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Relativistic theory for the nuclear spin-lattice relaxation rate in ferromagnetic metals
with application to 5d impurities in bcc Fe

I. Cabria, M. Deng, and H. Ebert
Institut für Physikalische Chemie, Universita¨t München, Butenandtstraße 5-13, D-81377 Mu¨nchen, Germany

~Received 16 November 1999!

A relativistic theory for the nuclear spin-lattice relaxation rate (TT1)21 in ferromagnetic metals is presented
that includes in particular the electric quadrupolar and the core polarization contributions. Because it is for-
mulated within the framework of the spin-polarized relativistic version of the Korringa-Kohn-Rostoker method
of band structure calculations it can be applied in principle to any kind of system. Here an application of the
theory to 5d impurities~Lu–Hg! in ferromagnetic bcc Fe is presented. While the core polarization contribution
turned out to be negligible in all cases, the electric quadrupolar contribution was found to be of the same order
of magnitude as the magnetic dipolar one in the case of Lu, Hf, Ir, and Au.
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I. INTRODUCTION

The magnetic hyperfine field and the nuclear spin-latt
relaxation rateR are the most prominent hyperfine intera
tion parameters for ferromagnetic solids. While the fi
quantity is a ground-state property, the second one is rel
to low-lying excitations at the Fermi level. Previous theor
ical investigations for paramagnetic systems have shown
if electron-electron interaction is ignored,R can be expresse
in terms of the squared angular momentum resolved den
of states~DOS! at the Fermi energy. For that reason t
relaxation rate is a very sensitive probe for the electro
structure around the Fermi level, and a small perturbation
the DOS could easily changeR by an order of magnitude
This implies that a realistic and reliable approach must
used to calculateR, a goal that has been reached in seve
steps during the last decades.

Heitler and Teller were the first who discussed the m
prominent spin-lattice relaxation mechanism in metals:
magnetic interaction between the nuclei and the conduc
electrons.1 The theory of the nuclear spin relaxation proce
and the main driving mechanisms were clarified in the f
lowing years2–7 and after that, a lot of estimations and ca
culations of the relaxation rate were done. On the basis
scalar relativistic linear muffin-tin orbitals~LMTO! band
structure calculations, several authors calculated the re
ation rate in pure cubic and hexagonal closed packed~hcp!
transition metals.8–15 Masudaet al.16 made estimations fo
the relaxation rate of 3d, 4d, and 5d transition impurities in
bcc Fe, based on the theoretical work by Moriya.17 Kanamori
and co-workers madeab initio calculations of relaxation
rates of impurities in bcc Fe.18 These calculations were im
proved and extended by Akaiet al. using the spin-polarized
Korringa-Kohn-Rostoker ~KKR! Green’s function ~GF!
method for impurity defects.19–21 John et al. developed a
fully relativistic formulation for the magnetic dipolar contr
bution toR in the case of ordered paramagnetic systems
did corresponding calculations for transition metals using
LMTO method.22 Ebert et al. developed a similar formula
tion making use of the KKR Green’s function scheme
describe the underlying electronic structure. As could
PRB 620163-1829/2000/62~21!/14287~10!/$15.00
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demonstrated by an application to the alloy syst
AgxPt12x , this allows us in particular to deal with disordere
alloys that lack the Bloch translation symmetry.23 The tre-
mendous flexibility of the Green’s function approach h
also been exploited by Akaiet al., who improved their pre-
vious works by taking into account the distortion of the fir
shell of host Fe atoms around the impurity by means of
technique developed by the Ju¨lich group.24 In addition, scalar
relativistic effects were included properly to treat heavy e
ments also.25,26 This approach allowed us to determine t
magnetic dipolar contribution to the nuclear spin-lattice
laxation rate Rmag of impurities with atomic numberZ
51 –57 and 72–89 in bcc Fe using the conventional non
ativistic formulas forRmag. The importance of relativistic
effects for the spin-lattice relaxation rates in solid transitio
metal systems has been demonstrated by Ebert and Ak27

These authors did nonrelativistic and relativistic KKR G
calculations for pure transition metals and alloys in the pa
magnetic state. In addition they extended the fully relativis
formalism for the magnetic dipolar contribution toR to deal
with magnetic solids as well.

In the following an application as well as an extension
this fully relativistic formalism is presented that accounts
the electric quadrupolar and core polarization contributio
RQ and Rcp , respectively, to the nuclear spin-lattice rela
ation rate in magnetic metals. Because it is based on
spin-polarized and fully relativistic~SPR! KKR Green’s
function scheme it is applicable for paramagnetic and fer
magnetic systems and also for pure metals, impurities
metals, or disordered alloys. This is demonstrated by an
plication of this theory to 5d impurities in ferromagnetic bcc
Fe, for which the distortion of the surrounded host atoms
been accounted for using the technique developed by
Jülich group.24 The SPR KKR GF method for impurity sys
tems is described shortly in Sec. II A, and in Sec. II B t
formula for the relaxation rate is explained briefly. The fo
mulas of RQ and Rcp are derived, in Secs. II C and II D
respectively. In Sec. III the results of applying this theory
calculate the relaxation rate of 5d impurities in bcc Fe are
presented and discussed.
14 287 ©2000 The American Physical Society
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II. THEORETICAL APPROACH

