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Critical behavior of the three-dimensional Ising spin glass
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We have simulated, using parallel tempering, the three-dimensional Ising spin glass model with binary
couplings in a helicoidal geometry. The largest lattice (L520) has been studied using a dedicated computer
~the SUE machine!. We have obtained, measuring the correlation length in the critical region, strong evidence
for a second-order finite-temperature phase transition, ruling out other possible scenarios like a Kosterlitz-
Thouless phase transition. Precise values for then andh critical exponents are also presented.
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I. INTRODUCTION

The study of spin-glasses,1 beyond their own physical rel
evance, has opened new ways to statistical physics.
solution2 of the Sherrington-Kirkpatrick model, which de
scribes spin glasses residing in infinite dimensions, allow
the introduction of a new set of ideas that have found ap
cations in very different contexts, like optimization, neu
networks, and so on. Yet the applicability of the rich infinit
dimensional physical picture to describe the low-tempera
physics of three-dimensional spin-glass materials~like, for
instance, Cu Mn, Ag Mn, and Eux Sr12x S; see Ref. 3! is still
controversial.4 Furthermore, a rather simpler question—what
is the nature of the spin-glass phase transition?—has not yet
found a fully satisfactory answer. Although the very ex
tence of a phase transition has been questioned, from
experimental side, there is now a wide consensus on its
istence, as signaled by the behavior of the nonlin
susceptibility.5

On the other hand, the theoretical approach is almost
ited to the Monte Carlo simulation of the Edwards-Anders
model, given the enormous difficulties found when usi
field-theoretic renormalization group techniques.6 Recent nu-
merical simulations7–11 have found indications of a finite
temperature phase transition, which has been confirme
Ref. 12. However, the possibility10 of a Kosterlitz-Thouless-
like phase transition~an exponential divergence of the co
relation length at the critical temperature followed by a li
of critical points! could not be excluded.12 Even so, critical-
exponent estimates that could be compared with experim
were obtained7–15 by assuming power-law divergences at t
critical temperature~i.e., non-Kosterlitz-Thouless behavior!.
However, the statistical errors of those estimates~10% for
the correlation-length exponentn and 15% in the anomalou
dimensionh) and that of the critical temperature estima
seem poor compared to similar computations for orde
systems, which is due to the numerical difficulties enco
tered in the simulation of the Edwards-Anderson model.
fact, the issue~crucial for accurate calculations of critica
exponents! of the scaling corrections has not been addres
in previous works, except for Ref. 12.
PRB 620163-1829/2000/62~21!/14237~9!/$15.00
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In this work, we shall perform a detailed study of th
critical behavior of the Edwards-Anderson model. The n
merical simulations have been in part performed on a de
cated computer~the SUE machine; see below for more d
tails!, on which we have been able to thermalize 69
samples of 203 lattices at the critical temperature, the large
thermalized lattices in previous studies at similar tempe
tures being 163. For the thermalization deep inside the cri
cal region we have used the Monte Carlo exchange met
~also known as parallel tempering!.16–18

Our study shares with Ref. 12 the definition of the finit
lattice correlation length19 and a heavy use of the finite-siz
scaling~FSS! ansatz.20 Yet both analyses are rather differen
Reference 12 uses the techniques of Ref. 21 to extrapo
the measures taken on lattices which are small compa
with the correlation length, to the thermodynamic limit. O
the other hand, we use the quotient method,22 where mea-
sures taken on two lattices are compared at the tempera
at which the correlation length measured in units of the
tice size coincides for both.

For the particular problem of spin glasses, the method
Ref. 12 has the advantage of not requiring the thermaliza
of large lattices at large correlation lengths~the dynamical
critical exponent for the three-dimensional Ising spin glass
the critical region is near seven23!. On the other hand, the
quotient method offers the possibility of extremely prec
determinations of critical exponents and temperatures, a
rather transparent control of scaling corrections, also in d
ordered systems.24 The main drawback for its use on spin
glass systems is that it requires measures taken on se
pairs of lattice of widely different sizes at the critical tem
perature, which is rather difficult due to the above-mention
thermalization problems.25

We obtain very precise estimates for critical expone
which are compared with the estimates of other groups
with available experimental results. The issue of scaling c
rections will be discussed, and a rough estimate ofv ~the
correction-to-the-scaling exponent! will be obtained.

