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Interactions and weak localization: Perturbation theory and beyond
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We establish an explicit correspondence between perturbative and nonperturbative results in the problem of
quantum decoherence in disordered conductors. We demonstrate that the dephasing timetw cannot be unam-
biguously extracted from a perturbative calculation. We show that the effect of the electron-electron interaction
on the magnetoconductance is described by the functionAd(t)exp@2fd(t)#. The dephasing time is determined
by f d(t), i.e., in order to evaluatetw it is sufficient to perform a nonperturbative analysis with an exponential
accuracy. We demonstrate that the effect of interaction on the pre-exponentAd(t) is important if one calculates
the interaction-dependent part of the weak localization correction for strong magnetic fields. The zero tem-
perature dephasing time drops out of this correction in the first order due to the exact cancelation of the linear
in time T-independent contributions from the exponent and the pre-exponent. Nonlinear in timeT-independent
contributions do not cancel out in the first order of the perturbation theory and yield an additional contribution
to dephasing at all temperatures includingT50.
bb
re

c-
a
r

n
so

r
on
si

s.
ce
nt

ra
ic
p

o
is

ro
s
n

-

b

e-
lf-
so,
dif-
ead
-
-
’

in a

n-
r-
his
ed,

rix
ue
nt,

re
a

ts

to

ef-

-
.

I. INTRODUCTION

Recent experiments by Mohanty, Jariwala, and We1

strongly indicate an intrinsic nature of a low-temperatu
saturation of the electron decoherence timetw in disordered
conductors.2,3 It was argued in Refs. 1,4 that zero point flu
tuations of electrons could be responsible for a finite deph
ing at low temperatures. These as well as various other
cent experimental results have attracted a lot of attentio
the fundamental role of interactions in disordered me
scopic systems.

A theory of the above phenomenon1 was proposed in ou
previous papers.5,6 We demonstrated that electron-electr
interactions in disordered systems can indeed be respon
for a nonzero electron decoherence rate down toT50. Our
results5,6 are in good agreement with experimental finding1

We also argued7 that this interaction-induced decoheren
has the same physical nature as in the case of a qua
particle interacting with a bath of harmonic oscillators.8,9

The low-temperature saturation of the decoherence
1/tw on a level predicted in Refs. 5,6 has serious theoret
consequences. Therefore it is not surprising that these
dictions have initiated intensive theoretical debates.10–18 In
contrast to Refs. 1,4–7, various authors10,11,13,15,17,18argued
that interaction-induced electron dephasing atT→0 is not
possible. Vavilov and Ambegaokar16 ~VA ! argued that the
quantum correction to the classical result2,3 should be small,
at least in the limitTtw@1.

It should be emphasized that the above discussion g
far beyond the problem of electron dephasing only. This d
cussion is important for a general understanding of the
of the electron-electron interactions in mesoscopic system
low temperatures. According, e.g., to Aleiner, Altshuler, a
Gershenzon13 ~AAG! this role is merely to provide a
~temperature-dependent! renormalization of a disordered po
tential of impurities. Within this picture, at sufficiently lowT
~when the effect of thermal fluctuations is small and can
PRB 620163-1829/2000/62~21!/14061~38!/$15.00
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neglected! electrons propagate in an effective inhomog
neous static potential which should be determined se
consistently in the presence of Coulomb interaction. If
electron scattering on such a static potential is not any
ferent than that on static impurities and, hence, cannot l
to dephasing. Our results5,6 suggest a different picture, ac
cording to whichdynamicaleffects are important at all tem
peratures down toT50 and the high frequency ‘‘quantum’
modes withv.T do contribute to dephasing.

Two main arguments supporting the first~‘‘static’’ ! pic-
ture are usually discussed.10,11,13,15–18The first argument is
quite general and is not necessarily related to electrons
disordered metal. One can argue10,13,17 that a particle with
energy;T cannot excite harmonic oscillators with freque
cies v.T and, hence the latter will at most lead to reno
malization effects. It is easy to observe, however, that t
argument explicitly contradicts to the exact results obtain
e.g., within the Caldeira-Leggett model.8 There, even atT
50, the off-diagonal elements of the particle density mat
decay at a finite length set by interaction. This effect is d
to all high frequency modes of the effective environme
i.e., the picture is by no means ‘‘static’’~see also Refs.
7,12,14 for further discussion!.

One can also modify the above argument and conjectu16

that the system of electrons can behave differently from
bosonic one8 because of the Pauli principle which restric
scattering space for electrons at lowT and, hence, their abil-
ity to exchange energy. Again, this argument contradicts
the well known results obtained forfermionic systems. For
example, it is well established19,20 that tunneling electrons
exchange energy with the effective environment~formed by
other electrons in the leads! even atT50. This exchange
results in the temperature independent broadening of the
fective energy distributionP(E) for tunneling electrons.19

This so-called ‘‘P(E) theory’’ was verified in many
experiments.21 A close formal and physical similarity be
tween the theory19 and our analysis6 is discussed in Ref. 22
14 061 ©2000 The American Physical Society
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The second argument against the possibility of
interaction-induced saturation oftw is purely formal. It is
based on a perturbative calculation by AAG.13 These authors
claimed11,13 that the results of this calculation explicitly con
tradict to our results5,6 and, hence, the latter are incorrec
However, a convincing comparison between the two cal
lations was not presented. Furthermore, in a previ
paper12,14we pointed out that the origin of the above contr
versy lies deeper, and the AAG’s suggestion that our ca
lation is ‘‘profoundly incorrect’’ cannot be taken seriousl
We argued that both approachesdo agreeon a perturbative
level and the key difference between them is that
calculation6 is nonperturbative while the analysis by AA
does not go beyond the first order in the interaction and,
top of that, involves additional approximations not contain
in our paper.6 For instance, for the exactly solvable Caldeir
Leggett model we demonstrated12,14 that within the perturba-
tive approach involving analogous approximations one
rives at incorrect results and misses the effect of quan
decoherence at low temperatures.

Motivated by this discussion as well as by the fundam
tal importance of the problem we have undertaken an a
tional analysis of the effect of interaction-induced decoh
ence in disordered metals. This analysis will help us
demonstrate the actual relation between our approach6 and
that of AAG.13 Since it is hardly possible to settle a calcul
tional dispute without presenting many details, in this pa
we made an effort to provide the reader with the details
our calculation.

The structure of the paper is as follows. In Sec. II we w
demonstrate a principal insufficiency of the perturbat
theory in the interaction for the problem of quantum deph
ing. We will argue thattw cannot be unambiguously ex
tracted even from a correct perturbative calculation. In S
III we extend our nonperturbative calculation.6 We will carry
out a complete analysis of the problem with the exponen
accuracy. We will also present semiquantitative argume
which, however, will be sufficient in order to understand t
effect of interaction on the pre-exponent. In Sec. IV we p
form a detailed perturbative calculation and demonstrate
at low T some previous perturbative results are based
several insufficient approximations, the main of which is t
golden rule approximation. We also establish an explicit
lation between nonperturbative6 and perturbative13 calcula-
tions. In Sec. V we briefly summarize our main observatio
For the sake of convenience we will briefly announce
main steps of our calculation in the beginning of each s
tion. Some further technical details are presented in App
dixes A, B, and C. In Appendix D we discuss the results.15–17

A close formal similarity between the problem in questi
and the exactly solvable Caldeira-Leggett model8,9,23 is dis-
cussed in Appendix E.

II. INSUFFICIENCY OF THE PERTURBATION THEORY

In this section we will demonstrate a principal insuf
ciency of a perturbative~in the interaction! approach to the
problem of quantum dephasing. In Sec. II A we will prese
some general remarks concerning the role of the perturba
theory for the problem of a quantum mechanical particle
teracting with other quantum degrees of freedom. In Sec.
e
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we discuss the relation between perturbative and nonpe
bative calculations of the magnetoconductance and the d
herence timetw in disordered conductors.

A. General remarks

The time evolution of the density matrix of such a partic
is defined by the following equation:

r~ t,x1 f ,x2 f !5E dx1idx2iJ~ t,x1 f ,x2 f ,x1i ,x2i !r~0,x1i ,x2i !,

~1!

wherex is the particle coordinate. The kernelJ depends on
the Feynman-Vernon influence functional24,25 and contains
the full information about the effect of interaction. This ke
nel can formally be expanded in powers of the interact
strength

J~ t !5 (
n50

`

J(n)~ t !. ~2!

The ‘‘noninteracting’’ kernelJ(0) does not change the sta
of the system~provided its initial state is an eigenstate of th
noninteracting Hamiltonian! and in this sense it is equivalen
to the unity operator. All other terms of this expansion gro
with time the faster the larger the numbern is. As a result in
general all these terms~2! become important for sufficiently
long times. Hence, the perturbation theory in the interact
@which amounts to keeping only several first terms of t
expansion~2!# is equivalent to the short time expansion
the exact density matrix. Thus in general this perturbat
theory cannot correctly describe the long time behavior
the interacting system no matter how weak the interaction

Keeping only the termJ(1) in Eq. ~2! under some addi-
tional assumptions one can express the probabilityWii for
the particlex to remain in its initial state as

Wii ~ t !512E
0

t

dt1E
0

t1
dt2K~ t1 ,t2!, ~3!

where the kernelK(t1 ,t2) can be derived from the influenc
functional25 and will not be specified here. In equilibrium
one usually hasK(t1 ,t2)[K(t12t2). Equation~3! applies at
short times, when the second term is still much smaller th
unity. But even in this limit the correct information can b
missed by insufficient approximations. For instance, the
quently used approximation amounts to retaining only
v50 term in the kernel Kv5*(dt/2p)K(t)exp(ivt).
Within this so-called golden rule approximation one finds

Wii ~ t !512Gt, G5pKv50 . ~4!

Furthermore, assuming that the effect of higher order te
in the expansion~2! can be accounted for by exponentiatin
the last term in Eq.~4! one immediately arrives atWii (t)
5exp(2Gt).

Obviously the above set of approximations is justifi
only in special cases. For instance, the golden rule appr
mation can work only provided the kernelK(t) decays rap-
idly as compared to other relevant time scales in the pr
lem. This could be the case, e.g., at sufficiently hi
temperatures. In general, and especially in the lo
temperature limit, the golden rule approximation~4! fails. It



.

hi
il
a

om

x
m
-

tr
r
he
in
s

un
re
ec

ve
th
m

al

c

b
no
t

lly
a

he
st

a

on
c

l

er-
nts.

e
s
ig-

r,

for

ds

r-
n

.

ed

nc-
-

the
o
lly
the
r

PRB 62 14 063INTERACTIONS AND WEAK LOCALIZATION: . . .
is particularly dangerous to combine theshort time perturba-
tive expansion with thelong time golden rule approximation
For example, ifKv50 happens to be zero, it would follow
from Eq. ~4! that the particle will stay in its initial state
forever even in the presence of interaction. Obviously t
cannot be the case. The exponential decay of the probab
Wii in time is also an artifact of the golden rule approxim
tion. In general the time dynamics of an interacting system
much more complicated, and it should be determined fr
Eq. ~1!.

In Eq. ~1! is usually implied that the initial density matri
r(0) does not coincide with the exact reduced equilibriu
density matrix for theinteracting system. The standard ap
proach is simply to factorize the initial density matrix,24,25

i.e., to represent it as a product of the particle density ma
r(0,x1i ,x2i) and the equilibrium density matrix of all othe
degrees of freedom. In this case, even if initially both t
particle and the environment were in their noninteract
ground states atT50, the relaxation process occurs becau
the factorized density matrix does not describe the gro
state of the interacting system. One could question the
evance of such initial conditions, e.g., to the problem of el
tron transport in disordered conductors in the presence
interaction. Indeed, in this case the density matrix is ne
factorized and no time evolution can be expected for
equilibrium density matrix of the whole interacting syste
Hence, atT50 in equilibrium no relaxation should occur.

In order to clarify the situation let us recall the form
expression for the conductivity@see Eq.~A15!#

s}E
2`

t

dt8E dr1idr2iJ~ t2t8,dr1 f ,dr2 f ,dr1i ,dr2i !

3reff~r1i ,r2i !, ~5!

wherereff(r1i ,r2i)5(r1i2r2i)r0(r1i ,r2i) andr0 is the equi-
librium electron density matrix. We observe that the effe
tive initial density matrixreff in this expression is strongly
perturbed at allT as compared tor0 due to the factor (r1i
2r2i). Therefore relaxation always takes place in our pro
lem. Since for a dissipative system relaxation times do
depend on the initial conditions, one can safely assume
initial density matrix to be, for instance, factorized. Actua
the same assumption is used within the diagrammatic
proach: a complete equivalence between Eq.~A15! ~factor-
ized density matrix! and the diagrammatic expression for t
conductance13 was demonstrated in Appendix A in the fir
order in the interaction.

B. Magnetoconductance

The weak localization correction to the conductivity of
disordered metal can be expressed in the following form

dsd~H !52
2e2D

p E
te

`

dtAd~ t !exp@2t/tH2 f d~ t !#, ~6!

te5 l /vF is the elastic electron mean free time. The functi
f d(t) increases with time and describes the Cooperon de
due to interaction@ f d(t) equals to zero without interaction#.
The presence of the magnetic fieldH causes an additiona
decay on a time scale;tH . By varying the magnetic field
and thustH ~which decreases with increasingH) one can
s
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extract information about the interaction-induced decoh
ence directly from the magnetoconductance measureme

The pre-exponential functionAd(t) without interaction is
Ad

(0)(t)51/(4pDt)d/2. In the presence of interaction th
function Ad(t) will, of course, depend on the interaction a
well. As is demonstrated below, this dependence can be
nored while calculating the decoherence timetw which
should only be extracted from the functionf d(t) in the ex-
ponent of Eq.~6!. This is the procedure of Ref. 6. Howeve
the dependence of the pre-exponentAd(t) on the interaction
is important if one wants to recover the subleading intH /tw

term in the expression fordsd(H) in the limit of a strong
magnetic fieldtH!tw . In this case only short timest&tH
contribute to the integral~6! and it is sufficient to perform a
short time expansion of both exp@2fd(t)# and Ad(t). This
expansion mixes terms important and unimportant
dephasing and in general makes itimpossibleto extract cor-
rect information about the dephasing timetw from the per-
turbation theory even in the limit of strong magnetic fiel
tH!tw .

In order to illustrate this conclusion let us restrict ou
selves to a quasi-one-dimensional~1D! case. The expressio
~6! may then be rewritten as

ds1~H !52
e2AD

p3/2 E0

1` dt

At
e2t/tHF~ t/tw!, ~7!

where the functionF(t/tw) accounts for the interaction
Note, that the functionF can ~and in general does! depend
not only on one but on several parametersF
5F(t/t1 ,t/t2 , . . . ,t/tn). In this section we will assume
that F depends on only one parametertw . This is sufficient
for our purposes.

In the absence of interactionF[1 and the divergence in
the integral~7! is cut at timest;tH . In this case from Eq.
~7! we reproduce the well known result

ds1
(0)52

e2

p
ADtH. ~8!

For largetH ~i.e., for H→0) the result~8! diverges and the
effect of interaction should be taken into account. Provid
in the long time limit the functionF decays faster than 1/At
the integral~7! converges even for 1/tH50 and we get

ds152a
e2

p
ADtw, ~9!

where the prefactora;1 which depends on the functionF.
The precise definition ofa is of little practical interest since
this prefactor can always be removed by rescaling oftw . Of
importance, however, is to describe the behavior of the fu
tion F(t/tw) at t;tw . This allows us to determine the mag
nitude of the dephasing timetw . Clearly, a nonperturbative
analysis in the interaction is needed in order to determine
function F at times t;tw simply because there exists n
small parameter in the problem. For example, if one forma
decreases the interaction strength, the magnitude of
dephasing timetw would increase, but one would neve
avoid the necessity to determine the functionF at t;tw .
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Thus the problem of finding the decoherence time in dis
dered conductors is nonperturbative for any interact
strength.

Observing this problem AAG suggested to consider
limit of strong magnetic fieldstH!tw , for which the inte-
gral ~7! converges already at timest;tH much shorter than
tw .13 In this case the weak localization correction can
calculated perturbatively in the interaction or, equivalen
by means a short time expansion of the functionF. The
recipe to evaluate the dephasing time from the perturba
theory suggested by AAG can be summarized as follows

In the zero order in the interaction we haveF51 and the
magnitude of the weak localization correction~8! increases
asAtH with increasingtH . If, expanding the interaction, on
recovers the term}AtH, this term could just be added to E
~8! and interpreted as an interaction-induced renormaliza
effect of the bare parameters. The presence of such a
would imply thatF is not equal to 1 anymore but acquire
some interaction correction. Nevertheless no time dep
dence ofF and, hence, no dephasing occurs in this case
therefore the terms}AtH are not ‘‘dangerous.’’ If, however
the first order conductance correction is found to incre
with tH fasterthanAtH and to have an opposite with respe
to ds1

(0) ~8! ~i.e., positive! sign, this would already mean tha
the functionF depends on time~decays with increasingt)
due to interaction and, hence, nonzero dephasing occ
Then, if such ‘‘dephasing’’ terms are recovered within th
perturbative procedure, one should look at a temperature
pendence of such terms. If these terms are present at a
T, but decrease and vanish as temperature approaches
this would imply that interaction does not cause any deph
ing at T50. If T-independent positive terms growing fast
thanAtH are recovered one would be able to conclude t
nonzero dephasing occurs atT50 already within the first
order perturbation theory in the interaction.

We are going to demonstrate that the above perturba
strategyin principle cannot be used to correctly obtain th
dephasing timetw for any magnetic field even though th
correctiondsH can be evaluated perturbatively in the lim
tH!tw . To begin with, we note that the terms}AtH can
already easily cause trouble provided they give a~positive!
contribution tods1(H) large as compared to the magnitu
of the zero order term~8!. In fact, the presence of term
}AtH just implies that their time dependence saturates
ready at short timest&tH . If this saturated value turns ou
to exceed the zero order term, this would only indicate
breakdown of the perturbation expansion in the interact
and, hence, no definite conclusion from this expansion
be drawn.

An even much more important problem is that the form
the functionF(t) in Eq. ~7! cannot be recovered from th
perturbation theory at all. It is quite obvious that the fi
order perturbative terms will depend only on the derivat
F8(0). Although in the limittH!tw the valueds1(H) can
be calculated perturbatively in the interaction, this wou
yield no information about the dephasing timetw . Such in-
formation can be extracted only if oneassumessome particu-
lar form of the functionF(t/tw). But this form should be
found rather than assumed. This task can be accomplis
only if one goes beyond the perturbation theory.
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Let us consider several different functionsF(t/tw). Per-
haps the most frequent choice of this function is based on
assumption about purely exponential decay of the phase
relations, in which case one has

F~ t/tw!5exp~2t/tw!. ~10!

As was already discussed above, this form of the functioF
follows directly from the golden rule approximation. Subs
tuting Eq. ~10! into Eq. ~7! in the limit of weak magnetic
fields tH@tw one immediately arrives at the result for th
weak localization correction of the form~8! with tH substi-
tuted by (1/tH11/tw)21. In the limit of weak magnetic
fields tH@tw the result~9! with a51 is recovered. In the
opposite limittH!tw Eqs.~7! and ~10! yield

ds12ds1
(0).

e2

2p

ADtH
3/2

tw
, ~11!

whereds1
(0) is defined in Eq.~8!. Another possible choice o

the functionF can be

F~ t/tw!5exp@2~ t/tw!3/2#. ~12!

The reason for such a choice will become clear later. T
substitution of Eq.~12! into Eq.~7! again yields the result~9!
@with a52G(1/3)/3Ap.1.0076, G(x) is the Euler gamma
function# in the limit tH@tw , while in the opposite limit
tH!tw from Eqs.~7! and ~12! one obtains

ds12ds1
(0).

e2ADtH

p3/2 S tH

tw
D 3/2

. ~13!

Comparing Eqs.~11! and ~13! we observe that for strong
magnetic fields the interaction corrections to the leading
der term ~8! are different depending on the choice of th
function F, even though for weak magnetic fields bo
choices~10! and ~12! yield the same result~9! with only
slightly different values of a numerical prefactora.

The magnetoresistance data are frequently fitted to
formula3

ds1~H !5
e2

p
ADtw

Ai ~tw /tH!

Ai 8~tw /tH!
, ~14!

where Ai(x) is the Airy function. In the limittH@tw this
equation again reduces to Eq.~9! with the factor a
52Ai(0)/Ai 8(0).1.372. In the opposite limittH!tw one
finds

ds12ds1
(0).

e2ADtH

4p S tH

tw
D 3/2

. ~15!

We observe the equivalence between Eqs.~13! and ~15! up
to a numerical prefactor of order 1.

Finally, let us choose the trial functionF in the following
form:

F~ t/tw!5
e2t/twAbt

Atw~12e2bt/tw!
, ~16!
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where b is a numerical coefficient of order 1. Combinin
Eqs.~7! and ~16! we find

ds1~H !52
e2

p
ADtw

1

Ab

GF1

b S 11
tw

tH
D G

GF1

2
1

1

b S 11
tw

tH
D G . ~17!

In the limit tH!tw one can expand this equation in powe
of tH /tw and get

ds12ds1
(0).

