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Dzyaloshinskii-Moriya interaction in NaV 2O5: A microscopic study
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We present a unified account of magnetic exchange and Raman scattering in the quasi-one-dimensional
transition-metal oxide NaV2O5. Based on a cluster-model approach explicit expressions for the exchange
integral and the Raman operator are given. It is demonstrated that a combination of the electronic structure and
the Dzyaloshinskii-Moriya interaction, allowed by symmetry in this material, are responsible for the finite
Raman cross section giving rise to both one- and two-magnon scattering amplitudes.
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I. INTRODUCTION

More than four decades ago, Dzyaloshinskii1 and Moriya2

showed that the inclusion of spin-orbit coupling into the d
scription of low-symmetry magnetic systems generates
anisotropic exchange interaction, the so-cal
Dzyaloshinskii-Moriya~DM! interaction.

In the early 1990s, this interaction was discussed int
sively in connection with the copper-oxide compounds.
particular, La2CuO4 exhibits a small gap in the spin-wav
spectrum and a finite net ferromagnetic moment in e
plane due to an out-of-plane canting of the spins. These
tures were attributed to DM interactions.3–5 Yildirim et al.6

did a careful microscopic study of this mechanism for tetr
onal copper oxide systems. In particular, their analy
proved that the orthorhombic distortion present in these
terials is irrelevant to the out-of-plane magnetic anisotro
Moreover, they showed that not only the antisymmetric
isotropic superexchange between two neighboring spin
important but the symmetric one as well.5–8

The DM interaction has gained renewed interest in
context of the novel transition-metal oxide NaV2O5, which is
believed to be a quarter-filled ladder compound in its hig
temperature phase.9 At TC534 K a phase transition, the in
terpretation of which is still controversial, takes place in th
material where charge ordering (2V14.5→V141V15) oc-
curs simultaneously with the opening of a spin-gap of
proximately 10 meV.10 A series of recent studies has a
dressed the nature of the low-temperature state.11–16

In this context it is of interest that very recent electr
spin resonance~ESR! experiments17,18 have detected a con
siderable anisotropy of the absorption intensity with resp
to the magnetic field orientation, which has been attribute
the DM interaction. Apart from ESR, Raman scattering
the presence of a magnetic field is an alternative experim
for the observation of possible effects due to DM intera
tions. Unfortunately however, at present, the various exp
mental settings in search for such effects in Raman scatte
have shown no scattering intensity for NaV2O5 ~Ref. 19!
which could be due to a very small cross section.

In order to shed some light onto this scene, a microsco
analysis of the magnetic exchange and Raman scattering
erator seems highly desirable. However, apart from e
work specific to the copper oxide superconductors20 such
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analysis is lacking. Therefore, it is the purpose of this pa
to present a detailed description of the Raman operator
NaV2O5. In this context particular emphasis will be given
the role of the DM interaction which by symmetry is allowe
in this material.

II. HAMILTONIAN

Above the spin-charge transition temperature TC NaV2O5
crystallizes in the centrosymmetricPmmn space group.9,21

The compound consists of VO5 square pyramids sharin
edges in theab layer and chains of Na located between t
ab layers. The superexchange interaction between vanad
sites is mediated through the pyramid’s base oxygens and
relevant structural element of NaV2O5 can be thought of as
consisting of ladders of V-O-V rungs alongb which are
weakly coupled alonga ~see Fig. 1!.

Discarding single-ion anisotropy, a general form of a
scalar two-spin interaction between consecutive rungs al

FIG. 1. Crystal structure of NaV2O5 in the high-temperature
phase. The star denotes the location of the center of inversion
dashed lines the constituting V-O-V ladders.
14 164 ©2000 The American Physical Society
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PRB 62 14 165DZYALOSHINSKII-MORIYA INTERACTION I N . . .
theb direction of the ladder in NaV2O5 consists of two con-
tributions

H (S)5JH(Heis)1DH (DM) , ~1!

i.e., the isotropic Heisenberg exchangeH (Heis) and the
Dzyaloshinskii-Moriya interactionH (DM) :

H (Heis)5(
l

Sl•Sl 11 ,

H (DM)5(
l

e•~Sl3Sl 11!, ~2!

whereSl denotes the total spin on rungl. The form of the
Dzyaloshinskii-Moriya vectore is determined by requiring
that the energy of any configuration of spins has to be inv
ant under the symmetry transformations of the crystal str
ture. In our case, crystallography allows for a DM vec
alongc, i.e., e5(0,0,1). Note that this vector is definedlo-
cally in each unit cell and is not forbidden by the inversi
center of the crystal structure, which lies in between t
V-O-V ladders~see Fig. 1!.

