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We establish an explicit correspondence between perturbative and nonperturbative results in the problem of
guantum decoherence in disordered conductors. We demonstrate that the dephasingctimeot be unam-
biguously extracted from a perturbative calculation. We show that the effect of the electron-electron interaction
on the magnetoconductance is described by the funéjgn exd —f4(t)]. The dephasing time is determined
by f4(t), i.e., in order to evaluate, it is sufficient to perform a nonperturbative analysis with an exponential
accuracy. We demonstrate that the effect of interaction on the pre-expg(@éhis important if one calculates
the interaction-dependent part of the weak localization correction for strong magnetic fields. The zero tem-
perature dephasing time drops out of this correction in the first order due to the exact cancelation of the linear
in time T-independent contributions from the exponent and the pre-exponent. Nonlinear if-thdependent
contributions do not cancel out in the first order of the perturbation theory and yield an additional contribution
to dephasing at all temperatures includifig O.

[. INTRODUCTION neglectedl electrons propagate in an effective inhomoge-
neous static potential which should be determined self-
Recent experiments by Mohanty, Jariwala, and Webbconsistently in the presence of Coulomb interaction. If so,
strongly indicate an intrinsic nature of a low-temperatureelectron scattering on such a static potential is not any dif-
saturation of the electron decoherence timen disordered ferent than that on static impurities and, hence, cannot lead
conductors:® It was argued in Refs. 1,4 that zero point fluc- to dephasing. Our resuttd suggest a different picture, ac-
tuations of electrons could be responsible for a finite dephassording to whichdynamicaleffects are important at all tem-
ing at low temperatures. These as well as various other reperatures down t@ =0 and the high frequency “quantum”
cent experimental results have attracted a lot of attention tmmodes withw>T do contribute to dephasing.
the fundamental role of interactions in disordered meso- Two main arguments supporting the fisstatic” ) pic-
scopic systems. ture are usually discusséd!***>~®The first argument is
A theory of the above phenomerfonas proposed in our quite general and is not necessarily related to electrons in a
previous paper3® We demonstrated that electron-electrondisordered metal. One can ard%&*! that a particle with
interactions in disordered systems can indeed be responsibdmergy~T cannot excite harmonic oscillators with frequen-
for a nonzero electron decoherence rate dowii#0. Our  ciesw>T and, hence the latter will at most lead to renor-
result$® are in good agreement with experimental findihgs. malization effects. It is easy to observe, however, that this
We also arguedthat this interaction-induced decoherenceargument explicitly contradicts to the exact results obtained,
has the same physical nature as in the case of a quantueng., within the Caldeira-Leggett modelhere, even aff
particle interacting with a bath of harmonic oscillatdrs. =0, the off-diagonal elements of the particle density matrix
The low-temperature saturation of the decoherence ratdecay at a finite length set by interaction. This effect is due
1/7, on a level predicted in Refs. 5,6 has serious theoreticao all high frequency modes of the effective environment,
consequences. Therefore it is not surprising that these prée., the picture is by no means ‘“static(see also Refs.
dictions have initiated intensive theoretical debdbes®In  7,12,14 for further discussion
contrast to Refs. 1,4-7, various autH8re-131%1718&gyed One can also modify the above argument and conjet&ure
that interaction-induced electron dephasingTat0 is not that the system of electrons can behave differently from a
possible. Vavilov and Ambegaok8r(VA) argued that the bosonic on because of the Pauli principle which restricts
quantum correction to the classical redlshould be small, scattering space for electrons at Idwand, hence, their abil-
at least in the limitT 7,> 1. ity to exchange energy. Again, this argument contradicts to
It should be emphasized that the above discussion godke well known results obtained fdermionic systems. For
far beyond the problem of electron dephasing only. This disexample, it is well establishéd?° that tunneling electrons
cussion is important for a general understanding of the rolexchange energy with the effective environméotmed by
of the electron-electron interactions in mesoscopic systems ather electrons in the leadgven atT=0. This exchange
low temperatures. According, e.g., to Aleiner, Altshuler, andresults in the temperature independent broadening of the ef-
Gershenzol? (AAG) this role is merely to provide a fective energy distributiorP(E) for tunneling electron$®
(temperature-dependgmenormalization of a disordered po- This so-called ‘P(E) theory” was verified in many
tential of impurities. Within this picture, at sufficiently o experiment$! A close formal and physical similarity be-
(when the effect of thermal fluctuations is small and can beween the theoryy and our analysfsis discussed in Ref. 22.
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The second argument against the possibility of thewe discuss the relation between perturbative and nonpertur-
interaction-induced saturation of, is purely formal. It is  bative calculations of the magnetoconductance and the deco-
based on a perturbative calculation by AAGThese authors  herence timer,, in disordered conductors.
claimed!3that the results of this calculation explicitly con-
tradict to our resulf® and, hence, the latter are incorrect. A. General remarks
However, a convincing comparison between the two calcu- . . . . :
lations was not presented. Furthermore, in a previous Th? time evolution of_the dens!ty matrix of such a particle
papet?14we pointed out that the origin of the above contro- 'S defined by the following equation:
versy lies deeper, and the AAG’s suggestion that our calcu-
lation is “profoundly incorrect” cannot be taken seriously. p(t,X1 aXZf):J’ X dX2i I(t, X1, Xap  X1i 4 X21) P(OX15,X21),

We argued that both approachds agreeon a perturbative (1)
level and the key difference between them is that our

calculatioff is nonperturbative while the analysis by AAG Wherex is the particle coordinate. The kernkdepends on
does not go beyond the first order in the interaction and, ofhe Feynman-Vernon influence functioffel® and contains
top of that’ involves additional approximations not Containedhe full information about the effect of interaction. This ker-
in our papef For instance, for the exactly solvable Caldeira-Nel can formally be expanded in powers of the interaction
Leggett model we demonstraféd*that within the perturba- strength

tive approach involving analogous approximations one ar- %

rives at incorrect results and misses the effect of quantum J)=> I™t). )
decoherence at low temperatures. n=0

Motivated by this discussion as well as by the fundamen- R - 0
tal importance of the problem we have undertaken an addiThe noninteracting kgrn.el_J.( ; does_not ch_ange the state
tional analysis of the effect of interaction-induced decoher—Of the systemprovided its initial state is an eigenstate of the

ence in disordered metals. This analysis will help us tc)nomnteractmg Hamiltonigrand in this sense it is equivalent

demonstrate the actual relation between our appfoantd to the_ unity operator. All other terms of this expansion grow
that of AAG 23 Since it is hardly possible to settle a calcula- /! IMe the faster the larger the numtyeis. As a result in

tional dispute without presenting many details, in this pape oennetri?l\ 22 tniiiéert?](eg) Z?tﬁ?&?iéw’iﬁgspt ifr?rtr?:fifrzct:aergté}[lion
we made an effort to provide the reader with the details o g ' ' Pe Yy
our calculation. which amounts to keeping only several first terms of the

The structure of the paper is as follows. In Sec. Il we will expansion(2)] is equivalent to the short time expansion of

demonstrate a principal insufficiency of the perturbation:Egofxaccén?]%r:ségrrrgé:”xae-gélrjii;nﬂ?:Tg;al ttirrlrlsa %eerrt]l;(/k;g?%?
theory in the interaction for the problem of quantum dephas-, =" y . y g . o
: . . the interacting system no matter how weak the interaction is.
ing. We will argue thatr, cannot be unambiguously ex-

tracted even from a correct perturbative calculation. In Secﬁorl](;;e;;;ﬁrgn:?;;geotr?éngan QXEﬁésg)t#gdigsgme a;g?'
Il we extend our nonperturbative calculatidiVe will carry P P P ity

out a complete analysis of the problem with the exponentia}he particlex to remain in its initial state as

accuracy. We will also present semiquantitative arguments t ty
which, however, will be sufficient in order to understand the Wn(t)zl—J dtlJ dt;K(ty,t5), 3
effect of interaction on the pre-exponent. In Sec. IV we per- 0 0
form a detailed perturbative calculation and demonstrate thathere the kerneK(t;,t,) can be derived from the influence
at low T some previous perturbative results are based ofunctionaf® and will not be specified here. In equilibrium
several insufficient approximations, the main of which is theone usually ha& (t,,t,)=K(t; —t,). Equation(3) applies at
golden rule approximation. We also establish an explicit reshort times, when the second term is still much smaller than
lation between nonperturbative@nd perturbativ€ calcula-  unity. But even in this limit the correct information can be
tions. In Sec. V we briefly summarize our main observationsmissed by insufficient approximations. For instance, the fre-
For the sake of convenience we will briefly announce thequently used approximation amounts to retaining only the
main steps of our calculation in the beginning of each secw=0 term in the kernelK = [(d7/27)K(7)expiwr).
tion. Some further technical details are presented in Appemwithin this so-called golden rule approximation one finds
dixes A, B, and C. In Appendix D we discuss the restits’
A close formal similarity between the problem in question Wii()=1-Tt, I'=mK,o. (4)
and the exactly solvable Caldeira-Leggett m8défis dis-  ryrthermore, assuming that the effect of higher order terms
cussed in Appendix E. in the expansiori2) can be accounted for by exponentiating
the last term in Eq(4) one immediately arrives atV;;(t)
=exp(-Tt).
Obviously the above set of approximations is justified
In this section we will demonstrate a principal insuffi- only in special cases. For instance, the golden rule approxi-
ciency of a perturbativéin the interaction approach to the mation can work only provided the kernié( 7) decays rap-
problem of quantum dephasing. In Sec. Il A we will presentidly as compared to other relevant time scales in the prob-
some general remarks concerning the role of the perturbatiolem. This could be the case, e.g., at sufficiently high
theory for the problem of a quantum mechanical particle intemperatures. In general, and especially in the low-
teracting with other quantum degrees of freedom. In Sec. Il Bemperature limit, the golden rule approximati@h fails. It

II. INSUFFICIENCY OF THE PERTURBATION THEORY
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is particularly dangerous to combine thlgorttime perturba- extract information about the interaction-induced decoher-
tive expansion with théong time golden rule approximation. ence directly from the magnetoconductance measurements.
For example, ifK -, happens to be zero, it would follow The pre-exponential functioA4(t) without interaction is
from Eq. (4) that the particle will stay in its initial state A{(t)=1/(47Dt)¥2 In the presence of interaction the
forever even in the presence of interaction. Obviously thisunction Ay(t) will, of course, depend on the interaction as
cannot be the case. The exponential decay of the probabilityell. As is demonstrated below, this dependence can be ig-
Wij; in time is also an artifact of the golden rule approxima-nored while calculating the decoherence timg which
tion. In general the time dynamics of an interacting system ishould only be extracted from the functidg(t) in the ex-
much more complicated, and it should be determined fronponent of Eq(6). This is the procedure of Ref. 6. However,
Eq. (2). the dependence of the pre-expon@g(t) on the interaction

In Eq. (1) is usually implied that the initial density matrix s important if one wants to recover the subleadinginf 7,
p(0) does not coincide with the exact reduced equilibriumterm in the expression fofoy(H) in the limit of a strong
density matrix for thenteracting system. The standard ap- magnetic fieldry<7,. In this case only short timetss
proach is simply to factorize the initial density matffié®  contribute to the integra) and it is sufficient to perform a
i.e., to represent it as a product of the particle density matrixhort time expansion of both expfy(t)] and Ay(t). This
p(0X1i,X;) and the equilibrium density matrix of all other expansion mixes terms important and unimportant for
degrees of freedom. In this case, even if initially both thedephasing and in general makesnipossibleto extract cor-
particle and the environment were in their noninteractingrect information about the dephasing timg from the per-
ground states af =0, the relaxation process occurs becauseurbation theory even in the limit of strong magnetic fields
the factorized density matrix does not describe the grounqLH<T¢_
state of the interacting system. One could question the rel- |n order to illustrate this conclusion let us restrict our-

evance of such initial conditions, e.g., to the problem of elecselves to a quasi-one-dimensioli&D) case. The expression
tron transport in disordered conductors in the presence qi) may then be rewritten as
interaction. Indeed, in this case the density matrix is never

factorized and no time evolution can be expected for the ez\/ﬁ +edt
equilibrium density matrix of the whole interacting system. do1(H)=— 35 —e‘t’THF(t/T¢), )
Hence, afT=0 in equilibrium no relaxation should occur. ™ o

In order to clarify the situation let us recall the formal ) ] )
expression for the conductivifigee Eq(A15)] where the functionF(t/7,) accounts for the interaction.

Note, that the functiorF can (and in general dog¢slepend

t
(f“f dt,fdrlieri‘](t_t,vdrlfverfvdrli,dI'Zi) not only on one but on several parametei®

=F(t/7m,t/15, ... t/7,). In this section we will assume
thatF depends on only one parametey. This is sufficient
X peri(r1i T2i), (5 for our purposes.

In the absence of interactidh=1 and the divergence in
the integral(7) is cut at times~ 7. In this case from Eq.
(7) we reproduce the well known result

whereper(ry;,r2) = (i —ra2i) po(rii ,r2i) andpg is the equi-
librium electron density matrix. We observe that the effec-
tive initial density matrixpes in this expression is strongly
perturbed at alll as compared t@, due to the factor r(; 5

—r5;). Therefore relaxation always takes place in our prob- 50(10): _ e—\/D_TH. (8)
lem. Since for a dissipative system relaxation times do not ™

depend on the initial conditions, one can safely assume the ) )

initial density matrix to be, for instance, factorized. Actually For larger, (i.e., forH—0) the result(8) diverges and the
the same assumption is used within the diagrammatic a@ffect of interaction should be taken into account. Provided
proach: a complete equivalence between @&d45) (factor-  in the long time limit the functior decays faster than N
ized density matrixand the diagrammatic expression for the the integral(7) converges even for 4/,=0 and we get
conductanct was demonstrated in Appendix A in the first

order in the interaction. 2

e
501=—a? D7, 9)

B. Magnetoconductance
where the prefactoa~1 which depends on the functidn
The precise definition of is of little practical interest since
this prefactor can always be removed by rescaling,af Of

o importance, however, is to describe the behavior of the func-
JT dtAgexd —t/my—T4(O], (6)  tion F(t/7,) att~7,. This allows us to determine the mag-

¢ nitude of the dephasing time, . Clearly, a nonperturbative
Te=I/vE is the elastic electron mean free time. The functionanalysis in the interaction is needed in order to determine the
f4(t) increases with time and describes the Cooperon decainction F at timest~ 7, simply because there exists no
due to interactior f4(t) equals to zero without interactibn  small parameter in the problem. For example, if one formally
The presence of the magnetic fiditl causes an additional decreases the interaction strength, the magnitude of the
decay on a time scale 7. By varying the magnetic field dephasing timer, would increase, but one would never
and thusry (which decreases with increasid)) one can  avoid the necessity to determine the functirat t~7,,.

The weak localization correction to the conductivity of a
disordered metal can be expressed in the following form

2e’D

v

Sog(H)=—
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Thus the problem of finding the decoherence time in disor- Let us consider several different functioRgt/ 7). Per-

dered conductors is nonperturbative for any interactiorhaps the most frequent choice of this function is based on the

strength. assumption about purely exponential decay of the phase cor-
Observing this problem AAG suggested to consider theelations, in which case one has

limit of strong magnetic fieldsy<r,, for which the inte-

gral (7) converges already at timés- 7, much shorter than

790'13 In this case the Wgak Ioc.allzatlo'n corrchon can beAs was already discussed above, this form of the fundion
calculated perturbatl_vely in the |_nteract|on or, equivalently,¢oiows directly from the golden rule approximation. Substi-
by means a short time expansion of the functlenThe tuting Eq. (10) into Eq. (7) in the limit of weak magnetic
recipe to evaluate the dephasing time from the perturbatiofg|qs 7457, one immediately arrives at the result for the
theory suggested by AAG can be summarized as follows. \yeak localization correction of the for) with 74 substi-

In the zero order in the interaction we haive=1 and the  tyted by (lky+1/7,)~ . In the limit of weak magnetic
magnitude of the weak localization correcti®) increases fields 4> 7, the result(9) with a=1 is recovered. In the
as+/ty with increasingry, . If, expanding the interaction, one opposite limitry<7, Eqs.(7) and(10) yield
recovers the term /7y, this term could just be added to Eq.