42b

4

e2ADtH

2p

tH

tw
, ~18!

while in the limit tH@tw from Eqs.~7!,~16! one again re-
covers Eq.~9! with a slightly modified numerical prefactora
~which now also depends on the valueb). Absorbinga by a
proper redefinition oftw one can plot the result~7! for the
trial functions ~10!,~16! ~for different values ofb) and Eq.
~14! depending on the magnetic field~or tH). These plots are
presented in Fig. 1. We observe that all four plotted fu
tions are very close to each other@e.g., the maximum devia
tion between Eq.~14! and ds1(H) obtained from Eq.~16!
with b54 does not exceed 0.01#. If one would fit the experi-
mental data for the magnetoconductance with any of th
four functions one~i! would not be able to distinguish be
tween them within typical error bars and~ii ! would obtain
the samevalue tw for all these functions~up to a prefactor
a;1 absorbed intw anyway!. In other words, the results fo
tw extracted from fitting the experimental data to seve
different functionsF(t/tw) will be practically insensitive to

FIG. 1. Magnetoconductance curves corresponding to diffe
cutoff procedures:~a! purely exponential cutoff~10!; ~b! Airy func-
tion of Eq. ~14!; ~c! the cutoff functionF is given by Eq.~16! with
b54 (a.1.479) corresponding to ‘‘zero dephasing’’ in the fir
order perturbation theory;~d! the cutoff function~16! with b55
(a.1.582) which yields ‘‘negative dephasing’’ in the first ord
perturbation theory. Heretw is rescaled to absorb the factora in Eq.
~9!.
-

se

l

the particular form ofF as long as its decay at long times
sufficiently fast to provide an effective cutoff for the integr
~7! at t;tw .

At the same time if one tries to extracttw from the per-
turbation theory in the interaction one immediately arrives
ambiguous and contradictory results. Let us, for examp
consider the perturbative result of AAG

ds12ds1
(0)}TtH

2 ~19!

@see, e.g., Eq.~4.8b! of Ref. 13# and, following the above
paper, assume an exponential decay of correlations~10!. In
this case the dephasing timetw is obtained from a direct
comparison of Eq.~11! @equivalent to Eq.~4.3b! of Ref. 13
or Eq.~3! of Ref. 11# with Eq. ~19! @or Eq.~4.8b! in Ref. 13#.
One obtains

1/tw
AAG}TAtH ~20!

@see Eq.~4.9b! of Ref. 13#. The result~20! is essentially
based on theassumptionabout a purely exponential deca
~10!. Note, however, thata priori there is no reason to as
sume such a decay.~Just on the contrary, it will be demon
strated below that this isnot the case for the problem in
question.! The cutoff functions~12!,~16! ~and many others!
yield the same result~9! as the function~10! and one can
hardly make a distinction between them from the magne
conductance measurements~Fig. 1!.

For instance, if one sticks to the choice~12!, one should
extracttw by comparing Eqs.~13! and~19!. This comparison
yields tw independent oftH and 1/tw}T2/3. The latter form
coincides with the well known result by Altshuler, Arono
and Khmelnitskii2 ~AAK ! but is in an obvious disagreemen
with Eq. ~20!. If, instead of Eq.~12!, one uses the trial func
tion ~16! and compares Eqs.~18! and ~20!, one findstw

}(42b)/(TtH
1/2), i.e., positive, zero and even negativ

dephasing times, respectively, forb,4, b54 and b.4.
However, all these dramatic differences in the first order
sults have no effect both on the form of the magnetocond
tancedsd(H) ~Fig. 1! and on the valuetw extracted from it.

Thus, whatever result is obtained in the first order pert
bation theory in the interaction, it is yet insufficient to dra
any definite conclusion about the dephasing timetw . The
problem is essentially nonperturbative and should be trea
as such. The corresponding analysis was developed in
paper6 and will be extended further in the next section.

III. WEAK LOCALIZATION CORRECTION:
NONPERTURBATIVE RESULTS

In order to provide a complete description of the electro
electron interaction effect on the weak localization correct
~6! it is in general necessary to calculate both the funct
f d(t) in the exponent of Eq.~6! and the pre-exponentia
function Ad(t). An important observation is, however, th
information about the effect of interaction onAd(t) is not
needed to correctly evaluate the dephasing timetw . It suf-
fices to find only the functionf d(t) which describes the de
cay of correlations in time and provides an effective cut
for the integral~6! at t;tw . The role of the pre-exponent i
merely to establish an exact numerical prefactor. Sincetw is
defined up to a numerical prefactor of order one anyway,

nt
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clear that only the functionf d(t)—and notAd(t)—is really
important.

In Sec. III A we extend our previous analysis6 and evalu-
ate of the functionf d(t) keeping all the subleading term
This procedure is important in at least two aspects:~i! it
allows to unambiguously settle the issue of unphysical div
gences which was argued by VA16 to be a problem in our
previous calculation6 and ~ii ! it is necessary to establish
direct relation between our nonperturbative approach and
perturbation theory in the interaction. In Sec. II B we w
perform a semiquantitative analysis of the effect of inter
tions on the pre-exponential functionAd(t). In Sec. III C we
will demonstrate that the short time perturbative expans
of both the exponent and the pre-exponent at lowT not only
can ~Sec. II B! but doeslead to missing an important infor
mation abouttw in disordered conductors.

A. Exponent

The functionf d(t) can be evaluated by means of the pa
integral formalism.6 This procedure amounts to calculatin
the path integral for the kernel of the evolution operator

J;E DrE Dpexp~ iS02 iS082 iSR2SI ! ~21!
rs

f

a

r-

he

-

n

within the saddle point approximation on pairs of time r
versed paths and to averaging over diffusive trajector
HereS0 andS08 represent the electron action on the two pa
of the Keldysh contour, whileiSR1SI accounts for the in-
teraction. The effective action~21! was derived in our Ref. 6
for the sake of convenience we reproduce the explicit exp
sions in Appendix A@Eqs. ~A16!–~A19!# together with the
expression for the conductance of a disordered meta
terms of the kernel of the evolution operatorJ and the elec-
tron density matrix~A15!.

The saddle point approximation procedure was descri
in details in Ref. 6. One can demonstrate that the contri
tion of the real partSR of the action~A18! vanishes on any
pair of time reversed diffusive paths. By no means does
cancelation occur by chance, rather it is a generic propert
a wide class of influence functionals describing dissipat
environments. For example, similar cancelation is obser
in the Caldeira-Leggett model,8 the relation to which will be
discussed in Appendix E. Also we would like to point o
that for any pair of pathsSR contributes only to thereal part
of the effective action and, hence, can never cancel animagi-
nary contribution from the termSI ~A19!. Anyway, the func-
tion f d(t) in the exponent is determined solely by the ima
nary part of the actionSI ~A19! and it is given by the
following expression:6
f d~ t !5e2E
0

t

dt1E
0

t

dt2^I @ t12t2 ,r~ t1!2r~ t2!#2I @ t11t22t,r~ t1!2r~ t2!#&diff , ~22!
an-

ack-

is
l is
ed
er-

are
ur
l to
where the functionI is defined in Eq.~A14!. In equilibrium it
is expressed in terms of an imaginary part of the inve
effective dielectric susceptibility 1/e(v,k) multiplied by
coth(v/2T). The first term~22! describes the contribution o
the self-energy diagrams@diagrams~a! and ~b! in Fig. 2#,
while the second term is due to the vertex diagrams@~c! and
~d! in Fig. 2#. In order to evaluate the functionf d(t) ~22! we
introduce the Fourier transform of the functionI and then

FIG. 2. The four first order diagrams. The time ordering is
follows: t1.t2.t3.0.
e
average over the diffusive trajectories with the aid of a st
dard replacement26 ^exp$ik@r(t1)2r(t2)#%&diff5exp(2Dk2ut1
2t2u). After the integration overk we obtain

f d~ t !5
4e2D12d/2

sd~2p!d S E ddx

11x4D E dvdv8

~2p!2

3F uv8ud/222~v2v8!coth
v2v8

2T

12cosvt

v2

2uv8ud/222v coth
v

2T

cosvt2cosv8t

v822v2 G . ~23!

Here again the first and the second terms in the square br
ets are, respectively, from the self-energy@Figs. 2~a!,2~b!#
and the vertex@Figs. 2~c!,2~d!# diagrams. For 1D and 2D
cases the integral of the first term overv8 diverges atv8
→0. However, it is easy to check that this divergence
exactly canceled by the second term, the whole integra
finite in any dimension and does not require artificial infrar
cutoffs. Various divergences are rather inherent to the p
turbation theory in the interaction and—at least in part—
due to insufficiency of the perturbative expansion in o
problem, especially at low temperatures. It is also usefu
note that atT→0 the leading contribution tof d(t) in the

s
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long time limit is insensitive to a divergence contained in t
first term in the square brackets~23! and can be derived only
from this term.6

The integrals in Eq.~23! can be handled in a straightfo
ward manner. Technically it is sometimes more conveni
to perform calculations in the real time rather than in t
frequency representation. Here we will present the calc
tion for the 1D case.

First we find the explicit expression forI (t,x) ~A14!:

I ~ t,x!5
1

s1
E dvdk

~2p!2

v

k2
coth

v

2T
e2 ivt1 ikx

5
uxu

2ps1
S 2

d

dt
P@pT coth~pTt!# D . ~24!

HereP stands for the principal value, i.e.,P@pTcoth(pTt)# is
a distribution rather than an ordinary function divergent
t→0. For a given diffusive trajectory~and on sufficiently
long time scales! this function can be replaced by the follow
ing function of time:

^I @ t20,x~ t !2x~0!#&diff

5E dxI~ t,x!D~ utu,x!

5
1

2ps1
S 2

d

dt
P@pT coth~pTt!# D

3E dx

uxuexpF2
x2

4DutuG
A4pDutu

5
1

ps1
ADutu

p S 2
d

dt
P@pT coth~pTt!# D . ~25!

Substitution of this equation in Eq.~22! yields

f 1~ t !5
2e2

ps1
E

0

t

dt1E
0

t1
dt2S 2

d

dt
P@pT coth~pTt!# D

3FADt2

p
2ADu2t12t22tu

p G . ~26!

Let us first integrate this expression overt1 and then inte-
grate the result by parts. We obtain

f 1~ t !5
2e2

ps1
AD

pE2te /p

t

dt8pT coth~pTt8!

3S t

2At8
2

3

2
At81At2t8D . ~27!

The short time cutoff in Eq.~27! is equivalent to a sharp
cutoff at v51/te in the frequency domain.

In the quantum regimepTt!1 we find

f 1~ t !5
e2

ps1
A2D

te
t1

2e2

ps1
ADt

p S ln
2pt

te
26D , pTt!1.

~28!
t

a-

t

Note, that apart from the leading linear in time term the
exists a smaller term}At ln(t/te), which also grows in time.

In order to find the functionf 1(t) in the opposite therma
limit pTt@1, let us rewrite the integral~27! in the form

f 1~ t !5
2e2

ps1
AD

p HA p

2te
t2pTt3/2@coth~pTt!21#

1tApTE
0

pTtdx

Ax
S cothx212

x

sinh2x
D

2
3

2ApT
E

0

pTt

dxAx~cothx21!

1E
2te /p

t

dt8pT coth~pTt8!At2t8J .

Making use of the integrals

E
0

` dx

Ax
S cothx212

x

sinh2x
D 5Ap

2
zS 1

2D ,

E
0

`

dxAx~cothx21!5
1

2
Ap

2
zS 3

2D , ~29!

we get

f 1~ t !5
2e2

ps1
AD

p HA p

2te
t1

2p

3
Tt3/21

pz~1/2!

A2
tAT

2
3z~3/2!

4A2

1

AT
1At lnS 1

4Tte
D1OS 1

TAt
D

12pTt3/2e22pTt1O~Ate22pTt!J , pTt@1. ~30!

We observe that in both cases~28! and ~30! there exists a
linear in time temperature independent contribution tof 1(t)
which determines the dephasing timetw at low
temperatures.5–7 In addition to that, atTt@1 there exists
another term}Tt3/2 which yields dominating contribution to
tw at high temperaturesT*Tq;1Atwte, where the result of
AAK tw}T22/3 is recovered.2

In addition to both these important contributions all fo
diagrams of Fig. 2 yield subleading terms in the express
for f 1(t) which also grow with time, albeit slower than th
main terms. These subleading terms also contribute
dephasing even atT50 @see Eq.~28!#, however, this contri-
bution is always smaller than that of the leading terms, ty
cally in the parameterAte /tw. This result is in contrast with
the statement of Ref. 16, where it was argued that att;tw

the contribution of the vertex diagrams tof 1(t) can be com-
parable to that of the self-energy diagrams and the te
}t/Ate, which is the most important atT→0, can be can-
celed. A straightforward calculation demonstrates that thi
not the case.
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A similar calculation can be performed in 2D and 3D.
any dimension the result can be expressed in the form

f d~ t !5t/tw
01d f d~T,t !, ~31!

where we defined

1

tw
0

5
kde2~2D !12d/2

psdte
d/2

. ~32!

A numerical prefactorkd in Eq. ~32! ~determined for a sharp
high frequency cutoff atv51/te) is k151 for 1D, k2
51/4 for 2D, andk351/3p for 3D. A detailed expression
for the function d f 1(T,t) is given in Eqs.~28! and ~30!,
where we retained also several subleading terms neede
further comparison with perturbative results~Sec. IV!. For
2D and 3D systems we will present only the leading or
contributions tod f d(T,t). In 2D we find

d f 2~ t !5
2g0

p

te

tw
0

ln
t

te
, Tt!1,

d f 2~ t !5
2te

tw
0

Tt ln~Tt!, Tt@1. ~33!

Hereg0.0.577 . . . is theEuler’s constant andt@te . Simi-
larly, in the 3D case we obtain

d f 3~ t !.7.8
te

tw
0

, Tt!1,

d f 3~ t !.3
~Tte!

3/2

tw
0

t, Tt@1. ~34!

In 3D we used a standard approximation and repla
vcoth(v/2T)2uvu by 2Tu(T2uvu).

B. Pre-exponent

As was already discussed above, the pre-expone
functionAd(t) does not play any significant role in our pro
lem. Therefore its rigorous calculation at all times~which is
a separate and quite complicated problem! will not be dis-
cussed here. Of importance is to qualitatively underst
how the functionAd(t) is modified in the presence of th
electron-electron interaction. Therefore we will restrict ou
selves to semiquantitative arguments which, however,
for

r

d

ial

d

-
rn

out to give surprisingly good agreement with the rigoro
results obtained in Sec. IV in the short time limit.

It is well known3,26 that without interaction the function
Ad(t) is related to the return probability of diffusive trajec
tories to the same point after timet. In the presence of dis
sipation~described by the termSR in the effective action! the
particle energy decreases and its diffusion slows down. T
implies that at any given timet the functionAd(t) should
exceed the pre-exponentAd

(0)(t) evaluated without interac
tion. On the other hand, at least if the interaction is su
ciently weak, diffusion will still take place at all times and
hence,Ad(t) will decay in time, albeit somewhat slower tha
Ad

(0)(t).
Now let us try to find a typical time scale at which th

deviation of Ad(t) from Ad
(0)(t) becomes of the order o

Ad
(0)(t). For the sake of definiteness we restrict our analy

to the 1D case. As we have already discussed, the real pa
the actionSR vanishes on the time reversed diffusive path
In order to evaluate the contribution ofSR in the path integral
~21! or Eq.~A16! we need to include fluctuations around th
time reversed paths. We assume that these fluctuations
small and neglect them in the arguments of the functio
R@ t12t2 ,r i(t j )2rk(tn)# in Eq. ~A18!. These fluctuations are
however, important and should be kept in the arguments
the functions 122n(pi ,r i). In equilibrium one has 1
22n(pj ,r j )5tanh(jj/2T), where we definedj j5pj

2/2m
1U(r j )2m. Within the above approximation we get

SR.
e2

2 E0

t

dt1E
0

t

dt2„$^R@ t12t2 ,r~ t1!2r~ t2!#&diff

2^R@ t12t2 ,r~ t1!2r~ t2t2!#&diff%$tanh@j1~ t2!/2T#

2tanh@j2~ t2!/2T#%… ~35!

In addition to the contribution~35! one should also take
care of the corrections to the actionS0 ~A17! due to the
interaction. These corrections turn out to be of the same
der as Eq.~35!. In the presence of interaction the classic
paths change and satisfy the following Langevin equatio6

mr̈~ t8!1¹U@r~ t8!#1e2E dt9¹ r(t8)R

3@ t82t9,r~ t8!2r~ t9!#tanh
j~ t9!

2T

52eE@ t8,r~ t8!#, ~36!

whereE(t8,r) is the fluctuating electric field due to the Ny
quist noise. From this equation we find
S0@p,r#.S0@p(0),r(0)#1E
0

t

dt1E
0

t1
dt2K e2E

0

t

dt9 ṙ~ t2!¹ r(t2)R@ t22t9,r(0)~ t2!2r(0)~ t9!#tanh
j~ t9!

2T L
diff

.S0@p(0),r(0)#1E
0

t

dt1K e2E
0

t

dt9R@ t12t9,r(0)~ t1!2r(0)~ t9!#tanh
j~ t9!

2T L
diff

.S0@p(0),r(0)#1e2E
0

t

dt1E
0

t

dt2^R@ t12t2 ,r(0)~ t1!2r(0)~ t2!#&diff tanh
j~ t2!

2T
. ~37!
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Herer(0) is a classical diffusive path without interaction. Th
energyj is conserved along such a path. The average en
change due the noise fieldE@ t8,r(t8)# ~36! vanishes and
therefore was omitted in Eq.~37!.

Adding Eqs.~35! and ~37! together we obtain

S02S082SR.S0@p1 ,r1#2S0@p2 ,r2#

1
e2

2 E0

t

dt1E
0

t

dt2R$tanh@j1~ t2!/2T#

2tanh@j2~ t2!/2T#%, ~38!

where we defined

R5^R@ t12t2 ,r~ t1!2r~ t2!#&diff

1^R@ t12t2 ,r~ t1!2r~ t2t2!#&diff . ~39!

Within our simple approximation the pathsr1 and r2 in
the actionSR are considered to be independent from ea
other. Therefore the kernel~21! can be expressed in the fo
lowing form:

J5Ũ~ t,r1 f ,r1i !Ũ
1~ t,r2 f ,r2i !e

2 f 1(t), ~40!

where

Ũ~ t,r1 f ,r1i !5E DrE DpexpF iS0@p,r#

1 i
e2

2 E0

t

dt1E
0

t

dt2R tanh
j1~ t2!

2T G . ~41!

It is convenient to define the following function:

u~ t !5
e2

2 E0

t

dt1E
0

t

dt2R.
e2

ps1
A2D

te
t1

e2

2s1
ADt

p
.

~42!

Then the operator~41! can be rewritten as follows:

Ũ~ t,r1 f ,r1i !5(
l

e2 i jlt1 iu(t)tanh(jl/2T)cl~r1 f !cl* ~r1i !.

~43!

Herecl andjl are, respectively, the eigenfunctions and t
energy eigenvalues of a single electron HamiltonianĤ0

5 p̂2/2m1U(r)2m.
In the absence of the interaction the pre-exponent is gi

by the following expression:

A1
(0)~ t !5

1

A4pDt

5
1

4pA2D
E dj1E dj2S d

dj1
tanh

j1

2TD cos@~j12j2!t#

Auj12j2u
.

According to Eq.~43! the productsj j t should be replaced by
j j t2u(t)tanh(jj/2T). Thus we get
gy

h

n

A1~ t !5
1

4pA2D
E dj1E dj2S d

dj1
tanh

j1

2TD

3

cosF ~j12j2!t2u~ t !S tanh
j1

2T
2tanh

j2

2TD G
Auj12j2u

.

~44!

Let us emphasize that the estimate~44! was obtained with
the aid of several crude approximations and, in particula
the long time limit, corrections to this simple result can ea
ily be expected. However, since we are not interested in
details of the long time behavior ofAd(t), the result~44! is
already sufficient for our purposes. The main properties
Ad(t) are as follows.

First, Eq. ~44! determines a typical time at whichA1(t)
significantly deviates fromA1

(0)(t). This scale~which we
will denote astA) is set by the functionu(t) and at lowT
can be determined from the conditionu(tA);1. Combining
this condition with Eq.~42! and observing that the first term
in this equation equals tot/tw

0 and the second term is sma
for all times t@te , we conclude that—at least for suffi
ciently low temperatures—the time scaletA is of the same
order as the dephasing time atT50 ~32!, i.e.,tA;tw

0 . Thus
for all t&tw

0 the effect of the interaction on the pre-expone
is small and for such times one can safely approxim
A1(t)'A1

(0)(t). This approximation was already used with
our previous analysis.6

Secondly, the estimate~44! illustrates again an intuitively
obvious property of the pre-exponent: in the long time lim
A1(t) decays in time. Thus no compensation of the expon
tial decay of correlations}exp@2f1(t)# can be expected from
the pre-exponential functionA1(t) at long times. Hence, in
our problem the effect of interaction on the pre-expon
A1(t) can be disregarded also in the long time limitt.tw

0 .
The same analysis can be repeated for 2D and 3D cases
the same conclusions will follow.

C. Discussion

Our consideration allows to suggest the following tran
parent picture. The dephasing time is fully determined by
imaginary part of the effective actionSI which contains
‘‘coth.’’ In other words, the function in the exponent of Eq
~6! is

f d~ t !5 f d@SI #. ~45!

The real part of the effective actionSR ~which depends on
‘‘tanh’’ and contains information about the exclusion pri
ciple! contributes to the~unimportant for dephasing! pre-
exponentAd(t) in Eq. ~6!, i.e.,

Ad~ t !5Ad@SR#. ~46!

The splitting between the exponent and the pre-exponen
the type ~45!,~46! holds also for the exactly solvabl
Caldeira-Leggett model. This will be demonstrated in A
pendix E.

Although the difference betweenAd(t) andAd
(0)(t) cannot

have any significant impact on the dephasing timetw , this
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difference should be taken into account if one evaluates
weak localization correction perturbatively in the interactio
In the limit tH!tw a short time expansion of both the exp
nent and the pre-exponent is sufficient and the weak lo
ization correction can be represented as a sum of three t

dsd5dsd
(0)1dsdeph1ds tanh, ~47!

wheredsd
(0) is the ‘‘noninteracting’’ correction and

dsdeph5
2e2~DtH!12d/2

p~4p!d/2 E
0

`

dx
e2x

xd/2
f d~xtH!, ~48!

ds tanh5
2e2~DtH!12d/2

p~4p!d/2 E
0

`

dx
e2x

xd/2

3@12~4pDxtH!d/2Ad~xtH!#. ~49!