A. Electronic structure calculations

To describe the underlying electronic structure of the s
tems investigated their band structure has been calculate
means of the spin-polarized relativistic KKR method. The
calculations were based on the relativistic version of the s
density functional theory~SDFT!. Within this approach, the
single-site Dirac-Kohn-Sham equation

S 2 icaW •¹W 1
c2

2
~b2I !1V~rW ! DC~rW,E!5EC~rW,E! ~1!

has to be solved as a first step. The quantitiesa i andb are
the usual Dirac matrices28 and I is the 434 identity matrix.
The potentialV(rW) consists of the Hartree termVH(rW), the
spin-averaged partV̄xc of the exchange-correlation potentia
and its spin-dependent part,Vspin . This last term is given by

Vspin5bsW •
dExc

dmW
, ~2!

wheremW is the spin magnetization.29 To set up the exchange
correlation potential, the parametrization given by Vos
Wilk, and Nusair has been used.30

Within the SPR KKR formalism the correspondin
Green’s function for a pure system~host! is given by31

G0~rW,rW8,E!5 (
LL8

ZL~rWn ,E!tLL8
nm ZL8

3
~rWm8 ,E!

2(
L

ZL~rW, ,E!JL
3~rW. ,E!dnm , ~3!

where the functionsZL andJL are the regular and irregula
solutions of Eq.~1!, respectively. The indexL5(k,m) rep-
resents the spin-orbitk and magneticm quantum numbers
ZL ~and alsoJL) is a bispinor of the form28

ZL~rW,E!5S gk~r ,E!xk
m~ r̂ !

i f k~r ,E!x2k
m ~ r̂ !

D , ~4!

wheregk and f k are the major and minor radial wave fun
tions, respectively, andxk

m is the spin-angular function

xk
m~ r̂ !5 (

ms561/2
C~ l 1

2 j ;m2ms ,ms!Yl
m2ms~ r̂ !xms

. ~5!

If Vspin in Eq. ~1! is not zero, thenk is not a good quantum
number. This applies to ferromagnetic systems and for
case, the former functions must be replaced by

ZL~rW,E!5(
L8

ZL8L~rW,E!5S gk8k~r ,E!xk8
m

~ r̂ !

i f k8k~r ,E!x2k8
m

~ r̂ !D , ~6!

i.e., ZL has no unique spin-angular character but it is a
perposition of various coupled contributions with spi
angular characterL8.32 Fortunately it is sufficient to restric
this coupling toL85(k,m) and (2k21,m).

Finally, the quantitytLL8
nm in Eq. ~3! is the so-called scat

tering path operator that represents all multiple scatte
-
by
e
in

,

is

-

g

events in the system in a self-consistent way.31 Accordingly,
the indicesn and m label the various atomic sites in th
system.

With the Green’s function of the host system set up us
Eq. ~3!, the corresponding Green’s function for an impuri
system can be set up by application of the Dyson equat
The perturbation caused by the impurity atoma is then ex-
pressed by the perturbed Green’s functionGa(rW,rW8,E) of the
atoma:

Ga~rW,rW8,E!5G0~rW,rW8,E!

1E d3r 9G0~rW,rW9,E!DV~rW9!Ga~rW9,rW8,E!,

~7!

where DV(rW)5V(rW)2V0(rW) is the potential perturbation
caused by the impurity atom.25 For the extent of the potentia
distortionDV(rW) three different cases have been consider
the impurity atom alone~0 shells!, the impurity plus the first
shell of nearest-neighbor Fe atoms~1 shell!, and the impurity
plus the first and the second shells of nearest-neighbo
atoms~2 shells!. For the three sets of calculations presen
below, we have allowed perturbed potentials for every at
of the corresponding clusters, which consist of 1, 9, and
atoms, respectively. A geometric relaxation around the
purities has not been allowed. Finally, the angular mom
tum expansion for the valence band states has been trunc
at l max52 and the occupiedf levels have been included i
the core part~see below!.

Apart from the additional complexity introduced by work
ing on a fully relativistic level, the technique to deal with E
~7! is just the same as for the scalar relativistic case.
further details we therefore refer to reader to Refs.24 and

B. Formulas for the total and magnetic nuclear spin-lattice
relaxation rate

The nuclear spin-lattice relaxation process in metals
due to magnetic~dipolar! and electric~quadrupolar! interac-
tions between the nuclei and the conduction electrons.
hyperfine HamiltonianHh f that describes, in a relativistically
correct form, the interaction between these electrons an
nucleus with spin momentIW, gyromagnetic ratiogn , and
electric quadrupolar momenteQ is given by

Hh f5Hmag1HQ , ~8!

with

Hmag5eaW •AW 5egn\aW •
IW3rW

r 3
, ~9!