(8) and interpreted as an interaction-induced renormalization ) e? DTE(Z
effect of the bare parameters. The presence of such a term S0y = b0y =5 ———
would imply thatF is not equal to 1 anymore but acquires

some interaction correction. Nevertheless no time depenNherea‘g(lo) is defined in Eq(8). Another possible choice of
dence ofF and, hence, no dephasing occurs in this case anghe functionF can be

therefore the terms \/7, are not “dangerous.” If, however,

the first order conductance correction is found to increase F(t/7,)=exd —(t/7,)%2]. (12
with 7, fasterthan/r, and to have an opposite with respect , .

to 5% (8) (i.e., positive sign, this would already mean that 1€ reason for such a choice will become clear later. The
the functionF depends on timédecays with increasing) su_bstltutlon of Eq(12) into Eq.(7) agan yields the resu(®)

due to interaction and, hence, nonzero dephasing occur@’.‘”th_a:_211(1/3)_/3‘_/;21'0076’F_(X)_'S the Euler gamma
Then, if such “dephasing” terms are recovered within this function] in the limit 7>, , while in the opposite limit
perturbative procedure, one should look at a temperature dé+<T, from Egs.(7) and(12) one obtains

pendence of such terms. If these terms are present at a finite 5 3

T, but decrease and vanish as temperature approaches zero e“yDry ( T_H)
this would imply that interaction does not cause any dephas- 732 '
ing at T=0. If T-independent positive terms growing faster

than \/T—H are recovered one would be able to conclude thaComparing Eqs(11) and (13) we observe that for strong
nonzero dephasing occurs B0 already within the first magnetic fields the interaction corrections to the leading or-
order perturbation theory in the interaction. der term(8) are different depending on the choice of the

We are going to demonstrate that the above perturbativiunction F, even though for weak magnetic fields both
strategyin principle cannot be used to correctly obtain the choices(10) and (12) yield the same resulf9) with only
dephasing timer,, for any magnetic field even though the slightly different values of a numerical prefactar
correctiondoy can be evaluated perturbatively in the limit The magnetoresistance data are frequently fitted to the
th<T,. TO begin with, we note that the terms\7, can formula®
already easily cause trouble provided they givépasitive
contribution toso1(H) large as compared to the magnitude e’ Ai(T,lTy)
of the zero order tern{8). In fact, the presence of terms ooy (H)=— T‘”Ai’(r )
/7y just implies that their time dependence saturates al- e
ready at short times=< 7. If this saturated value turns out where Ai(x) is the Airy function. In the limitr> 7, this
to exceed the zero order term, this would only indicate theequation again reduces to Eq9) with the factor a
breakdown of the perturbation expansion in the interaction= — Aj(0)/Ai’ (0)=1.372. In the opposite limit,,< 7, one
and, hence, no definite conclusion from this expansion cafinds

F(t/7,)=exp(—t/7,). (10

27 1, (19

So1— 600= (13

Te

(14

be drawn.
An even much more important problem is that the form of ) e?\Dry [ 14\ %2
the functionF(t) in Eq. (7) cannot be recovered from the Soy=doy =—7——| | - (15
¢

perturbation theory at all. It is quite obvious that the first

order perturbative terms will depend only on the derivative\ye observe the equivalence between Eg8) and (15) up
F,(O) Although in the limit TH< T(,D the Value&a'l(H) can to a numerical prefactor of order 1.

be calculated perturbatively in the interaction, this would  Finally, let us choose the trial functidain the following

yield no information about the dephasing timg. Such in-  form:

formation can be extracted only if ossumesome particu-

lar form of the functionF(t/7,). But this form should be e~ 7o bt

found rather than assumed. This task can be accomplished F(t/r,)= —t)
\/r(p(l—e‘f’;%

16
only if one goes beyond the perturbation theory. (19
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0.0 — T T T T T T T the particular form of as long as its decay at long times is
sufficiently fast to provide an effective cutoff for the integral
(7) att~r,.

At the same time if one tries to extraef, from the per-
turbation theory in the interaction one immediately arrives at
ambiguous and contradictory results. Let us, for example,
consider the perturbative result of AAG

~0)|

So1— 85V T 72 (19

[see, e.g., Eq(4.8b of Ref. 13 and, following the above
paper, assume an exponential decay of correlatih@s In
this case the dephasing time, is obtained from a direct
comparison of Eq(11) [equivalent to Eq(4.3b of Ref. 13
or Eq.(3) of Ref. 11 with Eq. (19) [or Eq.(4.8b in Ref. 13

do/|dc(H

One obtains
" 1 " 1 " 1 " 1 " 1 "
-30 -20 -10 0 10 20 30 UrPC=T |y (20)
/Ty [see EQ.(4.9b of Ref. 13. The result(20) is essentially

_ _ based on thessumptionabout a purely exponential decay

FIG. 1. Magnetoconductance curves correspondln_g to dlfferenzlo)_ Note, however, thaa priori there is no reason to as-
cutoff proceduresta) purely exponential cutoff10); (b) Airy func- g me such a decagdust on the contrary, it will be demon-
tion of Eq. (14); (c) the cutoff functionF is given by Eq.(16) with yataq pelow that this isot the case for the problem in
b=4 (a=1.479) corresponding to “zero dephasing” in the first question) The cutoff functions(12),(16) (and many othebs
order perturbation theory(d) the cutoff function(16) with b=5 yield the same result9) as the fu,nctiorl(lo) and one can
(a=1.582) which yields “negative dephasing” in the first order hardly make a distinction between them from the maaneto-
perturbation theory. Here, is rescaled to absorb the factom Eq. ardly ) 9
©). conduc_tance me_asureme:(ﬂfsg. 1. .

For instance, if one sticks to the choitE?), one should
extractr,, by comparing Eqs(13) and(19). This comparison
yields 7, independent ofr, and 14, T3 The latter form
coincides with the well known result by Altshuler, Aronov,
and Khmelnitskit (AAK ) but is in an obvious disagreement

where b is a numerical coefficient of order 1. Combining
Egs.(7) and(16) we find

FF 14 T with Eq. (20). If, instead of Eq(12), one uses the trial func-

e? 1 b TH tion (16) and compares Eq€18) and (20), one finds 7,

do1(H)=~— ;\/D_%% 1 1 A7 «(a—b)/(T, ie., positive, zero and even negative
r §+ 5(1+T_: dephasing times, respectively, fiw<4, b=4 and b>4.

However, all these dramatic differences in the first order re-
sults have no effect both on the form of the magnetoconduc-
tancedoy(H) (Fig. 1) and on the value, extracted from it.
Thus, whatever result is obtained in the first order pertur-
bation theory in the interaction, it is yet insufficient to draw
any definite conclusion about the dephasing time The
problem is essentially nonperturbative and should be treated

as such. The corresponding analysis was developed in our
while in the limit 7, r,, from Egs.(7),(16) one again re- papef and will be extended further in the next section.
covers Eq(9) with a slightly modified numerical prefactar

In the limit 7y <7, one can expand this equation in powers
of y/7, and get

51— 500~ 2P END T 7 (18)
1 = T A T A _
1 4 2w Te

(which now also depends on the valop Absorbinga by a . WEAK LOCALIZATION CORRECTION:

proper redefinition ofr, one can plot the resulf7) for the NONPERTURBATIVE RESULTS

trial functions(10),(16) (for different values ofb) and Eq.

(14) depending on the magnetic figldr 7). These plots are In order to provide a complete description of the electron-

presented in Fig. 1. We observe that all four plotted func-electron interaction effect on the weak localization correction
tions are very close to each otHex.g., the maximum devia- (6) it is in general necessary to calculate both the function
tion between Eq(14) and So;(H) obtained from Eq(16)  f4(t) in the exponent of Eq(6) and the pre-exponential
with b=4 does not exceed 0.01f one would fit the experi- function A4(t). An important observation is, however, that
mental data for the magnetoconductance with any of thesmformation about the effect of interaction dky(t) is not
four functions one(i) would not be able to distinguish be- needed to correctly evaluate the dephasing tirpe It suf-
tween them within typical error bars ari) would obtain fices to find only the functioriy(t) which describes the de-
the samevalue 7, for all these functiongup to a prefactor cay of correlations in time and provides an effective cutoff
a~1 absorbed irr, anyway. In other words, the results for for the integral(6) att~7,. The role of the pre-exponent is
7, extracted from fitting the experimental data to severaimerely to establish an exact numerical prefactor. Sinces

¢
different functionsF(t/7,) will be practically insensitive to  defined up to a numerical prefactor of order one anyway, it is
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clear that only the functioriy(t)—and notAy4(t)—is really  within the saddle point approximation on pairs of time re-
important. versed paths and to averaging over diffusive trajectories.
In Sec. Il A we extend our previous analysand evalu- HereS, andS), represent the electron action on the two parts
ate of the functionf 4(t) keeping all the subleading terms. of the Keldysh contour, whiléSg+S; accounts for the in-
This procedure is important in at least two aspeéisit  teraction. The effective actia21) was derived in our Ref. 6,
allows to unambiguously settle the issue of unphysical diverfor the sake of convenience we reproduce the explicit expres-
gences which was argued by VAto be a problem in our sions in Appendix AlEgs. (A16)-(A19)] together with the
previous calculatiohand (ii) it is necessary to establish a expression for the conductance of a disordered metal in
direct relation between our nonperturbative approach and thi€ms of the kernel of the evolution operatband the elec-

perturbation theory in the interaction. In Sec. I1B we will {fon density matriXA15). .
perform a semiquantitative analysis of the effect of interac- | ne saddle point approximation procedure was described
tions on the pre-exponential functigxy(t). In Sec. 11l C we in details in Ref. 6. One can demonstrate that the contribu-

will demonstrate that the short time perturbative expansioﬁ'o.n of t_he real parGy qf the action(A18) vanishes on any :
of both the exponent and the pre-exponent at Tonot only pair of time reversed diffusive paths. By no means does this

L . : cancelation occur by chance, rather it is a generic property of
can_(Sec. ne bytdqeslead to missing an important infor- a wide class of influence functionals describing dissipative
mation aboutr,, in disordered conductors.

environments. For example, similar cancelation is observed
in the Caldeira-Leggett mod&lthe relation to which will be

A. Exponent discussed in Appendix E. Also we would like to point out

The functionf 4(t) can be evaluated by means of the paththat for any pair of path§g contributes only to theeal part

integral formalisnf. This procedure amounts to calculating of the effective action and, hence, can never cancéhagi-
the path integral for the kernel of the evolution operator ~ nary contribution from the terng, (A19). Anyway, the func-
tion f4(t) in the exponent is determined solely by the imagi-
nary part of the actiorS, (A19) and it is given by the

J~fDrpoexp(iSo—iS()—iSR—S,) (21) following expressiorf:

t t
fq(t)= ezfodtlfodtzU [ty —to,r(ty) —r(tp) ] —I1[ty+ta—t,r(ty) —r(ty) Dt » (22

where the function is defined in Eq(A14). In equilibrium it  average over the diffusive trajectories with the aid of a stan-
is expressed in terms of an imaginary part of the inversalard replaceme?ﬁ<exp[ik[r(t1)—r(tz)]}>diﬁ=exp(—Dk2|tl
effective dielectric susceptibility #(w,k) multiplied by  —ty|). After the integration ovek we obtain
coth(@/2T). The first term(22) describes the contribution of
the self-energy diagramgiagrams(a) and (b) in Fig. 2],
while the second term is due to the vertex diagréatsand 4e2pl-dr2 f d9% f dodw’

1+x* (2m)?

Nd2—2s w— o' 1—coswt

|| (w—")coth o7 2

(d) in Fig. 2]. In order to evaluate the functidiy(t) (22) we fa(t)= P,
introduce the Fourier transform of the functidrand then o4(2m)

X

a2 . ® COSwt—Ccosw't 03
|w | wCOl’ﬁW . ( )

Here again the first and the second terms in the square brack-
(b) ets are, respectively, from the self-eneldyigs. 2a),2(b)]
and the verteFigs. 4c),2(d)] diagrams. For 1D and 2D
t; ) cases the integral of the first term over diverges atw’
U —0. However, it is easy to check that this divergence is
0 exactly canceled by the second term, the whole integral is
finite in any dimension and does not require artificial infrared
A, cutoffs. Various divergences are rather inherent to the per-
(d) turbation theory in the interaction and—at least in part—are
due to insufficiency of the perturbative expansion in our
FIG. 2. The four first order diagrams. The time ordering is asproblem, especially at low temperatures. It is also useful to
follows: t;>t,>15>0. note that atT—0 the leading contribution td4(t) in the
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long time limit is insensitive to a divergence contained in theNote, that apart from the leading linear in time term there
first term in the square brackd@3) and can be derived only exists a smaller termx \/—In(tlre) which also grows in time.

from this term®

In order to find the functiori(t) in the opposite thermal

The integrals in Eq(23) can be handled in a straightfor- limit 7Tt>1, let us rewrite the integrdR7) in the form
ward manner. Technically it is sometimes more convenient

to perform calculations in the real time rather than in the 262 D
frequency representation. Here we will present the calcula- fi(t)= € _{ A /it—thm[cotr( 7Tt —1]
2T,
1

tion for the 1D case.
First we find the explicit expression fo(t,x) (Al4):

dodk w iwt+ikx
|(t,X)_ (277)2 k2 h2—e
|| d
= 2mo —a'P[ﬂ'T coth(7Tt)]|. (24)

HereP stands for the principal value, i.62] wTcoth(zTt)] is

a distribution rather than an ordinary function divergent at

t—0. For a given diffusive trajectoryand on sufficiently

o

cothx—1—

+t\/_f

#Ttdx X
sinkPx

Tt
dxy/x(cothx—1)

3
2\wTJo
t
+f dt’ﬂ'TCOtl’(ﬂ'Tt')\/t—t’J.
27glm

long time scaleksthis function can be replaced by the follow- Making use of the integrals

ing function of time:
(ITt=0x(t) =x(0) 1) gifs
=f dxlI(t,x)D(|t],x)

1

270,

( - %73[ 7T coth wTt)] )

X2
e~ 5o

XJ o0
1 D|t|]/ d
o T( - &7?[ 7T coth th)]) . (25

Substitution of this equation in E@22) yields

ft—zezftdtftldt 9 0T coth( =Tt
1()—77—010 1, z—aﬂﬂ coth(7Tt)]

Dt D|2t,—t,—t
I T
ko ko

Let us first integrate this expression ougrand then inte-
grate the result by parts. We obtain

fi(t)= W—Ul\[L dt’ T coth( Tt')

3 J_)

(26)

(27)

2(2

The short time cutoff in Eq(27) is equivalent to a sharp
cutoff at w=1/7, in the frequency domain.
In the quantum regimerTt<1 we find

e [2D Dt 2m
fi()=—\/—t+ ,
’77'0'1 Te 770'1

amTt<].
(28

fm%<cothx—1— X >_\/E§(l)
0 VX sinkex/ Y 2°12)

® 1 /@[3
fo dxy/x(cothx—1) = E\[Eg(i)' (29
we get
2¢? /D 2 1/2
1‘l(t)=77—il ;[ \/%t—k ?”Tt3’2+ ”4“35 ) (T
30312 1 + i ( i)
wz T Tﬁ
+27Tt¥%e 27T O(\te 2" ™Y |, #Tt>1. (30)

We observe that in both casé28) and (30) there exists a
linear in time temperature independent contributiorf £¢t)
which determines the dephasing time, at low
temperatures:’ In addition to that, afTt>1 there exists
another termx Tt¥? which yields dominating contribution to
7, at high temperatureé=T,~ 17,7, where the result of
AAK 7,2T 2 is recovere