Making use of the result~44! for the 1D case in the limitT
→0 and at short times we obtain

A1~ t !5
cos@u~ t !#1sin@u~ t !#

A4pDt

.
1

A4pDt
$11u~ t !1O@u2~ t !#%. ~50!

We will keep track only of the leading contribution to th
function ~42! u(t).t/tw

0 . This is sufficient within the accu
racy of our estimate~44!. Combining Eqs.~48! and ~49! we
observe that the sum of the last two terms in Eq.~47! de-
pends on the combination

f 1~ t !2u~ t !.

The termt/tw drops out of this combination, it is containe
both in f 1(t) and u(t) and cancels out exactly. The sam
cancelation occurs in 2D and 3D cases. This cancelatio
lustrates again the conclusion of Sec. II: it is impossible
obtain correct information about the dephasing time e
from the correct first order perturbative analysis.

The accuracy of our estimate of the pre-exponent at s
times t&tw

0 can also be checked by means of a direct p
turbative calculation. This calculation is presented in the n
section. It demonstrates that the above cancelation of the
order linear in timeT-independent terms from the expone
and the pre-exponent has a general origin and is not rel
to the quasiclassical approximation and/or disorder ave
ing at all.

The final results for the weak localization correction
the conductance presented in the next section are mainly
cused on the 1d case. Here we provide the results for the 2d
case. In the ‘‘perturbative’’ limittH!tw one obtains from
Eqs.~33!,~47!–~49!

ds2~H !2ds2
(0)~H !5

e2

2p2

e2Rh

2p
TtH ln~TtH! ~51!

in the thermal limitTtH@1 and
e
.

l-
ms

il-
o
n

rt
r-
xt
rst

ed
g-

o-

ds2~H !2ds2
(0)~H !5

2g0

p

e2

2p2

e2Rh

4p S ln
tH

te
D 2

~52!

in the quantum limitTtH!1. HereRh is the sheet resistanc
of a two-dimensional film. The result~51! coincides with
that found by AAG in the limitTtH@1.13 An opposite limit
of low temperatures was not considered in Ref. 13 at all.
will perform a detailed comparison of our results with tho
of AAG in the next section.

IV. PERTURBATION EXPANSION

Now let us analyze the expression for the weak locali
tion correction to the conductivitydsd perturbatively in the
interaction. The structure of this section is as follows. In S
IV A we will derive general exact results for the system co
ductance in the first order in the interaction. In the Sec. IV
we will demonstrate that the exact first order diagrams do
cancel atT50 and, moreover, that the result cannot in ge
eral be interpreted as an effective renormalization. We w
also demonstrate that some previous statements about a
act cancelation of the first order diagrams in the limitT
→0 are nothing but artifacts of insufficient approximation
the main of which is the golden rule approximation. A d
tailed calculation of the weak localization correction in t
first order in the interaction is performed in Sec. IV C. The
we will also identify the contributions to this correction com
ing from the exponent and the pre-exponent, see Sec. II
Sec. II D we will present a detailed comparison of our ana
sis with that developed by AAG in Ref. 13.

A. General results

The perturbation theory can be constructed by means
regular expansion of the kernel of the evolution operatoJ
~A16! in powers ofiSR1SI . In the first order one obtains
four diagrams presented in Fig. 2. The contribution of t
self-energy diagrams@Figs. 2~a!,2~b!# is analyzed in detail in
Appendix A. It is demonstrated that this contribution tods
can be written in terms of the evolution operatorU for non-
interacting electrons. The corresponding expression is
fined in Eqs.~A12!–~A14!. It is equivalent to the result~A1!
obtained diagrammatically by AAG.

Let us express the evolution operatorU in the basis of the
exact wave functions of noninteracting electrons

U~ t,r1 ,r2!5^r1uexp~2 iĤ 0t !ur2&5(
l

e2 i jltcl~r1!cl* ~r2!.

~53!

Obviously the representation~53! holds both with and with-
out the external magnetic field with the only difference th
in the latter case the energy levels are doubly degene
while in the former case this degeneracy is lifted by t
magnetic field.

The density matrixr which enters the expression~A12!
can also be expanded in the basis of the eigenfunctionscl .
We find

~122r!~r1 ,r2!5(
l

tanh
jl

2T
cl~r1!cl* ~r2!, ~54!
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]r

]m
~r1 ,r2!5(

l

1

2 S d

djl
tanh

jl

2TDcl~r1!cl* ~r2!. ~55!

Now let us substitute Eqs.~53!–~55! into the expression
~A12!. Performing the two time integrals after a straightfo
ward algebra~see Appendix B for details! we obtain the
correction to the conductivity due to the self-energy d
grams of Figs. 2~a!,2~b!
-

dsab
se 5dsab

C 2
e2

2VsE0

1`

dt1 (
l1•••l4

S d

djl1

tanh
jl1

2T D
3~ j a

l4l1 j b
l1l21 j b

l4l1 j a
l1l2!Ml2l3 ;l3l4

3E dv

2p
vFcoth

v

2T
1tanh

jl3

2T
GF~ t1 ,v,jl1

. . . jl4
!,

~56!
by the
whereV is the system volume and we defined the matrix elements

j a
l1l25E drcl1

* ~r! ĵ acl2
~r!,

Ml2l3 ;l3l45E d3k

~2p!3

1

k2
^l2ueikrul3&^l3ue2 ikrul4& ~57!

and the function

F~ t1 ,v,jl1
•••jl4

!5E
0

t1
dt2E

0

t2
dt3cos@2jl1

t11jl2
t31~jl3

1v!~ t22t3!1jl4
~ t12t2!#

5cosj21t1

j42$cos@~j321v!t1#21%1~j321v!@12cosj42t1#

j42~j422j322v!~j321v!

2sinj21t1

j42sin@~j321v!t1#2~j321v!sinj42t1

j42~j422j322v!~j321v!
. ~58!

Here we introduced the notationj i j [jl i
2jl j

.

The termdsab
C in Eq. ~56! describes the correction due to the nonscreened Coulomb interaction. It is defined

expression

dsab
C 52

e2

4VE0

1`

dt1E
0

t1
dt2 (

l1 ,l2 ,l4
S d

djl1

tanh
jl1

2T D ~ j a
l4l1 j b

l1l21 j b
l4l1 j a

l1l2!^l2u
@122r#~r1 ,r2!

ur12r2u
ul4&

3sin@2jl1
t11jl2

t21jl4
~ t12t2!#. ~59!

The contribution tods from the vertex diagrams of Figs. 2~c!,2~d! can be found analogously~see Appendix B!. We get

dsab
vert52

e2

2VsE0

`

dt1 (
l1•••l4

S d

djl1

tanh
jl1

2T D ~ j a
l2l3 j b

l1l41 j b
l2l3 j a

l1l4!Ml3l1 ;l4l2

3E dv

2p
vF2coth

v

2T
1tanh

jl3

2T
GG~ t1 ,v,jl1

•••jl4
!. ~60!

Here we have introduced the following function:

G~ t1 ,v,jl1
•••jl4

!5E
0

t1
dt2E

0

t2
dt3cos@2jl3

~ t12t3!2jl1
t31jl4

t21jl2
~ t12t2!1v~ t22t3!#

5cosj21t1

~j421j31!cos@~j312j422v!t1#2~j421v!cosj42t12~j312v!cosj31t1

~j421j31!~j312v!~j421v!

1sinj21t1

~j421j31!sin@~j312j422v!t1#1~j421v!sinj42t12~j312v!sinj31t1

~j421j31!~j312v!~j421v!
. ~61!
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Despite an obvious similarity in the structure of the se
energy@Eq. ~56!# and the vertex@Eq. ~60!# corrections to the
conductivity these two expressions differ in several aspe
the terms containing coth(v/2T) in Eqs. ~56! and ~60! have
the opposite signs, the functionsF ~58! and G ~61! of the
energy argumentsjl are different and the matrix elemen
entering Eqs.~56! and ~60! depend on different indices.

It is important to emphasize that the Eqs.~56!–~61! de-
termine the total correction to the conductivity tensorsab

5sab
se 1sab

vert which is identical to the initial results~A1! and
~A12!. In deriving Eqs.~56!–~61! from Eq. ~A12! no quasi-
classical approximation, no averaging over disorder and
no other approximation of any kind has been made:
above equations areexactquantum mechanical results in th
first order in the interaction. Therefore these equations ca
conveniently used to test the statement about the full can
ation of the first order diagrams atT→0 which is quite fre-
quently made in the literature~see, e.g., Ref. 27 as well a
recent works17,18 and further references therein!.

B. Breakdown of the Fermi golden rule approximation

Although here we are mainly interested in the contrib
tion of the diagrams of Fig. 2 to the current-current corre
tion function, the structure of the result is by no means s
cific to this function only. The very same structure—perha
apart from the matrix elements of the current operator—
reproduced if one calculates, e.g., the inelastic scatte
time27,28,18 and similar quantities. This is quite natural b
cause the results for different quantities follow from the e
pansion of the same evolution operatorJ ~A16! in the inter-
action. Hence, the analysis to be presented below is gen
and can be applied to various physical quantities evalua
by means of the diagrams of Fig. 2.

Let us consider the self-energy diagrams of Fi
2~a!,2~b!. Just for the sake of clarity let us repeat the sta
ment we are going to test: according to Fukuyama a
Abrahams27 and to some other authors the contribution
these diagrams vanishes in the limitT→0 because the resu
contains the combination

S d

de
tanh

e

2TD Fcoth
v

2T
1tanh

e2v

2T G ~62!

under the integrals overe andv. This combination restricts
both integrals to the regionsueu&T and uvu&T and makes
the result to vanish completely atT50.

Already the first inspection of expressions~56!,~58! al-
lows us to observe that it is the combination

S d

djl1

tanh
jl1

2T D Fcoth
v

2T
1tanh

jl3

2T
G ~63!

andnot Eq. ~62! which enters the exact quantum mechani
result. This combination isnot zero even atT50 because
jl3

5” jl1
2v, high frequenciesuvu.T do contribute to the

integral and, moreover, this integral may—depending on
spectrum of the fluctuation propagator—even diverge
large v unless one introduces an effective high frequen
cutoff. We would like to emphasize that these conclusio
are general and do not depend on any particular form of
-

s:

or
e

be
l-

-
-
-

s
s
g

-

ral
d

.
-
d
f

l

e
r
y
s
e

matrix elements~57!. Thus the statement of the above pape
that the contribution of the diagrams of Figs. 2~a!,2~b! van-
ishes in equilibrium atT50 is proven to be incorrect. Below
we will demonstrate that this poorly justified statement is
result of several rough approximations, the main of which
the golden rule approximation. This approximation m
sometimes yield correct leading order results in the hi
temperature limit, but it breaks down at sufficiently lowT.

In order to illustrate this point let us first make a simp
fying assumption. Namely, let us for a moment restrict o
attention only to the contribution of the terms withjl1

5jl2
5jl4

. Below we will see that this assumption is n
sufficient to properly evaluate the first order perturbati
correction to the conductivity: in order to do that it is impo
tant to allow for a~possibly small! difference betweenjl1

andjl2
. But such an approximation is sufficient for calcul

tion of some other physical quantities, such as the inela
scattering time, and we will adopt it for a moment just
order to demonstrate the failure of the golden-rule-type p
turbation theory in the interaction.

The contribution of the terms withjl1
5jl2

5jl4
to the

conductivitydsse reads

ds̃ab
se 52

e2

2VsE0

1`

dt1 (
l1•••l4

jl1
5jl2

5jl4

3S d

djl1

tanh
jl1

2T D ~ j a
l4l1 j b

l1l21 j b
l4l1 j a

l1l2!Ml2l3 ;l3l4

3E dv

2p
vFcoth

v

2T
1tanh

jl3

2T
G12cos@~j311v!t1#

~j311v!2
.

~64!

Let us first evaluate this expression within the Fermi gold
rule approximation

12cos@~j311v!t1#

~j311v!2
→pt1d~j311v!. ~65!

Substituting Eq.~65! into Eq. ~64! we obtain

ds̃ab
se, GR52

e2

4VsE0

1`

dt1t1 (
l1•••l4

jl1
5jl2

5jl4 S d

djl1

tanh
jl1

2T D
3~ j a

l4l1 j b
l1l21 j b

l4l1 j a
l1l2!Ml2l3 ;l3l4j31

3Fcoth
j31

2T
2tanh

jl3

2T
G}TE

0

1`

dt1t1 . ~66!

This expression implies thatwithin the Fermi golden rule
approximation the self-energy diagrams of Figs. 2~a!,2~b!
yield a linear in time decay of the initial quantum state w
the corresponding relaxation rate proportional toT. Obvi-
ously, such a relaxation rate vanishes atT50 in agreement
with Ref. 27 and others.

Now let us carry out an exact frequency integration in E
~64! without making the golden rule approximation~65!. It is
fairly obvious that the integral overv is not restricted to
uvu&T and even diverges at high frequencies. As before
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order to cure this divergence we introduce the high f
quency cutoffvc'1/te . For simplicity we also assume tha
the energy differencej31 is smaller than 1/te . Then in the
limit T→0 we find

E dv

2p
vFcoth

v

2T
1tanh

jl3

2T
G

T→0

12cos@~j311v!t1#

~j311v!2

5
uj31ut1

2
2

j31t1

2
signjl3

12E
uj31u

1/tedv

2p S 1

v
2

uj31u

v2 D
3~12cosvt1!. ~67!

The first and the third terms in the second line of this expr
sion come from coth(v/2T) while the second term originate
from tanh(jl3

/2T). We observe that the first two terms a
the same as in the golden rule approximation~66!. These
terms enter with the opposite signs and exactly cancel e
other atT50 because in this limit (d/djl1

)tanh(jl1
/2T) re-

duces to ad function and thereforejl3
[j31. The last term

does not vanish even at zero temperature, this term is
small and obviously contains the contribution ofall frequen-
cies up to 1/te . The integral overv contained in this term
can be easily evaluated. We will do it a bit later when we
the dependence of the matrix elementsMl2 ,l3 ;l3 ,l4 on en-
ergies. Now it is only important for us to demonstrate th
the last term in Eq.~67! is completely missing within the
golden rule approach employed in Refs. 27,17,18 and oth
It is obvious, therefore, that this approach fails to correc
describe the system behavior at sufficiently low tempe
tures.

Note, that AAG also did not observe an exact cancelat
of diagrams of the first order perturbation theory in t
interaction.13 However, they argued that the remaining term
provide the so-called interaction correction to the cond
tance which can be viewed as an effective~temperature de-
pendent! renormalization of the bare parameters and
nothing to do with dephasing. Already from the form of th
third term in the right-hand side of Eq.~67! one can conclude
that in general this is not true. Indeed, if one adopts that
jl1

5jl2
5jl4

the dependence of the matrix elemen

Ml2 ,l3 ;l3 ,l4 on the energy differencej31 has the form

Ml2 ,l3 ;l3 ,l4}uj31ud/222 ~68!

@see Eq.~2.33! of Ref. 13#, and integrates the product o
Ml2 ,l3 ;l3 ,l4 and the last term in Eq.~67! over the energyj31
one immediately observes that after the cancelation of
unphysical divergence@which is also contained in the verte
diagrams of Figs. 2~c!,2~d! and enters with the opposite sig
see also Sec. III A# one obtains the contribution}At ln(t/te)
in 1D and ln(t/te) in 2D. This contribution is just a part of th
functiond f d(T,t) ~31! at T→0. It grows with time, contrib-
utes to dephasing and obviously cannot be reduced to
renormalization of the initial parameters which would
provided by a time-independent term.

In order to understand why AAG arrived at such a co
clusion it is appropriate to highlight the approximation e
ployed in Ref. 13. As a first step they split the total cont
-
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s
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-
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bution to ds into two parts, Eqs.~5.12c! and ~5.12d!,
effectively rewriting the combination~63! in the following
equivalent form:

S d

djl1

tanh
jl1

2T D F S coth
v

2T
1tanh

jl1
2v

2T
D

1S tanh
jl3

2T
2tanh

jl1
2v

2T
D G . ~69!

The first two terms in the square brackets of Eq.~69! were
interpreted by AAG as a ‘‘dephasing’’ contribution@Eq.
~5.12c! of Ref. 13# while the last two terms are meant to b
the ‘‘interaction’’ correction@Eq. ~5.12d! of Ref. 13#. Obvi-
ously, the contribution of the first two terms vanishes atT
→0. In order to understand the behavior of the remain
terms we make use of Eqs.~64!,~68! and observe that the
contribution of the last two terms in Eq.~69! is proportional
to the following integral:

E dvE djl1
E djl3S d

djl1

tanh
jl1

2T D vuj31ud/222

3F tanh
jl3

2T
2tanh

jl1
2v

2T
G12cos@~j311v!t#

~j311v!2
. ~70!

The approximation employed by AAG while evaluating su
a combination is equivalent to ignoring the oscillatin
cos-term in Eq.~70!. After dropping this term and making
the integral dimensionless one can easily observe that
remaining integral has the form

A1 /AT ~71!

in 1D and A2ln T in 2D, whereA1,2 are temperature- and
time-independent constants. AAG interpreted these contr
tions as an effective renormalization due to interaction. No
however, that it is correct to drop the cos term only at su
ciently long timesTt@1, while at smallerTt&1 this term is
important. Evaluation of the integral~70! in the latter limit
yields

B1At ln~ t/te! ~72!

in 1D andB2ln(t/te) in 2D, whereB1,2 are again temperature
and time-independent constants. It is fairly obvious that
term ~72! already cannot be interpreted as a renormalizat
effect from an effectivestatic potential. This term explicitly
depends on time and actually contributes to dephasing.

Now we are aware of the behavior of the integral~70! at
all times: at t50 this integral is obviously zero, it grow
with time as Eq.~72! for Tt&1, reaches the value~71! and
saturates in the long time limitTt@1. Clearly, in the inter-
esting limit T→0 the behavior~71! can never be realized
the term~70! grows at all times and contributes to dephasin
In this limit we are back to the result~67!. The perturbation
theory strongly diverges in this case. It also diverges at fin
temperatures, thus the corresponding expressions can
make sense if one introduces a cutoff at times much sma
than the dephasing timetw , because at timest;tw all or-
ders of the perturbation theory should be taken into acco
In Ref. 13 this cutoff time was chosen to be the magne
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field-induced decoherence timetH!tw . Thus the approxi-
mation leading to the time-independent term~71! is valid
only for TtH@1, in which case the contribution~72! is any-
way much smaller than that from the first two terms in E
~69! and, hence, can be safely ignored in the above limit.
the other hand, in the most interesting limitTtH&1 ~which
is compatible withTtw@1) the contribution~70! dominates,
its behavior is given by Eq.~72! rather than by Eq.~71! and,
consequently,nonzero low-temperature dephasing is ob
served already in the first order perturbation theory in
interaction. We will come back to this discussion in Se
IV D and in Appendix C.

Let us emphasize again that no approximation was d
during our derivation presented in Sec. IV A. Our main go
here was to demonstrate that the absence of the cancel
of diagrams in the first order perturbation theory has noth
to do with the quasiclassical approximation and/or disor
average as it is sometimes speculated in the literature.

C. Perturbative weak localization correction

Now let us perform a systematic evaluation of the ex
expressions~56!–~61! obtained within the first order pertur
bation theory in the interaction. Our calculation consists
several steps. First we notice that the expressions~56!–~61!
contain the full information about contributions from all e
ergy states. Since here we are interested only in the w
localization correction to the conductance we should res
our attention to the time reversed energy states and eva
the matrix elements for such states. The matrix elements
the current operator can be extracted from the expression
the weak localization correction without interactiondsab

ni .
Starting from the standard expression for this correction~see,
e.g., Ref. 13! and rewriting it in terms of the matrix elemen
for the current~57! we obtain

dsab
ni 5

1

8E dr1

r2
E de

2p S d

de
tanh

e

2TD $@G12
R ~e!

2G12
A ~e!# ĵ a@G21

A ~e!2G21
R ~e!# ĵ b1a↔b%

5
1

4VE0

1`

dt1 (
l1l2

S d

djl1

tanh
jl1

2T D ~ j a
l1l2 j b

l2l1

1 j b
l1l2 j a

l2l1!cosj21t1 . ~73!

The expression for the matrix elements of the curre
j j (j21) is readily established by comparison~73! to the well
known quasiclassical result in the absence of interaction~6!.
We find

j j ~j21!5 j a
l1l2 j b

l2l11 j b
l1l2 j a

l2l1

52
4e2DV

p2 E ddQ

~2p!d

DQ211/tH

j21
2 1~DQ211/tH!2

55 2
2e2V
p2

ADtHReS 1

A11 i uj21utH
D , 1D,

2
e2V
p3 H ln

tH

te
2

1

2
ln@11~j21tH!2#J , 2D,

~74!
.
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As it was already pointed out above, these expressions
only valid for the time reversed statesl1 andl2 relevant for
the weak localization correction. For later purposes let
also rewrite the above result in the 1D case in the real t
representation

E dj21j j ~j21!cosj21t152
4Ve2

2p
AD

p

e2ut1u/tH

Aut1u
. ~75!

The next step in our calculation is to identify the cont
bution to ds responsible for dephasing. As it was alrea
demonstrated above within the nonperturbative analysis,
contribution is determined by the functionf d(t) ~23! in the
exponent~6!. Clearly, in the first order in the interaction th
contribution is obtained by expanding the exponent in E
~6! up to the linear term inf d(t) and ignoring the effect of
interaction on the pre-exponential functionAd(t). Hence,
this ‘‘dephasing’’ contribution should have the form

dsab
deph5

1

4VE0

1`

dt1f d~ t1! (
l1l2

S d

djl1

tanh
jl1

2T D
3~ j a

l1l2 j b
l2l11 j b

l1l2 j a
l2l1!cosj21t1 . ~76!