The standard derivation of Eq.~2! for the case of mag-
netic momentslocalizedat single ionic sites can be found i
the literature,2,7,8 where it is shown that both terms in th
Hamiltonian can be derived from generalized exchange p
cesses. In the present paper, however, we aim at a m
scopic derivation of Eq.~2! for the case of themixed-valence
system NaV2O5. We start from a three-band Hubbard-mod
for NaV2O5 in which we retain only the two actived orbitals
of the V and the single O~1! site on each rung. For simplicity
we consider the O~2! sites on the legs of the ladder to b
integrated out, giving rise to an effective V-V hopping2t i
along the leg. We denote bydlas

† the creation operators fo
spin-s electrons in V-dxy orbitals on sitea(a51,2) of the
l th rung and bypls

† the creation operator of spin-s electrons
in the O(1)-py orbital on thel th rung. The HamiltonianH
5H01H1 reads

H05(
l ,s

~ t'dl1s
† dl2s1tdp~dl1s

† 1dl2s
† !pls1c.c.!

1ep(
ls

pls
† pls1U(

la
dla↑

† dla↑dla↓
† dla↓ ,

H15 (
l ,as

~ tsdlas
† dl 11as1ts* dl 11as

† dlas!

2tpp(
l ,s

~pls
† pl 11s1pl 11s

† pls!, ~3!

The hybridization matrix elements in Eq.~3! are ~i! t'
which denotes the direct hopping of electrons between
V-dxy orbitals on sites 1 and 2 on a rung,~ii ! tdp which
denotes the charge transfer integral between the V-dxy and
O(1)-py orbitals on a rung,~iii ! ts52t i1 isl̃ is the hop-
ping of electrons with spins561 between the V-dxy orbit-
als on two consecutive rungs along the ladder directionb.
The spin dependence of this hopping integral is allowed
to the lack of a center of inversion in between two rungs a
i-
c-
r

o

o-
ro-

l

e

e
d

arises from the spin-orbit coupling2 of strengthl, wherel̃
;l. The transfer matrix elementsts are diagonal in the spin
quantum numbers because we have chosen the quantiz
axis for the spin to be alongc, i.e., the main crystallographic
axis, and finally~iv! tpp denotes the hopping of electron
between O(1)-py orbitals on two consecutive rungs alongb.
The spin dependence oftpp is small and will be discarded in
the remainder of this paper.

The parameters involved in Eq.~3! have been estimated9

to be ep'23 eV, t''0.25 eV, tdp'21 eV, t i'20.175
eV, tpp'0.5 eV, andU'2.8 eV. The Coulomb repulsionU
leads to the formation of local moments on the rungs and
the following we will study the interaction between the
local moments. For simplicity we consider the caseU→`,
since we expect that any finiteU will lead to qualitatively
similar results while increasing the complexity of the calc
lation needlessly.22

III. EXCHANGE COUPLINGS

As a first step towards the evaluation of the exchan
couplingsJ andD, we diagonalize the HamiltonianH0 for an
isolated rung. The ground state belongs to the three-par
subspace. In addition, for the calculation of the exchan
matrix elements, intermediate states in the two- and fo
particle sector on a rung are required. Details of the deri
tion of the relevant eigenstates and eigenvalues of this clu
problem are stated explicitly in the Appendix. The exchan
matrix elements are obtained by considering the proc
which describes a spin flip between two consecutive ru
up to second order perturbation theory inH1, as defined by
J21 andJ12 in Eq. ~A9!. In particular,

J5
1

2
~J211J12!5Re~J21!. ~4!

Substituting the electronic model-parameters cited in the p
vious section into Eqs.~A13! and ~A15! we obtain J
'0.049 eV'568 K which agrees very well with the exper
mental value10,23 of Jb'560 K.