In addmon to both these important contributions all four
diagrams of Fig. 2 yield subleading terms in the expression
for f,(t) which also grow with time, albeit slower than the
main terms. These subleading terms also contribute to
dephasing even at=0 [see Eq(28)], however, this contri-
bution is always smaller than that of the leading terms, typi-
cally in the parametey/ 7./ 7,. This result is in contrast with
the statement of Ref. 16, where it was argued thdt-at,,
the contribution of the vertex diagrams tg(t) can be com-
parable to that of the self-energy diagrams and the term
«t/ /7, Which is the most important &—0, can be can-
celed. A straightforward calculation demonstrates that this is
not the case.
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A similar calculation can be performed in 2D and 3D. In out to give surprisingly good agreement with the rigorous
any dimension the result can be expressed in the form results obtained in Sec. IV in the short time limit.
It is well knowr??® that without interaction the function
fa()=t/79+ 8f4(T,1), (3D  A4(t) is related to the return probability of diffusive trajec-
tories to the same point after tinteln the presence of dis-
sipation(described by the ter8g in the effective actionthe
particle energy decreases and its diffusion slows down. This

where we defined

1 kqe(2D)1 92 implies that at any given timé the functionA4(t) should
—= (32 - 0) i i -
0 a2 exceed the pre exponemﬁJ (t) evaluated without interac
Te TOYTe

tion. On the other hand, at least if the interaction is suffi-
A numerical prefact()kd in Eq. (32) (determined for a sharp ciently weak, diffusion will still take place at all times and,
high frequency cutoff atw=1/7,) is x;=1 for 1D, «, hence Ay4(t) will decay in time, albeit somewhat slower than
—1/4 for 2D, andks=1/37 for 3D. A detailed expression AY(t). . o _

for the function &f,(T,t) is given in Egs.(28) and (30), Now let us try to find aotyplcal time scale at which the
where we retained also several subleading terms needed fegviation of Ay(t) from A{P)(t) becomes of the order of
further comparison with perturbative resu8ec. V). For ~ A{(t). For the sake of definiteness we restrict our analysis
2D and 3D systems we will present only the leading ordetto the 1D case. As we have already discussed, the real part of
contributions tosf4(T,t). In 2D we find the actionSi vanishes on the time reversed diffusive paths.
In order to evaluate the contribution 8§ in the path integral
(21) or Eq.(A16) we need to include fluctuations around the

St (1) = @Eml Tt<1 time reversed paths. We assume that these fluctuations are
2 T 0 7 ' small and neglect them in the arguments of the functions
T, Te ' -
R[t;—ty,ri(t;) —re(tn) ] in Eq. (A18). These fluctuations are,
27, however, important and should be kept in the arguments of
ofy(t)= —Ttin(TY), Tt>1. (33  the functions +2n(p;,r;). In equilibrium one has 1
Te —2n(p;,rj) =tanh§/2T), where we defined§j=p1-2/2m
Herey,=0.577 . .. is theEuler's constant ants> 7. Simi-  +U(r;) — u. Within the above approximation we get
larly, in the 3D case we obtain e? rt ¢
Sg= ffodtlfodtz({m[tl_tz'r(t1)—f(tz)]>diﬁ
Te
oMfe()=1.85, Tt<1, —(RIts—tp,1(t) —1(t = to) Darr}H{tant &1(t,) /2T]
¢
(T7.)%? —tanh &,(t,)/2T]}) (39
e
Sf5(t)=3 0 t Tl (34) In addition to the contributior{35) one should also take
¢ care of the corrections to the acti@ (Al7) due to the
In 3D we used a standard approximation and replacethteraction. These corrections turn out to be of the same or-
wcoth(@/2T) —|w| by 2TO(T—|w|). der as Eq(35). In the presence of interaction the classical

paths change and satisfy the following Langevin equation:
B. Pre-exponent

oy ’ 2 ”
As was already discussed above, the pre-exponential mr(t) +VU[r(t")]+e fdt ViR

function A4(t) does not play any significant role in our prob- o

lem. Therefore its rigorous cglculatlon at a_II t|m(mz;h|ch_|s X[t —t”,r(t’)—r(t”)]tanhg( )

a separate and quite complicated problemill not be dis- 2T

cussed here. Of importance is to qualitatively understand .

how the functionAy(t) is modified in the presence of the = —eE[t'.r(t)], (36)
electron-electron interaction. Therefore we will restrict our-whereE(t’,r) is the fluctuating electric field due to the Ny-
selves to semiquantitative arguments which, however, turiguist noise. From this equation we find

t t t . t"
Solp.r]=Sp[ PV, r¥]+ f dty f ldt2<e2 f dt”r(tz)Vraz)R[tz—t”,r(o)(tz)—r(o)(t”)]tanhfé—T)>
0 0 0 diff

t t t”
=Sp.1+ | dt1<e2 | dt"R[tl—t",rw)(tl)—r<°><t">]tanh_§;T)>
° 0 diff

ZSO[p(O)’r(O)Hezf otdtlf ;dt2<R[tl‘tz-r‘°’(t1)—r<o>(t2)]>diﬁtan o (37
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Herer(© is a classical diffusive path without interaction. The
energy¢ is conserved along such a path. The average energy A;(t)=
change due the noise field[t’,r(t')] (36) vanishes and

therefore was omitted in Eq37).
Adding Egs.(35) and(37) together we obtain

So—Sp— Sr=SolP1.M1]— Sol P2.12]
e? rt t
+ ?fodtlfodtzR{tanr[gl(tz)IZT]

—tani &,(1,)/2T]}, (39
where we defined
R=(R[ty—t5,r(ty) —r(tz) )it
+(R[ty—to,r(ty) —r(t—1t) 1) i - (39

Within our simple approximation the pathg andr, in
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W\/_f dflf d§2<dz tanhz—>

CO{ (é1—&)t—u(t) tanh% —tanhzg—_?_) }
VIé1— &) .

X

(44)

Let us emphasize that the estimédd) was obtained with
the aid of several crude approximations and, in particular in
the long time limit, corrections to this simple result can eas-
ily be expected. However, since we are not interested in the
details of the long time behavior &4(t), the result(44) is
already sufficient for our purposes. The main properties of
Aq4(t) are as follows.

First, Eq.(44) determines a typical time at which,(t)
significantly deviates fromA{®)(t). This scale(which we
will denote asr,) is set by the functioru(t) and at lowT

the actionSi are considered to be independent from eactcan be determined from the conditioir,) ~1. Combining
other. Therefore the kerné21) can be expressed in the fol- this condition with Eq{(42) and observing that the first term

lowing form:
I=0(t,ry5, 1)U (t,r5¢,rp)e 1O, (40
where
D(tvrlfarli):JDrJ Dpex;{iSo[p,r]

e? (t )
+|7J0dtlf dt,R ta nhgl(—z} (42)

It is convenient to define the following function:
t)= e2jtdt jtdt R ¢ 2Dt+ e bt
U= | dt | dbR=Z2N Tt 5o N T
(42)

Then the operatof41) can be rewritten as follows:

U(t,ryg vrli):; e S IUO@NNESZD) gy (1) ) (1q;).
(43

Here ¢, and ¢, are, respectively, the eigenfunctions and the
energy eigenvalues of a single electron Hamiltontdp

=p?/2m+U(r) — p.

In the absence of the interaction the pre-exponent is g'Ventanh”

by the following expression:

1
(0)(t)—
A= o
d &1\ cog (- E)t]
477\/ﬁf §1fd§2(d§ hz_ \/|§1_§2| .

According to Eq(43) the products;t should be replaced by

&t—u(t)tanh§/2T). Thus we get

in this equation equals tdrg and the second term is small
for all times t>r7,, we conclude that—at least for suffi-
ciently low temperatures—the time scatg is of the same
order as the dephasing time®t0 (32), i.e., 1o~ 7- . Thus
forall t= 7'<P the effect of the interaction on the pre exponent
is small and for such times one can safely approximate
A, (1)=AP)(t). This approximation was already used within
our previous analysi¥.

Secondly, the estimaid4) illustrates again an intuitively
obvious property of the pre-exponent: in the long time limit
A,(t) decays in time. Thus no compensation of the exponen-
tial decay of correlations exd —f4(t)] can be expected from
the pre-exponential functioA4(t) at long times. Hence, in
our problem the effect of interaction on the pre-exponent
A4(t) can be disregarded also in the long time Iirtm?trg.

The same analysis can be repeated for 2D and 3D cases and
the same conclusions will follow.

C. Discussion

Our consideration allows to suggest the following trans-
parent picture. The dephasing time is fully determined by the
imaginary part of the effective actio§, which contains
“coth.” In other words, the function in the exponent of Eq.
(6) is

fa()="F4[S]. (45

The real part of the effective actidBg (which depends on
and contains information about the exclusion prin-
ciple) contributes to the(lunimportant for dephasingpre-
exponentAy(t) in Eqg. (6), i.e.,

Ag(t)=Ag[ Sgr]. (46)

The splitting between the exponent and the pre-exponent of
the type (45),(46) holds also for the exactly solvable
Caldeira-Leggett model. This will be demonstrated in Ap-
pendix E.

Although the difference betweeky(t) andA{"(t) cannot
have any significant impact on the dephasing time this
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difference should be taken into account if one evaluates the 2y, €2 Ry [ 74\2
weak localization correction perturbatively in the interaction. Sop(H)— 60P(H)= — — (In—H) (52)
In the limit 7, <7, a short time expansion of both the expo- 7 277 AT | Te

nent and the pre-exponent Is sufficient and the weak IOCaIi'n the quantum limifl y<<1. HereR is the sheet resistance
ization correction can be represented as a sum of three terr%? a two-dimensional film. The resul61) coincides with
that found by AAG in the limitT 7,>1.2® An opposite limit

of low temperatures was not considered in Ref. 13 at all. We
will perform a detailed comparison of our results with those

of AAG in the next section.

Sog= 80P+ S0P sgtan (47)

where 50 is the “noninteracting” correction and

5 deph 2e2(DTH)ld/2f°° e X
o - - v

dx—=fq(x7y), (49 IV. PERTURBATION EXPANSION
(432 0 i d\ATH

Now let us analyze the expression for the weak localiza-
tion correction to the conductivitgoy perturbatively in the

2e2(DTH)lfd/2 o g X . . . . .
Sortanhe f X interaction. The structure of this section is as follows. In Sec.
m(4m)92  Jo  x9? IV A we will derive general exact results for the system con-
a2 ductance in the first order in the interaction. In the Sec. IVB
X[1=(47Dx7y) " Ag(XT)]. (49 e will demonstrate that the exact first order diagrams do not

cancel afT=0 and, moreover, that the result cannot in gen-
eral be interpreted as an effective renormalization. We will
also demonstrate that some previous statements about an ex-
act cancelation of the first order diagrams in the lirit

Making use of the resulfd4) for the 1D case in the limiT
—0 and at short times we obtain

Al(t) = cogu(t)]+sinfu(t)] —0 are nothing but artifacts of insufficient approximations,
! ADt the main of which is the golden rule approximation. A de-
tailed calculation of the weak localization correction in the
1 ) first order in the interaction is performed in Sec. IV C. There
= m{1+ u(t)+Ofus(t)]}. (50 we will also identify the contributions to this correction com-
ing from the exponent and the pre-exponent, see Sec. lll. In

We will keep track only of the leading contribution to the S€C- Il D we will present a detailed comparison of our analy-
function (42) u(t)=t/7>. This is sufficient within the accu- SIS With that developed by AAG in Ref. 13.
racy of our estimaté44). Combining Eqs(48) and (49) we

observe that the sum of the last two terms in i) de- A. General results
pends on the combination The perturbation theory can be constructed by means of a
regular expansion of the kernel of the evolution operator
fa(t)—u(t). (A16) in powers ofiSg+S;. In the first order one obtains

. N . four diagrams presented in Fig. 2. The contribution of the
The tgrmt/r(p drops out of this combination, it is contained self-energy diagramigigs. 28),2(b)] is analyzed in detail in
both in f,(t) andu(t) and cancels out exactly. The same apnendix A. It is demonstrated that this contributiondo
cancelation occurs in 2D and 3D cases. This cancelation ilz5, pe written in terms of the evolution operatbifor non-
lustrates again the conclusion of Sec. II: it is impossible t%teracting electrons. The corresponding expression is de-

obtain correct information about the dephasing time evenj,.q in Eqs(A12)—(A14). It is equivalent to the resuf\1)
from the correct first order perturbative analysis. obtained diagrammatically by AAG.

~ The accuracy of our estimate of the pre-exponent at short | ot ;5 express the evolution operatdin the basis of the

timest=<r7, can also be checked by means of a direct pergyact wave functions of noninteracting electrons

turbative calculation. This calculation is presented in the next

section. It demonstrates that the above cancelation of the first R ,

order linear in timeT-independent terms from the exponent U(t,ry,r2)=(ry|exp —iHot)|rp) =2, e &ty (r) ¥ (rp).

and the pre-exponent has a general origin and is not related A 53

to the quasiclassical approximation and/or disorder averag- (53

ing at all. Obviously the representatid3) holds both with and with-
The final results for the weak localization correction to out the external magnetic field with the only difference that

the conductance presented in the next section are mainly fq)n the latter case the energy levels are doub|y degenerate,

cused on the d case. Here we provide the results for thié 2 \vhile in the former case this degeneracy is lifted by the
case. In the “perturbative” limitry<7, one obtains from  magnetic field.

Eqs.(33),(47)—(49 The density matrixp which enters the expressidA12)
can also be expanded in the basis of the eigenfunciigns
o e’ e’Rg We find
S0y(H)— 60 D(H)= — TryIn(Try)  (51)
252 2w

(=201 =3 v (B (1), (54

in the thermal limitTry>1 and
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1/d &x N e’ [+= d &,
ﬁ(rl-rz):; E(d_g)\tanh?_T) I (r) g (r). (59 Sot= S0, mfo dtl W2 (dg)\ tanhz—>

. . . X(] );4)\1j 217\2_,_1'7[\;4)\1]' 21’\2) MM2r3ihghg
Now let us substitute Eq$53)—(55) into the expression

(A12). Performing the two time integrals after a straightfor- de o &\,
ward algebra(see Appendix B for detailswe obtain the f —w COch_T +tanh2—_r
correction to the conductivity due to the self-energy dia-

grams of Figs. &),2(b) (56)

F(tl!wrg)\l L g)\A)!

whereV is the system volume and we defined the matrix elements

e [ drug (0] (0

3

1 ‘ .
SNl INg)(hgle Ny (57

M}\z}\3;)\3)\4: f
(2m)° K?

and the function

ty t
F(ty, o8\ - &,)= fo dtzfozdt300i_§>\lt1+ & lat (6T o)1)+ &, (ti—t))]
E4CO9 (E3pF )ty ] — 1} + (€321 0)[ 1 —COSEot ]
§ad €= E3p— @) (€t )

E4oSIN (€321 @)ty ] = (&30 w)SiNg gty
Eaf€ap— €3~ ) (€30t )

= COS§21t1

(58)

—sinéaty

Here we introduced the notati(m—gx g)\

The term 5%3 in Eq. (56) describes the correction due to the nonscreened Coulomb interaction. It is defined by the
expression

80C = ezrxdtftldt E —t
Tap™ 4V Jq ! 0 2 df)\ anhz_

Xsin — &, ti+ &) ot §>\4(t1_tz)]- (59

—2p](ry,rp)

)\4)\1 )\1)\2+])\4)\1 )\1)\2)<)\2| |rl_r2|

[Na)

The contribution toso from the vertex diagrams of Figs(@,2(d) can be found analogouslgee Appendix B We get

2

€ Nohg:Aghg |, :Aohg: A\ :
Ea\fﬁrt: ZV 1 E (dgh tanhz—)(j 2 3] 1 4+JB2 3Ja1 A)M)‘3)‘l')‘4)‘2

fdw w §>\3
X 7@ —cothz—Tthanhz—T

Here we have introduced the following function:

