
IAA/(E):j d3rZX(r, E)YH®Z, (1, E), (15) ’ 2
Hom o2 S ()M ((WVy n(0r)
with O 2120-rE w2 Zmi i remm
(20)
el e - - .
H,=—3(r><a),. (16) with
2r
The matrix element, ,.(E) can be split in a conventional - 2 5 o
way into a product of radial and angular matrix elements Tao )=/ 3(312=19), (21)
R, (E) andA,,., respectively, of the forai?®
Toaa(D=F (1ol +1,0.), 22
R (B)= [ 0.1 E) 0 (1.E) 0,01 EV (1 EVTa, 2= (Ll 22
1 -
(7 Toua(D=12, (23
, rXo)_
Al =—f dﬂx’ﬁ*%)ﬁk,- (18 27
Vom(0,0)=\/ 15 Y2(0,¢). (24)

The matrix element, ,/(E) is then finally given as

ie Nuclei with 1=<1/2 do not have an electric quadrupolar mo-
[\ (E)=— _RKK,(E)A%’ ) (19 menteQ, and hence the rate, vanishes. Using Eqsl11),
2 (12), and(20)—(24) we obtain, for a Zeeman spectrum,

Rmag given in Eq.(14) accounts only for the direct relax-
ation processes ignoring the electron-electron interaction. =7T_kB (21+3)
Because of the relativistic form of the hyperfine interaction T 4 5(21-1)
operator[Eq. (9)], it accounts for the conventional nonrela-

tivistic Fermi contact, spin-dipolar, and orbital contributions with the element&V,, given by'?

2

3e’Q
(W, +4W,), (25

4l
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Vyr( 6, 0) 2 TABLE I. Nuclear spin moment, nuclegr factor g, (a dimen-
W= 2 I k' Yom'%,®) k)| 8(E,—Eg)S(Ey —Eg). sionless quantityand electric quadrupolar consta@tin barns €Q
K.k’ r3 is the electric quadrupolar momemf the two most abundants nu-

(26) clei of the 5 atoms with a nonvanishing nuclear moment. The

We have derived these elements in the SPR KKR Green’%lan,:Eg:eo;neufvl\gogsot%fp?se nuclei is indicated. For Hf, Re, Ir, and
function scheme, by means of Eq8)—(7) and (20)—(24), i

obtaining Lu Hf Ta W Re
175 177 179 181 183 185 187

Wn=— 2 Imry,(Ep) | 2 72 92 72 12 52 52
TAALATA g, 0639 0227 -0142 0677 0236 1275 1.288

<Im T/\"/\W(EF)J/\,”/\(EF)J’[;”A’(EF)’ (27) Q 568 450 5.10 3.44 0 2.33 2.22

Os Ir Pt Au Hg
where the corresponding matrix elemedis,, are given by 189 191 193 195 197 199 201
V. (6 I 3/2 3/2 3/2 1/2 3/2 1/2 3/2
_ 37X, 7 2m( 1(P) -
Ian(B)= | &*rZ3(r,E) ———Z,/(1,E) g, 0.488 0.097 0.107 1.219 0.098 1.012 -0.373
r

Q 0.80 0.78 0.70 0 0.59 0 0.42

= KK,(E)B/:’I:I’ma (28)

. . . D. Formula for the core polarization relaxation rate
with the radial and the angular parts, respectively, equal to

Yafet and Jaccarino suggested that the core polarization
dr (CP) mechanism should contribute to the magnetic relaxation
SKK'=J (99 T it (29 rate just as it does for the Knight shifThese authors de-
rived an expression for the core polarization relaxation rate
) ) R¢p and made corresponding estimations for V, Nb, and Pt.
BYY, m=f dQXE*Vom(0,0) x5 . (30)  Since the exchange energies responsible for the CP mecha-
nism are small compared with the transition energies, they
In Eq. (29 we have supressed the argumentsndE. The  did a first-order perturbation type calculation for the CP rate.
This approach led to a Korringa-like relation between the CP
Knight shift and the CP relaxation rate, with the correspond-
ing Korringa ratio depending on the relative weight of the
ST+ 1 various symmetry-resolved orbitals withcharacter. Hence,
BAA M_ /—C(ZI '1;000)[C(15j;u— %2 u) using reasonable estimations for the hyperfine fields to cal-
e 6(21+1) culate that ratio, they calculated the CP rate and obtained
values of 1.65, 3.74, and 54.2 (s for V, Nb, and Pt,

angular partB’:f(‘,’m can be further expressed in terms of
Clebsch-Gordan coefficients:

