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We have simulated, using parallel tempering, the three-dimensional Ising spin glass model with binary
couplings in a helicoidal geometry. The largest lattite=20) has been studied using a dedicated computer
(the SUE machine We have obtained, measuring the correlation length in the critical region, strong evidence
for a second-order finite-temperature phase transition, ruling out other possible scenarios like a Kosterlitz-
Thouless phase transition. Precise values forittaad # critical exponents are also presented.

[. INTRODUCTION In this work, we shall perform a detailed study of the
critical behavior of the Edwards-Anderson model. The nu-
The study of spin-glasséeyond their own physical rel- merical simulations have been in part performed on a dedi-
evance, has opened new ways to statistical physics. Theated computefthe SUE machine; see below for more de-
solutior? of the Sherrington-Kirkpatrick model, which de- tails), on which we have been able to thermalize 6920
scribes spin glasses residing in infinite dimensions, allowedamples of 2®lattices at the critical temperature, the largest
the introduction of a new set of ideas that have found applithermalized lattices in previous studies at similar tempera-
cations in very different contexts, like optimization, neural tures being 1& For the thermalization deep inside the criti-
networks, and so on. Yet the applicability of the rich infinite- cal region we have used the Monte Carlo exchange method
dimensional physical picture to describe the low-temperaturéalso known as parallel temperintf—18
physics of three-dimensional spin-glass materiéike, for Our study shares with Ref. 12 the definition of the finite-
instance, CuMn, AgMn, and E&r, _, S; see Ref. Bis still lattice correlation lengff and a heavy use of the finite-size
controversiaf: Furthermore, a rather simpler questiomhat  scaling(FSS ansatZ° Yet both analyses are rather different.
is the nature of the spin-glass phase transitiedtas not yet Reference 12 uses the techniques of Ref. 21 to extrapolate
found a fully satisfactory answer. Although the very exis-the measures taken on lattices which are small compared
tence of a phase transition has been questioned, from theith the correlation length, to the thermodynamic limit. On
experimental side, there is now a wide consensus on its exhe other hand, we use the quotient methodihere mea-
istence, as signaled by the behavior of the nonlineasures taken on two lattices are compared at the temperature
susceptibility? at which the correlation length measured in units of the lat-
On the other hand, the theoretical approach is almost limtice size coincides for both.
ited to the Monte Carlo simulation of the Edwards-Anderson For the particular problem of spin glasses, the method of
model, given the enormous difficulties found when usingRef. 12 has the advantage of not requiring the thermalization
field-theoretic renormalization group technig@d®ecent nu-  of large lattices at large correlation lengtftee dynamical
merical simulations*! have found indications of a finite- critical exponent for the three-dimensional Ising spin glass in
temperature phase transition, which has been confirmed ithe critical region is near sevéh On the other hand, the
Ref. 12. However, the possibilityof a Kosterlitz-Thouless- quotient method offers the possibility of extremely precise
like phase transitiorfan exponential divergence of the cor- determinations of critical exponents and temperatures, and a
relation length at the critical temperature followed by a linerather transparent control of scaling corrections, also in dis-
of critical points could not be excluded? Even so, critical-  ordered system&. The main drawback for its use on spin-
exponent estimates that could be compared with experimentgass systems is that it requires measures taken on several
were obtaine'® by assuming power-law divergences at thepairs of lattice of widely different sizes at the critical tem-
critical temperaturdi.e., nonKosterlitz-Thouless behavipr  perature, which is rather difficult due to the above-mentioned
However, the statistical errors of those estimatB3% for  thermalization problem&
the correlation-length exponentand 15% in the anomalous We obtain very precise estimates for critical exponents
dimensiony) and that of the critical temperature estimatewhich are compared with the estimates of other groups and
seem poor compared to similar computations for orderedvith available experimental results. The issue of scaling cor-
systems, which is due to the numerical difficulties encoun+ections will be discussed, and a rough estimatesofthe
tered in the simulation of the Edwards-Anderson model. Incorrection-to-the-scaling exponéntill be obtained.
fact, the issugcrucial for accurate calculations of critical An additional bonus of our computational strategy is that
exponentsof the scaling corrections has not been addressetigh-quality data for the spin-glass correlation length are
in previous works, except for Ref. 12. generated on large lattices at the critical region. This allows
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for a detailed comparison with the archetypical model dis-The volume of the system ¥=L2, o; are Ising variables,
playing a Kosterlitz-Thouless phase transition, ¥¥model  J;; (uncorrelated quenched disorgleare +1 with equal
in two dimensiongfor which a cluster method is available, probability, and the sum is extended to all pairs of nearest
making the simulation almost costles$he finite-size scal- neighbors. Due to the quenched nature of the disorder, one
ing behavior of both models is not only quantitatively but needs to perform first the thermal average for a given con-
qualitatively different. We therefore present strong evidencdiguration of theJ;; (denoted by(- - -) hereaftey and later
against Kosterlitz-Thouless behavior on the Edwardsthe average over the disorder realizati@vhich will be in-
Anderson model. dicated by an overbarThe choice of helicoidal boundary
Finally, we also consider the question of the appropriateonditions is mandatorgfor us) because the hardware of the
cumulant for the study of the spin-glass phase transition. IIBUE machine has been optimized for them.
Ref. 26 it has been argued that the Binder cumélamorks We have simulated the smaller lattice sizes=(5 and 10)
poorly, in marked contrast with ordered systems. It is alsdn parallel machines built of Pentium-Pro process(irse
claimed that the cumular® introduced in Ref. 28 for the RTNN machinesusing multispin coding. We have checked
study of systems without time-reversal symmeftsge Eq. that theL=10 andL=5 lattices are properly thermalized
(7)] does a better job. We shall show that it suffers fromwith a standard heat bath methédithout parallel temper-
similar scaling corrections but of opposisggn so that its  ing). The larger lattice Il =20) has been simulated in the
crossings happens at temperatures higher than the critic8UE machine using parallel tempering and the heat bath.
point. This is rather advantageous from the point of view of ~We shall describe in depth the thermalization test and the
thermalization. On the other hand, its measures are fatal statistics achieved in the next section.
noisier than the ones of the finite-lattice correlation length,
and it also suffers from stronger corrections to scaling. A. Observables