G(ty, 0,8\ "+ &\,)- (60)

ty t
G(ty, w8\, - &,)= fo dtzfozdtscoi_ E,(ti—ty) =& tat &) ot § (i~ 1) T o(ty—ty)]
(€42t €31)C08 (€31~ E4o— 01 ] — (4ot @) COSEot 1 — (€31~ ©)COSE gty
(Ea0F €31 (€31~ @) (€apt @)

(€apt &30)SIN (€317 Eao— )ty ]+ (gt 0)SINE Rt — (€31~ w)SiNgty
(Ea2t &30 (€1~ @) (Eapt o) '

=C0S&xty

+sinéyt; (62)
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Despite an obvious similarity in the structure of the self- matrix element$57). Thus the statement of the above papers
energy[Eq. (56)] and the verteXEq. (60)] corrections to the that the contribution of the diagrams of Figgag2(b) van-
conductivity these two expressions differ in several aspectdshes in equilibrium aT =0 is proven to be incorrecBelow
the terms containing cot®(2T) in Egs.(56) and (60) have  we will demonstrate that this poorly justified statement is a
the opposite signs, the functioms (58) and G (61) of the  result of several rough approximations, the main of which is
energy argumentg, are different and the matrix elements the golden rule approximation. This approximation may

entering Eqs(56) and (60) depend on different indices. sometimes vyield correct leading order results in the high-
It is important to emphasize that the E¢56)—(61) de-  temperature limit, but it breaks down at sufficiently IGw
termine the total correction to the conductivity tensgy, In order to illustrate this point let us first make a simpli-

:UZ%jLU‘('fftwhich isidenticalto the initial resultAl1) and  fying assumption. Namely, let us for a moment restrict our
(A12). In deriving Egs(56)—(61) from Eq.(A12) no quasi- ~attention only to the contribution of the terms witf

classical approximation, no averaging over disorder and/o &, =&\, Below we will see that this assumption is not
no other approximation of any kind has been made: theficient to properly evaluate the first order perturbation

above equations aexactquantum mechanical results in the .o rection to the conductivity: in order to do that it is impor-
first order in the interaction. Therefore these equations can bt 1o allow for a(possibly small difference betweer,
1

conveniently used to test the statement about the full cancel- o .
ation of the first order diagrams &t—0 which is quite fre- ‘r’_md sz' But such an app_rOX|mat|or1_|s sufficient for cglcula—_
quently made in the literaturesee, e.g., Ref. 27 as well as tion of some other physical quantities, such as the inelastic
order to demonstrate the failure of the golden-rule-type per-
turbation theory in the interaction.
o _ _ The contribution of the terms witl§M=§>\2= &, to the
_ Although _here we are mainly interested in the Cont”bu'conductivity S50°¢ reads
tion of the diagrams of Fig. 2 to the current-current correla-
tion function, the structure of the result is by no means spe- @2 (4o
cific to this function only. The very same structure—perhaps(s}zeﬁz — _f dt, Z
apart from the matrix elements of the current operator—is 2Vo Jo SRR
reproduced if one calculates, e.g., the inelastic scattering
time?"?8®and similar quantities. This is quite natural be- Ltan &y
cause the results for different quantities follow from the ex- dghl hZ_T
pansion of the same evolution operafofA16) in the inter-
action. Hence, the analysis to be presented below is general dow w Exs|1—cog (&31+ w)tq]
and can be applied to various physical quantities evaluated X J o7 cothz—_l_+tanl'12—_|_ (Eart )2 :
by means of the diagrams of Fig. 2. 31

Let us consider the self-energy diagrams of Figs. (64)
2(a),2(b). Just for the sake of clarity let us repeat the state(}

B. Breakdown of the Fermi golden rule approximation

f}\1:§)\2:§)\4

VIS ERS L IR VLS ER S LAY DOV D U9
X ( + i YMM2A3ihsha

[ P

et us first evaluate this expression within the Fermi golden

ment we are going to test: according to Fukuyama anq, o approximation

Abraham$’ and to some other authors the contribution of
these diagrams vanishes in the limiit-0 because the result 1— 008 (£5,+ w)ty]
contains the combination

(éntw)?

d € . . .
Substituting Eq(65) into Eq. (64) we obtain
detanhz_T> 62
oy ( a8,

3
2 o
under the integrals over andw. This combination restricts 5}2%6& - e_J dtgt, > d_tanhz_
both integrals to the regiong|<T and|w|<T and makes 4VoJo &\, T
PYISER SR RVISER RN .
X(Ja4 1JB1 2+]B4 ljal Z)M}‘Z}‘3’)‘3)‘4§31

—7t10(€31+ 0). (65)

w E— W
COch_T + tanh—2T

17Ny
the result to vanish completely at=0.

Already the first inspection of expressio(s6),(58) al-
lows us to observe that it is the combination

X

+
och dtyt,. (66)
0

3
cothii_l_1 — tanh;—_l_3

d 3% 1) &\,
dfxltanhZ_T COtI’\Z_THanhZ_T This expression implies thawithin the Fermi golden rule
) ~approximationthe self-energy diagrams of Figs(aR2(b)

andnot Eg. (62) which enters the exact quantum mechanicalyie|d a linear in time decay of the initial quantum state with
result. This combination isot zero even aff=0 because the corresponding relaxation rate proportionalTtoObvi-
é\,7 &\, — o, high frequenciego|>T do contribute to the  ously, such a relaxation rate vanishesTat0 in agreement
integral and, moreover, this integral may—depending on thevith Ref. 27 and others.
spectrum of the fluctuation propagator—even diverge for Now let us carry out an exact frequency integration in Eq.
large w unless one introduces an effective high frequency(64) without making the golden rule approximati®b). It is
cutoff. We would like to emphasize that these conclusiondairly obvious that the integral ove® is not restricted to
are general and do not depend on any particular form of thew|<T and even diverges at high frequencies. As before, in

(63)
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order to cure this divergence we introduce the high fre-bution to o into two parts, Egs.(5.129 and (5.120,
guency cutoffw.~1/7.. For simplicity we also assume that effectively rewriting the combinatiori63) in the following
the energy differencés; is smaller than X,. Then in the equivalent form:

limit T—0 we find

( d . fxl) ( . ® it fxl—w)
——lan CO anh———
f do cot @ +tan f)\a} 1-cog (&3t w)ty] déy, hz_T hz_T 2T
~ W
2m hZ_T I”ﬁ T—0 (§3l+ w)z g)‘?, 5)\1_(1)
+ tanhz—_l_—tanh? . (69

C&alts ety +2f1/7ed_w 1 &l
2 2 N6 l63) 27T The first two terms in the square brackets of E&p) were
interpreted by AAG as a “dephasing” contributiofEq.

X (1—coswt;). (67)  (5.120 of Ref. 13 while the last two terms are meant to be

the “interaction” correction[Eg. (5.129d of Ref. 13. Obvi-

The first and the third terms in the second line of this expresously, the contribution of the first two terms vanishesTat
sion come from coth¢/2T) while the second term originates —0. In order to understand the behavior of the remaining
from tanh€A3/2T). We observe that the first two terms are terms we make use of Eq&64),(68) and observe that the
the same as in the golden rule approximati68). These contribution of the last two terms in E¢9) is proportional
terms enter with the opposite signs and exactly cancel eadle the following integral:
other atT=0 because in this Iimitc(/dgkl)tanh@M/ZT) re-

i = d &y .
duces to & fu.nctlon and therefor@xs— &a1. The-last term j d“’f dg}‘lj d§>\3< 5 tanhz_T) ] &3y 9272
does not vanish even at zero temperature, this term is not fxl

small and obviously contains the contributionadlf frequen-
cies up to 1#,. The integral over contained in this term an Exg _tanf?\l_w 1-cog (&3t w)t]

can be easily evaluated. We will do it a bit later when we fix I'iZ_T L 2T (é31+ w)?

the dependence of the matrix elemehtdz*3:*3*4 on en- o _ .

ergies. Now it is only important for us to demonstrate that'he approximation emp'loyed by AAG Whlle evaluatmg sgch
the last term in Eq(67) is completely missing within the 2 combln_atlon is equivalent to ignoring the OSC|IIgt|ng
golden rule approach employed in Refs. 27,17,18 and other§0s-term in Eq.(70). After dropping this term and making

It is obvious, therefore, that this approach fails to correctlythe integral dimensionless one can easily observe that the
describe the system behavior at sufficiently low temperaf€Mmaining integral has the form

tures.
Note, that AAG also did not observe an exact cancelation ALl ‘ﬁ (72)

of diagrams of the first order perturbation theory in thein 1D and A,InT in 2D, whereA, , are temperature- and
interaction’® However, they argued that the remaining termstime-independent constants. AAG interpreted these contribu-
provide the so-called interaction correction to the conductions as an effective renormalization due to interaction. Note,
tance which can be viewed as an effectiemperature de- however, that it is correct to drop the cos term only at suffi-
pendent renormalization of the bare parameters and hagijently long timesTt>1, while at smallet<1 this term is

nothing to do with dephasing. Already from the form of the important. Evaluation of the integrdf0) in the latter limit
third term in the right-hand side of E(67) one can conclude yields

that in general this is not true. Indeed, if one adopts that for
&\, =§é\,= &, the dependence of the matrix elements By vtIn(t/ 7o) (72)

M*2:23ik3:}4 on the energy differencés; has the form

w w2

X (70)

in 1D andB,In(t/7,) in 2D, whereB, , are again temperature-
and time-independent constants. It is fairly obvious that the
M2 Aaiha Raoc | £5[ 4272 (68)  term(72) already cannot be interpreted as a renormalization
effect from an effectivestatic potential. This term explicitly
[see EQ.(2.33 of Ref. 13, and integrates the product of depends on time and actually contributes to dephasing.
M?*2:X3irs:ha gnd the last term in E467) over the energys, Now we are aware of the behavior of the integizd) at
one immediately observes that after the cancelation of thell times: att=0 this integral is obviously zero, it grows
unphysical divergenclwhich is also contained in the vertex with time as Eq.(72) for Tt<1, reaches the valug1) and
diagrams of Figs. @),2(d) and enters with the opposite sign, saturates in the long time limit>1. Clearly, in the inter-
see also Sec. Il Aone obtains the contribution \ﬁln(tlrp) esting limit T—0 the behavior(71) can never be realized,
in 1D and In¢/7,) in 2D. This contribution is just a part of the the term(70) grows at all times and contributes to dephasing.
function &6f4(T,t) (31) at T—0. It grows with time, contrib- In this limit we are back to the resul67). The perturbation
utes to dephasing and obviously cannot be reduced to thieory strongly diverges in this case. It also diverges at finite
renormalization of the initial parameters which would betemperatures, thus the corresponding expressions can only
provided by a time-independent term. make sense if one introduces a cutoff at times much smaller
In order to understand why AAG arrived at such a con-than the dephasing time,, because at times~ 7, all or-
clusion it is appropriate to highlight the approximation em-ders of the perturbation theory should be taken into account.
ployed in Ref. 13. As a first step they split the total contri- In Ref. 13 this cutoff time was chosen to be the magnetic-
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field-induced decoherence timg<7,. Thus the approxi- As it was already pointed out above, these expressions are
mation leading to the time-independent te(il) is valid  only valid for the time reversed statks andX , relevant for
only for Tr4>1, in which case the contributio72) is any-  the weak localization correction. For later purposes let us
way much smaller than that from the first two terms in Eq.also rewrite the above result in the 1D case in the real time
(69 and, hence, can be safely ignored in the above limit. Ortepresentation
the other hand, in the most interesting liflity <1 (which
is compatible withT 7,>1) the contribution(70) dominates, 4Ve e~ ltllmy
its behavior is given by Eq(72) rather than by Ec(71) and, f d&xjj (£51)COSENL = — \/: . (75
consequently,nonzero low-temperature dephasing is ob- 2m m M
served already in the first order perturbation theory in the
interaction. We will come back to this discussion in Sec. The next step in our calculation is to identify the contri-
IV D and in Appendix C. bution to do responsible for dephasing. As it was already

Let us emphasize again that no approximation was dondemonstrated above within the nonperturbative analysis, this
during our derivation presented in Sec. IV A. Our main goalcontribution is determined by the functidi(t) (23) in the
here was to demonstrate that the absence of the cancelatierponent6). Clearly, in the first order in the interaction this
of diagrams in the first order perturbation theory has nothingontribution is obtained by expanding the exponent in Eg.
to do with the quasiclassical approximation and/or disorde(6) up to the linear term irf 4(t) and ignoring the effect of
average as it is sometimes speculated in the literature. interaction on the pre-exponential functidky(t). Hence,

this “dephasing” contribution should have the form

C. Perturbative weak localization correction

Now let us perform a systematic evaluation of the exact de e
. . o . ph_
expression$56)—(61) obtained within the first order pertur- epy 0 dtyfq(ty) 2 df)\ tanhz—
bation theory in the interaction. Our calculation consists of
several steps. First we notice that the expressi{66s-(61) X (jr142] 22M+ jzmj”z”l)cosgnt .. (76)

contain the full information about contributions from all en-

ergy states. Since here we are interested only in the wealR/e observe that this expression contains the function
localization correction to the conductance we should restrictosé,;t; and does not contain sé;t;. Furthermore, from
our attention to the time reversed energy states and evaluatiee above analysis we know that the functiyft) contains

the matrix elements for such states. The matrix elements fasnly coth@/2T) and does not depend on tagh(2T).

the current operator can be extracted from the expressmn fafherefore in the general result for the conductance correction
the weak localization correction without mteractl@ﬁ (56)—(61) we will first take care of all terms which contain

Starting from the standard expression for this correqtﬁme the product coth¢/2T)cos,qt; leaving all the remaining
e.g., Ref. 13and rewriting it in terms of the matrix elements terms for further consideration.

for the current(57) we obtain Consider the “cotbkxcos” terms originating from the
dr self-energy diagrams of Figs(&,2(b). For such diagrams
5(’%_ J 1f tanhz—){[G (€ one should puté,,=0, then from Eqgs(56),(58) one will
8 immediately observe that the contribution of the “coth

2 2 Xcos” terms can indeed be represented in the fdit@
i )T Gh€) =GR )]s+ a ) hos P A

+ oo

1 Mg xle
H) dtlx§2 (dg)\ tanh2—>(j se(¢, )\2)_ & E J_MA2A3 Agho

+j};\31}\2j};2}\1)003§21t1- (73 w 1- COE{(E32+w)t]

The expression for the matrix elements of the currents Xw COch_ (£3yt )2 (77)
jj (&29) is readily established by comparis¢rs) to the well %
known quasiclassical result in the absence of interad®n  Let us replace the summation ovey by the integration over

We find £\, Assuming that the matrix elements*2'z:*s"2 depend
(& 1)_JMA2 x2x1+j>\1>\2j>\2>\1 only on the energy differencés,, making a shifté;+ w
(&2 B e — w and denoting;,— '’ we find
2 d 2
e DVJ d%Q 2 DQ2+ 1/, e ¢ duda
w2 ) (2m)® &+ (DQ%*+ 1/ry)? f38(1) = M(0)(0—o')
(2m)
2e2V 1
VD ) 1D, w—o' 1—coswt
e( \/1+ ||§21| TH) X COth 2T > . (78)
= w
2V TH
-— In— - —In[1+ (éxm)?]f, 2D, This expression does not depend)onand exactly coincides
7T

with the first term in Eq(23) if we identify the matrix ele-
(749  mentM(w') as
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Dl—d/2 ddX 1 e2 e2 4 1 DT3/2
M(w')= f S| l'|Y%7% (79 Soteph=— —| — DT+ —=—1
m (2m)% 1+x T oq| 37 77\/5 \/?e
L(1/2) 2D, 1
Note, that the energy dependence of the matrix elemdnts + TD\/?TE(Z"‘ 2H In s
«|w’|%272 (79) determined within the above procedure is in 2m m e

the agreement with the conjectu(@8) as well as with Eq.
(2.33 of Ref. 13, _ 3432 BTy
The contribution of the “cotbcos” terms contained in 2m 27T
the vertex diagrams of Figs.(@,2(d) can be evaluated ] ]
analogously. Again one should consider only the part of the NOW let us come to the final step of our calculation and
function G (61) which contains cogf,t;). For the contribu-  €valuate the remaining terms in the general re&fit—(61).
tion of the time reversed states to the vertex diagrams on/€ notice that the contribution of all terms containing the
should identify&,,= &;;. Making use of this equation, from combination cothg/2T)sin&,qtq yamsh after the |ntegrat|or1
the corresponding terms in Eq§0),(61) one finds over the energy,;. The same is true for the terms contain-
ing tanh€A3/2T) in the contribution of the vertex diagrams
(60). These observations imply that all the remaining nonva-
1 (+= d &\, nishing terms come from the self-energy diagrams of Figs.
S vers — H}j dty ¥ty A y) X Ftanhz_T 2(a),2(b) and contain +2p or tanh. We will denote their
0 Mhz M total contribution a®o®™ We already know from the above