XC(' 3’ ~ 3GV i~ 3§

respectively.
OO =) O] 2L ) Asadaet al. have calculated®.,, of some cubic transition
2h 2 2 2o 2 2 metals using LMTO band structure calculatino calcu-
XC2l'l:mp’ +3p+1)]. (31) late the CP rate they used the approximate formula suggested

by Yafet and Jaccarino. In this formula, the CP rate is pro-
At this point it is interesting to compare the magnetic and theportional tngp, the square of the nonrelativistic core po-
electric quadrupolar relaxation rates for a Zeeman spectrunarization hypefine coupling constant, defined as
Using Egs.(14) and (25), and the values ofy, (g un
=vy,h), |, andQ for the 5d elements in Table I, and taking 8 ps1(0)—pg,(0)
into account the dimensions of the matrix eleménts (Eg) Hcpz?ﬂsz .
andJ, ,.(Eg), then it is possible to estimate the ratide- s d
tween these two relaxation rates as

eQ
ap0nin

(33

where the sum runs over allike core electrons with density
psn,S(F) and spin charactemg, and my is the number of

2
|> ~107%-10"%, (32 unpairedd electrons. They found values fd&., between
0.076 and 0.0007 (sK)* for V, Nb, Mo, Rh, Pd, Ag, and
where a, is the Bohr radius. In this estimation the crude Cu. For V and Nb, they obtained 0.076 and 0.068 (s¥)
supposition has been made that the dimensionless matrix elespectively. Asada and Terakura did also scalar relativistic
ements of both relaxation mechanisms are of the same ordeMTO band structure calculations for hcp transition
of magnitude. In contrast to that assumption, the dimensionmetals'® They used the same approach to calcuRtg and
less matrix element$, ,/(Eg) of Rp,4 are found, in our obtained values smaller than 0.12 (s®)for Sc, Ti, Y, Zr,
calculations of 5d elements, to be about 10—10mes those and Tc. Akai calculated the spin-nuclear relaxation rate of
of Rg, Jaar(Eg). This means that for certain cas€,  impurities in bcc Fe by means of a KKR GF method for
could be bigger tharRy,,4 Or at least, not negligible with impurity systemg>2 In particular, he considered a cluster
respect to the magnetic rate. composed by the impurity atom and the first nearest-eight-

Rq
r f— —~
Rmag
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neighbor Fe atoms. He also included the relativistic effects, 15.0
but only in the scalar relativistic approximation, neglecting
the spin-orbit coupling, and applied the same approach tc
calculateR., as Asadeet al® Finally, Markendorfet al. did

not recalculatdr., .1 but used the values obtained by Asada
and Terakurd®

All these authors used nonrelativistic expressions to cal-
culateR;,. In contrast to this, we have formulated a consis-
tent and relativistic formula foR.,, using a scheme similar
to that of Yafet and JaccarirfoFor this purpose, only the
contribution of thes-like core electrons to the core polariza-
tion effect has been considered. This is the most importan:
contribution because the hyperfine matrix element is the
largest for s-like core electrons.

Treating the exchange interaction as a first-order pertur-
bation, an unoccupied one-electron orbjtdl,) of an atom, 0.0
mixed with the s orbitals of the core electrons of that atom,
has the following form:

100 |

Ry)

LocalDpos (1/

5.0

FIG. 1. Total,s, p, andd local density of states at the Fermi
energy of the 8 atoms in bcc Fe, obtained by calculations for a

[VO=[¥D+3) Cos W) =[VD AT, (34  Oshell cluster.

with
VKnKS,uS(E):f (gKgnKs/.Ls—'_fKanS,us)Avxcrzdra (40)

<\P25|Avxc|q,(k)>
Eg_Egs .