The large statistics needed to obtain precise results on . .
It is well known that observables in spin glasses need to

larger lattices has been possible by the use of a dedicateéd defined i  real replicas. that is. f disord
computer based on programmable components. Details abo  defined in terms of real replicas; that is, for every disorder
ealization, one considers two thermally independent copies

the machine can be seen in Refs. 29-31. SUE, for spin uﬂ- 1) o(2) :
date engine, consists of 12 boards attached to a PC. Each 8f the system{s;”’,s;”’}. Observables are most easily de-
these boards contains programmable devices and memoriég‘,ed in terms of a spinlike field, the so-called overlap field:
allowing the simulation of eight lattices of size up to g =sMs® @
=60. The presence in each board of a component dedicated L
to random-number generation allows the use of the heat bathhe total overlap is the lattice average of te
algorithm. During the simulation, Schwinger-Dyson

equation®®>3 were used to check for the correctness of the 1

random-number sequences. Periodically, the spin configura- q= v E i, Q)
tions are downloaded to the PC, where the measures are '

performed and stored. When using the parallel temperingvhile the (nonconnectedspin-glass susceptibility is
scheme, the PC controls the mechanism, interchanging the _

configurations corresponding to adjacent temperatures when Xq:V(q2>_ (4)
appropriate. The update speed of the whole system is 0.22

ns/spin, 100 times faster than one Alpha EV5, 600 MHz!N finite—siz_g scaltqling studies, it is usefull to ha\r/]e dim.enlsion—
processor running multispin code. less quantities that go to a constant value at the critical tem-