,  wTry>1. (83

JNphg:Nghg i AohgiAghg analysis that this contribution comes from the expansion of
S Vs i PR LS N @0 e pre-exponenf(t) to the first order in the interaction.
Collecting all such terms from Eq$56), (58), and(59), we
where obtain
So'aM= so @+ soa™+ 5o, (84)
2
f‘ée"(t,)\l)=—2i D d_‘”anxl;sz where
o 21 5
tanh_ e A do
® COSwt—COSEait 90 cos = 2Valfo dtlf dg”lf dng dg“J 2w
Xw COch_T T e — (81
ST d fxl y
X dgkltanhZ_T 11 (£21)C088t;
By comparing Eq(81) with the second term of the expres-
sion(23) we observe that they coincide provided one denotes §>\3 1—-cog (&3t w)tq]
£31= &= ' and again assumes that the matrix elements XM (&3 wtanhz—= 5 , (89
depend only on the energy differenbgs* 1} 2=M ("), (&2t @)
whereM (") is defined in Eq(79). Furthermore, in order to 02 (iw d
identify Eqs.(76) [with fo(t)—(t)] and (80 we have to  glanh_ f dt, J d, J d, J dén, f do
assume thaj);z)\?’j 21)\4_,_1'22)\3] 21*421-’;1’\21- )\2)\14_]21)\2] 22*1. 2Vo1Jo 1 2 2@
This completes the analysis of the “cotleos” contribution d N
from the vertex dlagrar_n_s of Figs(@,2(d). X —tanhfl) ji (€21)Sinépqty
Thus, we have explicitly demonstrated that the perturba- dfxl T
tive “dephasing” contribution to the conductance obtained )
before from the nonperturbative analysis can also be identi- «M(£ay)o tan Exg (£t @)ty —sin(égpt o)ty
fied in the first order perturbative expansion provided one 2@ hZ_T (3t w)? '
infers the matrix elements! in the form (79). With this in
mind one can immediately write down the expression for (86)

8o3%™"in the form(48). For a quasi-1D case at loWwe find

S0C= e2fﬂodtt —dt )
g~ = H) 0 141 dg)\lanhz_T 11(521)

2 ;2 3/2
e e 1 D7y 2Dy
50.deph:__ + [1_2p](r11r2) .
T o1 w2 7o w? XNy W“\ﬁs'nfzﬂla 87)
< 27Ty 6 Tro<l 82 As before, the above equations were obtained from the exact
n Te Yo||, wTmu<l. (82 ones by imposing,,=0. In order to establish a somewhat

closer relation to the approach developed by AAG we also
note, that it is the contributioda2""(84) which contains the
In the opposite high-temperature limit we obtain so-called Hikami boxes within the diagrammatic analysis of
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Ref. 13. AAG argued thafpartia) cancelation of the first

order diagrams can only be observed if one takes the Hikamo

boxes into account. Below we will demonstrate that this is

not the case. Actually we have already shown in Sec. IVB

[Egs. (66),(67)] that this cancelatioriof the linear in time
“golden rule” terms only in the first order aff=0 occurs

already before disorder averaging and thus has nothing to do

with the Hikami boxes. Now we will illustrate this fact again
by means of a direct calculation.

Let us first consider the terndo'®" (85). The integral
over w can be evaluated exactly and we get

j;mdtlf dfxlf dlef désp

d ISR
Etanhz—.r 1] (§21)c0o8éty

2
tanh_ e

2705 4Vor,

X

& T éntés

XM(&30) €3ty tanhl—_l_.

5 (89
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2 A2 +
talnh:_e_e D Ocdt
cos

m o1 Jo

d

In the quantum limitmTry<1 we get

dt’

e—t/TH t
tf
27l

Jt
2\/t—'+ f:m

T

sinh@ Tt

o T
sinh@ Tt

2
t/3/2] .

(92

e*t/TH

Vt

e? e’D [+~

@2 o1 Jo

[ 3432 1
X{2\ ms—t—2\t+ ——F —
| 27, \/— 42 T
1 D7 2Dr,
™2 Jro 7

. 3£(3/2) |D?my
47 27T

tanh__
50cos -

)

e? e?

m 01

TTry<l. (93

Further calculation will be perforr_ned for a quasi—'lD case.1q consider the opposite thermal limifT 7., 1 it is conve-
We also make use of the real time representation of OUfient to rewrite this equation in the following form:

integrals, as it was already done before. Fdrsystems we
obtain from Eq.(79)

JD

~ )
E3M (&30 = om on

| &3, %2
— d

i B ”
1" al 3ot
47rf dt'e (dt

3 4D|t"|

) . (89
Also we will use the following relation:

d &, &, ént s
J dghl Ktanhz—_l_ tanh—z_l_
—iT
sinh# Tt

Tt
sinh@ Tt

:zwf dt’ e (éart €3t (90)

Substituting Eqs(75), (89), and(90) into Eq. (88), we find

+ o0 + o0
[“an[ar
0 — o

e7|tl+t'|/TH

+
Vit +t] VIt —t'|

e? e’D

43 03

T
X | P—
( sinhz Tt

tanh_
cos

oo

aT
sinh@ Tt

tyVt'|

|

efltlft’ /7y
X

91)

After simple algebra this equation can be converted into the

following integral:

5ot e2 2D (+» e Um
OTcos — ;0._1 0 \/{
[ Tt
X‘Zt Z—Zﬁm—4t\/WT
Tt
xf dx— (x cothx—1)
0 sink?x

1 +oo X3/2
+ —= dx———. 94
\/WwaTt sinhx (89
This equation yields
s —t/m
50_tanh: _ e_2 ez_D * e !
cos 77_3 a1 Jo \/E
T  wl{(1/2)
X4 2t\/ m—+ ——t\T
I 27, J2 VT
e2e?| 1 D% (12
__ - = H +§( )D\/fTalz,
m Oy 77\/5 \/T—e 22
7Try> 1. (95)
Here we have used the following integrals:
v m{(1/2)
dx xcothx—1)=— \ﬁ—
fo sinhzx( ) 2 4
+o  x32 \ﬁ 34(312)
dx =\/= . (96)
Jo sinkPx 2 4
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Now we turn to the correctioi86). To begin with, we e? e2D
should handle a divergence which appears in the integral oo ‘a”h — f dtlf dt’
over o for the term linear int;. It is easy to demonstrate, 2m 91
however, that this divergence is fictitious. It disappears com-
; : : 7T 7T
pletely if a more accurate expression for the matrix elements x| P t’ \/m
is used. This expression reads sinh#Tt' ) sinhzTt'
M(éo [ dk 1 e bt etlt,llﬂ 100
3@ _ ikr T ’
M [ 0l JortT et

—ikr —Am
><<)\3|e |)\2>Im e(w—,k) .

Now we can use the analytical properties of the functian 1/

and write

dw ( 1 ) 1 _1e( 1 )
Pf 27 €(w,k) §32+w_§R e(§23,k)_1'

Substituting this identity into Eq86) we immediately ob-

serve that the term containingl is exactly canceled by the

correctionda. Thus the result is finite and has the form

80+ soin= 5ot so5™, (97)
where
soent € f+°°dt fdg fdg fdf
4VO_1 o 1 )\1 )\2 )\3
d f)\l - ) fxB
X F)\ltanhZ_T JJ(§21)S|n§21t1M(§3z)tanh2_T
(98)
and
e’D
Sof™= — Vo f dtltlj dgxlj déy Jdgxa

d &\ _
X Exltanhz_T 11 (&20)8inéxty

&,
X <)\2|r1<)\3|r25(r1_ r2)|)\3>r1|7\4>r2tanh2_-|—-

(99

Here we have used the formula

el
6(523,k)_

Dk?

4oy’

The contribution(98) can be transformed and evaluated

tanh
analogously to the termioc &Y. We find

After simple transformations we obtain
2e? e’D (+» e U™

+ oo aT 2 ,
dt dt’| ———| t 372
w3 o1 Jo Jt e sinhz Tt/
e? e? 3/(3/2 [D?ry
27T’

= T o, 2T

0, #wTry>1.

S O_tanh:

TTry<<l,
(101

In order to evaluate the termiga™

expressmn

we use the following

i ‘fBZt"

dt'——.
VamD|t"|

(102

(Nalr,(Nalr,8(ri=r2)[Ng)r [Na)r,= —

It can be obtained by comparing the two expressions for the
matrix elementM (£3,). The first expression

M(§32)=%f dte—ifsztf dxiD(|t|

follows directly from Eqgs.(22), (25), and(77), and the sec-
ond one,

M(&SZ) <)\2| <>\3|r2 |)\3>r1|)\4>r2

can be derived from Eq57). Thus we obtain
<>\2|r1<7\3|r2f(r1_r2)|)\3>r1|7\4>r2
1 .
= ;f dte"§32tf dx f(x)D(t],x)

and arrive at Eq(102). With the aid of this formula we find

2 2D
50't2anh=—%eo_—l . dt,
><J'+xdt’<7’ 7 ) -
—o sinh7Tt'/sinhaTt' ~\|t’]
ef|t1+t’\/TH ef\trt’er
Jt+t] Jltl—t’ll
which yields
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262 2D [+ e U [t 2 whole expression foor) is expanded in the interactidihis
5at2a”h=—3 — dt dt'| ———| t 3 s correct as long apel>1). Our method also allows for a
m 01J0 vt Jo sinh7Tt clear distinction between the exponent and the pre-
2 2 exponential contribution tédo.
_£ e 3¢ /D TH_ (103 It remains unclear to us why AAG repeatedly stated that
m™oy 2T 27T our procedure “is nothing but a perturbative expansitn”

With the aid of Eqs.(101) and (103 we observe that the 2and our results are “purely perturbative>The only justi-
tanh fication of the above statements which we could extract from
(103 for

result(97) is zero atT—0 and it is equal taSo 5 . .
< . the above papers is that our result for the dephasing raje 1/
7Tt>1. Combining Eqs(84), (93), (95), (97), (101), and “is proportional to the first power of the fluctuation

H i tanh
(103 we arrive at the final results fafo?™ propagator.™ Although the latter is true in some limits, it is
hard to understand how this could help to turn a nonpertur-

2 A2 3/2
Sotanhe e 1 D _ 2D 7y bative problem into a perturbative one. Indeed, if one for-
T o w2 Jre P mally multiplies the photon propagator by a constanév-

erywhere in our calculation, one would obtainrJ#\. The
same holds for the calculatidA Note, however, that it is not
the decoherence rater]/but rather the expectation value for
the current operator which is calculated theoretically and
measured in experiments. Fgy= 7, the result for the weak
D\/TTE{Z localization correctionso depends o as

3/(32) |D?ry
4 27T

., wTmy<l, (109

S o_tanh: _

m™ 01

e?e?| 1 Dra/2+ L(1/2)
72 Jre 2\2m

34(3/2) |Dry
21 27T

50’1(1_1/\/{

o mlr>1 109 ih 1D [see Eq.(9)] and Sa,In\ in 2D. Obviously, these

results are purely nonperturbative in the “interaction

In order to find the total expression for the weak localiza-Strength” . Any attempt to calculate the expectation value
tion correction one should simply add the two contributionsOf the current operator perturbatively may only yield to di-
59PN (82) (83) and 502" (104),(105) together. We observe Vergences in all orders of thg expansion in powera oAs
that the temperature-independent termsf_,’z are equal in to the decoh_erence raterl/, it is only extractedfrom the .
these two expressions, they enter with the opposite signs afpnperturbative results for the conductance correction.
cancel each other exactly in the swa®P+ 50 in both Hence, the relatlon_ [\ cannot by |t_self tell anything
limits 7Tt<1 and#Tt>1. As we have already discussed, about tr_]e perturbapvg or nonperturbative character qf the
these are just the linear in time “golden rule” terms coming calculation. In the limitry <7, the conductance correction
from the exponent §0%P") and the pre-exponent('a™. o (H) can be gvaluated pertur-batl\{elym However, as it
Their cancelation occurs in no relation tand due to much Was explained in Sec. Il, even in this limit, can be unam-
more general reasons thaaveraging over disorder. Other blguously determined onl_y within the_ non_perturbatlye proce-
(“non-golden-rule”) terms do not cancel and combine in the dure, while any perturbative expansion yields gmblguous re-
final result which we will present below. sults for 7, which fully depend on the assumption about the
decay of correlations in time.

(2) Another crucial difference is that AAG essentially use
theassumptiorabout a purely exponential decay of the phase

Although the main differences between our approach andorrelations in time while no such assumption was used
that of AAG (Ref. 13 can already be understood from the within our analysis. Specifically, Eq3.2) of Ref. 13 is
above analysis, we will briefly summarize them again for theequivalent to our Eq(9) only provided one assumes that
sake of clarity. fq(t) is a linear function of time 4(t) =t/ 7, and ignores the

(1) The first crucial difference to be emphasized here iseffect of the interaction on the pre-exponent, i.e., puts
that our methofiis essentially nonperturbative in the inter- Ay(t)=1/(47Dt)¥2. This assumption cannot be checked
action while the approadhis only the first order perturba- within the perturbation theory in the interaction and, as it
tion theory. In the most interesting limiting casg=7,  was already explained above, in general it can only be valid
(which was only considered in our Refs. 5—@he cannot  within the golden rule approximation. The whole comparison
proceed perturbatively in the interaction at any temperaturéetween ours and AAG's results carried out by the auffiors
including T=0. This is precisely what AAG do: it is dem- is essentially based on their E§.2) which was neither used
onstrated in Appendix A that the general result for thenor even written down in our papér.
conductivity® is identical to the first order expansion of Eq.  Let us emphasize that AAGunlike many othersdo not
(A16) in the interacting termsSg+ S; while all higher order  use the golden rule approximation in their perturbative cal-
terms (which are larger than the first order term far culation of the weak localization correctiafo(H) in the
=1,) were not taken into account in Ref. 13. In contrast, ourimit 7y<7,. However, they explicitly use this approxima-
path integral approach is equivalent to an effective summation while extractingr, from §o(H): Eq. (3) of Ref. 11 and
tion of diagrams irall orders with the exponential accuracy. Eq. (4.3) of Ref. 13 are validonly within the golden rule
This is sufficient for correct evaluation af,. Within our  approximation. As it was demonstrated abo¥g,is not a
analysis only the action in the exponefather than the linear function of time[see Eqs(23)—(33)] and, moreover,

D. Discussion
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in the presence of interaction the pre-exponeri9jrdeviates As to the(partial) cancelation, it indeed occurs at-0,

from its “noninteracting” formA{’)(t)=1/(47Dt)¥2. Asa  but only for the linear in time “golden rule” terms coming
result, the relation betweefr(H) and 7, depends on tem- both from the exponent and the pre-exponent. This partial
perature and is different from E(B) of Ref. 11[or Eq.(4.3) cancelat!on is also due to very general reasons, it occurs
of Ref. 13 at anyT even in the limitry<7,. Since the already in the exa_c(nonaverage)dpe_rturbe_ltlve expression
linear in timeT-independent contributions from the exponent@nd has no relation to the quasiclassical approximation

and the pre-exponent exactly cancel each other in the fir@nd/or disorder averaging. ,
order  perturbation  theory the  golden-rule-type Let us compare the perturbative results for the weak lo-