HQ52(
i , j

e2Q

6I ~2I 21!
@ 3

2 ~ I i I j1I j I i !2 IW2d i j #
3xixj2r 2d i j

r 5
.

~10!

Adopting the spin-temperature approximation the relaxat
time T1 is given as34
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1

T1
5

(m,m8Wm,m8~Em2Em8!
2

2(mEm
2

, ~11!

with

Wm,m85
2p

\ (
k,k8

z^m8k8uHh fumk& z2kBTd~Ek2EF!

3d~Ek82EF!. ~12!

For a Zeeman spectrum,Em are the nuclear Zeeman ene
gies, andWm,m8 is the total transition probability per un
time for a transition from the nuclear Zeeman levelum& to
the level um8&. The state vectorsuk& and uk8& represent oc-
cupied and unoccupied electronic valence levels, resp
tively. Because there are no cross terms between the m
netic and the electric interactions, the total relaxation r
R5(TT1)21 can be divided into two distinct contributions

R5Rmag1RQ5S 1

TT1
D

mag

1S 1

TT1
D

Q

. ~13!

Ebert et al. derived an expression forRmag, in a Zeeman
spectrum, on the basis of the spin-polarized relativistic KK
Green’s function scheme23 using Eqs.~3!, ~7!, ~9!, ~11!, and
~12!:

Rmag5
4pkBgn

2\

p2 (
L,L8,L9,L-

Im tLL8~EF!

3Im tL9L-~EF!I L-L~EF!I L9L8
* ~EF!, ~14!

where the matrix elementsI LL8 are given by

I LL8~E!5E d3rWZL
3~rW,E!H2

elZL8~rW,E!, ~15!

with

H2
el5

e

2r 3
~rW3aW !2. ~16!

The matrix elementI LL8(E) can be split in a conventiona
way into a product of radial and angular matrix eleme
Rkk8(E) andALL8 , respectively, of the form23,28

Rkk8~E!5E @gk~r ,E! f k8~r ,E!1gk8~r ,E! f k~r ,E!#dr,

~17!

Akk8
mm852E dVxk

m*
~rW3sW !2

r
x2k8

m8 . ~18!

The matrix elementI LL8(E) is then finally given as

I LL8~E!52
ie

2
Rkk8~E!Akk8

mm8 . ~19!

Rmag given in Eq.~14! accounts only for the direct relax
ation processes ignoring the electron-electron interact
Because of the relativistic form of the hyperfine interacti
operator@Eq. ~9!#, it accounts for the conventional nonrel
tivistic Fermi contact, spin-dipolar, and orbital contributio
c-
g-
e

s

n.

to the relaxation rate in one single term. Finally, one sho
mention that the scattering path operatortLL8(EF) in Eq.
~14! is site diagonal~the corresponding index has been su
pressed!, representing the local electronic properties of t
nuclear site. For the applications to be presented here,
will be the site of the impurity atom.

C. Formula for the electric quadrupolar nuclear spin-lattice
relaxation rate

The electric quadrupolar relaxation rate of many nucle
normally expected to be smaller than the magnetic one,
for this reason, usually not much attention is paid to it. B
embergen and Rowland pointed out that the electric qua
polar interaction should be included in the total relaxati
rate, because for certain nuclei this rate could be as impor
as the magnetic rate.3 Mitchell was one of the first who mad
numerical approximations of the electric quadrupolar rel
ation rate in metals using approximate Bloch wa
functions.4 Johnet al. published a relativistic formula for the
electric quadrupolar relaxation rate~and also for the mag-
netic rate! in cubic metals in the framework of the relativist
LMTO method and applied it to transition metals.22 Marken-
dorf et al. adapted and applied this formula to calculate t
electric relaxation rate in hcp transition metals.12–15Here, we
present a derivation of the relativistic formula of this ra
within the SPR KKR GF scheme.

The electric quadrupolar relaxation rate comes from
interaction between the electric quadrupolar moment of
nucleus and the electric field gradient of the charge den
of the valence electrons at the nucleus. The HamiltonianHQ
of this interaction can be written in the convention
form:4,12,34

HQ52
3e2Q

2I ~2I 21!r 3 (
m522

2

~21!mT2m~ IW !V22m~u,w!,

~20!

with

T20~ IW !5A2

3
~3I z

22 IW2!, ~21!

T261~ IW !57~ I 6I z1I zI 6!, ~22!

T262~ IW !5I 6
2 , ~23!

V2m~u,w!5A2p

15
Y2

m~u,w!. ~24!

Nuclei with I<1/2 do not have an electric quadrupolar m
menteQ, and hence the rateRQ vanishes. Using Eqs.~11!,
~12!, and~20!–~24! we obtain, for a Zeeman spectrum,

RQ5
pkB

\

~2I 13!

5~2I 21! S 3e2Q

4I D 2

~W114W2!, ~25!

with the elementsWm given by12
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Wm5(
k,k8

u K k8UV2m~u,w!

r 3 UkL U2

d~Ek2EF!d~Ek82EF!.

