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Two-magnon Raman scattering in spin-ladder geometries and the ratio
of rung and leg exchange constants
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We discuss ways in which the ratio of exchange constants along the rungs and legs of a spin-ladder material
influences the two-magnon Raman scattering spectra and hence can be determined from it. We show that
within the Fleury-Loudon-Elliott approach, the Raman line shape does not change with polarization geom-
etries. This line shape is well known to be difficult to calculate accurately from theory. However, the Raman
scattering intensities do vary with polarization geometries, which are easy to calculate. With some assumptions
about the Raman scattering Hamiltonian, the latter can be used to estimate the ratio of exchange constants. We
apply these results to the recent measurements of t@gdiof Raman scattering from spin-ladder materials
such as LgCqCu,4,04; and Sk,CpOy1 -

[. INTRODUCTION It is well known that an accurate calculation of Raman
spectra for low-dimensional spin-half antiferromagnets is
Determining the exchange constants and establishing theery difficult due to quantum fluctuatiofsAnd short of a

microscopic spin Hamiltonian is an important step in under-direct comparison of the spectra with theory, it would seem
standing the magnetic properties of exotic new materials. Ithat Raman spectra cannot be used to determine the ratio of
materials which have predominantly a single exchange corexchange constants. However, we show below that the Ra-
stant, measurement of the uniform susceptibility and determan scattering intensities do depend on polarization geom-
mination of the Curie-Weiss parameter are sufficient to ob-etries in a way that is easily calculated and related to the ratio
tain the exchange constant. However, in recent years, margf exchange constants. Unfortunately, they come with an un-
complex materials have been synthesized which have motenown factor, about which certain assumptions need to be
than one exchange constant. Furthermore, these exchangede before an estimate of the ratio of rung to leg exchange
constants can be so large that the Curie-Weiss regime magonstants in the ladder material can be obtained.
not be experimentally accessible. In these cases alternative
methods are needed to determine the exchange parameters. Il. SPIN-LADDER HEISENBERG MODELS
Examples of such materials are cuprate-based spin-ladder
materials, cousins of high-temperature superconducting ma- We begin with a system described by a Heisenberg model
terials, for which there is a substantial literature for determinin ladder geometry, with the Hamiltonian
ing the exchange constants. The simplest methods for deter-
mining the exchange constants invqlve measuring ._the H=J, E §i,§j+3| 2 gi,g’ (1)
temperature dependence of the uniform susceptibility, i N
Knight shift, or nuclear relaxation rates, which can then be

compared with detailed theoretical calculations to obtain thd" d led bonds of the ladd ivel d th
exchange parameters. Such a fitting procedure is not ve €g bonds ot the ladder, respeclively, and the sums are

accurate, as reflected in the range of values that exist in th nly over the bo_nds in the indicated directions. Our primary
literature for these materials goal is to examine the dependence of Raman scattering on

Recently, Sugaét all? noted that Raman scattering can the ratio of exchange constan‘.tls_,andJ| : .
be used to determine the ratio of rung and leg exchange Within th? Flgury-LOUQOn-Elllott approaph, magnetic Ra-
constants in spin-ladder materials. They argued that by vary- an scattering |s?.descr|bed by an effective Raman Hamil-
ing the polarization direction of incident and outgoing light, tonian or operator:
one might be able to shift the Raman spectra in ways that can
be r'elated to the different exchange constants. Qur study is HR:Z ‘]i’j(;in'Fij)(;out'Fij)éi'éj! 2
motivated by the work of Sugait al. However, we find that (5
the arguments used by Suggtial. to relate the position of A . . .
the spgectral peaks to t)klle d%rent exchange copnstants in tyghere ther;; are unit vectors along the bond directions, and
spin-ladder =~ materials  are  incorrect.  Within € and ey, are unit vectors indicating the direction of po-
Fleury-Loudon-Elliott theory the spectral line shape does larization of the incident and scattered light, respectively.
not change with polarization at all. This gives a simple ex-The Ji’j are constants representing the strength of the Raman
planation why Sugaét al. always find a very small shift in scattering interaction between spiresndj. In previous stud-
the Raman spectra and sheds doubt on their inference thiss of the spin-ladder geomet?y,it has been assumed that
the exchange constants in all the ladder materials are close & has a constant value for nearest-neighbor bonds and is
unity. zero otherwise. Thus it can be taken out of the summation.