The sum runs over the principal quantum numbe the

slike core orbitals of the atom, including the spin up andypq angular matrix element”s”’

down orbitals for each value of, and the index O denotes k'

the unperturbed orbitals. For the magnetic rate one has, thdi EQ. (18). The magnitudeAv,. is the change of the
exchange-correlation energy due to a difference of only one

electron between the electrons with spin up and down, or in
other words, to the magnetization due to only one electton.
Finally, it should be noted that @and Wintet® devel-
X 6(Ew—Eg). (36) oped a scheme to account for the influence of electron-
electron interactions on the nuclear spin-lattice relaxation
rate by solving a corresponding Bethe-Salpeter equation for
eljgrO\ 12— /410 |1y €[00 |2 0 | Atryeliqr0\ |2 the dynamical spin susceptibility. However, this approach
Wi [RZP i P= KO0 RO+ KW A H_|\Pk|>(|3'7) did ngt include tF\e core elpectror){s and was formular')cgd ina
scalar relativistic way. A corresponding relativistic extension
where the cross terms do not appear for cubic sysfems.  that include the core electrons should lead to similar results
The first and the second terms are leadingRig,q and  as those given here.
Rcp, respectively. The second term can be further developed
and the core polarization rate has, then, the expression

Cns,k: (39

RnKs/J,SK’(E)zf (gnKS,ust’—'_gK'ansMS)dr' (41)

is the same as that given
Rmag=4mkevahi 2 (Wi HEWE)PS(E—Er)
k,k'

The squared quantity of EG36) is given by

Ill. APPLICATION TO 5 d IMPURITIES IN bcc Fe:

RESULTS AND DISCUSSION
47TkByﬁﬁ

o 2 A AEA K Im 755/ (EF) In the following the results of the calculations of the vari-
ot ous contributions to the spin-lattice relaxation rate dfig-
< 1m TA"AW(EF)MA'//A(EF)MXW(EF)- (39 purities in bce Fe will be presented. To facilitate comparison
of the results for the various elements, the rates will, in gen-

Here the matrix elemer¥l , ,/ is eral, be given in a isotope-independent way. For the mag-
N 412 netic ratesRp g and R, this meanﬁs, for example, that they
_ | q3r %2 x el > oy will be normalized by the factor @f,.
Maar(E) fd rZA(nE)ATHZZA /(1 E) ngl Ms;—l/Z In Figs. 1 and 2 we present the local density of states

) (DOY9) at the Fermi energy of thedbimpurities and their
><VKKSWS(E)5W55KKSRKSMSK,(E)A‘:SI’:, , (390  magnetic reduced relaxation ratR§,ag/gﬁ obtained in our
S calculations. Both figures refer to calculations for a 0-shell
where A indicates thes-like core levels, which havé=0 cluster, i.e., only the impurity atom has been embedded self-
and henceA = (kg,us)=(—1,=21/2), N is the number of consistently into the bcc Fe host lattice. Comparing these
occupieds-like core shells, and the other quantities are defigures we can see that the trends of the different components
fined by of Rmag/gﬁ (s, p, andd) reflect, in general, the trends of the



14 292 I. CABRIA, M. DENG, AND H. EBERT PRB 62

0.15
-==Pp
0.10
LM [
T ‘Tm
N’\ﬂ o
) Z
~ =4
g o 0.05
o~
0.00 _ o PO Lecbarl T —— e ——
Lu Hf Ta W Re Os Ir Pt Au Hg
FIG. 2. Magnetic reduced relaxation faﬂ@%ag/gﬁ of the & FIG. 4. Isotope-independent electric quadrupolar relaxation