We observe that this expression contains the funct
cosj21t1 and does not contain sinj21t1 . Furthermore, from
the above analysis we know that the functionf d(t) contains
only coth(v/2T) and does not depend on tanh(jl3

/2T).
Therefore in the general result for the conductance correc
~56!–~61! we will first take care of all terms which contai
the product coth(v/2T)cosj21t1 leaving all the remaining
terms for further consideration.

Consider the ‘‘coth3cos’’ terms originating from the
self-energy diagrams of Figs. 2~a!,2~b!. For such diagrams
one should putj4250, then from Eqs.~56!,~58! one will
immediately observe that the contribution of the ‘‘co
3cos’’ terms can indeed be represented in the form~76!
where

f d
se~ t,l2!5

2e2

s (
l3

E dv

2p
Ml2l3 ;l3l2

3v coth
v

2T

12cos@~j321v!t#

~j321v!2
. ~77!

Let us replace the summation overl3 by the integration over
jl3

. Assuming that the matrix elementsMl2l3 ;l3l2 depend

only on the energy differencej32, making a shiftj321v
→v and denotingj32→v8 we find

f d
se~ t !5

4pe2

s E dvdv8

~2p!2
M ~v8!~v2v8!

3coth
v2v8

2T

12cosvt

v2
. ~78!

This expression does not depend onl2 and exactly coincides
with the first term in Eq.~23! if we identify the matrix ele-
mentM (v8) as
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M ~v8!5
D12d/2

p S E ddx

~2p!d

1

11x4D uv8ud/222. ~79!

Note, that the energy dependence of the matrix elementM
}uv8ud/222 ~79! determined within the above procedure is
the agreement with the conjecture~68! as well as with Eq.
~2.33! of Ref. 13.

The contribution of the ‘‘coth3cos’’ terms contained in
the vertex diagrams of Figs. 2~c!,2~d! can be evaluated
analogously. Again one should consider only the part of
function G ~61! which contains cos(j21t1). For the contribu-
tion of the time reversed states to the vertex diagrams
should identifyj425j31. Making use of this equation, from
the corresponding terms in Eqs.~60!,~61! one finds

dsab
deph, vert52

1

4VE0

1`

dt1f d
vert~ t1 ,l1! (

l1l2
S d

djl1

tanh
jl1

2T D
3~ j a

l2l3 j b
l1l41 j b

l2l3 j a
l1l4!cosj21t1 , ~80!

where

f d
vert~ t,l1!52

2e2

s (
l3

E dv

2p
Ml3l1 ;l4l2

3v coth
v

2T

cosvt2cosj31t

j31
2 2v2

. ~81!

By comparing Eq.~81! with the second term of the expre
sion~23! we observe that they coincide provided one deno
j315j425v8 and again assumes that the matrix eleme
depend only on the energy differenceMl3l1 ;l4l25M (v8),
whereM (v8) is defined in Eq.~79!. Furthermore, in order to
identify Eqs.~76! @with f d(t)→ f d

vert(t)] and ~80! we have to
assume thatj a

l2l3 j b
l1l41 j b

l2l3 j a
l1l45 j a

l1l2 j b
l2l11 j b

l1l2 j a
l2l1 .

This completes the analysis of the ‘‘coth3cos’’ contribution
from the vertex diagrams of Figs. 2~c!,2~d!.

Thus, we have explicitly demonstrated that the pertur
tive ‘‘dephasing’’ contribution to the conductance obtain
before from the nonperturbative analysis can also be ide
fied in the first order perturbative expansion provided o
infers the matrix elementsM in the form ~79!. With this in
mind one can immediately write down the expression
dsab

dephin the form~48!. For a quasi-1D case at lowT we find

dsdeph5
e2

p

e2

s1
F 1

pA2

DtH
3/2

Ate

1
2DtH

p2

3S ln
2ptH

te
262g0D G , pTtH!1. ~82!

In the opposite high-temperature limit we obtain
e

e

s
ts

-

ti-
e

r

dsdeph5
e2

p

e2

s1
F 4

3p
DTtH

2 1
1

pA2

DtH
3/2

Ate

1
z~1/2!

A2p
DATtH

3/21
2DtH

p2
lnS 1

4Tte
D

2
3z~3/2!

2p
AD2tH

2pT G , pTtH@1. ~83!

Now let us come to the final step of our calculation a
evaluate the remaining terms in the general result~56!–~61!.
We notice that the contribution of all terms containing t
combination coth(v/2T)sinj21t1 vanish after the integration
over the energyj21. The same is true for the terms contai
ing tanh(jl3

/2T) in the contribution of the vertex diagram
~60!. These observations imply that all the remaining non
nishing terms come from the self-energy diagrams of Fi
2~a!,2~b! and contain 122r or tanh. We will denote their
total contribution asds tanh. We already know from the abov
analysis that this contribution comes from the expansion
the pre-exponentA1(t) to the first order in the interaction
Collecting all such terms from Eqs.~56!, ~58!, and~59!, we
obtain

ds tanh5dscos
tanh1dssin

tanh1dsC, ~84!

where

dscos
tanh52

e2

2Vs1
E

0

1`

dt1E djl1
E djl2

E djl3
E dv

2p

3S d

djl1

tanh
jl1

2T D j j ~j21!cosj21t1

3M ~j32!vtanh
jl3

2T

12cos@~j321v!t1#

~j321v!2
, ~85!

dssin
tanh5

e2

2Vs1
E

0

1`

dt1E djl1
E djl2

E djl3E dv

2p

3S d

djl1

tanh
jl1

2T D j j ~j21!sinj21t1

3M ~j32!v tanh
jl3

2T

~j321v!t12sin~j321v!t1

~j321v!2
,

~86!

dsC52
e2

4VE0

1`

dt1t1S d

djl1

tanh
jl1

2T D j j ~j21!

3^l2u
@122r#~r1 ,r2!

ur12r2u
ul2&sinj21t1 , ~87!

As before, the above equations were obtained from the e
ones by imposingj4250. In order to establish a somewh
closer relation to the approach developed by AAG we a
note, that it is the contributionds tanh ~84! which contains the
so-called Hikami boxes within the diagrammatic analysis
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Ref. 13. AAG argued that~partial! cancelation of the first
order diagrams can only be observed if one takes the Hik
boxes into account. Below we will demonstrate that this
not the case. Actually we have already shown in Sec. IV
@Eqs. ~66!,~67!# that this cancelation~of the linear in time
‘‘golden rule’’ terms only! in the first order atT50 occurs
already before disorder averaging and thus has nothing t
with the Hikami boxes. Now we will illustrate this fact aga
by means of a direct calculation.

Let us first consider the termdscos
tanh ~85!. The integral

over v can be evaluated exactly and we get

dscos
tanh5

e2

4Vs1
E

0

1`

dt1E djl1
E dj21E dj32

3S d

djl1

tanh
jl1

2T D j j ~j21!cosj21t1

3M ~j32!j32t1 tanh
jl1

1j211j32

2T
. ~88!

Further calculation will be performed for a quasi-1D ca
We also make use of the real time representation of
integrals, as it was already done before. For 1d systems we
obtain from Eq.~79!

j32M ~j32!5
AD

2A2p

j32

uj32u3/2

5
2 i

4pE dt9ei j32t9S d

dt
A4Dut9u

p D . ~89!

Also we will use the following relation:

E djl1S d

djl1

tanh
jl1

2T D tanh
jl1

1j211j32

2T

52pE dt8ei (j211j32)t8
Tt8

sinhpTt8
P 2 iT

sinhpTt8
. ~90!

Substituting Eqs.~75!, ~89!, and~90! into Eq. ~88!, we find

dscos
tanh52

e2

4p3

e2D

s1
E

0

1`

dt1E
2`

1`

dt8

3S P pT

sinhpTt8
D pT

sinhpTt8
t1Aut8u

3Fe2ut11t8u/tH

Aut11t8u
1

e2ut12t8u/tH

Aut12t8u
G . ~91!

After simple algebra this equation can be converted into
following integral:
i
s

do

.
r

e

dscos
tanh52

e2

p3

e2D

s1
E

0

1`

dt
e2t/tH

At
H tE

2te /p

t

dt8

3S pT

sinhpTt8
D 2

At81E
t

1`

dt8S pT

sinhpTt8
D 2

t83/2J .

~92!

In the quantum limitpTtH!1 we get

dscos
tanh52

e2

p3

e2D

s1
E

0

1`

dt
e2t/tH

At

3H 2A p

2te
t22At1

3z~3/2!

4A2

1

AT
J

52
e2

p

e2

s1
F 1

pA2

DtH
3/2

Ate

2
2DtH

p2

1
3z~3/2!

4p
AD2tH

2pT G , pTtH!1. ~93!

To consider the opposite thermal limitpTtH@1 it is conve-
nient to rewrite this equation in the following form:

dscos
tanh52

e2

p3

e2D

s1
E

0

1`

dt
e2t/tH

At

3H 2tA p

2te
22At

pTt

sinhpTt
24tApT

3E
0

pTt

dx
Ax

sinh2x
~x cothx21!

1
1

ApT
E

pTt

1`

dx
x3/2

sinh2x
J . ~94!

This equation yields

dscos
tanh52

e2

p3

e2D

s1
E

0

1`

dt
e2t/tH

At

3H 2tA p

2te
1

pz~1/2!

A2
tATJ

52
e2

p

e2

s1
F 1

pA2

DtH
3/2

Ate

1
z~1/2!

2A2p
DATtH

3/2G ,

pTtH@1. ~95!

Here we have used the following integrals:

E
0

1`

dx
Ax

sinh2x
~x cothx21!52Ap

2

z~1/2!

4
,

E
0

1`

dx
x3/2

sinh2x
5Ap

2

3z~3/2!

4
. ~96!
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Now we turn to the correction~86!. To begin with, we
should handle a divergence which appears in the inte
over v for the term linear int1 . It is easy to demonstrate
however, that this divergence is fictitious. It disappears co
pletely if a more accurate expression for the matrix eleme
is used. This expression reads

M ~j32!v

s1
5E dk

2p

1

k2
^l2ueikrul3&

3^l3ue2 ikrul2&ImS 24p

e~v,k! D .

Now we can use the analytical properties of the functione
and write

PE dv

2p
ImS 1

e~v,k! D 1

j321v
5

1

2
ReS 1

e~j23,k!
21D .

Substituting this identity into Eq.~86! we immediately ob-
serve that the term containing21 is exactly canceled by th
correctiondsC. Thus the result is finite and has the form

dsC1dssin
tanh5ds1

tanh1ds2
tanh, ~97!

where

ds1
tanh52

e2

4Vs1
E

0

1`

dt1E djl1
E djl2

E djl3

3S d

djl1

tanh
jl1

2T D j j ~j21!sinj21t1M ~j32!tanh
jl3

2T

~98!

and

ds2
tanh52

e2D

4Vs1
E

0

1`

dt1t1E djl1
E djl2

E djl3

3S d

djl1

tanh
jl1

2T D j j ~j21!sinj21t1

3^l2ur1
^l3ur2

d~r12r2!ul3& r1
ul4& r2

tanh
jl3

2T
.

~99!

Here we have used the formula

ReS 1

e~j23,k! D5
Dk2

4ps1
.

The contribution~98! can be transformed and evaluat
analogously to the termdscos

tanh. We find
al

-
ts

ds1
tanh5

e2

2p3

e2D

s1
E

0

1`

dt1E
2`

1`

dt8

3S P pT

sinhpTt8
D pT

sinhpTt8
t8Aut8u

3Fe2ut11t8u/tH

Aut11t8u
2

e2ut12t8u/tH

Aut12t8u
G . ~100!

After simple transformations we obtain

ds1
tanh52

2e2

p3

e2D

s1
E

0

1`

dt
e2t/tH

At
E

t

1`

dt8S pT

sinhpTt8
D 2

t83/2

5H 2
e2

p

e2

s1

3z~3/2!

2p
AD2tH

2pT
, pTtH!1,

0, pTtH@1.

~101!

In order to evaluate the termds2
tanh we use the following

expression:

^l2ur1
^l3ur2

d~r12r2!ul3& r1
ul4& r2

5
1

pE dt9
ei j32t9

A4pDut9u
.

~102!

It can be obtained by comparing the two expressions for
matrix elementM (j32). The first expression

M ~j32!5
1

pE dt e2 i j32tE dx
2uxu

2
D~ utu,x!,

follows directly from Eqs.~22!, ~25!, and~77!, and the sec-
ond one,

M ~j32!5^l2ur1
^l3ur2

2ur12r2u
2

ul3& r1
ul4& r2

can be derived from Eq.~57!. Thus we obtain

^l2ur1
^l3ur2

f ~r12r2!ul3& r1
ul4& r2

5
1

pE dte2 i j32tE dx f~x!D~ utu,x!

and arrive at Eq.~102!. With the aid of this formula we find

ds2
tanh52

e2

2p3

e2D

s1
E

0

1`

dt1

3E
2`

1`

dt8S P pT

sinhpTt8
D pT

sinhpTt8
t1

t8

Aut8u

3Fe2ut11t8u/tH

Aut11t8u
2

e2ut12t8u/tH

Aut12t8u
G ,

which yields
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ds2
tanh5

2e2

p3

e2D

s1
E

0

1`

dt
e2t/tH

At
E

0

1`

dt8S pT

sinhpTt8
D 2

t83/2

5
e2

p

e2

s1

3z~3/2!

2p
AD2tH

2pT
. ~103!

With the aid of Eqs.~101! and ~103! we observe that the
result~97! is zero atT→0 and it is equal tods2

tanh ~103! for
pTt@1. Combining Eqs.~84!, ~93!, ~95!, ~97!, ~101!, and
~103! we arrive at the final results fords tanh:

ds tanh52
e2

p

e2

s1
F 1

pA2

DtH
3/2

Ate

2
2DtH

p2

1
3z~3/2!

4p
AD2tH

2pT G , pTtH!1, ~104!

ds tanh52
e2

p

e2

s1
F 1

pA2

DtH
3/2

Ate

1
z~1/2!

2A2p
DATtH

3/2

2
3z~3/2!

2p
AD2tH

2pT G , pTtH@1. ~105!

In order to find the total expression for the weak localiz
tion correction one should simply add the two contributio
dsdeph~82!,~83! andds tanh ~104!,~105! together. We observe
that the temperature-independent terms}tH

3/2 are equal in
these two expressions, they enter with the opposite signs
cancel each other exactly in the sumdsdeph1ds tanh in both
limits pTt!1 andpTt@1. As we have already discusse
these are just the linear in time ‘‘golden rule’’ terms comi
from the exponent (dsdeph) and the pre-exponent (ds tanh).
Their cancelation occurs in no relation to~and due to much
more general reasons than! averaging over disorder. Othe
~‘‘non-golden-rule’’! terms do not cancel and combine in th
final result which we will present below.

D. Discussion

Although the main differences between our approach
that of AAG ~Ref. 13! can already be understood from th
above analysis, we will briefly summarize them again for
sake of clarity.

~1! The first crucial difference to be emphasized here
that our method6 is essentially nonperturbative in the inte
action while the approach13 is only the first order perturba
tion theory. In the most interesting limiting casetH*tw

~which was only considered in our Refs. 5–7! one cannot
proceed perturbatively in the interaction at any tempera
including T50. This is precisely what AAG do: it is dem
onstrated in Appendix A that the general result for t
conductivity13 is identical to the first order expansion of E
~A16! in the interacting termsiSR1SI while all higher order
terms ~which are larger than the first order term fortH
*tw) were not taken into account in Ref. 13. In contrast, o
path integral approach is equivalent to an effective sum
tion of diagrams inall orders with the exponential accurac
This is sufficient for correct evaluation oftw . Within our
analysis only the action in the exponent~rather than the
-
s

nd

d

e

s

re

r
a-

whole expression fors) is expanded in the interaction~this
is correct as long aspFl @1). Our method also allows for a
clear distinction between the exponent and the p
exponential contribution tods.

It remains unclear to us why AAG repeatedly stated t
our procedure ‘‘is nothing but a perturbative expansion’11

and our results are ‘‘purely perturbative.’’13 The only justi-
fication of the above statements which we could extract fr
the above papers is that our result for the dephasing ratetw

‘‘is proportional to the first power of the fluctuatio
propagator.’’13 Although the latter is true in some limits, it i
hard to understand how this could help to turn a nonper
bative problem into a perturbative one. Indeed, if one f
mally multiplies the photon propagator by a constantl ev-
erywhere in our calculation, one would obtain 1/tw}l. The
same holds for the calculation.13 Note, however, that it is no
the decoherence rate 1/tw but rather the expectation value fo
the current operator which is calculated theoretically a
measured in experiments. FortH*tw the result for the weak
localization correctionds depends onl as

ds1}21/Al

in 1D @see Eq.~9!# and ds2} ln l in 2D. Obviously, these
results are purely nonperturbative in the ‘‘interactio
strength’’ l. Any attempt to calculate the expectation val
of the current operator perturbatively may only yield to d
vergences in all orders of the expansion in powers ofl. As
to the decoherence rate 1/tw , it is only extractedfrom the
nonperturbative results for the conductance correcti
Hence, the relation 1/tw}l cannot by itself tell anything
about the perturbative or nonperturbative character of
calculation. In the limittH!tw the conductance correctio
ds(H) can be evaluated perturbatively inl. However, as it
was explained in Sec. II, even in this limittw can be unam-
biguously determined only within the nonperturbative proc
dure, while any perturbative expansion yields ambiguous
sults fortw which fully depend on the assumption about t
decay of correlations in time.

~2! Another crucial difference is that AAG essentially u
theassumptionabout a purely exponential decay of the pha
correlations in time while no such assumption was us
within our analysis. Specifically, Eq.~3.2! of Ref. 13 is
equivalent to our Eq.~9! only provided one assumes th
f d(t) is a linear function of timef d(t)5t/tw and ignores the
effect of the interaction on the pre-exponent, i.e., p
Ad(t)51/(4pDt)d/2. This assumption cannot be checke
within the perturbation theory in the interaction and, as
was already explained above, in general it can only be v
within the golden rule approximation. The whole comparis
between ours and AAG’s results carried out by the autho13

is essentially based on their Eq.~3.2! which was neither used
nor even written down in our paper.6

Let us emphasize that AAG~unlike many others! do not
use the golden rule approximation in their perturbative c
culation of the weak localization correctionds(H) in the
limit tH!tw . However, they explicitly use this approxima
tion while extractingtw from ds(H): Eq. ~3! of Ref. 11 and
Eq. ~4.3! of Ref. 13 are validonly within the golden rule
approximation. As it was demonstrated above,f d is not a
linear function of time@see Eqs.~23!–~33!# and, moreover,
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in the presence of interaction the pre-exponent in~9! deviates
from its ‘‘noninteracting’’ formAd

(0)(t)51/(4pDt)d/2. As a
result, the relation betweends(H) andtw depends on tem
perature and is different from Eq.~3! of Ref. 11@or Eq.~4.3!
of Ref. 13# at any T even in the limittH!tw . Since the
linear in timeT-independent contributions from the expone
and the pre-exponent exactly cancel each other in the
order perturbation theory, the golden-rule-ty
assumption11,13 about purely exponential decay of correl
tions in time inevitably yields to missing of th
T-independent contribution~32! to tw .

~3! Let us compare all the approximations used by AA
~Ref. 13! and in our paper.6 In both papers the same quas
classical conditionpFl @1 was assumed and the expressio
for the photon propagators were defined within RPA. In
der to perform the perturbative expansion in the interact
AAG considered the limit of strong magnetic fieldstH!tw

AAG also performed the expansion in the inverse dim
sionless conductance 1/g(LH), i.e., they assumed thatg@1
on the scale of the magnetic lengthLH5ADtH. Although
we do not need these approximations within our nonper
bative analysis,6 their appearance in the perturbativ
treatment13 is understandable.

As to an additional conditionTtH@1, in our opinion it is
not needed even within the perturbative procedure of AA
Indeed, the conditiong(LH)@1 does not depend on tem
perature at all, and the inequalitytH!tw can only become
stronger at lowerT provided it is already satisfied at highe
temperatures. Therefore under the two latter conditions
perturbative expansion13 should be justified down toT→0
and the conditionTtH@1 is not needed at all. This conditio
should also be irrelevant for Eqs.~2.42! of Ref. 13. Accord-
ing to AAG ‘‘all the corrections to these formulas are sm
as 1/(Ttw). ’’ Combining tH!tw andg(LH)@1 with Eq.~2!
of Ref. 11 @or Eq. ~4.9! of Ref. 13# 1/tw

AAG5T/g(LH) we
observe that the inequalityTtw

AAG@1 is satisfied at all tem-
peratures includingT→0.

Thus the perturbative results13 can be analyzed in both
limits TtH.1 and TtH,1. Since the latter limit of lower
temperatures was not discussed by AAG we carried out
corresponding analysis in Appendix C. Combining E
~C16!,~C17! with Eq. ~4.3b! of Ref. 13 we find 1/tw

AAG

5Te2ADtH/(4s1) for TtH@1 ~just like in Ref. 13! and
1/tw

AAG53e2ADtH/(2ps1tH) for TtH!1. The latter result
~which was not presented by AAG! demonstrates that a non
zero dephasing time atT50 is obtained even if one explic
itly follows the procedure of Ref. 13. Although due to th
reasons explained above this result differs from the cor
one~32! it is interesting to observe that a nonzero dephas
rate atT50 is already contained in the formulas derived
AAG.