hereJ, andJ, denote the coupling constants for the rung
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Such a constant simply sets the overall scale for the scattelight fixed parallel to each other in the plane and rotate the
ing and does not influence any other result. However, wesample. To find the ratio of exchange constants, it is suffi-
believe that if the rung and leg exchange constants are ngient to consider two angles

equal,a priori, we cannot assume the ratio &f along the R >

rung and leg directions to be equal. Thus we proceed here o _f,, / (0,7 )_ 9
with a more general;; , and later consider possible scenarios J l(@,0)

for their values, which would play an important role. A simple procedure for determining the ratio of coupling

Following Sugaiet al,, it is most useful to consider the constants could be to measure the maximum two-magnon
case where the incident and scattered light have parallel p®Raman scattering intensity, then rotate the material through
larization directions, both lying in the plane of our two- an angle of 90° and measure the intensity again. The ratio of
dimensional(2D) system. Thusg;,= €,,. Most generally, intensities would give the ratio of exchange constants, pro-
we can denote the polarization with an anglevith respect ~ Vided that one can reasonably estimate the value of the ratio
to the vertical bonds, which makes the effective RamarPf J//J; .

Hamiltonian
I1l. ANALYSIS OF EXPERIMENTAL RESULTS

Hr(0)=cos 6 >, J};S- S+ sir? 92| S-S © Experimental evidence does support the idea that the
(. (. spectra do not vary much in shape as a function of angle, but
For reasons of symmetry, we assume that alldén each ~ do vary in intensity. For example, Sugai and SuZukiea-
summation are the sameve call themd! andJ/, respec- sured the Raman spectra for the spin-1/2 two-leg ladder ma-
r 1

iy s, 5 oatonel Smpitcaion. s i (7145 LACRCLO A SUCOu o dierencon
— Hg(0)/3] andH,=He(m/2)13], SO 9 P y g ; g

had the incident and scattered polarizations parallel to the
, - legs of the ladder, and the other had them parallel to the
Hr(0)=J;(COS’ 6)H,+J{ (sin’ 6) %1, ) rugr]lgs. The peaks of the observed spectra foFr) the two con-
The two-magnon Raman scattering intensity as a function ofigurations of LaCaC,,04, were found at 3004 cnt and
frequency can be expressed using Fermi’'s golden rule, 2948 cm -, a relative difference of less than 2%, v_vh|ch_ can
be neglected. The spectral shapes are largely identical as
, well, but the intensities are vastly different. The ratio of the
l(w,0)= 2 [yl HR(O)| o) |?0(w—(En—Ep)), (5) intensities of the peaks of these two spectra is approximately
0.52, which is quite significant. The same measurements per-
where|,) andE, are eigenvectors and eigenvalues of theformed on Sy,Cu,,0,; yielded peaks at 3006 cm and
Hamiltonian, and the prime indicates that the ground state i8004 cni !, and an intensity ratio of approximately 0.39. The
excluded from the sum. peaks are even closer together than the others studied, and
Our key result follows from the following simple consid- the intensity ratio is smaller. Popdviand collaboratofs
eration: using the terminology defined above, we can expregsresent scattering data for,3€u,,0,4; that shows a similar

Eqg. (1) as lack of peak location shift, as do measurements by Sugai and
1 collaboratoré on LaCuQ 5. The small observed shift in the

H|:J—(H—Jr7-[r), (6)  spectral peak could be due to impurities, phonons, or inter-
! ladder couplings as well as due to other intraladder interac-

which can be substituted into E€f) to give tions not included her&Note that because our result derives
from an operator relation, it is not sensitive to long-range

JJ J/ sin? @ ordering in the system, and should be valid for small inter-

HRr(6)=J;| cos’ 6— Wsmz 0| H,+ 3, H. (7)  ladder couplings.
r

There are several possiblities for the valueJpfJ| that
The second term of the sum is a multiple of the Hamiltonianshould be considered. We shall begin by examining the pos-
and thus cannot contribute to the scattering. The first term isibility thatJ//J/ =J,/J,, as follows from a largéJ pertur-
proportional to, for all angles. Thus, within this theory, bative treatment and suggested by the work of Mdfiyad

the observed two-magnon scattering spectrum will have th&hastry and Shraiman.If we assume that)//J/ =J,/J,,
same line shape and peak position for all angles. This resultq. (8) becomesl (w, 8) =(cos ¥)(»,0). Thus, all of the

is in direct contradiction with the arguments of Sughil. maxima should be identical in magnitude. This conclusion is

The intensity of the spectrum is given by the expressiondirectly contradicted by all of the experimental results dis-
cussed previously, where the ratio was found to vary by
more than a factor of 2. Clearly, direct proportionality does
not exist.