. : calization correction obtained in Ref. 13 and within our
assumptioht*® about purely exponential decay of correla- . o
tions in time inevitably yields to missing of the analysis. In the limifT7y>1 for the 1D case AAG gdisee

T-independent contributiof82) to 7. Eq. (4) of Ref. 11 or Eq.(4.133 of Ref. 13:
(3) Let us compare all the approximations used by AAG

(Ref. 13 and in our papef.In both papers the same quasi- AAG~6_26_2D ) }+ £(1/2) ‘o 1
classical conditiorpel >1 was assumed and the expressions®?WL ~ o, THI 1 Zm (Try)3? '

for the photon propagators were defined within RPA. In or- (106)
der to perform the perturbative expansion in the interaction

AAG considered the limit of strong magnetic fieldg<r,  In the same limit with the aid of our Eq&33) and(105) for
AAG also performed the expansion in the inverse dimenthe weak localization correctiofoyy, = 5%+ 5@ we
sionless conductanced(L ), i.e., they assumed thge>1  find

on the scale of the magnetic length,= D 7. Although

we do not need these approximations within our nonpertur- e? e? 4 2(1/2) 1
bative analysi§, their appearance in the perturbative §g, =— —DTq-E| —+ —+O(—) .
treatment® is understandable. ™oy 3T 2\2mTry Ty

As to an additional conditioff 74> 1, in our opinion it is
not needed even within the perturbative procedure of AAGIn the opposite limit Try<<1 our calculation of the
Indeed, the conditioy(L,)>1 does not depend on tem- integrald® (see Appendix Cyields
perature at all, and the inequality;< 7, can only become
stronger at loweil provided it is already satisfied at higher e? e2 3D 7
temperatures. Therefore under the two latter conditions the 503\,’?_‘3: —— H [1+0O( \/T_TH)]. (108
perturbative expansidh should be justified down t&—0 7oy 27
and the conditiom 4> 1 is not needed at all. This condition
should also be irrelevant for EqR.42 of Ref. 13. Accord-
ing to AAG “all the corrections to these formulas are small
as 1/(Tr,).” Combining ry<7, andg(L)>1 with Eq.(2)
of Ref. 11[or Eq. (4.9) of Ref. 13 1/7,"°=T/g(Ly) we e’ e? 2D7y | 2wy
observe that the inequaliff7,"®>1 is satisfied at all tem- °7W.™ "7 &~ 3 In e
peratures including — 0.

Thus the perturbative resulfscan be analyzed in both Note, that the “renormalization” terms 7, /T (which are
limits Try;>1 andTry<1. Since the latter limit of lower jrrelevant for dephasing and can be added to the interaction
temperatures was not discussed by AAG we carried out theorrection are dropped in Eqg106)—(109 for the sake of
corresponding analysis in Appendix C. Combining Egs.simplicity.

(C16),(C17 with Eq. (4.30 of Ref. 13 we find 1#,¢ We observe that in both limit§7,>1 andTry<1 the
=Te*\Dr/(40y) for Try>1 (just like in Ref. 13 and  T-independent terms 2/ [see Eqs.(82),(83),(104),(105)]

17 °=3e*\Dry/(2mo,7y) for Try<1. The latter result exactly cancel each other and do not contribute to the results
(which was not presented by AAGemonstrates that a non- (107),(109 at all. The same cancelation occurs in the
zero dephasing time at=0 is obtained even if one explic- expressionS (106),(108). The latter equations were derived
itly follows the procedure of Ref. 13. Although due to the within the averaging procedure involving the Hikami boxes.
reasons explained above this result differs from the corredin order to obtain Eq9.107),(109 we used a somewhat dif-
one(32) it is interesting to observe that a nonzero dephasinderent averaging procedure which amounts to deriving the
rate atT=0 is already contained in the formulas derived by matrix elementdVi(w') from the general properties of diffu-
AAG. sive trajectories. Since in both cases exactly the same can-

(4) Subtle details of disorder averaging do not play anycelation occurs in both limits of high and low temperatures,
significant role in the problem in question and can merelywe conclude that the issue of the Hikami boxes raised in Ref.
influence some numerical prefactors of order one. As it wad3 is completely unimportant for this cancelation.
demonstrated above without makiagy approximation, no We can also add that the averaging procedure employed
exact cancelation of the first order diagrams occurs even dty AAG is efficient within the perturbation theory while our
T=0. The “noncanceled'T-independent terms describe not procedure is developed to average the nonperturbative results
only renormalization due to interaction but also contribute toobtained within the path integral technique. The perturbative
dephasing. These conclusions are general and hold both beesults obtained within both methods are essentially the same
fore and after averaging. in 2D (see Sec. lll¢and practically the same in 1D apart

(107)

Combining our Egs(82) and (104 in the same limitT
<1 we obtain

5— v+ O(Tm) |, (109
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from some unimportant details. Both procedures yield non- Ag[ tanhexp( — f4[ coth]).
zero “dephasing” terms even dt=0.

We conclude that our nonperturbative anal§siffers At high temperatures the functidiy decays on a short time
from a perturbative orfé in several important aspects. How- scale. For such times the effect of the interactisated to
ever, the issue of disorder averaging emphasized in Ref. 13 iganh” ) on the pre-exponent is negligible. In this case the

not important at all. nonperturbative analysis of AAK appliésAt low tempera-
tures the interaction effect on both the exponent and the pre-
V. CONCLUDING REMARKS exponent becomes of order one on the same time seaie
Since the effective cutoff in the integré) is determined by
Let us briefly summarize our main observations. the functionf 4(t) in the exponent, “tanh” can be neglected

(1) We explicitly demonstrated that the perturbation again. We arrive at our nonperturbative resfil&nally, in
theory in the interaction is principally insufficient in the the |imit T4<7, for the relevant time$= r; one hasf4(t)
problem of electron dephasing in disordered conductors. The1 and, hence, exp(f4 coth))=1—fcoth]. Performing
decoherence time, cannot be extracted even from a correct gisg g short time expansion 8§[tanh we obtain the com-
perturbative calculation unless omssumesome particular  pination “coth-tanh” in the first order and reproduce the

form of the decay of correlations in time. However, this form AoaG's perturbative result$® These observations conclude
should be calculated rather than assumed. This task can Bgy analysis.

accomplished only by means of a nonperturbative calcula-
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the weak localization correction in the limit of strong mag-

netic fieldsty<7,. The zero temperature dephasing timie

drops out of this correction in the first order due to the exact Here we will compare the expressions for the weak local-

cancelation of the linear in tim&independent contributions ization correction to the conductivity in the presence of in-

from the exponent eXp-f4(t)] and the pre-exponemy(t). teraction obtained by means of our path integral techflique
(4) Nonlinear in timeT-independent contributions do not and within the diagrammatic approach of AAG. We will

cancel out already in the first order of the perturbationdemonstrate that both results are identical if analyzed on a

theory. In general these terms not only account for the renomperturbative level before disorder averaging.

malization effects but also contribute to dephasing at all tem- We proceed in two steps. We first transform the rédult

peratures including =0. for the conductance and demonstrate that by virtue of the
(5) We demonstrated that there exists a close formal simicausality principle one can completely remove the terms of

larity between the problem of electron dephasing in disorthe typeGRGAGRG* emphasized by AAG. We will arrive at

dered conductors and the exactly solvable Caldeira-Leggethe Egs.(A11),(A12) which are exactly equivalent to the

model for a particle interacting with a bath of harmonic os-result’® Our second step is to expand our expression for the

cillators. This part of our analysis is presented in AppendixconductancegA15),(A16) in the interaction terms$Sg+S; .

E. This will lead us to the Eq(A23) which is identical to Eq.
Our analysis allows to establish a simple correspondenceA12).

between the results of Refs. 2, 6, and 13. The effect of the We start from reproducing the expression for the correc-

interaction in the expression for the magnetoconducté@ce tion to the conductivity due to electron-electron interaction

is described by the function obtained in Ref. 13

APPENDIX A
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For simplicity we keep the same notations as in Ref. 13expression together with the differenpB5,(e— w) — G5y(e
GR® are the retardedadvanceyl Green functions for non- — w)]. This combination is just the Keldysh function
interacting electrons and R are photon propagators. The
coordinate dependence of the propagators is indicated by the €
subscripts, e.gG(€)=GR(e,ry,r,). Note that in Eq(A1) GK(G,rl,rz)ztanhZ—T[GR(e,rl,r2)—GA(e,r1,r2)]
only the contribution of the two self-energy diagrapfsgs.
2(a),2(b) was reproduced, while the remaining contribution € 1 1
from the vertex diagrams of Figs(@,2(d) which contains =tanhz—_|_ —— — .
the terms with twow-dependent Green functions is denoted etp—H+I0 etp—H-I0
by an ellipsis. We will not consider them in this appendix for (A2)
the sake of simplicity.

We observe that the factor tark{w)/2T enters in this  This function can also be rewritten as

W, (r) ¥y (rp)

GK(e,rqy,r)= tanhz— >

1
€— 5)\+I0 6_§)\_IO:|
1 1
e— & +i0 e—§,—i0

= (—2mi)
A

W\ (r) ¥ (rp)

tanhzg—_)i_)

=f dr'[GR(e,ry,r') = GAle,ry,r)ILa(r =) = 2p(r',r5)], (A3)

tanhzg_-)l\-) Se— &)W\ (r) ¥ (rp)= ;

whereé, , ¥, are respectively the eigenvalues and the eigenand from Eq.(A3) we get

functions of the Hamiltoniamd — u; p(r’,r,) is the equilib-

rium single electron density matrix?;»= 1 exp (H—w)/T] GK(t,fl,fz)Zf dr'[GR(Lr,. 1) — GAL )]
+1}. In a similar manner one obtains

X[8(r" —ra)=2p(r',r5)]

d €

—tan [GR(e,ry,ry)—GA(e,ry,r5)]

de hz_T =—ij dr'U(t,rq,r")[8(r" —ry)—2p(r',ry)].
_ ,(?p(l'l,r,) R ’ A '
=2 | dr T[G (e,r',r5) =G (e,r',ry)]. (A7)

(A4) Analogously we obtain

We also introduce the evolution operatdl(t)=exy —i(H
—m)t] which is defined both for positive and negative times.
The functionsGR and G* are related to this operator by

d € R A
&tanhZ—T [G"(e,rq,r2) —G™(€,rq,r)]

means of the following equations: j T(t—t )
=
GR(t,ry,r)=—i0(1)U(t,r{,r,); smf[wT(t—t )]
X Ry4r _ Ay
At = 00Ut (AS) (e et )]
Now let us write down the two equivalent forms of the =f+xdt’L_t)U(t’,rl,r2) (A8)
Keldysh Green function in the real time representation. We - SinaT(t—t")]
find from Eq.(A2):
and
GK(t,r1,1) f“cdt’ T 6R(t ) p(ra.r)
’ 1 = - - _ ’ ’ r ,r
VLT sinH A T(t—t)] 12 2f dr'%[cﬁ(e,r',rz)—GA(e,r',rz)]
—GA(t!,ry,r )
( ' 2)] rap(rl'r) R ' A '
o - =2 [ dr T[G (t,r',ra) =G2(t,r',ry)]
=—f dt' ——————U(t",ry,1y),
- sSinH#T(t—t")]
(A6) =—2i jd U(t r',ry). (A9)
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It is easy to observe that Eq#\6),(A8) contain the integral

over time which does not enter Eq&7),(A9). It is this f dwLR(0)G(e~w)=0,
additional time integration that leads to violation of the nor-

mal time ordering at the level of the perturbation theory and A A A A

is responsible for the appearance of the diagrams f deGy(€)Ga3(€) Gy €~ @) Gyy(€) =0,
GRGAGRGA. The interpretation of such diagrams in terms of
the path integral is not possible. However, if one uses the
other form of the same functior{#\7),(A9) the normal time
ordering is automatically restored, the combinations

J' doLANw)GR(e—w)=0,

GRGAGRG* disappear due to the causality principle and the J R R R, __ R\
path integral interpretation of the remaining terms of the per- deGrA€)Ga €)Ca €~ )Cay(€)=0. (AL0)
turbation theory can be made. Consider, e.g., the integrafldo£R(w)G*(e—w). Since

We emphasize that all the above transformations are exaght functions. R(w) and GA(e— w) are regular in the up-
and have the advantage that in the final expressions only thesr half-plane, the integral vanishes. Alternatively, we can
propagators depend on the frequenaieand o [except for  write [dwlR(w)GA(e—w)=fdtexpiet)LR(t)GA(t) and
the factor coth@/2T) in da,g]. This allows one to use the note that£ R(t)=0 for t<0 due to the causality principle,
analytical properties of the propagators related to the causalvhile GA(t)=0 for t>0 and the integral is identically equal
ity principle. Namely,GR(e) and £R(w) have no singulari- to zero. Analogously one can prove all the other identities
ties in the upper half-plane, whil&”(e) and £LA(w) are  (A10).
analytic functions in the lower half-plane. Making use of  The corrections to the conductivity can now be consider-
these properties one can easily prove the identities ably simplified:

5U'aB: -

i drldrzdr3dr4dr5 do de w
ZJ #J Ezcotrﬁ[ﬁa(w)—ﬁg(w)]

N Ips2|~ N dps2|-
X174 Gis(e) {9—5}15693(6)6’;4(6—w)GZ\l(e)ﬂa Giy(e) Tﬂjﬂegg(e)ea(e—w)fol(eH o tacB
i drldrzdr3dl’4dl’5dl’6 dow de ~ (?psz,_\
- Zf Y 5517 G WjﬁG’éa( €)Ghd €~ w)(1—2p)sChy(€) L 54 @)
N Ips2:
+],Ghs(€) &—:ZJBG% €)Ghe— w)(1—2p) Gy €) L w)+ - - - + aHB]- (A11)

We observe that the terms of the tyRgS ()] sG55(€) Gy e — ) G4y(€) do not enter the expressi¢A1l) at all. For later
purposes it will be useful to rewrite the above expression in the form of the time integral

e? [ drydr,dradr,drs [+= ty ts
g [ [ [ [l

N Ips2:
XV iV 15(t1)ﬁl pUsd(ta)[1aa(ta—ta)Ug(to—t3) U 4p(t —to)

N Ips2.
+JaUI5(t1)WJ pU23(t3)[ I3a(to—t3)Ugs(ty—t3) JUg(ty —tp) + - - - + aHﬁ]

ie? [ drydr,dradr,drsdrg [+ t t
_ le” [ dr,dradrsar,drs 6J' dtlJ' 1dt2f zdt3
4 1% 0 0 0

X

N Ips2:
—JoY 15(t1)a_:21 pU2d(ta)[Raa(tr—t3)Ugge(ta—t3) (1= 2p)6alUp(t1 —t)

- Ips2:
+JaUI5(t1)O—,_:ZJ pU2a(ta)[Raa(ta—t3)Usg(ta—t3) (1= 2p)ga]Usa(ty —tp) +- - - + OU—’,B] : (A12)
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where e?
5 o= 3_m dt J drlldrIZ(Vrl Vr2f)|rlf—r2f
R(t I’)=J dwd’k 47 R ) |
(2m)* kK2e(w,K) XI(E, 5T e, Fop s Tai o F2) (P —T2i) po(Fai,Tai)-
1 (A15)
=— ?E R(t,r) The kerneld is given by the path integral over electron co-

ordinates and momentumg(t),p,(t) andr,(t),p,(t) corre-
sponding, respectively, to the forward and backward parts of

—_ iﬁ A—t,r) (A13) the Keldysh contour. The explicit expression for this kernel
e? nh read$
dwdk 4 N(ARETHPTH T Y
w — a1 w . .
I(t,r =f Im cotl-(—)e""”"‘r ra(ty=r rp(t)=r
0= oy (kze(w,k)) 2T :f ' H’Drlfz 2fmzf Dplf Dp,
5 r(t")=rq; ro(t")=ry
1 dwd>k 1) . .
- Wcot?‘(ﬁ) X expliSolr1,pu] ~1So[12.]
e?i T _
R0 K)— LA o k) etk AL —iSR[r1,P1,12,P2] = S[r1.r21}, (A16)
X[L(w,K)— LY w,k)]e : (A14) where

Now we will demonstrate that E§A12) can be obtained p?
within the path integral formalism. The formal expression for Solr.p]= f t”( pr——-—-— U(r)), (A17)
the conductivity has the forfn 2m

e rt t
Srlr1,P1.12,P2]= Eﬁ,d'&ft,dtz(R[tl_tz-r1(t1)_f1(t2)]{1_2n[pl(t2),r1(t2)]}

—R[t;—t5,r5(ty) —ra(tp) H1—2n[pa(ty),ra(to) 1+ Rty —to,ry(ty) —ra(ty) {1 —2n[py(to),ro(to) I}
—R[t;—t5,r5(ty) —r(tx) H1—2n[py(ty),re(t2)1}) (A18)

and

S[r1.r]= f dty Attt ()~ () [+~ 1ot 1o 1)]

—I[ty—tp,ry(ty) —ra(ta) = Ity —tp,rp(ty) —ra(ta) I} (A19)

The functionsR(t,r) andlI(t,r) are defined in EQ4A13),(A14).