~4! Subtle details of disorder averaging do not play a
significant role in the problem in question and can mer
influence some numerical prefactors of order one. As it w
demonstrated above without makingany approximation, no
exact cancelation of the first order diagrams occurs eve
T50. The ‘‘noncanceled’’T-independent terms describe n
only renormalization due to interaction but also contribute
dephasing. These conclusions are general and hold both
fore and after averaging.
t
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As to the~partial! cancelation, it indeed occurs atT→0,
but only for the linear in time ‘‘golden rule’’ terms coming
both from the exponent and the pre-exponent. This par
cancelation is also due to very general reasons, it occ
already in the exact~nonaveraged! perturbative expression
and has no relation to the quasiclassical approxima
and/or disorder averaging.

Let us compare the perturbative results for the weak
calization correction obtained in Ref. 13 and within o
analysis. In the limitTtH@1 for the 1D case AAG get@see
Eq. ~4! of Ref. 11 or Eq.~4.13a! of Ref. 13#:

dsWL
AAG.

e2

p

e2

s1
DTtH

2 F1

4
1

z~1/2!

2A2pTtH

1OS 1

~TtH!3/2D G .

~106!

In the same limit with the aid of our Eqs.~83! and~105! for
the weak localization correctiondsWL5dsdeph1ds tanh we
find

dsWL5
e2

p

e2

s1
DTtH

2 F 4

3p
1

z~1/2!

2A2pTtH

1OS 1

TtH
D G . ~107!

In the opposite limit TtH!1 our calculation of the
integrals13 ~see Appendix C! yields

dsWL
AAG.

e2

p

e2

s1

3DtH

2p
@11O~ATtH!#. ~108!

Combining our Eqs.~82! and ~104! in the same limitTtH
!1 we obtain

dsWL.
e2

p

e2

s1

2DtH

p2 S ln
2ptH

te
252g01O~ATtH! D , ~109!

Note, that the ‘‘renormalization’’ terms}AtH /T ~which are
irrelevant for dephasing and can be added to the interac
correction! are dropped in Eqs.~106!–~109! for the sake of
simplicity.

We observe that in both limitsTtH@1 andTtH!1 the
T-independent terms}tH

3/2 @see Eqs.~82!,~83!,~104!,~105!#
exactly cancel each other and do not contribute to the res
~107!,~109! at all. The same cancelation occurs in t
expressions13 ~106!,~108!. The latter equations were derive
within the averaging procedure involving the Hikami boxe
In order to obtain Eqs.~107!,~109! we used a somewhat dif
ferent averaging procedure which amounts to deriving
matrix elementsM (v8) from the general properties of diffu
sive trajectories. Since in both cases exactly the same
celation occurs in both limits of high and low temperature
we conclude that the issue of the Hikami boxes raised in R
13 is completely unimportant for this cancelation.

We can also add that the averaging procedure emplo
by AAG is efficient within the perturbation theory while ou
procedure is developed to average the nonperturbative re
obtained within the path integral technique. The perturbat
results obtained within both methods are essentially the s
in 2D ~see Sec. III C! and practically the same in 1D apa
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from some unimportant details. Both procedures yield n
zero ‘‘dephasing’’ terms even atT50.

We conclude that our nonperturbative analysis6 differs
from a perturbative one13 in several important aspects. How
ever, the issue of disorder averaging emphasized in Ref. 1
not important at all.

V. CONCLUDING REMARKS

Let us briefly summarize our main observations.
~1! We explicitly demonstrated that the perturbati

theory in the interaction is principally insufficient in th
problem of electron dephasing in disordered conductors.
decoherence timetw cannot be extracted even from a corre
perturbative calculation unless oneassumessome particular
form of the decay of correlations in time. However, this for
should be calculated rather than assumed. This task ca
accomplished only by means of a nonperturbative calc
tion.

~2! A nonperturbative analysis shows that the dephas
time tw is determined only by the functionf d(t) in Eq. ~6!,
while the effect of interaction on the pre-exponential fun
tion Ad(t) is not important for the calculation oftw . There-
fore, in order to evaluate the dephasing time it is sufficien
perform a nonperturbative analysis with the exponential
curacy.

~3! The effect of interaction on the pre-exponentAd(t) is
important if one calculates the interaction-dependent par
the weak localization correction in the limit of strong ma
netic fieldstH!tw . The zero temperature dephasing timetw

0

drops out of this correction in the first order due to the ex
cancelation of the linear in timeT-independent contribution
from the exponent exp@2fd(t)# and the pre-exponentAd(t).

~4! Nonlinear in timeT-independent contributions do no
cancel out already in the first order of the perturbat
theory. In general these terms not only account for the ren
malization effects but also contribute to dephasing at all te
peratures includingT50.

~5! We demonstrated that there exists a close formal s
larity between the problem of electron dephasing in dis
dered conductors and the exactly solvable Caldeira-Leg
model for a particle interacting with a bath of harmonic o
cillators. This part of our analysis is presented in Appen
E.

Our analysis allows to establish a simple corresponde
between the results of Refs. 2, 6, and 13. The effect of
interaction in the expression for the magnetoconductance~6!
is described by the function
-

is

e
t

be
-

g

-

o
-

of

t

r-
-

i-
-
tt

-
x

ce
e

Ad@ tanh#exp~2 f d@coth# !.

At high temperatures the functionf d decays on a short time
scale. For such times the effect of the interaction~related to
‘‘tanh’’ ! on the pre-exponent is negligible. In this case t
nonperturbative analysis of AAK applies.2 At low tempera-
tures the interaction effect on both the exponent and the
exponent becomes of order one on the same time scale;tw

0 .
Since the effective cutoff in the integral~6! is determined by
the functionf d(t) in the exponent, ‘‘tanh’’ can be neglecte
again. We arrive at our nonperturbative results.6 Finally, in
the limit tH!tw for the relevant timest&tH one hasf d(t)
!1 and, hence, exp(2fd@coth#).12fd@coth#. Performing
also a short time expansion ofAd@ tanh# we obtain the com-
bination ‘‘coth-tanh’’ in the first order and reproduce th
AAG’s perturbative results.13 These observations conclud
our analysis.
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APPENDIX A

Here we will compare the expressions for the weak loc
ization correction to the conductivity in the presence of
teraction obtained by means of our path integral techniq6

and within the diagrammatic approach of AAG. We w
demonstrate that both results are identical if analyzed o
perturbative level before disorder averaging.

We proceed in two steps. We first transform the resu13

for the conductance and demonstrate that by virtue of
causality principle one can completely remove the terms
the typeGRGAGRGA emphasized by AAG. We will arrive a
the Eqs.~A11!,~A12! which are exactly equivalent to th
result.13 Our second step is to expand our expression for
conductance~A15!,~A16! in the interaction termsiSR1SI .
This will lead us to the Eq.~A23! which is identical to Eq.
~A12!.

We start from reproducing the expression for the corr
tion to the conductivity due to electron-electron interacti
obtained in Ref. 13
dsab52
i

16E dr1dr2dr3dr4

V E dv

2p

de

2p S d

de
tanh

e

2TD coth
v

2T
@L 34

R ~v!2L 34
A ~v!#

3$2 ĵ a@G12
R ~e!2G12

A ~e!# ĵ b@G23
A ~e!G34

A ~e2v!G41
A ~e!2G23

R ~e!G34
R ~e2v!G41

R ~e!#1•••1a↔b%

2
i

16E dr1dr2dr3dr4

V E dv

2p

de

2p S d

de
tanh

e

2TD tanh
e2v

2T

3$2 ĵ a@G12
R ~e!2G12

A ~e!# ĵ b@G23
A ~e!G41

A ~e!L 34
A ~v!2G23

R ~e!G41
R ~e!L 34

R ~v!#@G34
R ~e2v!2G34

A ~e2v!#

1•••1a↔b%. ~A1!



13

e
t

on

ed
or

PRB 62 14 081INTERACTIONS AND WEAK LOCALIZATION: . . .
For simplicity we keep the same notations as in Ref.
GR(A) are the retarded~advanced! Green functions for non-
interacting electrons andL R(A) are photon propagators. Th
coordinate dependence of the propagators is indicated by
subscripts, e.g.,G12

R (e)5GR(e,r1 ,r2). Note that in Eq.~A1!
only the contribution of the two self-energy diagrams@Figs.
2~a!,2~b! was reproduced, while the remaining contributi
from the vertex diagrams of Figs. 2~c!,2~d! which contains
the terms with twov-dependent Green functions is denot
by an ellipsis. We will not consider them in this appendix f
the sake of simplicity.

We observe that the factor tanh(e2v)/2T enters in this
en

s
y

e
W

:

he

expression together with the difference@G34
R (e2v)2G34

A (e
2v)#. This combination is just the Keldysh function

GK~e,r1 ,r2!5tanh
e

2T
@GR~e,r1 ,r2!2GA~e,r1 ,r2!#

5tanh
e

2T F 1

e1m2Ĥ1 i0
2

1

e1m2Ĥ2 i0
G .

~A2!

This function can also be rewritten as
GK~e,r1 ,r2!5tanh
e

2T (
l

F 1

e2jl1 i0
2

1

e2jl2 i0GCl~r1!Cl* ~r2!

5(
l

~22p i !S tanh
jl

2TD d~e2jl!Cl~r1!Cl* ~r2!5(
l

S tanh
jl

2TD F 1

e2jl1 i0
2

1

e2jl2 i0GCl~r1!Cl* ~r2!

5E dr8@GR~e,r1 ,r8!2GA~e,r1 ,r8!#@d~r82r2!22r~r8,r2!#, ~A3!
wherejl ,Cl are respectively the eigenvalues and the eig
functions of the HamiltonianĤ2m; r(r8,r2) is the equilib-
rium single electron density matrix,r̂51/$exp@(Ĥ2m)/T#
11%. In a similar manner one obtains

S d

de
tanh

e

2TD @GR~e,r1 ,r2!2GA~e,r1 ,r2!#

52E dr8
]r~r1 ,r8!

]m
@GR~e,r8,r2!2GA~e,r8,r2!#.

~A4!

We also introduce the evolution operatorÛ(t)5exp@2i(Ĥ
2m)t# which is defined both for positive and negative time
The functionsGR and GA are related to this operator b
means of the following equations:

GR~ t,r1 ,r2!52 iu~ t !U~ t,r1 ,r2!;

GA~ t,r1 ,r2!5 iu~2t !U~ t,r1 ,r2!. ~A5!

Now let us write down the two equivalent forms of th
Keldysh Green function in the real time representation.
find from Eq.~A2!:

GK~ t,r1 ,r2!5E
2`

1`

dt8
2 iT

sinh@pT~ t2t8!#
@GR~ t8,r1 ,r2!

2GA~ t8,r1 ,r2!#

52E
2`

1`

dt8
T

sinh@pT~ t2t8!#
U~ t8,r1 ,r2!,

~A6!
-

.

e

and from Eq.~A3! we get

GK~ t,r1 ,r2!5E dr8@GR~ t,r1 ,r8!2GA~ t,r1 ,r8!#

3@d~r82r2!22r~r8,r2!#

52 i E dr8U~ t,r1 ,r8!@d~r82r2!22r~r8,r2!#.

~A7!

Analogously we obtain

S d

de
tanh

e

2TD @GR~e,r1 ,r2!2GA~e,r1 ,r2!#

⇒E
2`

1`

dt8
T~ t2t8!

sinh@pT~ t2t8!#

3@GR~ t8,r1 ,r2!2GA~ t8,r1 ,r2!#

5E
2`

1`

dt8
2 iT~ t2t8!

sinh@pT~ t2t8!#
U~ t8,r1 ,r2! ~A8!

and

2E dr8
]r~r1 ,r8!

]m
@GR~e,r8,r2!2GA~e,r8,r2!#

⇒2E dr8
]r~r1 ,r8!

]m
@GR~ t,r8,r2!2GA~ t,r8,r2!#

522i E dr8
]r~r1 ,r8!

]m
U~ t,r8,r2!. ~A9!
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It is easy to observe that Eqs.~A6!,~A8! contain the integral
over time which does not enter Eqs.~A7!,~A9!. It is this
additional time integration that leads to violation of the no
mal time ordering at the level of the perturbation theory a
is responsible for the appearance of the diagra
GRGAGRGA. The interpretation of such diagrams in terms
the path integral is not possible. However, if one uses
other form of the same functions~A7!,~A9! the normal time
ordering is automatically restored, the combinatio
GRGAGRGA disappear due to the causality principle and
path integral interpretation of the remaining terms of the p
turbation theory can be made.

We emphasize that all the above transformations are e
and have the advantage that in the final expressions only
propagators depend on the frequenciese and v @except for
the factor coth(v/2T) in dsab]. This allows one to use the
analytical properties of the propagators related to the cau
ity principle. Namely,GR(e) andL R(v) have no singulari-
ties in the upper half-plane, whileGA(e) and L A(v) are
analytic functions in the lower half-plane. Making use
these properties one can easily prove the identities
-
d
s

f
e

s
e
r-

ct
he

al-

E dvL R~v!GA~e2v![0,

E deG12
A ~e!G23

A ~e!G34
A ~e2v!G41

A ~e![0,

E dvL A~v!GR~e2v![0,

E deG12
R ~e!G23

R ~e!G34
R ~e2v!G41

R ~e![0. ~A10!

Consider, e.g., the integral*dvL R(v)GA(e2v). Since
both functionsL R(v) andGA(e2v) are regular in the up-
per half-plane, the integral vanishes. Alternatively, we c
write *dvL R(v)GA(e2v)5*dtexp(iet)L R(t)GA(t) and
note thatL R(t)[0 for t,0 due to the causality principle
while GA(t)[0 for t.0 and the integral is identically equa
to zero. Analogously one can prove all the other identit
~A10!.

The corrections to the conductivity can now be consid
ably simplified:
dsab52
i

4E dr1dr2dr3dr4dr5

V E dv

2p

de

2p
coth

v

2T
@L 34

R ~v!2L 34
A ~v!#

3H ĵ aFG15
R ~e!

]r52

]m G ĵ bG23
A ~e!G34

A ~e2v!G41
A ~e!1 ĵ aFG15

A ~e!
]r52

]m G ĵ bG23
R ~e!G34

R ~e2v!G41
R ~e!1•••1a↔bJ

2
i

4E dr1dr2dr3dr4dr5dr6

V E dv

2p

de

2p H 2 ĵ aG15
R ~e!

]r52

]m
ĵ bG23

A ~e!G36
A ~e2v!~122r!64G41

A ~e!L 34
A ~v!

1 ĵ aG15
A ~e!

]r52

]m
ĵ bG23

R ~e!G36
R ~e2v!~122r!64G41

R ~e!L 34
R ~v!1•••1a↔bJ . ~A11!

We observe that the terms of the typeĵ aG12
R (e) ĵ bG23

A (e)G34
R (e2v)G41

A (e) do not enter the expression~A11! at all. For later
purposes it will be useful to rewrite the above expression in the form of the time integral

dsab52
e2

2 E dr1dr2dr3dr4dr5

V E
0

1`

dt1E
0

t1
dt2E

0

t2
dt3

3H ĵ aU15~ t1!
]r52

]m
ĵ bU23

1 ~ t3!@ I 34~ t22t3!U34
1 ~ t22t3!#U41

1 ~ t12t2!

1 ĵ aU15
1 ~ t1!

]r52

]m
ĵ bU23~ t3!@ I 34~ t22t3!U34~ t22t3!#U41~ t12t2!1•••1a↔bJ

2
ie2

4 E dr1dr2dr3dr4dr5dr6

V E
0

1`

dt1E
0

t1
dt2E

0

t2
dt3

3H 2 ĵ aU15~ t1!
]r52

]m
ĵ bU23

1 ~ t3!@R34~ t22t3!U36
1 ~ t22t3!~122r!64#U41

1 ~ t12t2!

1 ĵ aU15
1 ~ t1!

]r52

]m
ĵ bU23~ t3!@R34~ t22t3!U36~ t22t3!~122r!64#U41~ t12t2!1•••1a↔bJ , ~A12!
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where

R~ t,r!5E dvd3k

~2p!4

4p

k2e~v,k!
e2 ivt1 ikr

52
1

e2
L R~ t,r!

52
1

e2
L A~2t,r!, ~A13!

I ~ t,r!5E dvd3k

~2p!4
ImS 24p

k2e~v,k!
D cothS v

2TDe2 ivt1 ikr

5
1

2e2i
E dvd3k

~2p!4
cothS v

2TD
3@L R~v,k!2L A~v,k!#e2 ivt1 ikr. ~A14!

Now we will demonstrate that Eq.~A12! can be obtained
within the path integral formalism. The formal expression
the conductivity has the form6
r

s5
e2

3mE
2`

t

dt8E dr i1dr i2~¹ r 1 f
2¹r 2 f !ur1 f5r2 f

3J~ t,t8;r1 f ,r2 f ;r1i ,r2i !~r1i2r2i !r0~r1i ,r2i !.

~A15!

The kernelJ is given by the path integral over electron c
ordinates and momentumsr1(t),p1(t) andr2(t),p2(t) corre-
sponding, respectively, to the forward and backward part
the Keldysh contour. The explicit expression for this kern
reads6

J~ t,t8;r1 f ,r2 f ;r1i ,r2i !

5E
r1(t8)5r1i

r1(t)5r1 f Dr1E
r2(t8)5r2i

r2(t)5r2 f Dr2E Dp1E Dp2

3exp$ iS0@r1 ,p1#2 iS0@r2 ,p2#

2 iSR@r1 ,p1 ,r2 ,p2#2SI@r1 ,r2#%, ~A16!

where

S0@r,p#5E
t8

t

dt9S pṙ 2
p2

2m
2U~r! D , ~A17!
from

ysh
se
SR@r1 ,p1 ,r2 ,p2#5
e2

2 Et8

t

dt1E
t8

t

dt2„R@ t12t2 ,r1~ t1!2r1~ t2!#$122n@p1~ t2!,r1~ t2!#%

2R@ t12t2 ,r2~ t1!2r2~ t2!#$122n@p2~ t2!,r2~ t2!#%1R@ t12t2 ,r1~ t1!2r2~ t2!#$122n@p2~ t2!,r2~ t2!#%

2R@ t12t2 ,r2~ t1!2r1~ t2!#$122n@p1~ t2!,r1~ t2!#%… ~A18!

and

SI@r1 ,r2#5
e2

2 Et8

t

dt1E
t8

t

dt2$I @ t12t2 ,r1~ t1!2r1~ t2!#1I @ t12t2 ,r2~ t1!2r2~ t2!#

2I @ t12t2 ,r1~ t1!2r2~ t2!#2I @ t12t2 ,r2~ t1!2r1~ t2!#%. ~A19!

The functionsR(t,r) and I (t,r) are defined in Eqs.~A13!,~A14!.
In order to obtain the perturbative result~A12! from the formally exact expression~A15! one needs to expand the kernelJ

~A16! in iSR1SI . In the first order one obtains eight different terms. Again we will consider only the terms originating
the self-energy diagrams of Figs. 2~a!,2~b!, i.e., the terms containingR@ t12t2 ,r1(t1)2r1(t2)#, R@ t12t2 ,r2(t1)2r2(t2)#,
I @ t12t2 ,r1(t1)2r1(t2)#, and I @ t12t2 ,r2(t1)2r2(t2)#. Four other terms which relate two different branches of the Keld
contour and contain bothr1 andr2 , come from the vertex diagrams of Figs. 2~c!,2~d!. As was already discussed before the
terms determine only a part of the functiond f d(t) ~31! and—although they do not vanish even atT50—always yield only a
subleading contribution tof d(t). Therefore we will not consider these terms here for the sake of simplicity.

The correction to the kernelJ due to the termI @ t12t2 ,r1(t1)2r1(t2)# has the form

dJI
11~ t,t8;r1 f ,r2 f ;r1 f ,r2 f !52e2E

t8

t

dt3E
t8

t3
dt2E

r1(t8)5r1i

r1(t)5r1 f Dr1E
r2(t8)5r2i

r2(t)5r2 f Dr2E Dp1E Dp2

3I @ t32t2 ,r1~ t3!2r1~ t2!#exp$ iS0@r1 ,p1#2 iS0@r2 ,p2#%

52e2E dr3E dr4E
t8

t

dt3E
t8

t3
dt2U r2 f ,r2i

1 ~ t2t8!

3U r1 f ,3
~ t2t3!I 34~ t32t2!U34~ t32t2!U4,r1i

~ t22t8!. ~A20!
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Here we made use of a simple property of a path integra

E
r(t8)5ri

r(t)5r f DrE Dpf @ t9,r~ t9!#exp$ iS0@r,p#%

5E dr9U~ t2t9;r f ,r9! f ~ t9,r9!U~ t92t;r9,r i !,

~A21!

which holds for an arbitrary functionf @ t9,r(t9)#. Actually in
deriving Eq. ~A20! the property~A21! was used twice be
cause the function of two argumentsI @ t22t3 ,r1(t2)
2r1(t3)# enters under the integral~A20!. Already at this
stage one can observe the similarity between the expres
~A20! and the second term in the expression~A12!. To es-
tablish the equivalence between these two expressions
following steps are in order:~i! after substituting the resul
~A20! into the expression for the conductivity~A15! and
applying the current operatorj5( ie/m)(¹ r 1 f

2¹ r 2 f
) one

puts r1 f5r2 f5r2 ,r1i5r1 ,r2i5r5; ~ii ! one denotest2t8
an

e
r
lt

io
is

tia
s

y
ar
ion

he

→t1,t2t2→t2 ,t2t3→t3; ~iii ! one introduces an additiona
integration*dr2 /V which is just averaging of the expressio
~A15! over the sample volume, and~iv! one transforms the
effective initial density matrix as

~r1i2r2i !r0~r1i ,r2i !5 i (
l1l2

^Cl1
upuCl2

&

m

n~jl1
!2n~jl2

!

jl1
2jl2

3Cl1
~r1i !Cl2

* ~r2i !

.2 i
p̂

m

]r~r1i ,r2i !

]m
. ~A22!