~26!

We have derived these elements in the SPR KKR Gree
function scheme, by means of Eqs.~3!–~7! and ~20!–~24!,
obtaining

Wm5
1

p2 (
L,L8,L9,L-

Im tLL8~EF!

3 lm tL9L-~EF!JL-L~EF!JL9L8
* ~EF!, ~27!

where the corresponding matrix elementsJLL8 are given by

JLL8~E!5E d3rWZL
3~rW,E!

V2m~u,w!

r 3
ZL8~rW,E!

5Skk8~E!Bkk8
mm8m , ~28!

with the radial and the angular parts, respectively, equal

Skk85E ~gkgk81 f k f k8!
dr

r
, ~29!

Bkk8
mm8m

5E dVxk
m* V2m~u,w!xk8

m8 . ~30!

In Eq. ~29! we have supressed the argumentsr and E. The

angular partBkk8
mm8m can be further expressed in terms

Clebsch-Gordan coefficients:

Bkk8
mm8m

5A 2l 811

6~2l 11!
C~2l 8l ;000!@C~ l 1

2 j ;m2 1
2

1
2 m!

3C~ l 8 1
2 j 8;m82 1

2
1
2 m8!C~2l 8l ;mm82 1

2 m2 1
2 !

1C~ l 1
2 j ;m1 1

2 2 1
2 m!C~ l 8 1

2 j 8;m81 1
2 2 1

2 m8!

3C~2l 8l ;mm81 1
2 m1 1

2 !#. ~31!

At this point it is interesting to compare the magnetic and
electric quadrupolar relaxation rates for a Zeeman spectr
Using Eqs. ~14! and ~25!, and the values ofgn (gnmn
5gn\), I, andQ for the 5d elements in Table I, and takin
into account the dimensions of the matrix elementsI LL8(EF)
andJLL8(EF), then it is possible to estimate the ratior be-
tween these two relaxation rates as

r 5
RQ

Rmag
;S eQ

a0gnmnI D
2

;1023–1024, ~32!

where a0 is the Bohr radius. In this estimation the crud
supposition has been made that the dimensionless matri
ements of both relaxation mechanisms are of the same o
of magnitude. In contrast to that assumption, the dimens
less matrix elementsI LL8(EF) of Rmag are found, in our
calculations of 5d elements, to be about 10–1024 times those
of RQ , JLL8(EF). This means that for certain casesRQ
could be bigger thanRmag or at least, not negligible with
respect to the magnetic rate.
’s

e
m.

el-
er

n-

D. Formula for the core polarization relaxation rate

Yafet and Jaccarino suggested that the core polariza
~CP! mechanism should contribute to the magnetic relaxat
rate just as it does for the Knight shift.7 These authors de
rived an expression for the core polarization relaxation r
Rcp and made corresponding estimations for V, Nb, and
Since the exchange energies responsible for the CP me
nism are small compared with the transition energies, t
did a first-order perturbation type calculation for the CP ra
This approach led to a Korringa-like relation between the
Knight shift and the CP relaxation rate, with the correspon
ing Korringa ratio depending on the relative weight of t
various symmetry-resolved orbitals withd character. Hence
using reasonable estimations for the hyperfine fields to
culate that ratio, they calculated the CP rate and obtai
values of 1.65, 3.74, and 54.2 (s K)21 for V, Nb, and Pt,
respectively.

Asadaet al. have calculatedRcp of some cubic transition
metals using LMTO band structure calculations.9 To calcu-
late the CP rate they used the approximate formula sugge
by Yafet and Jaccarino. In this formula, the CP rate is p
portional toH cp

2 , the square of the nonrelativistic core p
larization hypefine coupling constant, defined as

Hcp5
8p

3
mB(

s

rs↑~0!2rs↓~0!

md
, ~33!

where the sum runs over alls-like core electrons with density
rsms

(rW) and spin characterms , and md is the number of

unpairedd electrons. They found values forRcp between
0.076 and 0.0007 (s K)21 for V, Nb, Mo, Rh, Pd, Ag, and
Cu. For V and Nb, they obtained 0.076 and 0.068 (s K)21,
respectively. Asada and Terakura did also scalar relativi
LMTO band structure calculations for hcp transitio
metals.10 They used the same approach to calculateRcp and
obtained values smaller than 0.12 (s K)21 for Sc, Ti, Y, Zr,
and Tc. Akai calculated the spin-nuclear relaxation rate
impurities in bcc Fe by means of a KKR GF method f
impurity systems.25,26 In particular, he considered a cluste
composed by the impurity atom and the first nearest-eig

TABLE I. Nuclear spin moment, nuclearg factor gn ~a dimen-
sionless quantity! and electric quadrupolar constantQ in barns (eQ
is the electric quadrupolar moment! of the two most abundants nu
clei of the 5d atoms with a nonvanishing nuclear moment. T
number of nucleons of the nuclei is indicated. For Hf, Re, Ir, a
Hg there are two isotopes.