In order to obtain the perturbative res(#12) from the formally exact expressidi15) one needs to expand the kerdel
(A16) in iISg+S, . In the first order one obtains eight different terms. Again we will consider only the terms originating from
the self-energy diagrams of Figs(a22(b), i.e., the terms containin@®[t;—t,,r1(t1) —ri(t2)], Rlt1—1ts,ro(ty) —ra(ty) ],
I[[ty—ts,rq(ty) —re(ty)], andlI[t;—t,,ro(t;) —ro(ty)]. Four other terms which relate two different branches of the Keldysh
contour and contain both andr,, come from the vertex diagrams of FiggcR2(d). As was already discussed before these
terms determine only a part of the functiény(t) (31) and—although they do not vanish everTat 0—always yield only a
subleading contribution td4(t). Therefore we will not consider these terms here for the sake of simplicity.

The correction to the kerndldue to the termi[t;—t,,r{(t;) —r¢(t,)] has the form

e o ) t t3 r(t)= flf ro(t)=rp¢
O (L, ryg s T, Mpp)=—€7 | dtg| dt; Dry | Dpy | Dp;
t’ t’ ry(t")= f1| r2(t')=f2i

X I[tg—1ty,ry(tg) —ry(tp) JexpfiSe[ry,pa]—i1Solr2,po1}

=—e€ fdrgJ’ dr4j dth’ dtz Fof r2| t_t,)

XUy a(t=ta)l3a(tz—tr)Uss(tz—tr) Uy, (t2—t). (A20)
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Here we made use of a simple property of a path integral —t;,t—t,—t,,t—t;—ts; (iii) one introduces an additional
integration/dr, /) which is just averaging of the expression
Jr(t)z”prf DpF[t",r(t") Jexp(iSolT,pl} (A15) over the sample volume, an@/) one transforms the
f(t')=r, PHLE oLfP effective initial density matrix as

<\I’>\l| p|\If)\2> n(éx,)—n(éy,)

m fxl_fxz

=f driU(t=t"re, ) F(E7, U =6 r), (rii =20 po(rai T2 =1 2
Aiho

(A21)

which holds for an arbitrary functiof{ t”,r(t"”)]. Actually in

deriving Eq.(A20) the property(A21) was used twice be-

cause the function of two argumentHt,—t5,r (t,) =
—r4(t3)] enters under the integralA20). Already at this

stage one can observe the similarity between the expression after these transformations one can immediately observe
(A20) and the second term in the expressi@12). To es-  the equivalence of the results obtained by means of two
tablish the equivalence between these two expressions thgethod&*®on the level of the perturbation theory. The terms
following steps are in orderi) after substituting the result ayising from the real part of the acti@ can be transformed
(A20) into the expression for the conductivitA15) and  analogously, the only difference in this case is the presence
applying the current operator=(ie/m)(V, —V. ) one  of an additional factor (% 2p)s, related to the term 1
PUtS rit=Tryi=Tr,,l1;j=T1,l5=TIs5; (ii) one denotest—t’ —2n(p,r) in the expressiofiA18). Finally we get

XWy (1) WX (r2)

_iéap(rli,"m)

R (A22)

e3 [ drydr,dradr,drg [+ tt (2 | p dpis .
do=— _f —f dtlf dtzf dtz) — ——Usa(t1)]U5(ta)[ 1aa(ta—ta)Ugy(ta—t3) U (t —t5)
3 vV 0 0 0 m du

P 9p1s
m Jdu

ie3 [ drydr,dradr,drsdrg [+ [t P dpis .
- f dtlj dtzJ dts) — — —— Usy(t1)jUp5(ts) [ Raa(ta—t3) Uge(ta—t3)
6 1% 0 0 0 m du

+ Uda(t1)]Uoa(ta)[ 1 aa(ta—ta) Usa(to—ta) JU g(ty —to) + - - -

P Ipis

m Wng(tl)juzs(ts)[R34(t2_t3)U36(t2_t3)(1_2P)64]U41(t1_t2)+ e

(A23)

X(1-2p)ea]Uzs(ti—tp) +

In order to verify complete equivalence of Eq#12) and  Causality is violated in each of these diagrams if one consid-

(A23) one should(a) replace the operatoeﬁ/m by J“ (b) ers them separately. This is particularly clear from Figl) 3
adjust the factor 3 by observing that E4823) and (A12) which shows the classical paths corresponding to the second
are the corrections respectively to the scalar conductivity anfliagram of Fig. &) [see Fig. 1) of Ref. 13. According to
the conductivity tensofin the isotropic case one hasr  Ref. 13 itis this path configuration which was “mistreated”
= (6ot o+ 60,7)/3]; and (c) adjust another factor 2 in our analysisﬁ_. In Fig. 3(d) we observe that electrons move
having in mind symmetrisation of E§A12) with respectto  backward in time between the momerits and t;. Such
indices @ and 3. Also, one should keep in mind that the paths cannot appear within our path integral formalism, they
operator dp,5/du commutes with the evolution operator are forbidden by the causality principle. Hence, their “mis-
Us,. This completes the proof of equivalence of the resultdreatment” could not occur within our analysis either.
(A12) and(A23).

The difference between the diagrammatic representations
of the AAG’s perturbation theory and in our approach is APPENDIX B
illustrated in Fig. 3. We have demonstrated that the initial
diagram[Fig. 3(@)] can be expressed in two equivalent ways: In this Appendix we will present some details of the deri-
by means of the diagram of Fig(I8 or as a sum of the two vation of Egs.(56)—(61). Let us first consider the contribu-
diagrams of Fig. &). In the first case causality is explicitly tion of the self-energy diagrams of Figsiag2(b) and con-
maintained and an additional coordinate integration appeareglder only the terms in EqA12) which contain the function
together with the density matrix-12p. In the second case I(t,r), or coth@/2T). Substituting Eqs(53)—(55) into these
only the sum of the diagrams of Fig(c3 is meaningful. terms of Eq.(A12) we find
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e? ( dr,dr,dradr, (= t t
Som e | > —J wj dtlf ldtZJZdtg
Nag 2 1% 0 0 0

= itan ah (r)F (r)e U] g (o) ff (rg)elénts
2| dg,, o [Tathn, (T ¥R, (12 11 gt (12) Py (F3) €22
><[I(t2—t3,r3—r4)1//)\3(r3)¢:3(r4)ei§A3(‘2t3)]¢//)\4(r4)z//;‘4(rl)ei§w(‘lt2)+a<—>ﬁ] +c.c. (B1)

This complicated expression can be rewritten in a simpler form if we introduce the matrix elements

IMhaihaha(t) = f drydrogl (1) g, (r)1 (411 =r2) YR (r2) i (1) (B2)

andjzlx2 (57). Then we get

e? ® [t t d 3
1" M4 1
Xcog — & ti+ & tat &) (ta—ta) + &, (t1—t)]. (B3)

Analogously, one can find the contribution of the remaining terms in (Bd2) containing the functionR(t,r) or
tanh§,/2T):

(j 24)\lj ;1>\z+ i 24)\1]' ’;1)\2) szxs:xamaz_ ts)

e? © 51 to d &
Sotanh SE_ _ fdtf dtf dts| —tanh—
Tap 4y >\12>\4 o Jo 2)o® déy, hZ_T

13
X tanhz_-rsSir[ — &6 bt E It () +§ (i~ 1)) ]. (B4)

Now we rewrite the functiong2s:*aha(t,—t5) and R*2*s:\sha(t,—t5) as follows:

|x2x3m3x4(t2_tg):fd_“’ ek 4w cothzﬁ<>\2|eik-r|>\3><>\3|e*ik'f|x4>cogw(t2—tg)] (B5)
27 (27)% | K2€e(w,K) T ’
do d3k 4 . . .
RM2Aaihaha(t, —t =J——— Aol €T INg) (N gle kTN e el te), B6)
(12— t3) 27 (2m)3 k2E(w’k)< 2| € INg)(Ns] I\a) (

Now let us express the kernBl(B6) in terms of the imagi- RMMaihsha(t, —t,)
nary part of the inverse dielectric susceptibility. First we
write 1/e=1—(1—1/e). The function -1/e is regular in
the upper half-plane ofv and it tends to zero ifw— .
Therefore fort,>t5 one has

1
=3(ta—ts—=0)(Nof; (Nalr, m|>\3>r1|7\4>r2

— — | ik-r
27(27)3'”1 k%(w,k))o\z'e IN3)

do d3k ( —47
J’d_w(;_l)eiw(tz—t:;):() ) .
27\ e(w,k) - X (Ngle KT \)siMo(t,—tg)]. (B7)

Since in the integralB4) the timet, indeed exceeds;, we
can replacee™'“(2713) py e '@(tl2~ts) _gle(t2"1) jn the inte-  The correction to the conductivity due to the self-energy dia-
gral (B6). Then we arrive at the following result: grams can now be written as
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@2 [+ d & pressions we immediately arrive at the final result for the
Sobs= 005, o f dtl ( tanhz—l) first order correction to the conductivity from self-energy
2VJo T | déy diagrams of Figs. @),2(b) and Eqs.(56),(59).
3 The conductivity correction from the vertex diagrams of
do dk Figs. 2c),2(d) is evaluated analogously. After a straightfor-
27 (2m)° ward algebra we obtain

NgN1: NN ANgN1: NN
X(J 41JB1 2+] 41 12)f

4m ik —ikr
X1m ok (Nl € TINg)(Ngle ™™ \y)

coth verL
o 3 [ [ o] g2y

o &,
X cothz—_I_thanhz—T

F(tl’wig)\l. . "f)%)’ (B8) X(] szsj Bl>\4+j22>\3j a1>\4)| }‘3}‘1;)‘4)‘2(122—113)
where 8o (59 is the correction due to the nonscreened Xcog — &, (ti—t3) — & tat & b
Coulomb interaction and the functiof is defined in Eqg.
(58). +é\,(ti—t2) ], (B9)

Now let us make use of the Drude approximation for the
dielectric susceptibility of a disordered metal

tanh verl_ _
N
e(w,k)=——.
—iw+DK?
. . . . . — tan (j*2"3] MM
In this case it is convenient to introduce the matrix elements dﬁx IE Ja

M*2rsihsha g5 defined in Eq(57). Combining the above ex-
+j 22’\31- ’;1’\4) RA3*1”‘4”2(t2—t3)tanh

A3
xﬁsﬂ — &, (i) = &\ ta+ &)t

+&,(ti—ta)] (B10)

Introducing again the matrix elementS7) and combining
Egs.(B9) and(B10) we arrive at the resuli60),(61).

APPENDIX C

In this appendix we will analyze the expressions for the
weak localization correction to the conductance obtained by
AAG in the limit 7y<7, perturbatively in the interaction.
This additional analysis is necessary because the final results
for the most interesting low-temperature linitry <1 were
not presented in Ref. 13. For the sake of definiteness we will
consider only the 1D case which is sufficient for our pur-

poses.
v AAG split the total expression for the weak localization
~__ G correction to the conductance into two terms
t, = Gt

Gk =

-
// G* = SonC= S ha+ So g (C1)
t
(d) where, according to Ref. 13, the first term describes dephas-

FIG. 3. The first order diagrams which contain the Keldysh!Nd While the second term accounts for the renormalization
function GK and tanhé— w)/2T. (a) Initial diagram.(b) GK is writ-  due to interaction and has nothing to do with dephasing.
ten in the form(A7). (c) GK is written in the form(A6). Two  Below we will demonstrate that such a separation of the
diagrams appear. The second diagra@RGAGRGA contains ~Weak localization correction into “dephasing” and “interac-
Hikami boxes. Here we have defind(t) = —iT/sinh(#Tt). (d) tion” terms is not possible even within the perturbation
The classical paths which correspond to the second diagram of Figheory employed by AAG.

3(c). Such paths violate causality and, hence, do not appear in the Let us consider the first term in EC1) which was de-
path integral. fined in Eqs.(4.5),(4.6) of Ref. 13 and has the form
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olepn="y (2m)? 2T e

) w
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C(Qw)[*C(Q+a,0)},
(C2

where the Cooperon and the diffuson are defined as follows:

X{[C(Q,01°C(Q+9q,w)—
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dQda 1 [, { C(~w,Q+q) }
(272D [ e T
[~ ©,Q) - C(0Q)]D(~ w,q)

+ZC(—w,Q+Q)C(0,Q)],

(w)= [ 2299976, Qraic0Q)
Clw,q)=— ; , D(w,q)= —————. ? (2m?2Dg?dq ~
—iw+Dg°+ 1ty —iw+Dq
(ox)
_ : dQdq
The integrals oveQ and g in Eq. (C2) can be evaluated =J ——D(—w,9)C(—w,Q+q)C(0,Q),
exactly and we find (2m)?
SoMAG_ o 7',%' do o) dQdqQ
JaephTomy2 D ) 2m o )= | —= S P(-0.0)00Q-a)C(~0,Q),
2T sink? == (2m)?
2T
w7y dQdq
X - 2 _
2V1l+iomy(Vi+iory—1)2 I5(w) (2m )2D( ®,q)C(~w,Q),
1 1) 4
- 41 2 2 dQd
1+|(1)7'H 1 2 (|(1)7'H)2 lﬁ(w): (2Q )qung(—w,q)C(—w,Q) (07)
ar
(V1ltiory—1)?
s e T (c4)
2lory)ViltioTy These integrals can also be evaluated exactly and we ar-

rive at the following results:

Making use of this equation we get

503@5‘; [ 1+¢(1/2) \/ ) l1(w)=
5 ¢(3/2) [D?my
+§ T 27T )’ Trw>1, (@)=
2 eZ 77_4
Sohs=— o %DTH(TTH)A', Try<l. (CH)

In the limit T7y> 1 the expressiofC5) practically coincides
with the analogous expression obtained in Ref[d46e Eq.
(4.11) of that papef with the only difference in a numerical
coefficient in front of the last term in the first equati@®5)
(5/8 in our calculation and 1/2 in Ref. 13n the opposite l4(w)=
limit Try<<1 the expressiofiC2) was not evaluated by AAG
at all.