After these transformations one can immediately obse
the equivalence of the results obtained by means of
methods6,13on the level of the perturbation theory. The term
arising from the real part of the actionSR can be transformed
analogously, the only difference in this case is the prese
of an additional factor (122r)34 related to the term 1
22n(p,r) in the expression~A18!. Finally we get
ds52
e3

3 E dr1dr2dr3dr4dr5

V E
0

1`

dt1E
0

t1
dt2E

0

t2
dt3H p̂

m

]r15

]m
U52~ t1! ĵU23

1 ~ t3!@ I 34~ t22t3!U34
1 ~ t22t3!#U41

1 ~ t12t2!

1
p̂

m

]r15

]m
U52

1 ~ t1! ĵU23~ t3!@ I 34~ t22t3!U34~ t22t3!#U41~ t12t2!1•••J
2

ie3

6 E dr1dr2dr3dr4dr5dr6

V E
0

1`

dt1E
0

t1
dt2E

0

t2
dt3H 2

p̂

m

]r15

]m
U52~ t1! ĵU23

1 ~ t3!@R34~ t22t3!U36
1 ~ t22t3!

3~122r!64#U41
1 ~ t12t2!1

p̂

m

]r15

]m
U52

1 ~ t1! ĵU23~ t3!@R34~ t22t3!U36~ t22t3!~122r!64#U41~ t12t2!1•••J .

~A23!
sid-

ond

’’
e

ey
is-

ri-
-

In order to verify complete equivalence of Eqs.~A12! and

~A23! one should~a! replace the operatorep̂/m by ĵ ; ~b!
adjust the factor 3 by observing that Eqs.~A23! and ~A12!
are the corrections respectively to the scalar conductivity
the conductivity tensor@in the isotropic case one hasds
5(dsxx1dsyy1dszz)/3]; and ~c! adjust another factor 2
having in mind symmetrisation of Eq.~A12! with respect to
indices a and b. Also, one should keep in mind that th
operator ]r15/]m commutes with the evolution operato
U52. This completes the proof of equivalence of the resu
~A12! and ~A23!.

The difference between the diagrammatic representat
of the AAG’s perturbation theory and in our approach
illustrated in Fig. 3. We have demonstrated that the ini
diagram@Fig. 3~a!# can be expressed in two equivalent way
by means of the diagram of Fig. 3~b! or as a sum of the two
diagrams of Fig. 3~c!. In the first case causality is explicitl
maintained and an additional coordinate integration appe
together with the density matrix 122r. In the second case
only the sum of the diagrams of Fig. 3~c! is meaningful.
d

s

ns

l
:

ed

Causality is violated in each of these diagrams if one con
ers them separately. This is particularly clear from Fig. 3~d!
which shows the classical paths corresponding to the sec
diagram of Fig. 3~c! @see Fig. 10~c! of Ref. 13#. According to
Ref. 13 it is this path configuration which was ‘‘mistreated
in our analysis.6 In Fig. 3~d! we observe that electrons mov
backward in time between the momentst8 and t1 . Such
paths cannot appear within our path integral formalism, th
are forbidden by the causality principle. Hence, their ‘‘m
treatment’’ could not occur within our analysis either.

APPENDIX B

In this Appendix we will present some details of the de
vation of Eqs.~56!–~61!. Let us first consider the contribu
tion of the self-energy diagrams of Figs. 2~a!,2~b! and con-
sider only the terms in Eq.~A12! which contain the function
I (t,r), or coth(v/2T). Substituting Eqs.~53!–~55! into these
terms of Eq.~A12! we find
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dsab
coth, SE52F (

l1•••l4

e2

2 E dr1dr2dr3dr4

V E
0

`

dt1E
0

t1
dt2E

0

t2
dt3

3H 1

2 S d

djl1

tanh
jl1

2T D ĵ acl1
~r1!cl1

* ~r2!e2 i jl1
t1 ĵ bcl2

~r2!cl2
* ~r3!ei jl2

t3

3@ I ~ t22t3 ,r32r4!cl3
~r3!cl3

* ~r4!ei jl3
(t22t3)#cl4

~r4!cl4
* ~r1!ei jl4

(t12t2)1a↔bJ 1c.c.G . ~B1!

This complicated expression can be rewritten in a simpler form if we introduce the matrix elements

I l1l3 ;l3l2~ t !5E dr1dr2cl1
* ~r1!cl3

~r1!I ~ t,r12r2!cl3
* ~r2!cl2

~r2! ~B2!

and j a
l1l2 ~57!. Then we get

dsab
coth, SE52

e2

2V (
l1•••l4

E
0

`

dt1E
0

t1
dt2E

0

t2
dt3S d

djl1

tanh
jl1

2T D ~ j a
l4l1 j b

l1l21 j b
l4l1 j a

l1l2!I l2l3 ;l3l4~ t22t3!

3cos@2jl1
t11jl2

t31jl3
~ t22t3!1jl4

~ t12t2!#. ~B3!

Analogously, one can find the contribution of the remaining terms in Eq.~A12! containing the functionR(t,r) or
tanh(jl/2T):

dsab
tanh, SE52

e2

4V (
l1•••l4

E
0

`

dt1E
0

t1
dt2E

0

t2
dt3S d

djl1

tanh
jl1

2T D ~ j a
l4l1 j b

l1l21 j b
l4l1 j a

l1l2!Rl2l3 ;l3l4~ t22t3!

3tanh
jl3

2T
sin@2jl1

t11jl2
t31jl3

~ t22t3!1jl4
~ t12t2!#. ~B4!

Now we rewrite the functionsI l2l3 ;l3l4(t22t3) andRl2l3 ;l3l4(t22t3) as follows:

I l2l3 ;l3l4~ t22t3!5E dv

2p

d3k

~2p!3
ImS 24p

k2e~v,k!
D coth

v

2T
^l2ueik•rul3&^l3ue2 ik•rul4&cos@v~ t22t3!#, ~B5!

Rl2l3 ;l3l4~ t22t3!5E dv

2p

d3k

~2p!3

4p

k2e~v,k!
^l2ueik•rul3&^l3ue2 ik•rul4&e

2 iv(t22t3). ~B6!
e

ia-
Now let us express the kernelR ~B6! in terms of the imagi-
nary part of the inverse dielectric susceptibility. First w
write 1/e512(121/e). The function 121/e is regular in
the upper half-plane ofv and it tends to zero ifv→`.
Therefore fort2.t3 one has

E dv

2p S 1

e~v,k!
21Deiv(t22t3)[0.

Since in the integral~B4! the timet2 indeed exceedst3 , we
can replacee2 iv(t22t3) by e2 iv(t22t3)2eiv(t22t3) in the inte-
gral ~B6!. Then we arrive at the following result:
Rl2l3 ;l3l4~ t22t3!

5d~ t22t320!^l2ur1
^l3ur2

1

ur12r2u
ul3& r1

ul4& r2

22E dv

2p

d3k

~2p!3
ImS 24p

k2e~v,k!
D ^l2ueik•rul3&

3^l3ue2 ik•rul4&sin@v~ t22t3!#. ~B7!

The correction to the conductivity due to the self-energy d
grams can now be written as
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dsab
SE5dsab

C 2
e2

2VE0

1`

dt1 (
l1•••l4

S d

djl1

tanh
jl1

2T D
3~ j a

l4l1 j b
l1l21 j b

l4l1 j a
l1l2!E dv

2p

d3k

~2p!3

3ImS 24p

k2e~v,k!
D ^l2ueik•rul3&^l3ue2 ik•rul4&

3Fcoth
v

2T
1tanh

jl3

2T
GF~ t1 ,v,jl1

•••jl4
!, ~B8!

where dsab
C ~59! is the correction due to the nonscreen

Coulomb interaction and the functionF is defined in Eq.
~58!.

Now let us make use of the Drude approximation for t
dielectric susceptibility of a disordered metal

e~v,k!5
4ps

2 iv1Dk2
.

In this case it is convenient to introduce the matrix eleme
Ml2l3 ;l3l4 as defined in Eq.~57!. Combining the above ex

FIG. 3. The first order diagrams which contain the Keldy
functionGK and tanh(e2v)/2T. ~a! Initial diagram.~b! GK is writ-
ten in the form~A7!. ~c! GK is written in the form~A6!. Two
diagrams appear. The second diagramGRGAGRGA contains
Hikami boxes. Here we have definedK(t)52 iT/sinh(pTt). ~d!
The classical paths which correspond to the second diagram of
3~c!. Such paths violate causality and, hence, do not appear in
path integral.
ts

pressions we immediately arrive at the final result for t
first order correction to the conductivity from self-energ
diagrams of Figs. 2~a!,2~b! and Eqs.~56!,~58!.

The conductivity correction from the vertex diagrams
Figs. 2~c!,2~d! is evaluated analogously. After a straightfo
ward algebra we obtain

dsab
coth, vert5

e2

2V (
l1•••l4

E
0

`

dt1E
0

t1
dt2E

0

t2
dt3S d

djl1

tanh
jl1

2T D
3~ j a

l2l3 j b
l1l41 j b

l2l3 j a
l1l4!I l3l1 ;l4l2~ t22t3!

3cos@2jl3
~ t12t3!2jl1

t31jl4
t2

1jl2
~ t12t2!#, ~B9!

dsab
tanh, vert52

e2

4V (
l1•••l4

E
0

`

dt1E
0

t1
dt2E

0

t2
dt3

3S d

djl1

tanh
jl1

2T D ~ j a
l2l3 j b

l1l4

1 j b
l2l3 j a

l1l4!Rl3l1 ;l4l2~ t22t3!tanh

3
jl3

2T
sin@2jl3

~ t12t3!2jl1
t31jl2

t2

1jl4
~ t12t2!#. ~B10!

Introducing again the matrix elements~57! and combining
Eqs.~B9! and ~B10! we arrive at the result~60!,~61!.

APPENDIX C

In this appendix we will analyze the expressions for t
weak localization correction to the conductance obtained
AAG in the limit tH!tw perturbatively in the interaction
This additional analysis is necessary because the final re
for the most interesting low-temperature limitTtH&1 were
not presented in Ref. 13. For the sake of definiteness we
consider only the 1D case which is sufficient for our pu
poses.

AAG split the total expression for the weak localizatio
correction to the conductance into two terms

dsWL
AAG5dsdeph

AAG1dsCWL
AAG , ~C1!

where, according to Ref. 13, the first term describes deph
ing while the second term accounts for the renormalizat
due to interaction and has nothing to do with dephasi
Below we will demonstrate that such a separation of
weak localization correction into ‘‘dephasing’’ and ‘‘interac
tion’’ terms is not possible even within the perturbatio
theory employed by AAG.

Let us consider the first term in Eq.~C1! which was de-
fined in Eqs.~4.5!,~4.6! of Ref. 13 and has the form

ig.
he
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dsdeph
AAG5

s

pVE dQdq

~2p!2E dv

2p S v

2TD 2 1

sinh2
v

2T

S 4Te2

s1q2D
3$@C~Q,0!#2C~Q1q,v!2uC~Q,v!u2C~Q1q,0!%,

~C2!

where the Cooperon and the diffuson are defined as follo

C~v,q!5
1

2 iv1Dq211/tH

, D~v,q!5
1

2 iv1Dq2
.

~C3!

The integrals overQ and q in Eq. ~C2! can be evaluated
exactly and we find

dsdeph
AAG5

s

2pV 2

tH
2

D
ImE dv

2p

v

2T sinh2
v

2T

3F ivtH

2A11 ivtH~A11 ivtH21!2

3S 1

A11 ivtH21
2

1

2D 2
4

~ ivtH!2

2
~A11 ivtH21!2

2~ ivtH!2A11 ivtH
G . ~C4!

Making use of this equation we get

dsdeph
AAG.

e2

p

e2

s1
H DTtH

2

4 S 11z~1/2!A 2

pTtH
D

1
5

8

z~3/2!

p
AD2tH

2pT J , TtH@1,

dsdeph
AAG.

e2

p

e2

s1

p4

30
DtH~TtH!4, TtH!1. ~C5!

In the limit TtH@1 the expression~C5! practically coincides
with the analogous expression obtained in Ref. 13@see Eq.
~4.11! of that paper# with the only difference in a numerica
coefficient in front of the last term in the first equation~C5!
(5/8 in our calculation and 1/2 in Ref. 13!. In the opposite
limit TtH!1 the expression~C2! was not evaluated by AAG
at all.

Now let us consider the second contribution~C1! which
was denoted by AAG as a cross term of weak localizat
and interaction. According to Ref. 13 this term has the f
lowing structure@see Eq.~5.23! of that paper#

dsCWL5
s

2pV 2
ImE dv

2p F d

dv S v coth
v

2TD G@ I 1~v!12I 2~v!

24I 3~v!14I 4~v!1I 5~v!18I 6~v!#, ~C6!

where the terms in the square brackets are defined in
~5.25! of Ref. 13:
s:

n
-

s.

I 1~v!5E dQdq

~2p!2

1

Dq2 H C 2~0,Q!FC~2v,Q1q!

D~2v,q!
21G

1@C~2v,Q!2C~0,Q!#D~2v,q!

12C~2v,Q1q!C~0,Q!J ,

I 2~v!5E dQdq

~2p!2

q

Dq2

]

]q
C~2v,Q1q!C~0,Q!,

I 3~v!5E dQdq

~2p!2
D~2v,q!C~2v,Q1q!C~0,Q!,

I 4~v!5E dQdq

~2p!2

Q

q
D~2v,q!C~0,Q2q!C~2v,Q!,

I 5~v!5E dQdq

~2p!2
D~2v,q!C 2~2v,Q!,

I 6~v!5E dQdq

~2p!2
Dq2D 3~2v,q!C~2v,Q!. ~C7!

These integrals can also be evaluated exactly and we
rive at the following results:

I 1~v!5
tH

2

4D

A11 ivtH21

~ ivtH!3/2A11 ivtH

,

I 2~v!5
tH

2

4D

1

~ ivtH!2 S 22A11 ivtH2
1

A11 ivtH
D ,

I 3~v!5
tH

2

8D S 1

AivtHA11 ivtH

2
A11 ivtH21

ivtHA11 ivtH
D ,

I 4~v!5
tH

2

4D S A11 ivtH21

~ ivtH!2
1

A11 ivtH21

2~ ivtH!3/2
2

1

2~ ivtH!D ,

I 5~v!5
tH

2

8D

1

AivtH~11 ivtH!3/2
,

I 6~v!5
tH

2

32D

1

~ ivtH!3/2A11 ivtH

. ~C8!

Let us compare these exact expressions with those
tained in Ref. 13. Unfortunately AAG calculated the int
grals approximately only in the limit of high frequencie
vtH@1. In this limit they found
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I 1
AAG~v!.

tH
2

4D S 1

~ ivtH!3/2
2

1

~ ivtH!2D ,

I 2
AAG~v!.

tH
2

4D S 2
1

~ ivtH!3/2
1

2

~ ivtH!2D ,

I 3
AAG~v!.

tH
2

4D S 1

2~ ivtH!3/2
2

1

4~ ivtH!2D ,

I 4
AAG~v!.

tH
2

8D S 1

~ ivtH!3/2
2

3

2~ ivtH!2D ,

I 5
AAG~v!.

tH
2

8D

1

~ ivtH!2
,

I 6
AAG~v!.

tH
2

64D

1

~ ivtH!2
. ~C9!

In order to find a numerical coefficient in front of the ter
;1/(ivtH)2 in the expression forI 4

AAG ~C9! we exactly
evaluated the integral

E
0

`

dxdydz
y exp~2x2y!

~y1z!Axy1xz1yz
5

p

2

@see Eq.~5.25d! of Ref. 13# which was not calculated by
AAG.

The high frequency asymptotics of the functio
I 1 , I 2 , I 3 , I 4 , and I 5 coincide with the results~C9!, while
the asymptotic results forI 6 derived from the exact expres
sions~C8! in the limit vtH@1 takes the form

I 6~v!.
tH

2

32D

1

~ ivtH!2
.

We observe a difference in the numerical prefactor in
exact expression and in the termI 6

AAG ~C9! found in Ref. 13.
A much more important problem is, however, not in th

numerical discrepancy, but rather in the fact that AAG eva
ated the integrals only in the limitvtH@1 and did not study
the behavior of the integrals~C7! at lower frequenciesvtH
&1 at all. Note that the low frequency behavior of the
integrals is crucially important because it determines the
pendence of the weak localization correction ontH at suffi-
ciently low temperaturesTtH&1. @Let us remind the reade
that here we are discussing only the limit of strong magn
fields13 tH!tw beyond which any perturbative~in the inter-
action! calculation of the weak localization correction
meaningless. Clearly, in this limit the conditionTtH&1 is
compatible with the conditionTtw@1.#

It is easy to observe from Eq.~C8! that at low frequencies
the integralsI 1 , I 3 , I 4 , I 5 behave as}1/AivtH, the integral
I 2 tends to a constant atv→0, while the integralI 6 behaves
as I 6}1/(ivtH)3/2. This implies that the contribution of th
integralsI 1 , . . . ,I 5 to the conductivity correction~C6! does
not diverge as temperature goes to zero but stays finite
any finitetH even atT50. The contribution of the integra
e

-

e-

ic

or

I 6 diverges as 1/AT for low T. Note, that in the high fre-
quency limit~C9! all the integrals show the same asympto
behavior, and one could naively conclude that all these in
grals are of the same origin. In reality, however, only~a part
of! the integralI 6 can be interpreted as the effect of intera
tion on the weak localization, while all other terms actua
contribute to dephasing, at least for not very high tempe
turesTtH&1.

Let us split the functionI 6 ~C8! into two terms which give
respectively divergent and convergent contributions to
integral of I 6(v) over v at low frequencies

I 6~v!5
tH

2

32D

1

~ ivtH!3/2
2

tH
2

32D

A11 ivtH21

~ ivtH!3/2A11 ivtH

.

~C10!

We will now treat only the first~divergent! term in this equa-
tion, while the second~convergent! term will be added to the
integralsI 1 , . . . ,I 5 . The divergent term yields the following
contribution:

dsCWL5
s

2pn2
ImE dv

2p F d

dv S v coth
v

2TD G8 tH
2

32D

1

~ ivtH!3/2

52
e2

2p
A D

2pTS 3z~3/2!

2 D e2

ps
ADtH

52
1

2
dsC~T!

dsWL

s
, ~C11!

where

dsC~T!52
e2

p
A D

2pTS 3z~3/2!

2 D ~C12!

is the interaction correction to the conductivity and

dsWL52
e2

p
ADtH ~C13!

is the weak localization correction. Within the validity rang
of the perturbation theory in the interaction, Eq.~C11! is
valid in the whole temperature interval fromTtH!1 to
TtH@1. The physical origin of the correction~C11! is quite
transparent. Indeed, the interaction term~C12! contains the
photon propagatorL R}1/s. If one replaces the total conduc
tivity by the sum of the Drude conductivity and the wea
localization correction, one will immediately observe that
the first order indsWL the interaction correction will be
transformed asdsC→dsC(12dsWL /s). Thus we arrive at
Eq. ~C11!.

This simple consideration clarifies the origin of the co
rection ~C11!. It can be interpreted as the effect of wea
localization on the interaction correction. The same conc
sion follows if one considers the diagrams contributing to
integralI 6 . They are just the diagrams which yield the inte
action correction multiplied by the weak localization corre
tion to the photon propagator. In other words, the contrib
tion ~C11! originates from the second term in the right-ha
side of Eq.~5.22! in Ref. 13, while all the remaining contri
butions come from the first term, i.e., from the unrenorm
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ized photon propagator. Collecting all these contributions
express the final result13 for dsCWL

AAG ~C6! as a sum of two
terms

dsCWL
AAG5dsCWL1ds??, ~C14!

wheredsCWL is defined in Eq.~C11! and

ds??5H e2

p

e2

s1
H 3

2p
DtH1O~DtHATtH!J , TtH!1,

3

2

e2

p
A D

2pTS 3z~3/2!

2 D e2

p

ADtH

s1
, TtH@1

~C15!

can be derived from Eq.~C6! combined with Eq.~C8!.
We observe that forTtH&1 the contribution proportiona

to tH dominates and determines the behavior ofds?? as a
function oftH . This contributioncannotbe interpreted as an
interaction correction since it growsfaster than AtH with
increasingtH . For quasi-1D systems all contributions to th
conductance growing faster thanAtH should be interpreted
as dephasingterms ~see also our discussion in Sec. I!.
Thus—although the correct and complete description of
interaction-induced decoherence cannot be obtained from
perturbation theory in the interaction—the conclusion ab
the existence of temperature-independent dephasing in d
dered conductors at lowT ~determined by the range of fre
quencies v.T) follows already from the perturbativ
calculation.13 This is in contrast with the qualitative argu
ments about the absence of zero-temperature dephasing
sented in the same paper.

It also follows from the above consideration that the su
gested by AAG splitting of the weak localization correctio
into two terms~C1! can hardly be justified in both limits
TtH@1 andTtH!1 even within the framework of their per
turbation calculation.13 Indeed, forTtH@1 the total expres-
sion for the weak localization correctiondsCWL

AAG derived by
AAG and defined here in Eqs.~C1!, ~C2!, ~C6!, and~C7! can
be expressed as a series expansion in 1/ATtH:

dsWL
AAG.

e2

p

e2

s1

DTtH
2

4 F11OSA 1

TtH
D G . ~C16!

In this limit dsCWL
AAG is vanishingly small@it contributes only

to the next after the subleading term in Eq.~C16! and can be
safely disregarded#. Moreover, forTtH@1 exactly the same
term ;dsCWL

AAG}AtH /T ~with a slightly different numerical
prefactor! is contained in the expression fordsdeph

AAG ~C5!.
Also due to this fact there are no reasons to distinguish
termdsCWL

AAG from the remaining contribution todsWL
AAG in the

above limit.
For TtH;1 both terms in Eq.~C1! are of the same order

and therefore their separation is not possible. Finally, in
limit TtH!1 the result fordsWL

AAG reads

dsWL
AAG5dsCWL1

e2

p

e2

s1

3DtH

2p
@11O~ATtH!#.