Lu Hf Ta W Re
175 177 179 181 183 185 187

I 7/2 7/2 9/2 7/2 1/2 5/2 5/2
gn 0.639 0.227 -0.142 0.677 0.236 1.275 1.28
Q 5.68 4.50 5.10 3.44 0 2.33 2.22

Os Ir Pt Au Hg
189 191 193 195 197 199 201

I 3/2 3/2 3/2 1/2 3/2 1/2 3/2
gn 0.488 0.097 0.107 1.219 0.098 1.012 -0.37
Q 0.80 0.78 0.70 0 0.59 0 0.42
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neighbor Fe atoms. He also included the relativistic effe
but only in the scalar relativistic approximation, neglecti
the spin-orbit coupling, and applied the same approach
calculateRcp as Asadaet al.9 Finally, Markendorfet al. did
not recalculateRcp ,14 but used the values obtained by Asa
and Terakura.10

All these authors used nonrelativistic expressions to
culateRcp . In contrast to this, we have formulated a cons
tent and relativistic formula forRcp , using a scheme simila
to that of Yafet and Jaccarino.7 For this purpose, only the
contribution of thes-like core electrons to the core polariz
tion effect has been considered. This is the most impor
contribution because the hyperfine matrix element is
largest for s-like core electrons.

Treating the exchange interaction as a first-order per
bation, an unoccupied one-electron orbitaluCk& of an atom,
mixed with the s orbitals of the core electrons of that ato
has the following form:

uCk&5uCk
0&1(

ns
Cns,kuCns

0 &5uCk
0&1AuCk

0&, ~34!

with

Cns,k5
^Cns

0 uDvxcuCk
0&

EF
02Ens

0
. ~35!

The sum runs over the principal quantum numbersn of the
s-like core orbitals of the atom, including the spin up a
down orbitals for each value ofn, and the index 0 denote
the unperturbed orbitals. For the magnetic rate one has,

Rmag54pkBgn
2\(

k,k8
z^Ck8uH2

eluCk
0& z2d~Ek2EF!

3d~Ek82EF!. ~36!

The squared quantity of Eq.~36! is given by

z^Ck8uH2
eluCk

0& z25 z^Ck8
0 uH2

eluCk
0& z21 z^Ck8

0 uA†H2
eluCk

0u& z2,
~37!

where the cross terms do not appear for cubic systems.7

The first and the second terms are leading toRmag and
Rcp , respectively. The second term can be further develo
and the core polarization rate has, then, the expression

Rcp5
4pkBgn

2\

p2 (
L,L8,L9,L-

Im tLL8~EF!

3Im tL9L-~EF!ML-L~EF!ML9L8
* ~EF!. ~38!

Here the matrix elementMLL8 is

MLL8~E!5E d3rW ZL
3~rW,E!A3H2

elZL8~rW,E!5 (
n51

N

(
ms521/2

11/2

3Vkksnms
~E!dmms

dkks
Rksnmsk8~E!A

ksk8

msm8 , ~39!

whereLs indicates thes-like core levels, which havel 50
and henceLs5(ks ,ms)5(21,61/2), N is the number of
occupieds-like core shells, and the other quantities are d
fined by
s,

to

l-
-

nt
e

r-

,

en

d

-

Vknksms
~E!5E ~gkgnksms

1 f k f nksms
!Dvxcr

2dr, ~40!

Rnksmsk8~E!5E ~gnksms
f k81gk8 f nksms

!dr. ~41!

The angular matrix elementA
ksk8

msm8 is the same as that give

in Eq. ~18!. The magnitudeDvxc is the change of the
exchange-correlation energy due to a difference of only
electron between the electrons with spin up and down, o
other words, to the magnetization due to only one electro35

Finally, it should be noted that Go¨tz and Winter36 devel-
oped a scheme to account for the influence of electr
electron interactions on the nuclear spin-lattice relaxat
rate by solving a corresponding Bethe-Salpeter equation
the dynamical spin susceptibility. However, this approa
did not include the core electrons and was formulated i
scalar relativistic way. A corresponding relativistic extensi
that include the core electrons should lead to similar res
as those given here.

III. APPLICATION TO 5 d IMPURITIES IN bcc Fe:
RESULTS AND DISCUSSION

In the following the results of the calculations of the va
ous contributions to the spin-lattice relaxation rate of 5d im-
purities in bcc Fe will be presented. To facilitate comparis
of the results for the various elements, the rates will, in g
eral, be given in a isotope-independent way. For the m
netic ratesRmag andRcp this means, for example, that the
will be normalized by the factor 1/gn

2 .
In Figs. 1 and 2 we present the local density of sta

~DOS! at the Fermi energy of the 5d impurities and their
magnetic reduced relaxation ratesRmag/gn

2 obtained in our
calculations. Both figures refer to calculations for a 0-sh
cluster, i.e., only the impurity atom has been embedded s
consistently into the bcc Fe host lattice. Comparing th
figures we can see that the trends of the different compon
of Rmag/gn

2 (s, p, andd) reflect, in general, the trends of th

FIG. 1. Total,s, p, and d local density of states at the Ferm
energy of the 5d atoms in bcc Fe, obtained by calculations for
0-shell cluster.
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corresponding components of the local DOS. Thes compo-
nent of Rmag/gn

2 ~and also of the local DOS! increases
slowly along the 5d series when increasing the atomic num
ber and it is very small. On the other hand, thep component
decreases rapidly along the 5d series, as thep DOS, while
the d component follows the more complicated behavior
the locald DOS.