An additional bonus of our computational strategy is th
high-quality data for the spin-glass correlation length a
generated on large lattices at the critical region. This allo
14 237 ©2000 The American Physical Society
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14 238 PRB 62H. G. BALLESTEROSet al.
for a detailed comparison with the archetypical model d
playing a Kosterlitz-Thouless phase transition, theXY model
in two dimensions~for which a cluster method is available
making the simulation almost costless!. The finite-size scal-
ing behavior of both models is not only quantitatively b
qualitatively different. We therefore present strong eviden
against Kosterlitz-Thouless behavior on the Edwar
Anderson model.

Finally, we also consider the question of the appropri
cumulant for the study of the spin-glass phase transition
Ref. 26 it has been argued that the Binder cumulant27 works
poorly, in marked contrast with ordered systems. It is a
claimed that the cumulantG introduced in Ref. 28 for the
study of systems without time-reversal symmetry@see Eq.
~7!# does a better job. We shall show that it suffers fro
similar scaling corrections but of oppositesign, so that its
crossings happens at temperatures higher than the cr
point. This is rather advantageous from the point of view
thermalization. On the other hand, its measures are
noisier than the ones of the finite-lattice correlation leng
and it also suffers from stronger corrections to scaling.

The large statistics needed to obtain precise results
larger lattices has been possible by the use of a dedic
computer based on programmable components. Details a
the machine can be seen in Refs. 29–31. SUE, for spin
date engine, consists of 12 boards attached to a PC. Ea
these boards contains programmable devices and memo
allowing the simulation of eight lattices of size up toL
560. The presence in each board of a component dedic
to random-number generation allows the use of the heat
algorithm. During the simulation, Schwinger-Dyso
equations32,33 were used to check for the correctness of
random-number sequences. Periodically, the spin config
tions are downloaded to the PC, where the measures
performed and stored. When using the parallel tempe
scheme, the PC controls the mechanism, interchanging
configurations corresponding to adjacent temperatures w
appropriate. The update speed of the whole system is
ns/spin, 100 times faster than one Alpha EV5, 600 M
processor running multispin code.

The layout of the rest of this paper is as follows. In t
next section we introduce the model, the definition of t
observables, and we review the basis of our finite-size s
ing method. Section III is devoted to analyzing the statisti
quality of our data; in particular we discuss the thermali
tion, the parallel tempering parameters, and our choice of
number of samples versus the number of steps inside
sample. The discussion of our numerical results follow
where we compare them with previous numerical simu
tions and experiments. We end the paper with the con
sions.

II. MODEL, OBSERVABLES, AND THE FSS METHOD

We have studied the three-dimensional Ising spin gl
defined on a cubic lattice (L3L3L) with helicoidal bound-
ary conditions,34 whose Hamiltonian is

H52(
^ i , j &

s iJi j s j . ~1!
-
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The volume of the system isV5L3, s i are Ising variables,
Ji j ~uncorrelated quenched disorder! are 61 with equal
probability, and the sum is extended to all pairs of near
neighbors. Due to the quenched nature of the disorder,
needs to perform first the thermal average for a given c
figuration of theJi j ~denoted bŷ •••& hereafter! and later
the average over the disorder realization~which will be in-
dicated by an overbar!. The choice of helicoidal boundar
conditions is mandatory~for us! because the hardware of th
SUE machine has been optimized for them.

We have simulated the smaller lattice sizes (L55 and 10)
in parallel machines built of Pentium-Pro processors~the
RTNN machines! using multispin coding. We have checke
that theL510 andL55 lattices are properly thermalize
with a standard heat bath method~without parallel temper-
ing!. The larger lattice (L520) has been simulated in th
SUE machine using parallel tempering and the heat bath

We shall describe in depth the thermalization test and
total statistics achieved in the next section.

A. Observables

It is well known that observables in spin glasses need
be defined in terms of real replicas; that is, for every disor
realization, one considers two thermally independent cop
of the system$si

(1) ,si
(2)%. Observables are most easily d

fined in terms of a spinlike field, the so-called overlap fie

qi5si
(1)si

(2) . ~2!