atoms in bce Fe, obtained by calculations for a 0-shell cluster.  atesRq/Ng of the &d atoms in bce Fe, obtained by calculations
for a O-shell cluster.
corresponding components of the local DOS. Brmmpo- ) ;
nent of Ryag/g2 (and also of the local DOSincreases —Contrast to the paramagnetic c&3é] By, depends, for the
slowly along the 8 series when increasing the atomic num- Magnetic case, also on the magnetic quantum nupb&or
ber and it is very small. On the other hand, theomponent the discussion that follows below, however, it is sufficient to
decreases rapidly along thel Series, as the DOS, while fix u to an arbitrary value ¢ = +1/2 has been chosen here
the d component follows the more complicated behavior of!N addition, only the fields diagonal ir are considered and
the locald DOS only the | dgpendence is of importance for our
. . . 7' 7

In contrast to this behavior, one notes that the sequence gensiderations! o
the components of the local DOS with respect to their mag- 1h€ results shown in Fig. 3 allow us to undertand why the
nitude differs from that of the components of the magnetictre”ds of the components of the reduced magnetic rate do not
reduced rate. Although the locdlDOS is bigger than the rgflec;t those of the compon_ents of the local DOS: the hyper-
DOS (except for Lu, where both are simi)athe d compo- fine fields modulate the variation of the losap, andd DOS
nent Omeag/gﬁ is only bigger than th@ component for the with the atomic number. AIthou_gBhf,S is Iarg_e, thes com-
late 5d transition metals. ponent of the rgduced magnetic rate is quite small b_ecause

To understand this fact we have to take into account th(I.\h;]a quals DO.S IS \r/1ery Sma."Bhf'p andn, dechrease r?p'dlﬁ
variation of the corresponding radial matrix elements"/en increasing the atomic number, and hence alsopthe
R, (Eg) [see Eq(17)] with the atomic number. These are reduced magnetic rate decreases. It can be seen in Fig. 3 that
represented in Fig. 3 by the so-called hyperfine fidéds, . Bhr.s IS betwee? Sband 5 t;]mes b'gg‘?f thanf,,;]folr thgoﬁé
These fields are proportional to the normalized radial matri ransition metals, but at the same time Is the log

= . . tw 12 and 4 ti ller than the IgzBIOS. Th
elementsR, . (Eg) that are obtained from Eq17) but with eween ~2 an IMes smafer than ne qe ese

th functi lized to 1 within the atomi 0 two facts explain that thp rate is much bigger than the s rate
€ wave functions normaiized to 1 within the atomic Cefl. In 5y 1o beginning of the & series and that therate is similar

or even bigger than thp rate for the rest of the & series.

350 ‘ 5_3‘0 MG‘ Bhy,q increases with the atomic number and rises from 0.6 to

00 | e B / 3.2 MG. This hyperfine field is between 80 and 20 times
) Py, smaller thanBy,;s, but on the other hand, theDOS is be-

25.0 ——-d,, tween 10 and 100 times bigger than #180S. This explains

why thesrate is bigger than the rate for the first four atoms
but much smaller for the other atoms.

In Fig. 4 we show the isotope-independent electric qua-
drupolar relaxation rat®,/Ng of 5d impurities in bcc Fe
obtained by calculations for the 0-shell cluster. The normal-
ization factorNq contains all the quantities &g, in Eq. (25)

20.0 |

B,, (MG)

15.0 |

100 1 that depend on the type of isotope and is given by
50| : e 22143 "
0.0 Emmm T remms = E T @) 21 42

Lu Hf Ta w Re Os Ir Pt Au Hg . . . . .
Application of this normalization factor allows us to demon-