In contrast to this behavior, one notes that the sequenc
the components of the local DOS with respect to their m
nitude differs from that of the components of the magne
reduced rate. Although the locald DOS is bigger than thep
DOS ~except for Lu, where both are similar! the d compo-
nent ofRmag/gn

2 is only bigger than thep component for the
late 5d transition metals.

To understand this fact we have to take into account
variation of the corresponding radial matrix elemen
Rkk8(EF) @see Eq.~17!# with the atomic number. These ar
represented in Fig. 3 by the so-called hyperfine fieldsBh f ,k .
These fields are proportional to the normalized radial ma
elementsR̄kk(EF) that are obtained from Eq.~17! but with
the wave functions normalized to 1 within the atomic cell.

FIG. 2. Magnetic reduced relaxation ratesRmag/gn
2 of the 5d

atoms in bcc Fe, obtained by calculations for a 0-shell cluster.

FIG. 3. Hyperfine fields fors1/2, p1/2, p3/2, d3/2, andd5/2 of the
5d atoms in bcc Fe, obtained by calculations for a 0-shell clus
The hyperfine field fors1/2 has been shifted down by 30 MG.
f

of
-

c

e

x

contrast to the paramagnetic case,23,27 Bh f ,k depends, for the
magnetic case, also on the magnetic quantum numberm. For
the discussion that follows below, however, it is sufficient
fix m to an arbitrary value (m511/2 has been chosen here!.
In addition, only the fields diagonal ink are considered and
only the l dependence is of importance for ou
considerations.27,37

The results shown in Fig. 3 allow us to undertand why t
trends of the components of the reduced magnetic rate do
reflect those of the components of the local DOS: the hyp
fine fields modulate the variation of the locals, p, andd DOS
with the atomic number. AlthoughBh f ,s is large, thes com-
ponent of the reduced magnetic rate is quite small beca
the locals DOS is very small.Bh f ,p andnp decrease rapidly
when increasing the atomic number, and hence also thp
reduced magnetic rate decreases. It can be seen in Fig. 3
Bh f ,s is between 3 and 5 times bigger thanBh f ,p for the 5d
transition metals, but at the same time is the locals DOS
between 12 and 4 times smaller than the localp DOS. These
two facts explain that thep rate is much bigger than the s ra
at the beginning of the 5d series and that thes rate is similar
or even bigger than thep rate for the rest of the 5d series.
Bh f ,d increases with the atomic number and rises from 0.6
3.2 MG. This hyperfine field is between 80 and 20 tim
smaller thanBh f s , but on the other hand, thed DOS is be-
tween 10 and 100 times bigger than thes DOS. This explains
why thes rate is bigger than thed rate for the first four atoms
but much smaller for the other atoms.

In Fig. 4 we show the isotope-independent electric q
drupolar relaxation rateRQ /NQ of 5d impurities in bcc Fe
obtained by calculations for the 0-shell cluster. The norm
ization factorNQ contains all the quantities ofRQ in Eq. ~25!
that depend on the type of isotope and is given by

NQ5S Q

I D 2 2I 13

2I 21
. ~42!

Application of this normalization factor allows us to demo
strate the influence of the components of the local DOS
the electric quadrupolar rate. However, one has to keep
mind that in the experiments the measured relaxation

r.

FIG. 4. Isotope-independent electric quadrupolar relaxat
ratesRQ /NQ of the 5d atoms in bcc Fe, obtained by calculation
for a 0-shell cluster.
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includes the electric quadrupolar rateRQ and that the rateRQ

of the nuclei withI<1/2 is zero.
The s component does not appear because it is zero,

to the selection rules emerging from Eq.~31!. Similar to
Rmag/gn

2 , the components ofRQ /NQ follow also the trends
of the corresponding components of the local DOS. As
the magnetic rate, thep component is the most importan
component for the first four atoms of the 5d series, while for
the rest thed component dominates. Thep component of
RQ /NQ decreases rapidly when increasing the atomic nu
ber, following thep DOS. Although thed DOS is always
bigger than thep DOS, except in Lu, thed component of
RQ /NQ does not exceed thep component in a correspondin
way. For instance, thed DOS is between 11 and 25 time
larger than thep DOS for Re–Au, but thed component of
RQ /NQ is only between 0.6 and 15 times thep component.
This is explained again qualitatively by taking into accou
that every component of the electric quadrupolar rate is
only proportional to the square of the component of the D
but also to the square of the radial integralSkk given in Eq.
~29!. As one can conclude from the nonrelativistic count
parts of the magnetic hyperfine fieldsBh f ,k for non-s elec-
trons (lÞ0),27 these vary in parallel withSkk along the 5d
transition series. In summary, one finds at the beginning
the 5d series a relatively highp DOS atEF that leads to a
dominating and large contribution toRQ /NQ .