~C17!

The origin of the termdsCWL}AtH /T ~C11! was clarified
above. It does not describe dephasing and it is purely a m
e

e
he
t

or-

re-

-

e

e

t-

ter of convention whether to include this term into the p
turbative weak localization or interaction corrections. T
second term in Eq.~C17! is represented as a series expans
in powers ofATtH, it describes dephasing and remains fin
even atT50. We emphasize again that in the limitTtH
!1 the leading ‘‘dephasing-type’’ contribution to the pertu
bative weak localization correction comes fromdsCWL

AAG and
not from the ‘‘dephasing’’ term13 dsdeph

AAG which only contrib-
utes to the higher order terms@;(TtH)4# of the expansion
of dsWL

AAG in powers ofTtH @see Eq.~C5!#. Terms of the
same order are also contained in the expression fordsCWL

AAG .
Thus the splitting~C1! is not justified also in the limitTtH
!1.

APPENDIX D

As was already pointed out, the authors of several rec
papers15–17arrived at conclusions different from ours5–7 and,
moreover, argued that our approach6 is not correct. On top of
the standard arguments~which have been already discuss
in the bulk of this paper! the authors15–17 suggested various
additional reasons which could invalidate our analysis.
view of that we feel it will be appropriate to address t
arguments presented in the above papers. We believe
this appendix can be useful for the reader who would like
follow the details of the discussion around the problem
quantum decoherence at low temperatures.

Cohen and Imry15 ~CI! proceeded within the Feynman
Vernon influence functional formalism and found that t
interference of any pair of time reversed paths is suppres
due to interaction with an effective environment even atT
50. This result@Eq. ~12! of Ref. 15# implies a nonzero de-
coherence rate atT50 and is consistent with our results5–7

as well with the results of other authors29,30 obtained within
the framework of the CL model. However, CI argued that t
saddle-point approximation they used ‘‘cannot be trusted’
low temperatures, and theT-independent contribution to th
dephasing rate ‘‘should be omitted.’’ CI’s arguments in fav
of this conclusion follow the line of reasoning according
which a particle with the energy;T cannot excite environ-
mental modes with energies exceedingT.

The arguments15 cannot be accepted. Indeed, if CI do n
trust the saddle-point approximation which gives nonz
dephasing down toT50, this could only imply that one
should analyze the role of fluctuations around the sad
points. The contribution of non-saddle-point paths may o
yield further suppression of quantum coherence simply
cause the relevant saddle points provide the~local! minimum
for the action. The imaginary part of the effective action
positive SI.0 for all paths except for pairs of exactly equ
paths in which caseSI[0. ~The latter paths do not contribut
to the dephasing rate.! Thus the saddle-point approximatio
may onlyunderestimatethe dephasing rate.

We can add that in our problem the applicability of th
saddle-point approximation cannot depend on temperat
This is particularly clear in the weak interaction limit. In th
case the saddle-point paths are determined only by the ‘‘n
interacting’’ parts of the action which do not depend on te
perature at all. The ‘‘interacting’’ contribution can then b
treated perturbatively in the exponent and this is a co
pletely legitimate procedure controlled by a small parame
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1/pFl !1 in the case of disordered metals. At sufficien
high T this procedure yields the AAK result.2 If one accepts
the saddle-point approximation at higherT, one should ac-
cept it also at lowerT: the saddle point paths are the sam
and the ‘‘interacting’’ contribution to the exponent may on
decrease with decreasingT. The saddle point approximatio
which treats the interaction term perturbatively in the exp
nent~and thus yields energy conservation on the saddle p
paths! is well known and was frequently used for th
Feynman-Vernon influence functionals, see, e.g., R
35,36.

CI also mentioned the simple perturbative results which
according to them—yield zero decoherence rate atT50.15

As it was already explained above,~i! the problem is essen
tially nonperturbative and no information about the deph
ing time tw can be extracted from perturbation theory in t
interaction~Sec. II! and ~ii ! at low temperatures the golde
rule approximation yields incorrect results even for pertur
tive terms~Sec. IV B!. Equations~14!,~15! of Ref. 15 can be
obtained from the equation above Eq.~14! of the same pape
only within the golden rule approximation~65!. Exact calcu-
lation leads to an additional term@see Eqs.~67! and ~E19!#
which survives even atT50 and diverges at large times
Unfortunately this term is missing in Eq.~14! of Ref. 15.

The same term is missing also in Eq.~1! of the paper by
Imry, Fukuyama, and Schwab~IFS!.17 Again, their Eqs.
~1!,~2! are obtained within the golden rule approximatio
Since IFS allow for a general form of the interaction mat
elements, it should be legitimate to take ones, e.g., for
CL model and to substitute them into Eq.~1! of Ref. 17.
Then one would immediately arrive at the conclusion that
decoherence occurs in the CL model atT50. This conclu-
sion contradicts the results obtained within the exactly so
able Caldeira-Leggett model.

IFS also argued that dephasing cannot occur atT→0 in
equilibrium because ‘‘in that limit neither the electron n
the environment has any energy to exchange.’’ It is w
known, however, that the energy of a subsystem~an electron
in our case! interacting with other subsystem~other elec-
trons! is not conserveddue to interaction. The energy ex-
change between different subsystems of a closed syste
of course, possible even atT50. In the presence of interac
tion with any other quantum degrees of freedom an elec
can be described only by the density matrix31 and is~obvi-
ously! not in its noninteracting ground state. Therefore
always has energy to exchange. The same is true for
environment: it is well known32 that an imaginary part of the
dielectric susceptibility for a large system Ime does not van-
ish even atT50, thus implying the possibility of energ
exchange. The above argument17 disregards the interactio
term in the Hamiltonian, and this is again nothing but t
golden rule approximation~see also Appendix B of Ref. 14
for further discussion of this point!. Due to interaction the
ground-state energy of the total system is different from~in
our case larger than! the sum of energies of its noninteractin
parts, and the energy exchange is always possible.

IFS also pointed out that our results5,6 are ‘‘in disagree-
ment with experiments’’ of Ref. 37. The experimental resu
for the dephasing timetw were reported only in one~the
second! out of three papers under Ref. 37. In this experim
it was found that at sufficiently lowT ~below ;1 –3 K)
-
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‘‘the dependenceLw(T) is flattened out.’’ The comparison
between our results fortw and the experimental findings o
the second Ref. 37 was carried out in Ref. 7. Anexcellent
agreement was revealed for all three samples studied in
second paper,37 see Fig. 3 of Ref. 7. Therefore, it remain
unclear which of our results was meant by the authors17 to be
in disagreement with experiments.37

Since this point was not clarified by IFS we can try
conjecture that they actually interpreted our conclusion5 that
Coulomb interaction in weakly disordered quasi-1D meta
~many channel! conductors~described within the standar
Drude model! precludes the Thouless crossover into an in
lating state as contradicting to a rapid growth of the w
resistance with decreasing temperature detected in Ref
below T;1 K. If so, we can only point out that the abov
conclusion does not contradict to the experimental data
only to their interpretation in terms of the Thouless crosso
adopted in Ref. 37. The wire conductivity can be represen
as a sum of the Drude terms1 , the interaction correction
ds int(T) and the weak localization correctiondsWL(T,H):

s11ds int~T!1dsWL~T,H !.

Our analysis5,6 demonstrates that the last of these three te
saturates at lowT, and this is in agreement with the obse
vations reported in the second Ref. 37. However the to
resistance may well keep increasing at even lowerT because
of the interaction termds int(T). This scenario indeed pre
cludes the ‘‘noninteracting’’ Thouless crossover, but not t
crossover into an insulating state due to interaction~e.g. of
the Coulomb blockade type!. Since in Refs. 5,6 we did no
address the termds int(T) at all, one can hardly argue abou
any contradiction between our results and the experime
data.37

Finally let us turn to the paper by Vavilov an
Ambegaokar.16 These authors did not employ the ‘‘ortho
dox’’ golden rule approximation15,17,18but rather attempted
to analyze the problem by means of a high temperature
pansion. They also presented a critical analysis of our pa6

~see Appendix C of Ref. 16!.
VA questioned the validity of our procedure whic

amounts to deriving a dephasing timetw only from the terms
in our expression for the effective action6 which dominate at
sufficiently long times. According to VA the dropped term
might be important at timest;tw @where SI(tw);1] and
due to that the result fortw could be different from ours.6

Even without making any calculation one can realize that
contribution of these dropped terms, if important, could on
make the dephasing timeshorter than that found in our
paper.6 Indeed, if one assumes that taking all terms into
count one would obtain a longer dephasing timetw8@tw , one
would immediately arrive at a contradiction with the fa
~acknowledged by VA! that the dropped terms are unimpo
tant at timest@tw : at least at timest;tw8 ~and, hence, att
@tw) these dropped terms should still be significant. Sin
this is not the case, by neglecting the above terms one a
ally gets an upper bound fortw . This is in contrast with the
VA’s claim that tw is parametrically longer than that foun
in our paper6 at low T.

The analysis presented in Sec. III A of this paper fu
confirms our previous results.6 All terms of our effective
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action6 were explicitly taken into account in Eq.~23!. Addi-
tional terms in the exponent@see Eqs.~28!,~30!–~34!# indeed
appear, but~i! they lead to further suppression of quantu
coherence and~ii ! for all timest*tw they are small as com
pared to the leading order terms which we already con
ered before.6

The problem with ‘‘unphysical divergences’’ discussed
the beginning of Appendix C of Ref. 16 does not exist in o
analysis either. This can be observed already from the f
note 32 before Eq.~76! of Ref. 6: the actual low frequenc
cutoff in this equation is atv;1/t, see also Eqs.~46!,~47! of
Ref. 7. This cutoff is not imposed by hand, but rather follo
from the fact that the integral overv in Eq. ~76! of Ref. 6
and related formulas is just the long time approximation
the sum over discrete Fourier frequenciesvn52pn/t. The
absence of any ‘‘unphysical divergences’’ in the exact
pression~23! is also completely transparent. It is hard
understand why VA believe that our results cannot be co
pared to those obtained within the Caldeira-Leggett mode
close similarity between both problems is obvious from o
analysis presented in Appendix E.

Another problem of VA with our analysis has to do wi
the factor@122n(p,r)# which appears in the real partSR of
our effective action@see Eq.~A18!#. VA stated that in Ref.6
we ‘‘neglected the time dependence of the momentum
This is not true. The electron momentum changes its dir
tion after each scattering event, an this fact is explicitly tak
into account in Ref. 6 where the classical electron trajecto
in a disordered potential were considered. No momen
conservation was imposed in our analysis, rather the elec
energy conservation on these trajectories was used. This
proximation is fully justified, since the saddle point paths a
determined by the ‘‘noninteracting’’ terms in the effectiv
action while ‘‘interacting’’ terms are treated as a perturbat
in the exponent. For these saddle point paths the facto@1
22n(p,r)# ~and notp(t)) does not depend on time. It is no
quite clear why VA suggest to consider odd functions
time n@p(t)#. Such functions do not contribute to the exp
nent at all. It is also not clear in which context th
observation16 that for an odd function of timen@p(t)# the
real part of the actionSR is of the same order asSI ~taken at
T50) could be important: there is no way how the termiSR
can cancelSI for real and nonzeroSR andSI . The contribu-
tion of the trajectories with nonzeroSR to the path integral
may only be suppressed further due to the presence o
oscillating term exp(2iSR).

Trying to justify their arguments VA presented seve
equations@Eqs. ~C12!–~C15! of Ref. 16# which are some-
what reminiscent to ones obtained, e.g., in Sec. IV of t
paper. For instance, the combination ‘‘coth1tanh’’ appears
in Eq. ~C15! of Ref. 16 in a correct form~63! rather than in
the form~62! used by some other authors. Unfortunately V
did not evaluate their Eq.~C15! but just concluded ‘‘we see
that the contribution of high frequencies is exponentia
suppressed.’’ In Sec. IV B we have demonstrated just
opposite: the high frequency contribution is not expon
tially suppressed even atT→0 and, moreover, it leads to th
presence of diverging terms already in the first order in
interaction@see Eq.~67!#. Exactly the same terms are co
tained in Eq. ~C15! of Ref. 16 and, hence, the abov
statement16 is explicitly incorrect.
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Let us now come to the analysis of the calculation.16 Sev-
eral comments are in order.

~1! Even if the perturbative calculations16 of the weak
localization correction in the high temperature limit we
correct, the correct dephasing timetw could not be extracted
from these calculations. The reason for that is exactly
same as for the perturbative calculation:13 theT-independent
linear in time perturbative contributions coming from th
Taylor expansion of the exponent and the pre-exponent m
exactly cancel each other in the first order. As it was e
plained in Sec. II the problem of finding the dephasing tim
tw is essentially nonperturbative and, hence, the metho16

should fail already at the point where the exponent was~par-
tially! expanded in powers of the interaction.

~2! The perturbative analysis13 cannot simply be repeate
for the situation considered by VA because the initial~non-
perturbed! propagators depend on the classical part of
fluctuating field. This implies that the Fourier transformati
in time cannot easily be performed, and the whole calcu
tion should be redone from the very beginning.

~3! VA’s procedure can easily be tested with the aid of t
results derived in the present paper. Since the authors16 as-
sume ‘‘that the electron-electron interaction is the on
mechanism of decoherence’’ and consider only the hi
temperature limit, in our formulas of Sec. II–IV we can p
1/tH50 and keep only the term

f 1cl~ t !5
4

3

e2

s1
AD

p
Tt3/2 ~D1!

in the exponent of Eq.~6! expanding this exponent to th
first order in f 1(t)2 f 1cl(t). We also expand the pre
exponentA1(t) to the first order in the interactionA1(t)
.A1

(0)(t)1A1
(1)(t), whereA1

(0)(t)51/(2ApDt). This proce-
dure should exactly correspond to the high temperature
pansion of Ref. 16. Then for the weak localization correct
~which we now denote asdsWL) we will obtain

dsWL52
e2AD

p3/2 E0

1` dt

At
e2 f 1cl(t)1

e2AD

p3/2 E0

1` dt

At

3S f 1~ t !2 f 1cl~ t !2
A1

(1)~ t !

A1
(0)~ t !

D e2 f 1cl(t). ~D2!

Here the first integral determines the ‘‘classical’’ part of t
weak localization correction while the second integral giv
the ‘‘quantum’’ correction. Both integrals can easily b
evaluated. Combining Eqs.~30!, ~83!, and ~105! @the last
equation allows to evaluate the termA1

(1)(t)/A1
(0)(t)] and

keeping only the leading corrections from the hig
temperature expansion we obtain

f 1~ t !2 f 1cl~ t !2
A1

(1)~ t !

A1
(0)~ t !

.
z~1/2!

A2

e2

s1
AD

p
tAT. ~D3!

As before, theT-independent linear in time terms containe
in f 1(t) ~30! and in A1

(1)(t)/A1
(0)(t) exactly cancel each

other. This cancellation illustrates again why the corr
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dephasing time at lowT as well as the leading order high
temperature correction to the classical dephasing rate ca
be recovered by means of a high-temperature expansion
the conductance. From Eqs.~D1!–~D3! we find

dsWL.2S 2e4s1D

9p4T
D 1/3

G~1/3!1
z~1/2!

~2p!3/2

e2AD

AT
.

~D4!

We conclude that the procedure developed by VA in Ref.
does not provide correct information about the interacti
induced dephasing in disordered conductors.

APPENDIX E: CALDEIRA-LEGGETT MODEL

As we have already discussed before,6,7,12,14the physical
nature of the interaction-induced decoherence can be un
stood with the aid of a simple model of a quantum parti
interacting with a bath of harmonic oscillators.24,25 By a
proper choice of both the interaction term and the freque
spectrum of the bath oscillators one can easily realize
important limit of Ohmic dissipation and arrive at th
Caldeira-Leggett~CL! model.8

An important advantage of this model is that the dens
matrix and the expectation values of the quantum mechan
operators can be calculated exactly. This enables one
only to avoid worries concerning the validity range of va
ous approximations, but also to test these approximat
employed in some other models which cannot be solved
actly. In particular, here we are interested in checking
approximations which have led variou
authors10,11,13,15,17,18,27to a conclusion about the absence
interaction-induced decoherence in disordered metals aT
50, or to the conclusion16 that the quantum correction to th
classical decoherence rate is small and decreases this
below its classical value. Since it is well known that t
off-diagonal elements of the particle density matrixr(x,x8)
are suppressed due to interaction with the CL bath eve
T50 in equilibrium~this effect is nothing but nonzero deco
herence atT50), it is interesting to test if it is possible t
reproduce this result within the approximations employed
the above papers.

Also, it is sometimes speculated that the results deri
within the CL model cannot be compared to ones obtai
for electrons in a disordered metal because of different
tistics. One could conjecture that electrons in a disorde
metal should have zero decoherence rate atT50 predomi-
nantly due to the Pauli principle, while in the CL mod
nonzero decoherence atT50 is allowed because no exclu
sion principle exists for bosons. The role of the Pauli pr
ciple can also be clarified by performing a direct comparis
of the results obtained within the CL model with ones f
electrons in a disordered metal.

On a perturbative level this program will be carried out
the subsection 1 of this appendix. In the subsection 2 we
discuss the relation between the exponent and the
exponent for the CL model and illustrate the analogy
tween the results of this subsection and those of Sec. III.
will develop this comparison further in the subsection
where we analyze the properties of the ‘‘Cooperon’’ in t
ot
for
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CL model. The validity range of various approximations
discussed in the subsection 4.

For reference purposes it is convenient to present h
some exact results obtained for a quantum particle with
ordinatex interacting with an infinite bath of oscillators.8

The time evolution of the density matrix of such a particle
defined by Eq.~1! and the kernelJ is given by the following
path integral:

J~ t,x1 f ,x2 f ,x1i ,x2i !

5E
x1i

x1 fDx1~ t !E
x2i

x2 fDx2~ t !exp$ iS0@x1~ t !#

2 iS0@x2~ t !#2 iSR@x1~ t !,x2~ t !#2SI@x1~ t !,x2~ t !#%,

~E1!

whereS0@x#5*0
t dt8(mẋ2/2) is the action of a free particle

The interaction part of the action has the form

SR@x1 ,x2#5E
0

t

dt1E
0

t1
dt2$aR~ t12t2!x1~ t1!x1~ t2!

2aR~ t12t2!x2~ t1!x2~ t2!1aR~ t12t2!

3x1~ t1!x2~ t2!2aR~ t12t2!x2~ t1!x1~ t2!%

1
1

2 S E dv

2p

2I ~v!

v D E
0

t

dt8@x1
2~ t8!2x2

2~ t8!#,

~E2!

SI@x1 ,x2#5E
0

t

dt1E
0

t1
dt2$a I~ t12t2!x1~ t1!x1~ t2!

1a I~ t12t2!x2~ t1!x2~ t2!2a I~ t12t2!

3x1~ t1!x2~ t2!2a I~ t12t2!x2~ t1!x1~ t2!%.

~E3!

The kernelsa I andaR are given by the integrals

aR~ t !52 i E dv

2p
I ~v!e2 ivt, ~E4!

a I~ t !5E dv

2p
I ~v!coth

v

2T
e2 ivt, ~E5!

where I (v) is the spectral density of the oscillators. Th
function can be arbitrary, but we will consider here only t
case of Ohmic dissipationI (v)5hvu(vc2uvu), with vc
being the high cutoff frequency. This spectrum is the m
relevant in view of comparison to the disordered metal. T
last term in the actionSR ~E2! compensates potential reno
malization caused by the interaction and maintains the tra
lational invariance of the system.

The kernelJ ~E1! can be found exactly as the integra
over the coordinates are Gaussian. One finds~see, e.g., Refs
8,9!
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J~ t,x1 f ,x2 f ,x1i ,x2i !5
h

2p~12e2gt!
expF ih

xf
1xf

21egtxi
1xi

22egtxf
1xi

22xi
1xf

2

egt21

2h$g1~ t !xi
221g2~ t !~xf

22xi
2!21g3~ t !xi

2~xf
22xi

2!%G , ~E6!
e
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g1~ t !5
1

2E0

t

dsE
0

t

ds8G~s2s8!.Tt1 ln
12e22pTt

2p~T/vc!
,

t@vc
21 , ~E7!

g2~ t !5
1

2E0

t

dsE
0

t

ds8
~egs21!G~s2s8!~egs821!

~egt21!2
,

~E8!

g3~ t !5E
0

t

dsE
0

t

ds8
G~s2s8!~egs821!

~egt21!
, ~E9!

and

G~ t !5E
2vc

vc dv

2p
v coth

v

2T
e2 ivt52

1

p S pT

sinh~pTt! D
2

.

~E10!

1. Perturbation theory

Since in practically all cases the conclusion about the z
decoherence in the interacting systems atT50 in equilib-
rium was reached only within the first order perturbati
theory in the interaction, it is instructive to examine t
structure of the first order perturbative terms in the C
model.

Let us expand the kernel of the evolution operator~E1! in
the interaction part of the actioniSR1SI . In the zeroth order
we get a simple result

J0~ t,x1 f ,x2 f ,x1i ,x2i !5U~ t,x1 f ,x1i !U
1~ t,x2 f ,x2i !,

~E11!

whereU(t,xf ,xi)5^xf uexp(2ip̂2t/2m)uxi& is a free particle
evolution operator. Investigating the transport properties
disordered conductors one usually expresses the resul
terms of advanced and retarded Green functionsGR,A. In
order to emphasize the analogy with the CL model, we n
that the expression~E11! can be rewritten as

J0~ t,x1 f ,x2 f ,x1i ,x2i !5GR~ t,x1 f ,x1i !G
A~2t,x2 f ,x2i !,

~E12!

where GR(t,xf ,xi)52 iu(t)U(t,xf ,xi), GA(t,xf ,xi)
5 iu(2t)U(t,xf ,xi). Comparing this expression to that fo
the conductivity of a disordered metal~A15!, we note that
the latter contains an additional time integral,s}*dtJ0(t).
This difference is not important though, in order to simpli
the comparison of the corresponding perturbative results
can always keep the timet finite ~exactly as it was done in
ro

f
in

te

ne

the preceding section! and perform the time integration onl
at the last stage of the calculation.