The total overlap is the lattice average of theqi ,

q5
1

V
(

i
qi , ~3!

while the ~nonconnected! spin-glass susceptibility is

xq5V^q2&. ~4!

In finite-size scaling studies, it is useful to have dimensio
less quantities that go to a constant value at the critical t
perature. A standard example of such a quantity is the Bin
cumulant

g45
3

2
2

1

2

^q4&

^q2&2
. ~5!

Other example is theg2 cumulant,24 which measures the lac
of self-averageness of the spin-glass susceptibility:

g25
^q2&22^q2&2

^q2&2
. ~6!

Of course, any smooth function of these two dimensionl
quantitiesg2 andg4 is dimensionless itself. In Ref. 28 it wa
proposed to study the cumulantG,

G5
g2

222g4

, ~7!

because it exhibits a significant reduction of scaling corr
tions. It has also been argued in Ref. 26 thatG can be ex-
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tremely helpful for the characterization of the spin-gla
phase, but this issue is out of the scope of this work. Ho
ever, all the above-defined dimensionless quantitiesg4 , g2,
andG require the evaluation of a four-point correlation fun
tion, which is statistically a much noisier quantity than
two-point one. One observable of this kind is the correlat
length, which is defined in terms of the two-point correlati
function, and its quotient with the lattice size is again dime
sionless. We therefore are faced with the problem of defin
a correlation length on a finite lattice. In Ref. 19 it w
shown how to do it, from the following considerations. L
us callC(r) the correlation function of the overlap field,

C~r!5
1

V
(

i
^qiqi 1r&, ~8!

and Ĉ(k) its Fourier transform. Notice that the spin-gla
susceptibility is simplyĈ(0). Then, inside the critical region
on the paramagnetic side and in the thermodynamical lim
one has

Ĉ~k!}
1

k21j22
, iki!j21, ~9!

j2252
1

Ĉ

]Ĉ

]k2U
k250

. ~10!

On a finite lattice, the momentum is discretized, and o
uses19 a finite-differences approximation to Eq.~10!,

j25
1

4@sin2~km
x /2!1 sin2~km

y /2!1 sin2~km
z /2!#

F xq

Ĉ~km!
21G ,

~11!

where xq was defined in Eq.~4! and km is the minimum
wave vector allowed for the used boundary conditio
which in our case iskm5(2p/L,2p/L2,2p/L3). Of course,
Eq. ~10! holds on the thermodynamic limit (L@j) of the
paramagnetic phase. As we do not use connected correl
functions, j has sense as a correlation length only forT
.Tc .

We can study the scaling behavior of the finite-latti
definition ~11! on a critical point, where the correlation func
tion decays~in D dimensions! as r 2(D221h). The behavior
of the Fourier transform of the correlation function for lar
L in three dimensions is given by

Ĉ~k!;E
0

L

dr r 12h
sin~kr !

kr
, ~12!

and one finds thatxq /Ĉ(km) goes to a constant value, larg
than unity, becauseikmi5O(1/L). Furthermore,j/L tends
to a universal constant at a critical point~like the Binder
cumulant g4). Moreover, on a broken-symmetry phas
where the fluctuations of the order parameter are not criti
one hasxq5O(V), while Ĉ(km)5O(1). Therefore the full
description of the scaling behavior ofj/L is as follows. Let
j` be the correlation length on the infinite lattice: in th
paramagnetic phase, forL@j` , one hasj/L5O(1/L). On
s
-

n

-
g

it,

e

,

ion

,
l,

the FSS region, wherej`>L, j/L5O(1), while on a
broken-symmetry phase on a lattice larger than the scal
the fluctuations,j/L5O(LD/2). Consequently, if one plots
j/L for several lattice sizes as a function of temperature,
different graphics will cross at the critical temperature.

Finally, a very useful quantity is the value of the Ham
tonian, which is used to measure the derivatives of a gen
observableO with respect to the inverse temperatureb:

]b^O&5^OH (1)1OH (2)&2^O&^H (1)1H (2)&, ~13!

where the~1! and ~2! superscripts refer to the two replica
needed to construct the operatorO. Similarly one generalizes
the standard reweighting method,35 which allows one to ex-
trapolate the measures taken atb to neighboring values:

^O&b1Db5
^OeDbH (1)1DbH (2)

&b

^eDbH (1)1DbH (2)
&b

. ~14!