Noting that t↓5t↑* and that D•(Sl3Sl 11)5(D/
2i )(Sl

2Sl 11
1 2Sl

1Sl 11
2 ), we have

D5
1

2i
~J212J12!5Im~J21! ~5!

for the DM coupling. Moriya2 has estimated that the order o
magnitude ofD should be

D;~Dg/g!J, ~6!

whereg is the gyromagnetic ratio of the Vanadium ion
octahedral crystal symmetry andDg is the corresponding
deviation from the free-electron value. By considering theg
values obtained from ESR measurements,18 we arrive at
Dg/g'0.01. Then, from Eqs.~5!, ~6!, and~A15! where we
evaluateD as a function ofl̃, we get an estimate forl̃, i.e.,
l̃'1 meV.
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IV. RAMAN SCATTERING

Fleury and Loudon24 have shown that light scatterin
from a spin system, depending on the polarization geom
of the incoming and outgoing electric fields, can lead to
elastic photon-induced superexchange. This has establi
Raman scattering as an important probe to obtain infor
tion on the local exchange dynamics in magnetic syste
complementary to inelastic neutron scattering~INS!. In the
following we will generalize the early ideas of Fleury an
Loudon to the case of NaV2O5 clarifying the role of the DM
interaction. In particular we find that in the case of a pol
ization of both, the incoming and outgoing photon fields p
allel to b, i.e., along the legs of the ladder, the Raman sc
tering operatorH (R) can be expressed as

H (R)~v in,out!5JR~v in,out!H
(Heis)1DR~v in,out!H

(DM) , ~7!

where thev in and vout are the frequencies of the incomin
and outgoing photons. The microscopic derivati
H (R)(v in,out) can be found in the Appendix. It is identical t
that of the magnetic exchange integral with however the
tual hopping into the intermediate state of the exchange
cess driven by the coupling of the vector potentialA
5(0,Ab,0) to the current operator,25 i.e.,H1 of Eq. ~3! has to
be replaced byj•A with the current operatorj5( j a , j b , j c),

j b5 ie(
l ,s

S tpp@pls
† pl 11s2pl 11s

† pls#

1(
a

@ tsdla,s
† dl 11a,s2ts* dl 11a,s

† dla,s# D .

The total magnetic Raman scattering amplitude is then gi
up to second order inj b /e by Eq. ~A10! of Appendix A.
From this, the definition ofJR(v in,out) and DR(v in,out) is
analogous to Eq.~4! and ~5!

JR~v in,out!5Re@R21~v in,out!#,

DR~v in,out!5Im@R21~v in,out!#. ~8!

Note that a magnetic Raman process is possible onl
H (R)(v in,out) induces transitions between different eige
states ofH (S),26–28 i.e., if

@H (R)~v in,out!,H
(S)#5@JR~v in,out!D2DR~v in,out!J#

3@H (Heis),H (DM) #

Þ0. ~9!

From Eq.~9! we conclude that magnetic Raman scatter
from NaV2O5, if modeled by Eq.~3!, arises because tw
conditions are simultaneously satisfied. First, the existenc
a spin-orbit coupling leads to a nonvanishing commutato
Eq. ~9!. Second, because the number of available paths
the magnetic and the photon induced exchange is larger
one and becausev in,outÞ0 the factor of JR(v in,out)D
2DR(v in,out)J is nonzero. The latter is true despite the fo
mal similarity between the Raman scattering amplitude
the magnetic exchange integral, becauseH (R)(v in,out) dis-
plays an additional dependence on the photon energies. M
specifically, for a single exchange pathJR(v in,out)D
ry
-
ed
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2DR(v in,out)J50 for any value ofv in,out while for more
than one exchange pathJR(v in,out)D2DR(v in,out)J vanishes
only at v in,out50.

Next, we would like to point out that from the two term
H (Heis) andH (DM) which make upH (R)(v in,out) it is actually
H (DM) which drives the magnetic Raman process. Up to n
we have only considered anisotropic contributions toH (S) to
leading order inl̃. Kaplan8 and Shekhtmanet al.7 have
shown that, in general, the next-order termH (KSAE)

;( l(e•Sl)(e•Sl 11) contributes to the spin Hamiltonian wit
a very specific prefactor

H (S)5JH(Heis)1DH (DM)1~AJ22D22J!H (KSAE).
~10!