The layout of the rest of this paper is as follows. In the Perature. A standard example of such a quantity is the Binder

next section we introduce the model, the definition of theCumulant
observables, and we review the basis of our finite-size scal- i
ing method. Section Il is devoted to analyzing the statistical _3 1 (a%)
quality of our data; in particular we discuss the thermaliza- 947575 ﬁz'
tion, the parallel tempering parameters, and our choice of the q
number of samples versus the number of steps inside or®ther example is thg, cumulant® which measures the lack
sample. The discussion of our numerical results followsof self-averageness of the spin-glass susceptibility:
where we compare them with previous numerical simula-

©)

tions and experiments. We end the paper with the conclu- (g%)2—(g?)?
sions. g2=? (6)
(a%)
Il. MODEL, OBSERVABLES, AND THE FSS METHOD Of course, any smooth function of these two dimensionless

quantitiesg, andg, is dimensionless itself. In Ref. 28 it was
We have studied the three-dimensional Ising spin glasproposed to study the cumula@t
defined on a cubic latticeL(X L X L) with helicoidal bound-

ary conditions’* whose Hamiltonian is 92
= : (@)
2—-20,
H=—D oo . (1)  because it exhibits a significant reduction of scaling correc-

(i) tions. It has also been argued in Ref. 26 tlatan be ex-
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tremely helpful for the characterization of the spin-glassthe FSS region, wherg.=L, &L=0O(1), while on a
phase, but this issue is out of the scope of this work. Howprgken-symmetry phase on a lattice larger than the scale of
ever, all the above-defined dimensionless quantdiesg,,  the fluctuations£/L=O(LP’?). Consequently, if one plots
andG require the evaluation of a four-point correlation func- &/ for several lattice sizes as a function of temperature, the
tion, which is statistically a much noisier quantity than a gitferent graphics will cross at the critical temperature.
two-point one. One observable of this kind is the correlation Finally, a very useful quantity is the value of the Hamil-
length, which is defined in terms of the two-point correlationygnian, which is used to measure the derivatives of a generic

function, and its quotient with the lattice size is again dimen-gpservabled with respect to the inverse temperatye
sionless. We therefore are faced with the problem of defining

a correlation length on a finite lattice. In Ref. 19 it was 95(0)=(OH P+ O0H @) —(ON(HB+H @), (13
shown how to do it, from the following considerations. Let

us callC(r) the correlation function of the overlap field, where the(1) and (2) superscripts refer to the two replicas

needed to construct the opera@rSimilarly one generalizes

1 the standard reweighting meth&tiwhich allows one to ex-

C(r)= v > (a4, (8)  trapolate the measures takengato neighboring values:
i

<OeAﬁH (1)+ABH (2)>

and C(k) its Fourier transform. Notice that the spin-glass (0) - (14)
T ~ L . . Bt+AB eABH(1)+AﬁH(2)

susceptibility is simplyC(0). Then, inside the critical region ( Vs

on the paramagnetic side and in the thermodynamical limit,

one has B. FSS method

1 We have used the quotient methdn order to compute
C(k)x o |Ik|<&7, (99  the critical exponents. We recall briefly the basis of this

k?+&°2 method. LetO be a quantity diverging in the thermodynami-
A cal limit ast o (t=T/T.—1 being the reduced tempera-
19C ture). We can write the dependence ©fon L andt in the
=—— (10 following way?®
Cak?| o_y
- L
On a finite lattice, the momentum is discretized, and one O(L,t)=L*o" Fo( £ t)) +O(L™2 &), (19

used? a finite-differences approximation to E(.0),
whereF4 is a (smooth scaling function and | w) is the
corrections-to-scaling exponefg.g., w is the largest nega-
- -1 tive eigenvalue of the renormalization group transformation
C(km) This expression contains the not directly measurable term
(12) &(o,t), but if we have a good definition of the correlation

where x4 was defined in Eq(4) and ky, is the minimum  length in a finite box¢(L,t), Eq. (15 can be transformed
wave vector allowed for the used boundary conditionsjnto
which in our case i%,,= (27/L,27/L2,27/L3). Of course,
Eqg. (10) holds on the thermodynamic limitL&¢€) of the
paramagnetic phase. As we do not use connected correlation
functions, ¢ has sense as a correlation length only Tor ) ) )
>T,. whereGg is a smooth function related with, andF, and