B. FSS method

We have used the quotient method,22 in order to compute
the critical exponents. We recall briefly the basis of th
method. LetO be a quantity diverging in the thermodynam
cal limit as t2xO (t5T/Tc21 being the reduced tempera
ture!. We can write the dependence ofO on L and t in the
following way20

O~L,t !5LxO /nFFOS L

j~`,t !
D 1O~L2v,j2v!G , ~15!

where FO is a ~smooth! scaling function and (2v) is the
corrections-to-scaling exponent~e.g.,v is the largest nega
tive eigenvalue of the renormalization group transformatio!.
This expression contains the not directly measurable t
j(`,t), but if we have a good definition of the correlatio
length in a finite boxj(L,t), Eq. ~15! can be transformed
into

O~L,t !5LxO /nFGOS j~L,t !

L
D 1O~L2v!G , ~16!

whereGO is a smooth function related withFO andFj and
the termj`

2v has been neglected because we are simula
deep in the scaling region. We consider the quotient of m
sures taken in latticesL andsL at the same temperature:

QO~s,L,t !5
O~sL,t !

O~L,t !
. ~17!

Then, the main formula of the quotient method is

QOuQj5s5sxO /n1O~L2v!; ~18!

i.e., we compute the reduced temperaturet, at which the
correlation length verifiesj(sL,t)/j(L,t)5s, and then the
quotient betweenO(sL,t) andO(L,t). In particular, we ap-
ply formula ~18! to the overlap susceptibility,xq , and theb
derivative of the correlation length,]bj, whose associated
exponents are

x]bj511n, ~19!



on

iti

-
e

em

a
id
.

c
re

n
ke
u
fo
ri

an

th
i-

-

o

ly

to
th
,
m
i

gt
w
id
ee

i

gful

ed
ated
the

ing
n-

e is
at
en
than
f

he
nd

e
n

a
s

he
and
are
be
w-

re
mple

a
he
the

ee-
of
d
se
. A

cted
o-

ly

14 240 PRB 62H. G. BALLESTEROSet al.
xxq
5~22h!n. ~20!

Notice thatQOuQj5s can be measured with great precisi

because of the large statistical correlation betweenQO and
Qj . It is very important that in order to use Eq.~18! one
does not need the infinite-volume extrapolation for the cr
cal temperature but, instead, a reweighting method35 is cru-
cial to fine-tune theQj5s condition. From Eq.~18! one
directly extractseffectiveexponents~i.e., lattice-size depen
dent! and later on checks for scaling corrections. Anoth
advantage of the quotient method is that the crossing t
perature forj/L ~i.e., the temperature for whichQj5s)
scales as

ts,L
crossing}L2v21/n, ~21!

so that one works a factorL2v closer to the critical point
than with other FSS methods, such as measuring at the m
mum of ~say! the connected susceptibility. This puts cons
erably less stress on the quality of the reweighting method
should also be mentioned that one could modify Eq.~18!,
and measure at the crossing point of a cumulant such asg4 ,
g2, or G. The results should coincide, up to scaling corre
tions, but given the better statistical quality of the measu
of j/L, the error bars would significantly grow.

III. STATISTICAL QUALITY OF THE DATA

When designing a simulation for a disordered model, o
needs to carefully consider how many measures will be ta
on each sample,NI , and the number of samples to be sim
lated NS. Two competing effects need to be balanced
this. In the first place, from the error analysis of a gene
observableO, one has (h is a Gaussian number of zero me
and unit variance!

~^O&Monte Carlo2^O&!25
h

NS
S sS,O

2 1
2tOs I,O

2

NI
D , ~22!

wheresS,O is the variance between different samples of
exact thermal averages,s I,O is the disorder-averaged var
ance for the measures on a sample, andtO is an averaged
~integrated! autocorrelation time.36 This shows that the opti
mum value ofNI cannot be much greater than 2tOs I,O

2 /sS
2 .