FIG. 3. Hyperfine fields fos,», P12, Pap, s andds, of the  Strate the influence of the components of the local DOS on
5d atoms in bce Fe, obtained by calculations for a 0-shell clusterthe electric quadrupolar rate. However, one has to keep in
The hyperfine field fos;, has been shifted down by 30 MG. mind that in the experiments the measured relaxation rate
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includes the electric quadrupolar r&tg and that the rat®q 6.0 \ \
of the nuclei withl <1/2 is zero. -=-- Magnetic
The s component does not appear because it is zero, du 5.0 - ‘i:f;‘lm |

to the selection rules emerging from E@1). Similar to
Rmag/gﬁ, the components dRy/Ng follow also the trends

of the corresponding components of the local DOS. As for~
the magnetic rate, thp component is the most important 4
component for the first four atoms of thel Series, while for
the rest thed component dominates. The component of
Ro/Nq decreases rapidly when increasing the atomic num-
ber, following thep DOS. Although thed DOS is always
bigger than thep DOS, except in Lu, thel component of
Ro/Ng does not exceed tigcomponent in a corresponding
way. For instance, thed DOS is between 11 and 25 times

Rig) (s

v \
‘ A ‘ o ‘ AV4 LN
larger than thep DOS for Re—Au, but thel component of Lu Hf Ta W Re Os Ir Pt As Hg
Ro/Ng is only between 0.6 and 15 times thecomponent.
i ; i itati ing i FIG. 5. Total, magnetic, and electric quadrupolar reduced relax-
This is explained again qualitatively by taking into account -9 » magnetic, q P

0ftltion rates of the & atoms in bcc Fe obtained in calculations of the

that every component of the electric quadrupolar rate is n
shell cluster.

only proportional to the square of the component of the pog-
but also to the square of the radial integ&l given in Eq.  pution to the core polarization rate will be even smaller. This
(29) As one can conclude from the nonrelativistic counter-means that the formulation for the CP Contributioanqag
parts of the magnetic hyperfine fiel@,; , for nons elec-  presented here leads to a much smaller CP rate than the
trons (k£ 0),%” these vary in parallel wittS,, along the 8  conventional approach and for that reason it can safely be
transition series. In summary, one finds at the beginning oheglected. Thus, it can be seen from Fig. 5 that the main
the 5d series a relatively higlp DOS atE that leads to a contribution to the total reduced rate comes from the mag-
dominating and large contribution ®4/Ng,. netic interaction, except for Hf. BesideEQ/gﬁ is not neg-
There could be an interaction between occugigibccu-  ligible respect toRmag/gﬁ for Lu and Hf, because their big
pied) p, d, and unoccupiedoccupied f valence levels of the values ofQ, and for Ir, and Au, because their small values of
5d impurity. However, for these types of impurities thé 4 g2. As a consequence, the electric quadrupolar reduced re-
shell is a closed shell and for that reason tlieefectrons of  |axation rate of Lu, Hf, Ir, and Au relatively amounts to be
the 5d impurities have been included as core electrons. Or28%, 59%, 29%, and 36% of the total reduced rate.
the other hand, the unoccupiédalence levels of these im- The influence of the cluster size on the local DOS and the
purities are expected to contribute to the density of states abtal reduced rat&/g? is considered in Figs. 6 and 7, respec-
the Fermi level only in a negligible way. As a consequenceively. In line with the variation of the DOS, the total rate
their contribution to the various relaxation rates have beerjecreases in the first part of thel Series when allowing
ignored. Among others, this is justified by comparing ourperturbed potentials also on the first neighboring shell. In the
results with those of Ak’ second part of the series, it increases. The local DOS of the
To discuss the trend of the total relaxation r&ealong  1-shell cluster is not very different of that of the 2-shell
the 5d series, one has to combine the magnetic dipolar andlusters and therefore also the corresponding total rates
electric quadrupolar contribution. The latter will be repre-scarcely differ.
sented by the quantitRQ/gﬁ that depends now on the spe-
cific isotope. The corresponding values fgy, I, andQ are
given in Table I. The resulting rateRn,,/92 and Ry/g2 T ‘;:::2::5
obtained for O-shell clusters are shown in Fig. 5. One notes ——— 2 shells
that the magnetic reduced reftﬁag/gﬁ is in general bigger
than the electric quadrupolar one and that pheomponent
of the total reduced rate is the most important component for
the first four atoms of the & series while the rest of the
series is dominated by thecontribution.
The core polarization rate is not shown separately in Fig.
5 because it is very small. According to our calculation
Rep/g2 is about 10° (sK)~* for all the 5d elements. This
is to be compared with the calculations of Akai that gave
ch/gﬁ only a few percent of the total rate for all the nuclei
studied®?® In particular, for the 8 series its value is be-
tween 10°° (sK™*) and 10 * (s K).l.38 Because the;, S Ta W R 0s I B A Hg
core orbitals have a smabl-like minor component there
should be an analogous contribution to the core polarization FIG. 6. Total density of states at the Fermi energy of tlie 5
rate as the one considered here. However, taking into aGtoms in bcc Fe, obtained in calculations of the 0-, 1-, and 2-shell
count the results for the-like core orbitals, the,,, contri-  clusters.