We can study the scaling behavior of the finite-latticethe termé.. has been neglected because we are simulating
definition (11) on a critical point, where the correlation func- deep in the scaling region. We consider the quotient of mea-
tion decays(in D dimensions asr —(P—=2+7) The behavior Sures taken in latticels andsL at the same temperature:

of the Fourier transform of the correlation function for large

2 1 Xq

¢ :4[sin2(kxm/2)+ SirA(KY/2) + sirA(k2/2)]

&Ly

+O(L™%) |, (16

O(L,t)=LXO’V{GO(

. . ) C O(sL,t)
L in three dimensions is given by Qo(s,L,t) = Lo (17)
. L sin(kr) ’
C(k)~f drri=7 v (12 Then, the main formula of the quotient method is
0
. _ =50+ O(L™®); 18
and one finds thag,/C(k.) goes to a constant value, larger Q°|Q§‘S (L) (18)

than unity, becausék,,||=O(1/L). Furthermore &/L tends i.e., we compute the reduced temperattret which the
to a universal constant at a critical poifiike the Binder correlation length verifieg(sL,t)/&(L,t)=s, and then the
cumulant g4). Moreover, on a broken-symmetry phase, quotient betwee®(sL,t) andO(L,t). In particular, we ap-
where the fluctuations of the order parameter are not criticaply formula (18) to the overlap susceptibilityy,, and theg
one hasy,=O(V), while é(km):(f)(l)_ Therefore the full ~ derivative of the correlation lengthizé, whose associated
description of the scaling behavior ¢fL is as follows. Let ~€exponents are

¢, be the correlation length on the infinite lattice: in the

paramagnetic phase, fars>£.., one hasé/L=0(1/L). On Xope= 1+, (19)
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X, =(2=n)v. (20 TABLE |. Statistics used. For each sample, we Npg hgat
a bath sweeps and perford, measures. Each sample is previously
thermalized withN g iterations. In the. =20 lattice, we carry out a

Notice that _< can be measured with great precision
Q0|ngs 9 P parallel tempering step after each measure.

because of the large statistical correlation betw®nand

Q. Itis very important that in order to use E(L8) one | Ng Nug N,
does not need the infinite-volume extrapolation for the criti

cal temperature but, instead, a reweighting methaicru- 5 40000 200 000 200
cial to fine-tune theQ,=s condition. From Eq.(18) one 10 40000 500000 500
directly extractseffectiveexponentgi.e., lattice-size depen- 20 6920 6 553 600 400

deny and later on checks for scaling corrections. Another
advantage of the quotient method is that the crossing tem-

perature foré/L (i.e., the temperature for whicR,=s) _ )
scales as on averaged over the disorder. In order to have meaningful

results from this extrapolation, it is crucial that/A, be a
tcrEssinng—w—l/u, (21) reasonably small number. The valuesNyfand Ng for our
s simulations are shown in Table I. We remark that we need
so that one works a factdr ™ closer to the critical point @lsO to balance the heat bath steps, done by the dedicated

than with other FSS methods, such as measuring at the maxppachine SUE, and the parallel tempering steps done by the
mum of (say) the connected susceptibility. This puts consid-PC which handles SUEduring this time SUE is stopped
erably less stress on the quality of the reweighting method. It With our simulation strategyN,;<Ng), it is crucial to
should also be mentioned that one could modify E®),  check that the system is sufficiently thermalized while taking
and measure at the Crossing point of a cumulant Sum as measures. A V.ery efficient algo”th{g for thermal|Z|ng spin-
ga, Or G. The resuits should coincide, up to scaling correc-glass systems is parallel temperitfg:®In order to obtain an

tions, but given the better statistical quality of the measure§fficient parallel tempering we must select a rang@ofal-
of £/L, the error bars would significantly grow. ues and the number of intervals in this range. The range is

fixed in the following way: The faster decorrelation time is at
the lowestB; as we run a fixed number of iteration between
. STATISTICAL QUALITY OF THE DATA parallel tempering sweeps, this number must be greater than