There could be an interaction between occupied~unoccu-
pied! p, d, and unoccupied~occupied! f valence levels of the
5d impurity. However, for these types of impurities the 4f
shell is a closed shell and for that reason the 4f electrons of
the 5d impurities have been included as core electrons.
the other hand, the unoccupiedf valence levels of these im
purities are expected to contribute to the density of state
the Fermi level only in a negligible way. As a consequen
their contribution to the various relaxation rates have b
ignored. Among others, this is justified by comparing o
results with those of Akai.25

To discuss the trend of the total relaxation rateR along
the 5d series, one has to combine the magnetic dipolar
electric quadrupolar contribution. The latter will be repr
sented by the quantityRQ /gn

2 that depends now on the sp
cific isotope. The corresponding values forgn , I, andQ are
given in Table I. The resulting ratesRmag/gn

2 and RQ /gn
2

obtained for 0-shell clusters are shown in Fig. 5. One no
that the magnetic reduced rateRmag/gn

2 is in general bigger
than the electric quadrupolar one and that thep component
of the total reduced rate is the most important component
the first four atoms of the 5d series while the rest of the
series is dominated by thed contribution.

The core polarization rate is not shown separately in F
5 because it is very small. According to our calculatio
Rcp /gn

2 is about 1026 (s K)21 for all the 5d elements. This
is to be compared with the calculations of Akai that ga
Rcp /gn

2 only a few percent of the total rate for all the nucl
studied.25,26 In particular, for the 5d series its value is be
tween 1023 (s K21) and 1024 (s K)21.38 Because thep1/2
core orbitals have a smalls-like minor component there
should be an analogous contribution to the core polariza
rate as the one considered here. However, taking into
count the results for thes-like core orbitals, thep1/2 contri-
ue
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r

d
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r
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bution to the core polarization rate will be even smaller. T
means that the formulation for the CP contribution toRmag
presented here leads to a much smaller CP rate than
conventional approach and for that reason it can safely
neglected. Thus, it can be seen from Fig. 5 that the m
contribution to the total reduced rate comes from the m
netic interaction, except for Hf. Besides,RQ /gn

2 is not neg-
ligible respect toRmag/gn

2 for Lu and Hf, because their big
values ofQ, and for Ir, and Au, because their small values
gn

2 . As a consequence, the electric quadrupolar reduced
laxation rate of Lu, Hf, Ir, and Au relatively amounts to b
28%, 59%, 29%, and 36% of the total reduced rate.

The influence of the cluster size on the local DOS and
total reduced rateR/gn

2 is considered in Figs. 6 and 7, respe
tively. In line with the variation of the DOS, the total rat
decreases in the first part of the 5d series when allowing
perturbed potentials also on the first neighboring shell. In
second part of the series, it increases. The local DOS of
1-shell cluster is not very different of that of the 2-she
clusters and therefore also the corresponding total r
scarcely differ.

FIG. 5. Total, magnetic, and electric quadrupolar reduced re
ation rates of the 5d atoms in bcc Fe obtained in calculations of th
0-shell cluster.

FIG. 6. Total density of states at the Fermi energy of thed
atoms in bcc Fe, obtained in calculations of the 0-, 1-, and 2-s
clusters.
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Our results ofRmag/gn
2 for the 1-shell cluster agree ver

well with the results obtained by Akai, for the same clus
size,25,26 as can be seen in Fig. 8. However, there are so
differences in the second part of the 5d series that have to b
ascribed to the inclusion of the spin-orbit coupling intera
tion, neglected within the calculations of Akai. Hence, o
has to conclude from Fig. 8 that the influence of the sp
orbit on the relaxation rate is surprisingly small. As a con
quence, the explanation for the variation of the magne
relaxation rate with the atomic number given by Akai20,25

can also be applied to the present calculations: There
competition between two factors. The Fermi contact inter
tion @one of the main interactions inherently included in t
relativistic Hamiltonian, Eq.~9!# increases with the impurity
valence, which increases with the atomic number in thed
series, and hence also the magnetic relaxation rate. On
other hand, the impurity potential gets deeper as the impu
valence increases. The deeper potential pulls down the p
of the local DOS associated with the antibonding states
both spin directions until they pass the Fermi level. As

FIG. 7. Total reduced relaxation ratesR/gn
2 of the 5d atoms in

bcc Fe, obtained in calculations of 0-, 1-, and 2-shell clusters.

FIG. 8. Magnetic reduced relaxation ratesRmag/gn
2 of the 5d

atoms in bcc Fe, obtained in the present calculations of the 1-s
cluster and by Akai~Refs. 25 and 26!.
r
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consequence, the local DOS at the Fermi energy finally
creases, and hence the magnetic relaxation rate also
creases.