On the other hand, when evaluating nonlinear functions
thermal averages, as in Eqs.~13! and ~14!, a bias of order
2tO /NI is present~for the reweighted measures a bias po
nomial in 2tO /NI is expected!. If ANS is not much smaller
than NI , the statistical errors will shrink enough so as
uncover the bias, and we have two conflicting goals for
optimization ofNI and NS. In order to solve the dilemma
we have followed the same procedure as in Ref. 24 to eli
nate the bias. One first evaluates the nonlinear function w
the full set of data, then divides the data in two sets of len
NI/2 for each of which the function is evaluated, and the t
results are averaged, and the procedure is repeated, div
the data in four sets ofNI/4 measures. We thus have thr
estimates of the nonlinear function, with bias of order 1/NI ,
2/NI , and 4/NI , respectively. The three estimates are used
a quadratic~in 1/NI) extrapolation to 1/NI50, which is later
-
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on averaged over the disorder. In order to have meanin
results from this extrapolation, it is crucial that 2t/NI be a
reasonably small number. The values ofNI and NS for our
simulations are shown in Table I. We remark that we ne
also to balance the heat bath steps, done by the dedic
machine SUE, and the parallel tempering steps done by
PC which handles SUE~during this time SUE is stopped!.

With our simulation strategy (NI!NS), it is crucial to
check that the system is sufficiently thermalized while tak
measures. A very efficient algorithm for thermalizing spi
glass systems is parallel tempering.16–18In order to obtain an
efficient parallel tempering we must select a range ofb val-
ues and the number of intervals in this range. The rang
fixed in the following way: The faster decorrelation time is
the lowestb; as we run a fixed number of iteration betwe
parallel tempering sweeps, this number must be greater
the autocorrelation time at thisb value. For these values o
b, away from the transition point, the correlation lengthj is
~almost! L independent. Running around 104 sweeps and
considering that the correlation time grows asj723 we use
finally bmin50.70. The largest value must be a bit over t
crossing point, which we had estimated previously arou
0.88. We use thenbmax50.92. The number ofb values is
fixed by controlling that the probability of changes in th
parallel tempering is significant. This number depends oL
and for L520 we have used 12 values ofb, obtaining a
probability of transition around 30%. All the systems are
significant time in the lowerb values, where decorrelation i
faster.

A first thermalization check is summarized in Fig. 1. T
measures taken on a sample are divided into 20 blocks,
the correlation length and the spin-glass susceptibility
calculated with these blocks. No thermalization bias can
resolved after the fifth block at the lowest temperature. Ho
ever, the first ten blocks have been discarded for safety.

Yet the results in Fig. 1 do not really show that we a
collecting a reasonable number of measures on each sa
~so that 2t/NI is small!, because the time needed to obtain
thermalized measure is not straightforwardly linked to t
time needed to obtain an independent measure. In fact,
latter is related with the time needed to overcome fr
energy barriers, in order to visit different relevant regions
phase space,11 while the former is related to the time neede
to reachat least onerelevant region of phase space, becau
the huge number of samples avoids a biased estimation
better test comes from the smoothness of the bias-corre
reweighting extrapolation. In Fig. 2 we show the extrap
lated valuesj/L, g4, and xq from each of theb i of the
parallel tempering~alternatively in dotted and dashed lines!.

TABLE I. Statistics used. For each sample, we runNHB heat
bath sweeps and performNI measures. Each sample is previous
thermalized withNHB iterations. In theL520 lattice, we carry out a
parallel tempering step after each measure.

L NS NHB NI

5 40 000 200 000 200
10 40 000 500 000 500
20 6 920 6 553 600 400
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FIG. 1. Mean values of the susceptibility an
correlation length in theL520 lattice for succes-
sive bins of 40 measures, for severalb i values in
L520 ~from top to bottom they correspond t
b11, b9 , b4, and b0, respectively!. We remark
that b115bmax50.92 corresponds to our coldes
temperature. In the following, we discard the fir
ten bins and average the remaining ten.
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The mismatch between different extrapolations is mu
smaller than the error bars, which is due to the fact that
same samples are being simulated for allb i values. In fact,
for NI→` the mismatch would completely disappear, wh
the statistical error bars would not be smaller unlessNS
grows @see Eq.~22!#.