Let us consider the first order correction to the kerneJ
due to the interaction. This correction is again given by
sum of the four diagrams of Fig. 2. The current operatorsĵ a
are, however, not applied. Also the ‘‘photon propagator
are now different. Namely, instead of the functionR(t3
2t4 ,r32r4) one should substitute the functionaR(t3
2t4)x3x4 , while instead ofI (t32t4 ,r32r4) one should use
a I(t32t4)x3x4 @see Eqs.~E4!,~E5!#. In contrast to the case
of an electron propagating in a disordered metal~A16!–
~A19! the action in the exponent of Eq.~E1! does not contain
the factor 122n(p,r). Therefore the operator 122r, related
to the Fermi statistics, does not appear in the perturba
theory. The free particle states are labeled by its moment
therefore the indicesl j in the diagrams of Fig. 2 should b
understood as the momentum values.

For the sake of brevity we will omit the general result f
the first order correctiondJ(1) to the operatorJ which is
expressed in terms of the same functions~58! and ~61! with
jl j

→Ep . Rather we immediately go over to the part of th
kernelJ describing the evolution of the diagonal elements
the density matrix, which corresponds to the ‘‘diagonal’’ pa
of the conductivity~64!. This is sufficient for our illustration
purposes. For the probability of the transition from the st
with the momentumq to the state with the momentump after
the timet we find

dJpp,qq
(1) ~ t !5^pux1 f

^qux2i
dJ(1)~ t,x1 f ,x1i ,x2 f ,x2i !up&x2 f

uq&x1i

522hdpq(
k

uxpku2E dv

2p
v

3S coth
v

2T
11D12cos@~Eq2Ek2v!t#

~Eq2Ek2v!2

12huxpqu2E dv

2p
vS coth

v

2T
21D

3
12cos@~Ep2Eq2v!t#

~Ep2Eq2v!2
, ~E13!

wherexpk5^puxuk& is the matrix element of the operatorx
andEp5p2/2m>0 is the energy of the free particle with th
momentump.

Let us first evaluate the above expression within the st
dard golden rule approximation. As it was already discus
in Sec. IV B, this approximation is equivalent to the replac
ment
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12cos@~Ep2Eq2v!t#

~Ep2Eq2v!2
→ptd~Ep2Eq2v!. ~E14!

Performing this replacement in Eq.~E13! we get

dJppqq
(1) ~ t !52htdpq(

k
uxpku2~Eq2Ek!S coth

Eq2Ek

2T
11D

1htuxpqu2~Ep2Eq!S coth
Ep2Eq

2T
21D . ~E15!

The first term in this expression, as well as in the express
~E13!, originates from the self-energy diagrams~a! and~b! in
Fig. 2. This term describes the out-scattering rate. It is eq
to the sum over all possible transitions from the initial statq
to all finite statesk. It is mostly important as far as dephasin
is concerned. The second term in Eqs.~E13!,~E15! just gives
the transition rate from a given initial stateq to a given final
statep. It comes from the vertex diagrams~c! and~d! in Fig.
2.

Now let us investigate the time evolution of the dens
matrix provided the initial density matrix is just the equilib
rium one for a free particle. In the momentum representa
it has the form

rpq
eq5dpq

1

L
A2p

mT
expS 2

p2

2mTD ,

where L is the length of the system. Substituting all the
results into Eq.~1! we obtain the following expression fo
the occupation probability of the statep within the golden
rule approximation

drpp
(1)~ t !52ht

1

L
A2p

mT(k
uxpku2~Ep2Ek!

3S coth
Ep2Ek

2T
11DexpS 2

Ep

T D
1ht

1

L
A2p

mT(q
uxpqu2~Ep2Eq!

3S coth
Ep2Eq

2T
21DexpS 2

Eq

T D . ~E16!

We observe that the combination

S coth
Ep2Ek

2T
11DexpS 2

Ep

T D ~E17!

appeared in the result~E16!. It is very similar to the combi-
nation ~62! in the case of a disordered metal. Keeping
mind the conditionEp.0, one can easily see that this com
bination again yields zero result atT50, i.e., within the
golden rule approximation relaxation processes are forbid
in the zero-temperature limit.

Now let us perturbatively find the occupation probabiliti
without making the golden rule approximation. We get
n

al

n

n

drpp
(1)~ t !522h

1

L
A2p

mT
expS 2

Ep

T D(
k

uxpku2E dv

2p
v

3S coth
v

2T
11D12cos@~Ep2Ek2v!t#

~Ep2Ek2v!2

12h
1

L
A2p

mT(q
uxpqu2E dv

2p
v

3S coth
v

2T
21D12cos@~Ep2Eq2v!t#

~Ep2Eq2v!2

3expS 2
Eq

T D . ~E18!

As was already done for the case of a disordered metal~Sec.
IV B !, let us consider the first part of this expression det
mined by the self-energy diagrams of Figs. 2~a!,2~b! In the
zero-temperature limit we find

E dv

2p
vFcoth

v

2T
11G

T→0

12cos†~Epk2v!t‡

~Epk2v!2

5
uEpkut

2
1

Epkt

2
12E

uEpku

vc dv

2p S 1

v
2

uEpku

v2 D
3~12cosvt1!, ~E19!

where we definedEpk5Ep2Ek . We observe a close simi
larity between the results~E19! and ~67!. In both cases the
first two terms in the right hand side are the same as in
golden rule approximation, they cancel each other atT50.
In both cases the third term survives even atT50, it is due to
quantum noise and originates only from the coth-part of
effective action. Moreover, we observe that the last terms
Eqs. ~67! and ~E19! are exactly the same, one should onl
identify the energy differencej31 in Eq. ~67! with Epk in Eq.
~E19!. Thus we conclude that atT50 the only difference
between the two problems considered here lies in the ma
elements of the interaction. Everything else is the same a
hence, we explicitly demonstrated that the Pauli princi
cannot cause any important distinction between the probl
in question atT50. The above difference in the matrix ele
ments results only in some quantitatively different featur
such as, e.g., different functional dependences of the den
matrix on time, however, the decay of the off-diagonal e
ments ofr ~and thus decoherence! is present in both models
at any temperature includingT50. In both cases at low tem
peratures this decay cannot be correctly described within
golden rule approximation. This approximation fails com
pletely atT→0. Dropping the cos term while evaluating th
result~E18! ~this approximation is equivalent to one we di
cussed in the end of Sec. IV B! is clearly insufficient at low
temperatures~see below!.

Finally, a close similarity between the perturbative resu
obtained here and in Sec. IV B demonstrates again that a
aging over disorder is absolutely irrelevant for the issue
cancelation~or non-cancelation! of the diagrams in the firs
order of the perturbation theory. In the CL model no su
average exists at all, however, atT50 diagrams cancel or do
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not cancel depending on whether to employ or not to emp
the golden rule approximation. This property is complet
general, and it does not depend on the form of the ma
elements, Fermi or Bose statistics, averaging over diso
and other details of the model.

2. Exponent and pre-exponent

As the structure of the first order result in the perturbat
theory is clear from the above consideration one can try
proceed further and calculate higher order terms. Then
can try to sum up diagrams in all orders in order to reco
the nonperturbative result. This program appears to be q
involved from a technical point of view and, to the best
our knowledge, was not yet carried out. Fortunately in
case of the Caldeira-Leggett model one does not need to
up diagrams, the exact result can be obtained much ea
just by performing several Gaussian integrations. In this w
one arrives at Eqs.~E6!–~E10! which are, of course, equiva
lent to the result ofexactsummation ofall diagrams of the
perturbation theory. The result~E6! can be expressed in th
following form:

J~ t !5
h

2p~12e2gt!
exp@ iR̃~ t !2 Ĩ ~ t !#, ~E20!

whereg5h/m, the functionR̃5R̃(t,xi ,xf) does not depend
on temperature, while the functionĨ (t) is proportional to the
frequency integral of the combinationvcoth(v/2T) @see Eqs.
~E6!–~E10!# rather than the combinationv@coth(v/2T)11#
@see Eqs.~E16!–~E18!#.

By looking at the above formula@or at Eq. ~E6!# one
immediately observes that this result cannot be sim
guessed from the first order perturbation theory, e.g., jus
exponentiating the first order results or by a similar pro
dure. As it was demonstrated above, the combination ‘‘c
1 1’’ ~E17! appears in the perturbation theory, while t
time dependence of a real partĨ (t) of the exponent~E20! @or
Eq. ~E6!# is governed only by ‘‘coth’’ and not by ‘‘coth1
1.’’ This implies that in the course of the exact summation
all the diagrams terms combine in a nontrivial way, so t
‘‘coth’’ gets split from ‘‘1,’’ this combination does not ap
pear in higher orders in the same form as in the first or
result. From the exact result~E6!–~E10! one can immedi-
ately draw a conclusion onhow ‘‘coth’’ gets split from ‘‘1’’:
all terms of the diagrammatic expansion containing ‘‘cot
gather in the exponent. Moreover,only such terms contribute
to the real part of the exponentĨ ~E20!. In other words, since
‘‘coth’’ is contained only in the imaginary part of the effec
tive action SI ~E3!, we conclude that the real part of th
exponentĨ ~E20! @or Eq. ~E6!# is determined only bySI .
This result could, of course, be expected in advance bec
it is the imaginary part of the actionSI which should be
responsible for the decay of the kernelJ ~E6! in time.

The real part of the actionSR ~E2!, in contrast, does no
~and cannot! contribute to the real part of the exponentĨ .
Now we will demonstrate thatSR ~and onlySR) contributes
to the pre-exponential function in Eqs.~E20!,~E6!. The pre-
exponent is determined by the path integral~E1! with zero
boundary conditions,x1i5x2i5x1 f5x2 f50. From the struc-
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ture of the action~E1!–~E3! one easily observes that its re
part can be represented in the form

iS0@x1#2 iS0@x2#2 iSR@x1 ,x2#5 ix2L̂x1, ~E21!

while its imaginary part has a different structure:

SI@x1 ,x2#5x2Âx2, ~E22!

where L̂ and Â are two different operators. The Gaussi
integrals can be easily performed and we get

E Dx2E Dx1eix2L̂x12x2Âx2

5E Dx2d~ L̂Tx2!e2x2Âx2
5

1

detL̂
5

h

2p~12e2gt!
.

~E23!

This relation proves that the pre-exponent in~E20! @or ~E6!#
is determined solely by the real part of the actionSR and
does not depend on its imaginary partSI at all.

Thus the above analysis allows for a clear distinction
tween the two parts of the effective action:SI determines the
real part of the exponentĨ (t) and governs the decay of th
off-diagonal elements of the density matrix~hence, playing a
crucial role for dephasing!, while SR determines the time
dependence of the pre-exponent which is only relevant
the kinematics of classical trajectories and has nothing to
with the issue of decoherence. In the first order perturba
theory the terms from the exponent and the pre-exponent
and partially cancel each other, thus making any clear
tinction between them impossible. This situation is fu
analogous to one encountered in the preceding sections
the problem of electron dephasing in disordered conduct

Depending on the boundary conditionsSR can also con-
tribute to the imaginary part of the exponentR̃ @see Eq.
~E6!#. However, thisimaginarypart does not determine th
decay of the off-diagonal elements and in no way can
cancel~or contribute to! the real part of the exponentĨ (t)
determined exclusively bySI . On top of that, for the bound
ary conditions corresponding to the ‘‘Cooperon’’ this imag
nary part of the exponent vanishR̃[0. This particular case
will be considered below for illustration.

3. ‘‘Cooperon’’ in the Caldeira-Leggett model

Let us define the ‘‘Cooperon’’ configuration as

C~ t,x!5J~ t,x,0;0,x!. ~E24!

This means the path integral~E1! is evaluated on the trajec
tories with the time reversed boundary conditionsx1i5x2 f

50,x1f5x2i5x or, equivalently,xi
15xf

15x/2,xi
252xf

25
2x. Substituting these boundary conditions into Eq.~E6!
one easily finds

C~ t,x!5
h

2p~12e2gt!
exp@2h$g1~ t !

14g2~ t !22g3~ t !%x2#. ~E25!
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This is the exact result. In the long time limitgt@1 we
obtain

C.
h

2p
e2hg1(t)x2

, g1~ t !.Tt1 ln
12e22pTt

2p~T/vc!
.

~E26!

This expression decays in time, and the analog of the dep
ing time ~which we will also denote astw here! can be de-
fined from the equation

hg1~tw!x2'1. ~E27!

We observe that this time is determined only by the expon
of Eq. ~E25!.

Let us now expand separately the combination
g-functions in the exponent and the pre-exponent in the e
result ~E25! to the first order in the interaction parameterh
each. We get

C~ t,x!5S m

2pt
1

h

4p Dexp@2hgpert~ t !x2#, ~E28!

where

gpert~ t !5
1

2E0

t

dsE ds8S 114
ss8

t2
22

s1s8

t D G~s2s8!

.H ~ ln~vct !1g21!/p, Tt!1,

Tt/3, Tt@1.
~E29!

The functiongpert is just the imaginary part of the actio
SI(t) ~E3! evaluated on the two time reversed paths:x1(s)
5xs/t and x2(s8)5x(t2s8)/t. These are the saddle poin
paths for the noninteracting part of the actionS0 . Comparing
the functionsgpert ~E29! and g1(t) ~E26! we observe that
with a sufficient accuracy one hasgpert(t).g1(t) for Tt!1
andgpert(t).g1(t)/3 for Tt@1. Hence, if the dephasing tim
tw is determined from the perturbative result~E28! as

hgpert~tw!x2'1, ~E30!

the result will differ from the exact one only by a numeric
factor of order one which anyway can be absorbed in
definition of tw . As before@see Eq.~E27!# the dephasing
time extracted from this equation will depend only on t
exponent~i.e., onSI), while the pre-exponent in Eq.~E28!
~defined bySR) must be ignored again.

Now let us expand the whole expression~E25! in powers
of h. The first order correction for the Cooperon has t
form

dC1~ t,x!5C0~ t,x!S ht

2m
2hgpert~ t !x2D , ~E31!

whereC0(t)5m/2pt is the Cooperon in the absence of t
interaction defined, e.g., by Eq.~E12!. Equation ~E31! is
nothing but the short time expansion of the exact result
cause the interaction parameterh always enters into this re
sult being multiplied byt. This expansion is fully equivalen
to the perturbation theory in the interaction in the weak
calization theory.

As it was already discussed in Sec. II, it is impossible
unambiguously define the dephasing timetw within the
s-

nt

f
ct

e

e

-

-

frames of the perturbation theory only, and an additio
assumption about the decay of the Cooperon in time sho
necessarily be made. For instance, AAG assumed that
Cooperon decay is purely exponential:C(t)5C0(t)e2t/tw

@see, e.g., Eqs.~2.45! and~3.2! of Ref. 13#. Assuming such a
form here and combining it with the perturbative res
~E31!, we find

1

tw
pert

5hx2
gpert~ t !

t
2

h

2p
. ~E32!

Comparing this equation with Eq.~E27! which follows from
the exact result~E25! we observe the presence of an ad
tional term2h/2p in Eq. ~E32!. This term originates from
the expansion of the pre-exponent and has nothing to do
dephasing. However, it is not small and can strongly infl
ence the result fortw , provided the latter is determined from
the perturbative expansion~E31!. Depending on the choice
of x one can obtain positive, almost zero and even nega
values of the dephasing time~see Sec. II!, which is an obvi-
ous nonsense. This simple example demonstrates again
it is impossible to make any conclusion about the long ti
behavior of the system~and, hence, about the dephasing tim
tw) from the first order expansion in the interaction, sin
the latter is valid in the short time limit only.

4. Other approximations

Let us check some other approximations which are so
times employed in the literature. A deficiency of the gold
rule approximation applied within the perturbation theo
has already been illustrated above. In certain situations
proceeds beyond the perturbation theory, correctly
‘‘coth’’ in the exponent, and only then apply the golden ru
approximation. Also in this case the true low-temperatu
behavior will be missing completely. In order to observe th
property let us evaluate the functiong1(t) ~E7! within the
golden rule approximation~E14!. Extending the integral ove
s2s8 in ~E7! to infinite limits and performing this integra
tion first we obtain the delta-functiond(v). This is just the
golden rule approximation, see Eq.~E14!. After that the re-
maining integrals trivially yield

g1~ t !.Tt,

i.e., only the first term in Eq.~E7! @or ~E26!# is reproduced,
while the second term is missing. After that one could inc
rectly conclude that no quantum decoherence occurs in
CL model atT50. An obvious mistake here is to extend th
integral overs2s8 to infinite limits. An exact calculation of
the function g1(t) allows us to recover both the zero
frequency contributionTt as well as an additional term@see
Eq. ~E26!# which originates from frequenciesv.T and does
not vanish atT50.

The above approximation was applied, e.g., in a rec
paper by Levinson.33 In this paper a transparent formulatio
of the problem of quantum decoherence in quantum dot
derived. Within this formulation Levinson arrived at the r
sult for the equilibrium dephasing rate which contains on
‘‘coth,’’ while ‘‘tanh’’ or ‘‘1’’ do not appear in the exponent
at all @see Eqs.~4!, ~5!, ~7!, and~14! of Ref. 33#. It is inter-
esting that a nonzero dephasing rate atT50 is contained in
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these formulas before the golden rule approximation is ma
In order to see that it is sufficient to combine Eqs.~5!, ~7!,
and~14! of Ref. 33, substitute them into Eq.~4! of the same
paper and perform the time integration. A finite result for t
decoherence rate will follow immediately at all temperatu
including T50. High frequencies will contribute to this re
sult which will actually depend on a physical high frequen
cutoff. However, if one applies the golden rule approxim
tion, only the zero frequency contribution will be recover
@Eq. ~6! of Ref. 33# and the whole decoherence effect at lo
T will be missing. At lowT the decay of correlations in th
problem33 is not exponential in time. But also in this situa
tion the dephasing timetw can be easily defined. This tim
just sets a scale on which the quantum coherence is s
ciently suppressed and the integral over time@Eq. ~4! of Ref.
33# becomes convergent.

For nonzero~but possibly relatively small! values ofT
one can try to argue that at long times it is sufficient
consider the limitTt@1 and expand the functiong1(t) ~E7!
@or Eq. ~E26!# in powers of 1/Tt. Then one gets

g1~ t !'Tt1 ln~vc /T!, ~E33!

while all higher order terms of this expansion will be equ
to zero becauseg1(t) is a nonanalytic function of 1/Tt. From
Eq. ~E33! one could conclude that the first term in this equ
tion describes dephasing due to thermal fluctuations w
the second term is the ‘‘interaction correction’’ which do
not depend on time and has nothing to do with dephas
Since the first term vanishes in the limitT→0, one could
again arrive at the conclusion that no decoherence is pre
in the CL model atT→0. As it is clear from the exact solu
tion ~E6!–~E10!, this conclusion is not correct.

The expansion in 1/Tt ~or in 1/TtH) is just the expansion
performed in Ref. 13 within the first order perturbatio
theory in the interaction~see also Sec. IV D and Appendi
C!. As it was already discussed in Sec. IV B, this expans
is equivalent to dropping the oscillating cos term, e.g., in
expression~70! @or, equivalently, in the expression~E18! for
the CL model#. Obviously, this approximation has nothing
do with averaging over disorder. The above example a
invalidates any attempt to approach the correct low temp
et
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ture behavior by means of a high-temperature expansion.
instance, the terms;exp(22pTt) cannot be recovered in an
order in 1/Tt.

Finally, let us briefly discuss the role of the low frequen
modes of the effective environment. One could conject
that, since high frequencies up tovc contribute to the
dephasing time, the result will not change even if one int
duces the low frequency cutoffvc0 . In order to test this
conjecture it is again sufficient to consider the behavior
the functiong1(t). Introducing the low frequency cutoffvc0
in the integral~E7!, at T50 one readily finds

g1~ t !. ln~vc /vc0!, vc0t@1, ~E34!

while in the opposite limitvc0t&1 the result is the same a
without the low frequency cutoff, i.e.,g1(t). ln vct. Thus
the cutoff atv;vc0 leads to a different long time behavio
of g1(t). It increases at short times but then saturates a
value ; ln(vc /vc0). In this case no time decay of the of
diagonal elements of the density matrix occurs at long tim
and therefore the coherence is not fully suppressed. H
ever, it is not the long time limit which is interesting in th
dephasing problem, but rather the system behavior at
;tw . If vc0tw!1 @tw was defined, e.g., in~E27!#, by the
time the behavior~E34! is reached the coherence will alread
be very strongly suppressed. Thus from a practical poin
view there is no substantial difference between the ca
vc050 and vc0tw!1. In the opposite limitvc0tw@1 the
functiong1(t) saturates earlier than quantum coherence g
suppressed. In this case cutting out the low frequency os
lators changes the result significantly.

This simple consideration clarifies the role of the low fr
quency modes in the dephasing problem. At lowT these
modes do not really affect the expression fortw which de-
pends on the high frequency cutoffvc . However, if the low
frequency cutoff is chosen such thatvc0tw@1, the dephas-
ing time tw simply looses its meaning becauseg1(t) satu-
rates already at much shorter timest;1/vc0!tw . The same
conclusion applies to disordered metals in which case
function f d(t) ~23! should be considered instead ofg1(t).
For an extended discussion of various approximations a
lyzed for the exactly solvable CL model we refer the read
to the Ref. 34.
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