Starting from the model in Eq.~3! a derivation analogous to
that in Refs. 7,8 can be performed giving rise to the sa
prefactor as in Eq.~10!. Using this, it is then possible to
transformH (S) into an equivalent Hamiltonian of the plai
Heisenberg form by means of the unitary mapping

S̃l
x5cosw lSl

x2sinw lSl
y ,

S̃l
y52sinw lSl

x1cosw lSl
y ~11!

with S̃l
z5Sl

z , w l52lw0, and tan(2w0)5D/J.

Expressed in terms ofS̃l the Hamiltonian readsH̃ (S)

5AJ21D2( lS̃l•S̃l 11. Now, we note that higher order term
in l̃ will also contribute to the Raman operator. Howev
following the discussion after Eq.~9! it is obvious that Eq.
~11! will not simultaneously reduceH (S) andH (R)(v in,out) to
a canonical Heisenberg form. Therefore, in the new basis,
Raman operator takes on the formH̃ (R)(v in,out)
5 J̃R(v in,out)H̃

(Heis)1D̃R(v in,out)H̃
(DM)1O(l̃2). The only

part of H̃ (R)(v in,out) which does not commute withH̃ (S) to
lowest order inl̃ is the DM interaction, i.e.,H̃ (R)(v in,out)
[D̃R(v in,out)H̃

(DM) .
This completes our derivation of the Raman operator

the homogeneousphase of NaV2O5 as realized forT.TC .
Quite generally the preceeding demonstrates that a DM c
tribution to the Raman operatorH (R)(v in,out) will occur in
multiband systems whenever a DM exchange interactio
allowed locally. Obviously it is tempting to analyze the e
fects of this form ofH (R)(v in,out) also on adimerizedspin-
liquid state, as present in NaV2O5 for T,TC and similarly in
CuGeO3 for T,TSP.29 To this end letH (R)(v in,out) act on a
pure dimer stateuF0&5us1•••sm•••&, where m labels
nearest-neighbor pairs of spins which are in a relative sin
stateusm&—for the case of NaV2O5 these pairs of spins cor
respond to pairs of rungs (2l ,2l 11). One obtains

H (DM) uF0&5(
m

~22i u•••tm
z
•••&2u•••tm

x tm11
y

•••&

1u•••tm
y tm11

x
•••&). ~12!

Here utm
a& (a5x,y,z) refers to triplet states on the dime

bonds. While the second and third term on the right-ha
side of Eq.~12! comprise of the usual total-spin zero, two
magnon excitation, the first term refers to a single-trip
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state ofonly zdirection. This shows that single-magnon R
man excitations are allowed in the presence of the DM in
action. A single-magnon Raman line of this type has a cl
experimental signature: it should showno splitting in an ex-
ternal magnetic field parallel toe ~here alongz) and it should
split into two branches for a field perpendicular to the D
vector. To our knowledge this signature has not yet b
observed in experiment.

V. CONCLUSIONS

Motivated by recent ESR experiments17,18 which probe
the existence of a DM interaction in NaV2O5, we have pre-
sented a microscopic study of the possible impact of
interaction on the Raman process. We have derived the
man operator in the homogeneous state of NaV2O5 and, ad-
ditionally, have discussed its effect in the dimerized state

In the dimerized state two Raman modes have been
served in NaV2O5 in bb polarization at 66 and 104 cm21.
Tentatively these modes have been ascribed to magn
bound states of total-spin zero.19 On the other hand, forT
,TC INS displays two well defined magnon excitations, t
energies of which, if properly zone folded to zero mome
tum coincide with the aforementioned two Ram
modes.11,30 Yet, Raman experiments show no indication o
splitting of these modes in an external magnetic field. W
therefore conclude that the Raman-modes should result f
a two-magnon processes@see Eq.~12!#.

Clear evidence for a DM vector in NaV2O5 along thez
direction has been provided by ESR experiments.18 While
these authors have interpreted their findings in terms of q
sistatic charge fluctuations aboveTC , we believe, in view of
the results presented here, that such an interpretation o
ESR data is not necessary. In fact, the ESR experiments
be understood in terms of the local DM vector presentalso in
the high-temperature phase.