When designing a simulation for a disordered model, ondhe autocorrelation time at thjs value. For these values of
needs to carefully consider how many measures will be takef#, away from the transition point, the correlation lengtrs
on each sampley,, and the number of samples to be simu-(@lmost L independent. Running around “18weeps and
lated Ng. Two competing effects need to be balanced forconsidering that the correlation time grows &3° we use
this. In the first place, from the error analysis of a genericfinally Bmin=0.70. The largest value must be a bit over the

observable, one has ¢ is a Gaussian number of zero mean crossing point, which we had estimated previously around
and unit variance 0.88. We use theiB = 0.92. The number of3 values is

fixed by controlling that the probability of changes in the

202 parallel tempering is significant. This number dependd.on

oY1,0 ..
_) (220 and forL=20 we have used 12 values @ obtaining a

N, probability of transition around 30%. All the systems are a
] ) ] significant time in the lowep values, where decorrelation is
whereos is the variance between different samples of thefagter.
exact thermal averages, o is the disorder-averaged vari- A first thermalization check is summarized in Fig. 1. The
ance for the measures on a sample, agds an averaged measures taken on a sample are divided into 20 blocks, and
(integratedl autocorrelation timé® This shows that the opti- the correlation length and the spin-glass susceptibility are
mum value ofN; cannot be much greater than@r{o/0§.  calculated with these blocks. No thermalization bias can be
On the other hand, when evaluating nonlinear functions ofesolved after the fifth block at the lowest temperature. How-
thermal averages, as in Eq4.3) and (14), a bias of order ever, the first ten blocks have been discarded for safety.
27o/N; is presentfor the reweighted measures a bias poly-  Yet the results in Fig. 1 do not really show that we are
nomial in 275 /N, is expectell If \Ngis not much smaller collecting a reasonable number of measures on each sample
than N,, the statistical errors will shrink enough so as to(so that 2/N;, is smal), because the time needed to obtain a
uncover the bias, and we have two conflicting goals for thehermalized measure is not straightforwardly linked to the
optimization of N, andNg. In order to solve the dilemma, time needed to obtain an independent measure. In fact, the
we have followed the same procedure as in Ref. 24 to elimitatter is related with the time needed to overcome free-
nate the bias. One first evaluates the nonlinear function witlenergy barriers, in order to visit different relevant regions of
the full set of data, then divides the data in two sets of lengtiphase spact,while the former is related to the time needed
N,/2 for each of which the function is evaluated, and the twoto reachat least onerelevant region of phase space, because
results are averaged, and the procedure is repeated, dividitige huge number of samples avoids a biased estimation. A
the data in four sets di|/4 measures. We thus have three better test comes from the smoothness of the bias-corrected
estimates of the nonlinear function, with bias of orded,1/  reweighting extrapolation. In Fig. 2 we show the extrapo-
2/N;, and 4N, , respectively. The three estimates are used ifated values¢/L, g4, and x4 from each of theg; of the
a quadratiqin 1/N,) extrapolation to I,=0, which is later  parallel temperindalternatively in dotted and dashed lines