A second possibility is that all of the nearest-neighbor
This variation of angle can be used to determine the ratio oRaman operator coupling constants are equal to one another.
exchange constants, provided one either knd(¥d, or can  This has been assumed universally by almost all previous
relate it toJ,/J,. This point is discussed a little later. In studies of these ladder materials. The bonds along the rungs
principle, one can perform the experiments by varyil)g and legs of the ladder are nearly identical, which is perhaps
continuously to obtain the above variation. One simply needsvhat led to this assumption. However, it leaves open the
to keep the polarization directions of incoming and outgoingguestion of why this ratio will remain unity when the ratio

3
39!

2
|(w,9)=(co§ 60— Sir? 0) I (w,0). (8)
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TABLE I. ComputedJ, /J; for the materials studied by Sugai range of experimental values from 0.5 to 1.13 has been
et al. for the two ratios of the Raman coupling constants discussedjuoted'>2°-2325 Brehmer et al?* make an interesting at-

in the text. tempt to reconcile the conflicting viewpoints, keeping the
ratio as unity but allowing an additional biquadratic ring in-
Material 13 ~1 I3 =43, 13, teraction in the Hamiltonian.
In the Sugai-Suzuki paper, the authors used an incorrect
LagCaClhsOm 0.72 0.52 argument for the energy shift to estimate the ratio of ex-
S14ClpyOsy 0.63 0.39 change couplings along the rungs and legs of the ladder.
LaCuG; 5 0.74 0.55

Their ratio was determined to be 0.95 forGgCuy4O41

and 1 for S{,Cuy404;. It is now clear that Sugai and col-
laborators obtained values close to unity because, to a good
approximation, the spectra do not shift at all with a change in
the polarization direction. Using their data and EtQ) and

J, (o, 7/2) Eq. (11), we calculate the ratio to be less than 1 in all cases.

J, 13, deviates significantly from unity. Assuminlj/J/~1,
Eq. (9) becomes

J NV (0,0

A third possibility can be motivated by perturbation theory.
If the two-magnon Raman process involves a direct ex-

change, it is a second order process, whereas the usual su-ye have seen how Fleury-Loudon-Elliott theory predicts
perexchange could be mediated by nonmagnetic intermediatfat the shape of the Raman spectra in the spin-ladder geom-
ions and thus could be a fourth-order process in a lafge- etry, with nearest-neighbor Heisenberg exchange constants,
expansion. In this case, a more natural relationship betweegoes not change with the polarization directions. Instead,
the Raman and Heisenberg coupling constanis isyJ. SO there exists a relationship between the intensity of two-
magnon Raman scattering in different polarizations and the
ﬁ: H(w,7/2) (12) ratio of Heisenberg exchange constants. With some suitable
J Hw0) - assumptions about the Raman Hamiltonian, we have used it
do estimate the ratio of the rung to leg exchange constant in
everal cuprate materials. The full dependence of the inten-
ity on the polarization direction can be experimentally veri-
fied and should serve as a test for Fleury-Loudon-Eliott
theory.

(10) It is interesting to note that using E¢L1), our calculated
ratio agrees well with the conclusion tht/J,~0.5.

IV. CONCLUSION

Using these two possibilities, we computed the ratio of th
Heisenberg coupling constants for the materials studied b
Sugai and collaborators, using their published data. The r
sults for these materials are shown in Table I.

Let us discuss these results in light of previous
studiest?>'® Some authors have adopted the point of view
that this ratio is close to unity, and have used that as the
starting point of their analysi¥. On the other hand, some  The authors would like to thank T. Imai and A. Slepoy for
local density approximation calculatidfs®find the ratio to  their helpful comments. This work was supported in part by
be closer to 0.5. A number of other studies which allow thethe National Science Foundation under Grant No. DMR-
ratio to vary, also find values close t0.51°"" although a  9986948.
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