In conclusion we have pointed out, that a local DM vec
gives rise to a nontrivial DM contribution to the magne
Raman process whenever at least twononequivalentex-
change paths exist between the two magnetic moments
sidered. We have presented an explicit evaluation of this
contribution to the Raman operator for the case of
quarter-filled ladder compound NaV2O5 and we have shown
that one- and two-magnon processes arise naturally wi
this scenario. We have obtained estimates for the excha
coupling constant along theb direction in good agreemen
with experiment. Moreover we have evaluated the spin-o
coupling constant within our cluster approach. Finally,
note that evidence for DM interactions in the tw
dimensional dimer compound SrCu2(BO3)2 ~Ref. 31! have
been found by ESR ~Ref. 32! and far-infrared
spectroscopy.33 Therefore one might speculate if on
magnon Raman modes with the special signature descr
in the previous section could be observable in SrCu2(BO3)2.
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APPENDIX: EXCHANGE INTEGRAL AND RAMAN
AMPLITUDE

In this appendix we present details of the evaluation of
two, three, and four-particle eigenstates on a rung as we
the matrix elements relevant to the exchange integral and
Raman operator. We begin with the three-particle space
rung l, which, in the subspace of no double occupancy of
d levels and total-spinz componentSz5↑ can be created by

31l↑8 5d1l↑
† d2l↓

† pl↑
† , 32l↑8 5d1l↓

† d2l↑
† pl↑

† , ~A1!

33l↑8 5d2l↑
† pl↑

† pl↓
† , 34l↑8 5d1l↑

† pl↑
† pl↓

† ,

35l↑8 5d1l↑
† d2l↑

† pl↓
† .

The set of corresponding states withSz5↓, is obtained by
reversing↑ to ↓ for each operator without changing the
relative order. Diagonalizing the rung-Hamiltonian in th
sector yields a~spin degenerate! ground stateu30l↑(↓)& with
energyE30

u30↑(↓)&5a~ u31↑(↓)8 &1u32↑(↓)8 &]

1b@ u34↑(↓)8 &2u33↑(↓)8 &)22au35↑(↓)8 &,

E305
1

2
~3ep2t'2e!. ~A2!

For brevity the site indexl ’ has been suppressed and

a52A2tpd
2 /@12tpd

2 1~e2ep1t'!2#,

b5a~e2ep1t'!/~2tpd!,

e5A12tpd
2 1~ep2t'!2. ~A3!

For ep'23 eV, tpd'21 eV, andt''0.25 eV one getsa
'20.16, b'0.65, andE30527 eV.

In the two-particle space with no double occupancy of
d levels there are thirteen states, the creation operator
which we label

21l8 5d1l↑
† d2l↓

† , 22l8 5d1l↓
† d2l↑

† , 23l8 5d1l↓
† d2l↓

† ,

24l8 5d1l↑
† d2l↑

† , 25l8 5d1l↓
† pl↑

† , 26l8 5d1l↑
† pl↓

† ,

27l8 5d1l↑
† pl↑

† , 28l8 5d1l↓
† pl↓

† , 29l8 5d2l↑
† pl↓

† , ~A4!

210l8 5d2l↓
† pl↑

† , 211l8 5d2l↓
† pl↓

† , 212l8 5d2l↑
† pl↑

† ,

213l8 5pl↑
† pl↓

† .

To simplify matters we will consider the high-energy stat
with two holes on the oxygen site as decoupled from
remaining Hilbert space. In the following these states will
discarded when evaluating the exchange integrals. With
simplification the eigenstatesu2i l & are created by the follow-
ing set of operators:

215218 ,
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14 168 PRB 62ROSER VALENTÍ, CLAUDIUS GROS, AND WOLFRAM BRENIG
225228 ,

235238 ,

245248 ,

255
1

A2
~27822128 !,

265
1

A2
~28822118 !,

275
1

2
~2581268229822108 !,

285
1

2
~2582268129822108 !

295
1

A2
~27812128 !,

2105
1

A2
~28812118 !,

2115
1

2
~2581268129812108 !,

2125~2582268229812108 1b22138 !b3 ,

2135~268225822108 12981g22138 !g3 , ~A5!

where, as before, the site index has been suppressed an

b1~g1!56ep7t'1A16tpd
2 1~ep2t'!2, ~A6!

b2~g2!58tpd /b1~g1!,

b3~g3!5b1~g1!Y F8tpdA11
b1~g1!2

16tpd
2 G

with upper~lower! signs on the right-hand side of Eq.~A6!
referring tob (g). The eigenenergies are given by

E212
[E2052ep2b1/2'26.95 eV,

E25
5•••5E28

[E215ep2t''23.25 eV,

E29
5•••5E211

[E225ep1t''22.75 eV, ~A7!