15.0 T T T
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6.0 ‘ ‘ ‘ ‘ 25.0
—-=== 0shells m|
5.0 1 shell Calculated
——=— 2shells 20.0 | O Experimental 1
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& b 100 o |
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50 k .
1.0 | O
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Lu Hf Ta W Re Os Ir Pt Au Hg Lu Hf Ta W Re Os Ir Pt Au Hg
FIG. 7. Total reduced relaxation rataﬁgﬁ of the &d atoms in FIG. 9. Experimenta(Ref. 39 and calculated total reduced re-

bcc Fe, obtained in calculations of 0-, 1-, and 2-shell clusters. laxation ratesR/gﬁ of the 5&d atoms in bcc Fe, obtained in calcula-
tions of 1-shell clusters.

2
Our. results 0fRmaq/ G for the 1'Sh?” cluster agree very consequence, the local DOS at the Fermi energy finally de-
well with the results obtained by Akai, for the same clustercroases and hence the magnetic relaxation rate also de-

size?®?®as can be seen in Fig. 8. However, there are somgaases,

differences in the second part of thd Series that have tobe  pynk et al. have recently given a critical review for the
ascribed to the inclusion of the spin-orbit coupling interac-nyclear spin-lattice relaxation rate of transition impurities in
tion, neglected within the calculations of Akai. Hence, onere®® and have compared them with the results of Akai
has to conclude from Fig. 8 that the influence of the spinet al19-212526|n Fig. 9 we compare the calculated reduced
orbit on the relaxation rate is surprisingly small. As a consetelaxation rates with the experimental values quoted by these
guence, the explanation for the variation of the magnetiauthors. It can be seen that the calculated rates reproduce the
relaxation rate with the atomic number given by AR&P  trend of the experimental rates of thel Smpurities in Fe

can also be applied to the present calculations: There is quite well, but they are about 3-5 times smaller than the
competition between two factors. The Fermi contact interacexperimental ones. Akait al. suggested that the discrepan-
tion [one of the main interactions inherently included in thecies between theoretical and experimental relaxation rates of
relativistic Hamiltonian, Eq(9)] increases with the impurity transition impurities in Fe are caused by geometric lattice
valence, which increases with the atomic number in tHe 5 relaxation around the impurities because the discrepancies
series, and hence also the magnetic relaxation rate. On thgcrease with the size of the impurity->*>?°However,
other hand, the impurity potential gets deeper as the impuritffunk et al. have indicated that in the case of Fe seen as an
valence increases. The deeper potential pulls down the peak®purity in the Fe host lattice the discrepancy is similar to
of the local DOS associated with the antibonding states ofhose for the other 3d impurities in P& Furthermore, the
both spin directions until they pass the Fermi level. As astatic hyperfine fields calculated by Akaf®*®and also by
Ebertet al*° are in a reasonable agreement with the experi-
mental fields. All this suggests that there is a relaxation