(@Monte Carlo_ @) 2_ Nis ( ‘Té,o +
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FIG. 1. Mean values of the susceptibility and
correlation length in th& =20 lattice for succes-
sive bins of 40 measures, for seve@alvalues in
L=20 (from top to bottom they correspond to
B11, Bg, Ba, and By, respectively. We remark
that 811= Bmax=0.92 corresponds to our coldest
temperature. In the following, we discard the first
ten bins and average the remaining ten.
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The mismatch between different extrapolations is muchwould keep a finite value, presumably growing with lower-
smaller than the error bars, which is due to the fact that théng temperatures. On a finite latticgL. would be a decreas-
same samples are being simulated forglivalues. In fact, ing function ofL on the paramagnetic phase, and in the criti-
for N,—cc the mismatch would completely disappear, while cal region(from the critical temperature to lower ongs
the statistical error bars would not be smaller unléss  would have anL-independent value, according to the FSS
grows[see Eq(22)]. ansatz, up to scaling corrections. Therefore, in the most eco-
_ Finally, along the simulation the Schwinger-Dyson equa-nomic scenario, where scaling corrections are small, the dif-
tions have been checked finding a perfect agreement. Fogrentg/L curves do not cross, but simply merge in the low-
instance, 'Fhe equation in Ref. 33 holds within a 0.04% for thecemperature region.
L =20 lattice. In Fig. 3, we ploté/L for the Edwards-Anderson model in
three dimensions and for the¢Y model in two dimensions
(whose simulation is almost costless in computer timave
see that while th&XY model follows quite closely the above
Once a set of measures of the finite-lattice correlatiorsketched behavior, the Edwards-Anderson model has a very
length is at our disposal, the first question one can answeareat crossing. Therefore, one may conclude that the
regards the nature of the spin-glass phase transition in threé€osterlitz-Thouless scenario is ruled out by the data, unless
dimensions. Indeed, if the Kosterlitz-Thouless scenario wascaling corrections of a very exotic nature were present.
realized,&/L on theL— o0 limit would be zero for tempera- Notice, that for the two-dimension&Y model, ¢/L and
tures higher than the critical one, and then it would abruptiythe Binder cumulant behave in the same way asd T.*°
jump at the critical temperature to a finite value. For lower This is an interesting point to compare the behavior of the
temperatures, since the system would still be critical, itg, andG cumulants, defined above, wigiiL. From Fig. 4, it

IV. NUMERICAL RESULTS
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FIG. 3. Correlation length in units of the lat-
tice size for the 3D Edwards-Anderson model
(left) and for the 2DXY model, which displays a
Kosterlitz-Thouless phase transition.
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is clear that the measures f@ are much noisier than for malize, at the critical point, lattices larger thar=20 with
&/L. Moreover, also the scaling corrections are larger, apresent technological capabilities.
made evident by the large shift between the crossing of the 5 Nevertheless, it is possible to obtain information abeut
and 20 lattices, and the crossing of the 10 and 20 latticestudying the quotients of cumulan, at the point where
The scaling corrections f@ andg, are of opposite signs, so &/L crosses. At this pointQg should be 1 up to scaling
that one can safely conclude that the real critical point iscorrections and can be parametrized as
bracketed by this two sets of crossing points.

For the critical exponents, our results found using Eq. Qg=1+AgL ™. (23
(18) are displayed in Table II. Finite-size scaling corrections
cannot be resolved within errors, especially if one realize$efore presenting our results far, let us recall the values
that the results for the (5,10) pair are anticorrelated with thebtained by Palassini and CaracciSlavorking in the ther-
results for the (10,20) paitthe measure i =10 appears Modynamical limit. They computed two different scaling-
once in the numerator and the other time in the denominatagorrection exponent& and 6. These exponents are obtained
of Eq. (18)]. We take as our final estimate our results for thefrom the asymptotic formulas that hold in the scaling region
(10,20) pair, which can be compared with the most recentn the thermodynamic limit, in the paramagnetic side
experimental measures and with other numerical calculations
displayed in Table Ill. It would be very interesting to check X=AEM1+0(£74)], €=B|t| [1+0O(t|))].
that systematic errors due to finite-size effects are smaller (24)
than the statistical ones. This would require one to param- .
etrize the scaling corrections, and therefore to have precisg"€ can check from the above expressions thatw and
measures on a wide range of lattice sizes. Unfortunately, thé= @?- From their values oA, ¢, andv one readily obtains
huge dynamical critical exponent of the available simulation