Finally, along the simulation the Schwinger-Dyson equ
tions have been checked finding a perfect agreement.
instance, the equation in Ref. 33 holds within a 0.04% for
L520 lattice.

IV. NUMERICAL RESULTS

Once a set of measures of the finite-lattice correlat
length is at our disposal, the first question one can ans
regards the nature of the spin-glass phase transition in t
dimensions. Indeed, if the Kosterlitz-Thouless scenario w
realized,j/L on theL→` limit would be zero for tempera
tures higher than the critical one, and then it would abrup
jump at the critical temperature to a finite value. For low
temperatures, since the system would still be critical,
h
e
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e

n
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ee
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y
r
it

would keep a finite value, presumably growing with lowe
ing temperatures. On a finite lattice,j/L would be a decreas
ing function ofL on the paramagnetic phase, and in the cr
cal region~from the critical temperature to lower ones!, it
would have anL-independent value, according to the FS
ansatz, up to scaling corrections. Therefore, in the most e
nomic scenario, where scaling corrections are small, the
ferentj/L curves do not cross, but simply merge in the lo
temperature region.

In Fig. 3, we plotj/L for the Edwards-Anderson model i
three dimensions and for theXY model in two dimensions
~whose simulation is almost costless in computer time37!. We
see that while theXY model follows quite closely the abov
sketched behavior, the Edwards-Anderson model has a
neat crossing. Therefore, one may conclude that
Kosterlitz-Thouless scenario is ruled out by the data, unl
scaling corrections of a very exotic nature were present.

Notice, that for the two-dimensionalXY model,j/L and
the Binder cumulant behave in the same way asL andT.10

This is an interesting point to compare the behavior of
g4 andG cumulants, defined above, withj/L. From Fig. 4, it
d

2

FIG. 2. Correlation length, susceptibility, an
g4 cumulant for theL520 lattice, as obtained
from the extrapolation method of Eq.~14!, cor-
rected for bias. We show the results for all the 1
b values of the simulation~point with error bars!
together with the extrapolation~alternatively
shown in dashed and dotted lines!. The curves
have been linearly scaled to fit in the figure.
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FIG. 3. Correlation length in units of the lat
tice size for the 3D Edwards-Anderson mod
~left! and for the 2DXY model, which displays a
Kosterlitz-Thouless phase transition.
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is clear that the measures forG are much noisier than fo
j/L. Moreover, also the scaling corrections are larger,
made evident by the large shift between the crossing of th
and 20 lattices, and the crossing of the 10 and 20 latti
The scaling corrections forG andg4 are of opposite signs, s
that one can safely conclude that the real critical poin
bracketed by this two sets of crossing points.

For the critical exponents, our results found using E
~18! are displayed in Table II. Finite-size scaling correctio
cannot be resolved within errors, especially if one reali
that the results for the (5,10) pair are anticorrelated with
results for the (10,20) pair@the measure inL510 appears
once in the numerator and the other time in the denomin
of Eq. ~18!#. We take as our final estimate our results for t
(10,20) pair, which can be compared with the most rec
experimental measures and with other numerical calculat
displayed in Table III. It would be very interesting to che
that systematic errors due to finite-size effects are sma
than the statistical ones. This would require one to para
etrize the scaling corrections, and therefore to have pre
measures on a wide range of lattice sizes. Unfortunately,
huge dynamical critical exponent of the available simulat
algorithms for this model makes it extremely difficult to the
s
5
s.

s

.
s
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e

or
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malize, at the critical point, lattices larger thanL520 with
present technological capabilities.

Nevertheless, it is possible to obtain information aboutv
studying the quotients of cumulantsQg at the point where
j/L crosses. At this point,Qg should be 1 up to scaling
corrections and can be parametrized as

Qg511AgL2v. ~23!

Before presenting our results forv, let us recall the values
obtained by Palassini and Caracciolo12 working in the ther-
modynamical limit. They computed two different scalin
correction exponentsD andu. These exponents are obtaine
from the asymptotic formulas that hold in the scaling regi
in the thermodynamic limit, in the paramagnetic side

x5Aj22h@11O~j2D!#, j5Butu2n@11O~ utuu!#.
~24!