6.0 mechanism that it is not taken into account in the calcula-
tions. In particular, the theory does not deal with excitations
50 [ . :::ie“t i~ 1 of the host lattice(phonons and magnonsnd Funket al.
> have shown that the neglect of the Weger mechafisie,,
40 the excitation of virtual magnons by relaxing nuclei, leads to
- a systematic underestimation of the relaxation rates of tran-
2 sition impurities in FE°4?43They added phenomenological
= 30 estimates for the virtual magnon contribution by Masuda et
& al1%44 1o the results of Akai for transition impurities in Fe
T 20f and found a better agreement with the experimental
1 results??4339The agreement between the calculated rates by
Akai et al. and the experimental rates decreases with the size
10 X . . " ; .
of the impurity and for 8 impurities the agreement is quite
satisfying. This is in line with the work of Funét al,*° who
0-0Hf T W Re O I Pt Ay He demonstrgted thatl, in gener_al, th(_a magnon contribution in-
creases with the size of the impurity.
FIG. 8. Magnetic reduced relaxation rats,,,/g2 of the 5d Another effect influencing the relaxation rate that has not

atoms in bce Fe, obtained in the present calculations of the 1-shebeen accounted for in our calculations nor in the previous
cluster and by Aka{Refs. 25 and 26 ones are the domain wall effects. For ferromagnetic systems
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the relaxation rates depend strongly on the intensity of theurned out to be non-negligible with respect to the magnetic
applied magnetic field, but converge to a value at high fieldspne in Lu, Hf, Ir, and Au. The core polarization reduced
the so-called high-field limit value. The calculated rates corvelaxation ratech/gﬁ was found to be very small, of the
respond to this high-field limit. The low-field relaxation rates order of 10 ® (sK)~ . Again, previous work of other au-
often exceed the high-field rates by an order of magnitudethors also indicated that this rate is very snfafi® The trend
Several authors suggested that this field dependence at layf the angular momentum resolves, (p, andd) parts of the
fields and also the difference between low- and high-fieldnagnetic reduced ra@mag/gﬁ follows the trend of the cor-
rates is caused by the fact that the nuclei in the neighborhoogsponding local angular DOS Bt . Thep conduction elec-

of a domain wall relax much faster than those within a dOTronS were found to be the main source for the electric qua-
main. Klein claimed that this mechanism should not be alejrupo|ar rate and the trend of thrEcomponent of this rate

to explain, for instance, a field dependence within up to 0.5 Tollows again the trend of the loc@l DOS. Potential relax-
for Co in Fe(Ref. 43 or 1.2 T for Fe in Fe(Ref. 39 as an  ation of the first shell of neighboring Fe atoms has a non-
effect of domain wall$” Besides, according to some experi- negligible influence on the relaxation rates. On the other
ments, the relaxation rate in a single domain is also fielthand, inclusion of the potential relaxation for the second

dependent at low fieldS shell, in addition to the first shell, leads only to marginal
changes. The agreement with previous calculations by Akai,
IV. CONCLUSIONS done in a scalar relativistic way, is very gotd® with the

We have derived fully relativistic expressions for the elec-differences ascribed to the effect of the spin-orbit coupling
tric quadrupolar and thg core polarizatlijon nuclear spin—latticémeracnon' The calculated total rates are about 3-5 times
relaxation rates in the framework of the SPR KKR GI:smaller than the experimental ones, mainly due to the neglect

method. These expressions are valid for paramagnetic é)sf the contribution of the magnons in the thedty.

well as magnetically ordered systems. We have done corre-
sponding fully relativistic and spin-polarized KKR GF cal-
culations for the angular momentum resolved components of This work was funded by the DF®eutsche Forschungs-
the total rateR, the magnetic rat®,4, the electric quadru- gemeinschajt within the programTheorie relativistischer
polar rateRg, and the core polarization raf., of 5d im-  Effekte in der Chemie und Physik schwerer Elemente
purities in bcc Fe. I.C. wishes to thank the European Comission for a grant of
We have found in our calculations that the magnetic rethe TMR networkAb-initio Calculations of Magnetic Prop-
laxation rate is bigger than the electric quadrupolar rate, as #rties of Surfaces, Interfaces and Multilayensthe Fourth
was found in previous nonrelativistic investigations, exceptProgram for Research and Technological Development and
for Hf. In addition, the electric quadrupolar relaxation rateto thank all the members of H.E.’s group for their hospitality.
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