. : . o _q 2t0.2 _ 0.47
algorithms for this model makes it extremely difficult to ther- o(A)=13103, »(6,1)=0.78'9% (29
g4 _I TTT | TTTT | TTTT | TTTT | TTTT | I%/I‘ TTTT | TTTT | TTTT | TTTT | TTTT | TTT I/7 G
L -4 o030
0.750 — ]
i = o0
0725 = ]
i = _ FIG. 4. Cumulantsg, and G for lattices L
r7 —0.28 =5,10,20 vs inverse temperature.
0.700 |—%t i
K eL=5 1
- © L=10 |
0.675 u =20 — 0.27
_I | | 1111 | 1111 | 1111 | 1111 | 11 1) -I 111 | 1111 | 11 1) | 11 1) | 111 | 111 I_
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TABLE 1I. Critical exponents computed from the crossing
points of ¢/L for (L,2L) pairs.
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TABLE IIl. Critical exponents from experiments and numerical
simulations.

Authors

L T v 7 @ distribution/ v 7
material
(5,10 1.1349) 2.397) —0.3539)
(10,20 1.135810) 2.1515) —0.337115 This work *J 2.1515 -—0.337115
[(10,20) pait
Gunnarssoret al.? FeysMngsTiO; 1.6915 —0.367)
Palassini +] 1.82) —0.264)
. ) and Caracciol®
We have fitted our measures fgy andg, following Eq. o o _
(23). We have four points for adjusting three parameters, buvzggaé't’;fz:‘anz 5 Gaussian 2.009 0.386)
we obtain the value Berg and Janké& +J — —0.374)
w=0.84f%§§, (26) Kjlwashlma .arld Young +J . 1.7(3) —0.355)
Iniguez, Parisi, Gaussian 1) —
with x2=0.6. See Fig. 5 for more details. Although the sta- and Ruiz-Lorenzd
tistical error is rather large, the compatibility of our result Ogielski +J 131  -0.225
with those displayed in E¢25) is reassuring given the dif- Bhatt and Yound' =J 133 -0.32
ference in the methods. It should be also mentioned that th&hatt and Yound Gaussian 1@  —0.402

so-called analytic scaling corrections have been neglected;
which is, a posteriorj seen to be a reasonable procedire. °Reference 5.

Finally, we compare our estimate for the critical tempera-"Reference 12.
ture [T,=1.138(10) with that of Ref. 12[T,=1.156(15),  “Reference 9.

the agreement being very good. dReference 11.
‘Reference 7.

Reference 8.

9Reference 13.
PReference 14.
iReference 15.

V. DISCUSSION AND CONCLUSIONS

We have obtained precise measures of #h@nd v expo-  tices will be needed to make sure that the systematic errors
nents. Moreover, we have done a study of the corrections tare as small as the statistical ones.
scaling; in particular we have computed the value of the Our comparison with the most recent experimental Yata
corrections-to-scaling exponentin a good agreement with is good. The difference between theexponent measured in
the value reported in Ref. 12. We remark that our statisticagxperiment and our reported value is 0.046(21), roughly two
error for then exponent is 5 times smaller than the experi-standard deviations. We note that theexponent from nu-
mental error for this exponent and 3 times less than thénerical simulations is systematically above the experimental
smallest statistical error found in the literature. The fact thatlata. The difference for the exponent is 0.023(71).
our estimates for the (5,10) lattices and the (10,20) pair The clear crossing of thé/L curves, for different lattice
coincide within statistical errors gives us some confidence osizes, supports heavily a finite-temperature second-order
the smallness of the finite-size effects, although larger latphase transition and excludes a Kosterlitz-Thouless-like sce-
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81— E
6F —
4 —
R e oo e -
E 3 FIG. 5. Quotients of the cumulangs andg,
0 1 1 . . —w . _
0.0 0.5 1.0 15 20 25 for pairs (,2L) as.functlons qiL (lower fig
© ure). The corrections-to-scaling exponent has
R - I - I : been obtained minimizing thg? function [see
1.06 | | | | | A Eg. (23)] using the full covariance matrix. The
’ . 0 =L 3 horizontal dotted line(in the upper figurg is
04— e T = given by the value of¢? at the minimum plus 1.
1.02 - e -
1.00 54:1 __________________________ = 6_254____ —;
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