E213
5E23[2ep1g1/2'21.80 eV,

E21
5•••5E24

[E2450,

and have been labeled into ascending order of their num
cal values as relevant to NaV2O5.

The three-particle space is fourfold degenerate with
spect toH0 and the eigenstates are created by
ri-

-

41l8 5d1l↑
† d2l↑

† pl↑
† pl↓

† , 42l8 5d1l↓
† d2l↑

† pl↑
† pl↓

† , ~A8!

43l8 5d1l↑
† d2l↓

† pl↑
† pl↓

† , 44l8 5d1l↓
† d2l↓

† pl↑
† pl↓

† ,

whereE4052ep .
To second order inH1, the exchange integralJ is obtained

from the energy-dependent transverse spin-flip mat
elementsJ21(z) andJ12(z) of the corresponding second
order effective Hamiltonian

1

2
J21~z![ K 30l↓30l 11↑UW 1

z2H0
WU30l↑30l 11↓L ,

~A9!

whereW stands forH1 and the energy variablez is zero in
the evaluation of the exchange integral. The factor 1/2
front of J21 corresponds to the fact that inH (Heis) Sl

xSl 11
x

1Sl
ySl 11

y 5 1
2 (Sl

1Sl 11
2 1Sl

2Sl 11
1 ).

To second order the Raman scattering amplitude is
tained by considering Eq.~A9! again, however, withW de-
noting the current operator, i.e.,j b /e, in this case and withz
depending on the energy of the incoming/outgoing pho
v in /vout. Then,

R21~v in ,vout!5J21~v in!1J21~2vout!. ~A10!

The first term on the right-hand side of the previous equat
describes the process where first the incoming photon is
sorbed in going into the intermediate state, while the sec
term describes the process where the intermediate sta
reached by first emitting the outgoing photon.

Equation~A9! is evaluated using first the transition am
plitudes ^muH1u30l↑(↓)30l 11↓(↑)& from the 3̂ 3-particle
ground states into the bare intermediate 2^ 4-particle states
um& as constructed from Eq.~A4! and ~A8! and second by
projecting the latter onto the 2̂4-particle eigenstates ofH0,
i.e., Eqs.~A5! and ~A8!

J21~z!52 (
i j ,m.6,n.6

F ^30l↓30l 11↑uWum&^mu2i l 4 j l 11&

3
^2i l 4 j l 11un&^nuWu30l↑30l 11↓&

z2~E2i
1E4 j

22E30!
G . ~A11!

The preceding involves 2~4!-particle states on rungsl ( l
11) only, since the Hermitian-conjugate exchange path
volving 4~2!-particle states on rungsl ( l 11) can be ac-
counted for by the global prefactor of 2, both, forW5H1
and W5 j b /e. Moreover, since up to a factor of (2 i ) i[1
the weights in the numerator of Eq.~A11! are identical for
W5H1 andW5 j b /e we consider the former only. Equatio
~A12! lists the bare intermediate statesum& and the corre-
sponding weights.
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m m ^muH1u30l↓30l 11↑& ^muH1u30l↓30l 11↑&

1 u21l8 43l 118 & 2a2tpp a2tpp

2 u22l8 43l 118 & 2a2tpp a2tpp

3 u22l8 42l 118 & 2a2tpp a2tpp

4 u21l8 42l 118 & 2a2tpp a2tpp

5 u23l8 41l 118 & 0 24a2tpp

6 u24l8 44l 118 & 4a2tpp 0
7 u26l8 43l 118 & abtpp abt↓*
8 u25l8 43l 118 & 0 2ab(2t↓* 1tpp)
9 u26l8 42l 118 & ab(2t↑* 1tpp) 0
10 u25l8 42l 118 & 2abt↑* 2abtpp

11 u27l8 44l 118 & 2ab(t↓* 12tpp) 0
12 u28l8 41l 118 & 0 ab(t↑* 12tpp)
13 u210l8 43l 118 & 1abt↑* abtpp