One can check from the above expressions thatD5v and
u5vn. From their values ofD, u, andn one readily obtains

v~D!51.320.3
10.2, v~u,n!50.7820.28

10.47. ~25!
FIG. 4. Cumulantsg4 and G for lattices L
55,10,20 vs inverse temperature.
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We have fitted our measures forg4 andg2 following Eq.
~23!. We have four points for adjusting three parameters,
we obtain the value

v50.8420.37
10.43, ~26!

with x250.6. See Fig. 5 for more details. Although the s
tistical error is rather large, the compatibility of our resu
with those displayed in Eq.~25! is reassuring given the dif
ference in the methods. It should be also mentioned that
so-called analytic scaling corrections have been neglec
which is,a posteriori, seen to be a reasonable procedure39

Finally, we compare our estimate for the critical tempe
ture @Tc51.138(10)# with that of Ref. 12@Tc51.156(15)#,
the agreement being very good.

V. DISCUSSION AND CONCLUSIONS

We have obtained precise measures of theh andn expo-
nents. Moreover, we have done a study of the correction
scaling; in particular we have computed the value of
corrections-to-scaling exponentv in a good agreement with
the value reported in Ref. 12. We remark that our statist
error for theh exponent is 5 times smaller than the expe
mental error for this exponent and 3 times less than
smallest statistical error found in the literature. The fact t
our estimates for the (5,10) lattices and the (10,20) p
coincide within statistical errors gives us some confidence
the smallness of the finite-size effects, although larger

TABLE II. Critical exponents computed from the crossin
points ofj/L for (L,2L) pairs.

L Tc n h

~5,10! 1.134~9! 2.39~7! 20.353~9!

~10,20! 1.138~10! 2.15~15! 20.337~15!
t

-

he
d,

-

to
e

l
-
e
t
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n
t-

tices will be needed to make sure that the systematic er
are as small as the statistical ones.

Our comparison with the most recent experimental da5

is good. The difference between then exponent measured in
experiment and our reported value is 0.046(21), roughly t
standard deviations. We note that then exponent from nu-
merical simulations is systematically above the experime
data. The difference for theh exponent is 0.023(71).

The clear crossing of thej/L curves, for different lattice
sizes, supports heavily a finite-temperature second-o
phase transition and excludes a Kosterlitz-Thouless-like s

TABLE III. Critical exponents from experiments and numeric
simulations.

Authors (J distribution!/
material

n h

This work
@(10,20) pair#

6J 2.15~15! 20.337~15!

Gunnarssonet al. a Fe0.5Mn0.5TiO3 1.69~15! 20.36~7!

Palassini
and Caracciolob

6J 1.8~2! 20.26~4!

Marinari, Parisi,
and Ruiz-Lorenzoc

Gaussian 2.00~15! 20.36~6!

Berg and Janked 6J — 20.37~4!

Kawashima and Younge 6J 1.7~3! 20.35~5!

Iñiguez, Parisi,
and Ruiz-Lorenzof

Gaussian 1.5~3! —

Ogielskig 6J 1.3~1! 20.22~5!

Bhatt and Youngh 6J 1.3~3! 20.3~2!

Bhatt and Youngi Gaussian 1.6~4! 20.4~2!

aReference 5. fReference 8.
bReference 12. gReference 13.
cReference 9. hReference 14.
dReference 11. iReference 15.
eReference 7.
as
FIG. 5. Quotients of the cumulantsg2 andg4

for pairs (L,2L) as functions ofL2v ~lower fig-
ure!. The corrections-to-scaling exponent h
been obtained minimizing thex2 function @see
Eq. ~23!# using the full covariance matrix. The
horizontal dotted line~in the upper figure! is
given by the value ofx2 at the minimum plus 1.
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nario ~a phase transition of infinite order or equivalently
line of critical points below the critical temperature!.

Our results for the critical exponents for binaryJ’s agree
well with that obtained simulating Gaussian coupling9

However, the statistical errors are still very large and we la
control on the scaling corrections~completely in the Gauss
ian ‘‘side’’ !. It might be useful to study the three dime
sional Edwards-Anderson model with Gaussian coupli
with the methodology of this paper but unfortunately t
SUE machine is not designed to simulate Gaussian coup
-

an

, J

s

ys

ng

,

l

k

s

g.
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