Funk et al. have recently given a critical review for th
nuclear spin-lattice relaxation rate of transition impurities
Fe,39 and have compared them with the results of Ak
et al.19–21,25,26In Fig. 9 we compare the calculated reduc
relaxation rates with the experimental values quoted by th
authors. It can be seen that the calculated rates reproduc
trend of the experimental rates of the 5d impurities in Fe
quite well, but they are about 3–5 times smaller than
experimental ones. Akaiet al. suggested that the discrepa
cies between theoretical and experimental relaxation rate
transition impurities in Fe are caused by geometric latt
relaxation around the impurities because the discrepan
increase with the size of the impurity.19–21,25,26However,
Funk et al. have indicated that in the case of Fe seen as
impurity in the Fe host lattice the discrepancy is similar
those for the other 3d impurities in Fe.39 Furthermore, the
static hyperfine fields calculated by Akai19,20,26and also by
Ebertet al.40 are in a reasonable agreement with the exp
mental fields. All this suggests that there is a relaxat
mechanism that it is not taken into account in the calcu
tions. In particular, the theory does not deal with excitatio
of the host lattice~phonons and magnons! and Funket al.
have shown that the neglect of the Weger mechanism,41 i.e.,
the excitation of virtual magnons by relaxing nuclei, leads
a systematic underestimation of the relaxation rates of tr
sition impurities in Fe.39,42,43They added phenomenologica
estimates for the virtual magnon contribution by Masuda
al.16,44 to the results of Akai for transition impurities in F
and found a better agreement with the experimen
results.42,43,39The agreement between the calculated rates
Akai et al.and the experimental rates decreases with the
of the impurity and for 3d impurities the agreement is quit
satisfying. This is in line with the work of Funket al.,39 who
demonstrated that, in general, the magnon contribution
creases with the size of the impurity.

Another effect influencing the relaxation rate that has
been accounted for in our calculations nor in the previo
ones are the domain wall effects. For ferromagnetic syste

ell

FIG. 9. Experimental~Ref. 39! and calculated total reduced re
laxation ratesR/gn

2 of the 5d atoms in bcc Fe, obtained in calcula
tions of 1-shell clusters.
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the relaxation rates depend strongly on the intensity of
applied magnetic field, but converge to a value at high fie
the so-called high-field limit value. The calculated rates c
respond to this high-field limit. The low-field relaxation rat
often exceed the high-field rates by an order of magnitu
Several authors suggested that this field dependence a
fields and also the difference between low- and high-fi
rates is caused by the fact that the nuclei in the neighborh
of a domain wall relax much faster than those within a d
main. Klein claimed that this mechanism should not be a
to explain, for instance, a field dependence within up to 0.
for Co in Fe~Ref. 45! or 1.2 T for Fe in Fe~Ref. 39! as an
effect of domain walls.45 Besides, according to some expe
ments, the relaxation rate in a single domain is also fi
dependent at low fields.45

IV. CONCLUSIONS

We have derived fully relativistic expressions for the ele
tric quadrupolar and the core polarization nuclear spin-lat
relaxation rates in the framework of the SPR KKR G
method. These expressions are valid for paramagneti
well as magnetically ordered systems. We have done co
sponding fully relativistic and spin-polarized KKR GF ca
culations for the angular momentum resolved component
the total rateR, the magnetic rateRmag, the electric quadru-
polar rateRQ , and the core polarization rateRcp of 5d im-
purities in bcc Fe.

We have found in our calculations that the magnetic
laxation rate is bigger than the electric quadrupolar rate, a
was found in previous nonrelativistic investigations, exc
for Hf. In addition, the electric quadrupolar relaxation ra
en

ct
e
s,
-

e.
ow
d
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-
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-
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-
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t

turned out to be non-negligible with respect to the magne
one in Lu, Hf, Ir, and Au. The core polarization reduce
relaxation rateRcp /gn

2 was found to be very small, of the
order of 1026 (s K)21. Again, previous work of other au
thors also indicated that this rate is very small.25,26The trend
of the angular momentum resolved (s, p, andd) parts of the
magnetic reduced rateRmag/gn

2 follows the trend of the cor-
responding local angular DOS atEF . Thep conduction elec-
trons were found to be the main source for the electric q
drupolar rate and the trend of thep component of this rate
follows again the trend of the localp DOS. Potential relax-
ation of the first shell of neighboring Fe atoms has a n
negligible influence on the relaxation rates. On the ot
hand, inclusion of the potential relaxation for the seco
shell, in addition to the first shell, leads only to margin
changes. The agreement with previous calculations by A
done in a scalar relativistic way, is very good,25,26 with the
differences ascribed to the effect of the spin-orbit coupl
interaction. The calculated total rates are about 3–5 tim
smaller than the experimental ones, mainly due to the neg
of the contribution of the magnons in the theory.39
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