14 u29l8 43l 118 & 2ab(2t↑* 1tpp) 0
15 u29l8 42l 118 & 2abtpp 2abt↓*
16 u210l8 42l 118 & 0 ab(2t↓* 1tpp)
17 u211l8 41l 118 & 0 2ab(t↑* 12tpp)
18 u212l8 44l 118 & ab(t↓* 12tpp) 0
19 u213l8 43l 118 & b2t↑* 2b2t↓*
20 u212l8 4sl118 & 2b2t↑* b2t↓* ~A12!
The constraint in Eq.~A11! on the summation over the ind
cesm andn reflects the restriction to intermediate states w
at most onep hole. Using Eqs.~A5!, ~A7!, and~A12! it is a
matter of straightforward algebra to show that

J21~z!5(
i 51

4 Ai
21

z2DEi
, ~A13!

where

DE15E201E4022E30'1.05 eV, ~A14!
ev

,

. B

M

an

y

DE25E211E4022E30'4.75 eV,

DE35E221E4022E30'5.25 eV,

DE45E231E4022E30'6.20 eV,

and

A1
2152

b2~8btpd13ab1!2t↑*
2

2@16tpd
2 1b1~ep2t'!#

'20.0246 eV22 i0.281 eVl̃10.803l̃2,

~A15!

A2
2158a2b2t↑* ~ t↑* 1tpp!

'20.00504 eV22 i0.0133 eVl̃20.0886l̃2,

A3
215a2b2t↑*

2

'0.000339 eV21 i0.00388 eVl̃20.0111l̃2,

A4
215

b2~8btpd23ag1!2t↑*
2

2@16tpd
2 2g1~ep2t'!#

'20.000181 eV22 i0.00206 eVl̃10.00589l̃2.

Note that the ferromagnetic and antiferromagnetic sig
of the amplitudes atl̃50 are related to the triplet and single
character of the intermediate states. For example,A3

21 cor-
responds to a matrix element where the intermediate st
are given by 29 , 210, 211, all of which are triplets, therefore
a ferromagnetic sign ofA3

21 arises. Inserting the numerica
values ofAi

21 into Eq. ~A13! we get J21(z50)'0.049

eV21.492l̃2/eV1 i0.542l̃.
l,
r

e,

J.
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12J. Lüdecke, A. Jobst, S. van Smaalen, E. Morre, C. Geibel,

H.-G. Krane, Phys. Rev. Lett.82, 3633~1999!.
13J.L. de Boer, A.M. Meetsma, J. Baas, and T.T.M. Palstra, Ph

Rev. Lett.84, 3962~2000!.
.

.

d

s.

14S. van Smaalen and J. Lu¨decke, Europhys. Lett.49, 250 ~1999!.
15C. Gros, R. Valentı´, J.V. Alvarez, K. Hamacher, and W. Wenze

cond-mat/0004404, Phys. Rev. B~to be published 1 Decembe
2000!.

16T. Ohama, A. Goto, T. Shimizu, E. Ninomiya, H. Sawa, M. Isob
Y. Ueda, J. Phys. Soc. Jpn.69, 2751~2000!.

17S. Luther, H. Nojiri, M. Motokawa, M. Isobe, and Y. Ueda,
Phys. Soc. Jpn.67, 3715 ~1998!; H. Nojiri, S. Luther, M. Mo-
tokawa, M. Isobe, and Y. Ueda, J. Phys. Soc. Jpn.69, 2291
~2000!.

18M. Lohmann, H.-A. Krug von Nidda, M.V. Eremin, A. Loidl, G
Obermeier, and S. Horn, Phys. Rev. Lett.85, 1742~2000!.

19M. Fischer, P. Lemmens, G. Els, G. Gu¨ntherodt, E. Sherman, E
Morre, C. Geibel, and F. Steglich, Phys. Rev. B60, 7284
~1999!; P. Lemmens~private communication!.

20W. Brenig, P. Knoll, and M. Mayer, Physica B237, 95 ~1997!.
21H.G. von Schneringet al., Z. Kristallogr.213, 246 ~1998!.
22D. Sa and C. Gros, cond-mat/0004025, Eur. Phys. J. B~to be

published!.
23F. Mila, P. Millet, and J. Bonvoisin, Phys. Rev. B54, 11 925

~1996!.



g-

.

-

nd
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