Now let us consider the second contributi@l) which
was denoted by AAG as a cross term of weak localizatior s(@
and interaction. According to Ref. 13 this term has the fol-
lowing structuregsee Eq.(5.23 of that papef

lo(w)=
SoCWL=

[11(w)+215(w)

o[ 5 g et

—4l3(w) +4l () +1s(w)+8lg(w)], (C6)

l3(w)=

Tﬁ Vitiory—1

4D (om) P it ian
2—VJVl+iwT ,
4D (ioty)? ( e V1 +Iw7'H)
_ﬁ 1 _ 1tien-1
8D\ \ioryVltiory ieomgltiory ,
TH Vitiory—1 \/:H'inH_l 1
D\ (iwry)? 2iiwry)¥?  2iomy))’

2
TH 1
" 8D lwrg(l+iwry) ¥

7'2 1

32D (|(UTH)3/2\ 1+|U)’TH

(C8)

Let us compare these exact expressions with those ob-

tained in Ref. 13. Unfortunately AAG calculated the inte-
where the terms in the square brackets are defined in Eggrals approximately only in the limit of high frequencies

(5.25 of Ref. 13:

wty>1. In this limit they found
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G 72 1 1 l¢ diverges as AT for low T. Note, that in the high fre-
1777 (w)= 4D\ 7 32 K guency limit(C9) all the integrals show the same asymptotic
(lomy) (lomy) behavior, and one could naively conclude that all these inte-
2 grals are of the same origin. In reality, however, ofdypart
|/2\AG( w)= TH 1 T 2 ) of) the integrall  can be interpreted as the effect of interac-
4D (i wTH)3/2 (iwry)? ' tion on the weak localization, while all other terms actually
contribute to dephasing, at least for not very high tempera-
2 1 1 turesTry=<1.
AAG H . . . . .
157 (w)= D\ 5 5 2) , Let us split the functiorig (C8) into two terms which give
2iwTy) AioTy) respectively divergent and convergent contributions to the
5 integral ofl¢(w) over w at low frequencies
|AAG( ()~ H i3 ) '
8D (inH)SIZ z(inH)Z ! ()= TH 1 _ TI2-| Vitiory—1
) “T3D (0m 3D (iwn) B Ttiwn,
|AAG( ()~ w1 ’ (C10
° 8D (iwry)? We will now treat only the firstdivergenj term in this equa-
tion, while the secong@convergentterm will be added to the
ARG ()= T_ﬁ 1 9 icn;ﬁ'?r?gﬁlié'n: .. ,Is. The divergent term yields the following
° 64D (iwry)?’ '
In order to find a numerical coefficient in front of the term 0 | fd_w i i ® ST_ﬁ 1
~1/(iw7y)? in the expression fol4"® (C9) we exactly TewLmo 5 27| dw | © "7 1830 (lwmy)3?

evaluated the integral

e? D [3¢(3/2))\ €?
J yexp(—x-y) :‘z‘\/m(—z )mDTH

dxdydz ==
0 (y+2z)Vxy+xz+tyz 2 1 Sou
[see Eq.(5.250 of Ref. 13 which was not calculated by = 00c(M—m, (€11

AAG.
The high frequency asymptotics of the functionsWhere
l4, 15, I3, 14, andl5 coincide with the result$C9), while )
the asymptotic results fdrg derived from the exact expres- __ & D (34(3/2)
. : > do¢(T) (C12
sions(C9) in the limit w r;>1 takes the form T V27T 2

2 is the interaction correction to the conductivity and

()= e
sl w 2% - 5" 2
(IwTH) 50’W|_:_e_\/DTH (C].B)
We observe a difference in the numerical prefactor in the ™
exact expression and in the tetgf'® (C9) found in Ref. 13. s the weak localization correction. Within the validity range
A much more important problem is, however, not in this of the perturbation theory in the interaction, E§11) is
numerical discrepancy, but rather in the fact that AAG evaluvalid in the whole temperature interval froffiry<1 to
ated the integrals only in the limié7;>1 and did not study Tr,>1. The physical origin of the correctidi€11) is quite
the behavior of the integral7) at lower frequencie® 7y transparent. Indeed, the interaction tef@12) contains the
=<1 at all. Note that the low frequency behavior of thesephoton propagatof R=1/c. If one replaces the total conduc-
integrals is crucially important because it determines the detivity by the sum of the Drude conductivity and the weak
pendence of the weak localization correctionmpat suffi-  |ocalization correction, one will immediately observe that in
ciently low temperature3 ry=<1. [Let us remind the reader the first order indoy,, the interaction correction will be
that here we are discussing only the limit of strong magnetigransformed a$oc— doc(1— dow, /o). Thus we arrive at
fields'® 7,< 7, beyond which any perturbativén the inter-  Eq. (C11).
action calculation of the weak localization correction is  This simple consideration clarifies the origin of the cor-
meaningless. Clearly, in this limit the conditidnry<1 is  rection (C11). It can be interpreted as the effect of weak
compatible with the conditioi 7,>1.] localization on the interaction correction. The same conclu-
It is easy to observe from E(C8) that at low frequencies sion follows if one considers the diagrams contributing to the
the integrald;, I3, 14, |5 behave as<1/\iw7y, the integral  integrallg. They are just the diagrams which yield the inter-
I, tends to a constant at— 0, while the integral ¢ behaves action correction multiplied by the weak localization correc-
aslgx1/(iwy) %2 This implies that the contribution of the tion to the photon propagator. In other words, the contribu-
integralsl, ... |5 to the conductivity correctiofiC6) does tion (C11) originates from the second term in the right-hand
not diverge as temperature goes to zero but stays finite faside of Eq.(5.22 in Ref. 13, while all the remaining contri-
any finite 7y even atT=0. The contribution of the integral butions come from the first term, i.e., from the unrenormal-



PRB 62 INTERACTIONS AND WEAK LOCALIZATION: ... 14 089

ized photon propagator. Collecting all these contributions weer of convention whether to include this term into the per-
express the final restftfor sopm: (C6) as a sum of two turbative weak localization or interaction corrections. The

terms second term in EqC17) is represented as a series expansion
in powers of\Tr, it describes dephasing and remains finite
Sowi = docw + 807, (C14  even atT=0. We emphasize again that in the linitr,
. ) . <1 the leading “dephasing-type” contribution to the pertur-
wheredocw is defined in Eq(C11) and bative weak localization correction comes frafa2y: and
2 e?( 3 not from the “dephasing” terr? sa445 which only contrib-
;J—[EDTHJFO(DTH\/T_TH)]. Try<l, utes to the higher order ternis-(Tr4)*] of the expansion
S0 7= ! of 6oty® in powers of Tr, [see Eq.(C5)]. Terms of the
3¢ [ D {35(3/2)> e’ \Dy Trus1 same order are also contained in the expressiobdg)y: .
27 VN2aT\ 2 |7 o @ ' H Thus the splitting(C1) is not justified also in the limifl 74
(C1H <.
can be derived from EqC6) combined with Eq(C8).
We observe that fof ;<1 the contribution proportional APPENDIX D

to 7, dominates and determines the behawor&of?? as a As was already pointed out, the authors of several recent
function of 7y . This contributioncannotbe interpreted as an paper&®-1arrived at conclusions different from ofiréand,
interaction correction since it growster than /7, with moreover, argued that our approfahnot correct. On top of
increasingry, . For quasi-1D systems all contributions to the the standard argumenthich have been already discussed
conductance growing faster thafr should be interpreted in the bulk of this paperthe author® " suggested various
as dephasingterms (see also our discussion in Sec).ll additional reasons which could invalidate our analysis. In
Thus—although the correct and complete description of thgjew of that we feel it will be appropriate to address the
interaction-induced decoherence cannot be obtained from th@guments presented in the above papers. We believe that
perturbation theory in the interaction—the conclusion abouthis appendix can be useful for the reader who would like to
the existence of temperature-independent dephasing in disofgllow the details of the discussion around the problem of
dered conductors at loW (determined by the range of fre- quantum decoherence at low temperatures.
guencies w>T) follows already from the perturbative Cohen and Imry® (Cl) proceeded within the Feynman-
calculation:® This is in contrast with the qualitative argu- vernon influence functional formalism and found that the
ments about the absence of zero-temperature dephasing pigterference of any pair of time reversed paths is suppressed
sented in the same paper. due to interaction with an effective environment everiat

It also follows from the above consideration that the sug-=0. This resulfEq. (12) of Ref. 15 implies a nonzero de-
gested by AAG Spllttlng of the weak localization correction coherence rate &=0 and is consistent with our res&“’g
into two terms(C1) can hardly be justified in both limits as well with the results of other auth&s° obtained within
T7y>1 andTry<1 even within the framework of their per- the framework of the CL model. However, Cl argued that the
turbation calculatiod® Indeed, forTr,>1 the total expres- saddle-point approximation they used “cannot be trusted” at
sion for the weak localization correctiofogyy; derived by low temperatures, and tHeindependent contribution to the
AAG and defined here in Eq&C1), (C2), (C6), and(C7) can  dephasing rate “should be omitted.” ClI's arguments in favor
be expressed as a series expansion T &/;: of this conclusion follow the line of reasoning according to

which a particle with the energy T cannot excite environ-
[ 1 mental modes with energies exceedihg
ﬁ - (C19 The arguments cannot be accepted. Indeed, if CI do not
trust the saddle-point approximation which gives nonzero

In this limit 50‘%?_ is vanishingly smal[it contributes only dephasing down tar=0, this could only imply that one
to the next after the subleading term in EG16) and can be should analyze the role of fluctuations around the saddle
safely disregardgd Moreover, forT7y>1 exactly the same points. The contribution of non-saddle-point paths may only
term ~5aé©v(ioc V7 /T (with a slightly different numerical yield further suppression of quantum coherence simply be-
prefactoy is contained in the expression f(ﬂaﬁéﬁ (C5.  cause the relevant saddle points provide(tbeal) minimum
Also due to this fact there are no reasons to distinguish théor the action. The imaginary part of the effective action is
term 60245 from the remaining contribution 8044 in the  Positive $>0 for all paths except for pairs of exactly equal
above limit. paths in which casg,=0. (The latter paths do not contribute

For Try~1 both terms in Eq(C1) are of the same order, to the dephasing rafeThus the saddle-point approximation

and therefore their separation is not possible. Finally, in thénay onlyunderestimatéhe dephasing rate.
limit Try<1 the result forsos® reads We can add that in our problem the applicability of the

saddle-point approximation cannot depend on temperature.
" This is particularly clear in the weak interaction limit. In this
[1+O0(T7)]. case the saddle-point paths are determined only by the “non-
(C17) interacting” parts of the action which do not depend on tem-
perature at all. The “interacting” contribution can then be
The origin of the termSo oy V74 /T (C11) was clarified treated perturbatively in the exponent and this is a com-
above. It does not describe dephasing and it is purely a mapletely legitimate procedure controlled by a small parameter

2 A2 2
P Y DTy
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2 42
e e 3D

Sa\C= s + ——
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1/pel <1 in the case of disordered metals. At sufficiently “the dependence. ,(T) is flattened out.” The comparison
high T this procedure yields the AAK resifitif one accepts between our results for, and the experimental findings of
the saddle-point approximation at high&rone should ac- the second Ref. 37 was carried out in Ref. 7. éxcellent
cept it also at lowefT: the saddle point paths are the sameagreement was revealed for all three samples studied in the
and the “interacting” contribution to the exponent may only second papet, see Fig. 3 of Ref. 7. Therefore, it remains
decrease with decreasifig The saddle point approximation unclear which of our results was meant by the autHdrsbe
which treats the interaction term perturbatively in the expodn disagreement with experimerits.

nent(and thus yields energy conservation on the saddle point Since this point was not clarified by IFS we can try to
paths is well known and was frequently used for the conjecture that they actually interpreted our concludtbat

35.36. (many channel conductors(described within the standard

Cl also mentioned the simple perturbative results which—Prude modej precludes the Thouless crossover into an insu-
according to them—yield zero decoherence ratda0.}® lating state as contradicting to a rapid growth of the wire
As it was already explained abow@) the problem is essen- resistance with decreasing temperature detected in Ref. 37
tially nonperturbative and no information about the dephasPelow T~1 K. If so, we can only point out that the above
ing time r,, can be extracted from perturbation theory in theconclusion does not contradict to the experimental data but
interaction(Sec. 1) and (i) at low temperatures the golden ©nly to their interpretation in terms of the Thouless crossover
rule approximation yields incorrect results even for perturba2dopted in Ref. 37. The wire conductivity can be represented
tive terms(Sec. IV B). Equations(14),(15) of Ref. 15 can be @S @ sum of the Drude term,, the interaction correction
obtained from the equation above Efi) of the same paper 9in(T) and the weak localization correctiafory, (T,H):
only within the golden rule approximatiqié5). Exact calcu-

lation leads to an additional terfsee Eqs(67) and (E19)] 1+ 60in(T) + Sow (T, H).
which survives even aT =0 and diverges at large times. )
Unfortunately this term is missing in E¢L4) of Ref. 15. Our analysi&® demonstrates that the last of these three terms

The same term is missing also in H@) of the paper by saturates at lowl, and this is in agreement with the obser-
Imry, Fukuyama, and SchwalFS).}” Again, their Egs. vations reported in the second Ref. 37. However the total
(1),(2) are obtained within the golden rule approximation.resistance may well keep increasing at even lowbecause
Since IFS allow for a general form of the interaction matrix Of the interaction termbo;(T). This scenario indeed pre-
elements, it should be legitimate to take ones, e.g., for théludes the “noninteracting” Thouless crossover, but not the
CL model and to substitute them into E(l) of Ref. 17.  Crossover into an insulating state due to interactierny. of
Then one would immediately arrive at the conclusion that nghe Coulomb blockade typeSince in Refs. 5,6 we did not
decoherence occurs in the CL modelTat 0. This conclu-  address the termo;,(T) at all, one can hardly argue about
sion contradicts the results obtained within the exactly solvany contradiction between our results and the experimental
able Caldeira-Leggett model. data®’

IFS also argued that dephasing cannot occuF-at0 in Finally let us turn to the paper by Vavilov and
equilibrium because “in that limit neither the electron nor Ambegaokar® These authors did not employ the “ortho-
the environment has any energy to exchange.” It is welldox” golden rule approximatioti*"*®but rather attempted
known, however, that the energy of a subsystamelectron to analyze the problem by means of a high temperature ex-
in our casg interacting with other subsysteffother elec- Pansion. They also presented a critical analysis of our faper
trons is not conservediue to interaction The energy ex- (see Appendix C of Ref. 26
change between different subsystems of a closed system is, VA questioned the validity of our procedure which
of course, possible even @t=0. In the presence of interac- amounts to deriving a dephasing timgonly from the terms
tion with any other quantum degrees of freedom an electrofi Our expression for the effective actfowhich dominate at
can be described only by the density mattiand is(obvi-  sufficiently long times. According to VA the dropped terms
ously) not in its noninteracting ground state. Therefore itMight be important at times~ 7, [where §(7,)~1] and
always has energy to exchange. The same is true for thdue to that the result fOT<p could be different from our®.
environment: it is well knowif that an imaginary part of the Even without making any calculation one can realize that the
dielectric susceptibility for a large system ¢moes not van-  contribution of these dropped terms, if important, could only
ish even atT=0, thus implying the possibility of energy make the dephasing timshorter than that found in our
exchange. The above argumEndisregards the interaction Paper? Indeed, if one assumes that taking all terms into ac-
term in the Hamiltonian, and this is again nothing but thecount one would obtain a longer dephasing timje- 7., one
golden rule approximatiofsee also Appendix B of Ref. 14 would immediately arrive at a contradiction with the fact
for further discussion of this poiptDue to interaction the (acknowledged by VAthat the dropped terms are unimpor-
ground-state energy of the total system is different fiam tant at times> 7, : at least at time$~ r(’P (and, hence, at
our case larger tharthe sum of energies of its noninteracting > 7,) these dropped terms should still be significant. Since
parts, and the energy exchange is always possible. this is not the case, by neglecting the above terms one actu-

IFS also pointed out that our restlfsare “in disagree- ally gets an upper bound far,. This is in contrast with the
ment with experiments” of Ref. 37. The experimental resultsVA’s claim that 7, is parametrically longer than that found
for the dephasing time, were reported only in onéthe  in our papef at low T.
second out of three papers under Ref. 37. In this experiment The analysis presented in Sec. Il A of this paper fully
it was found that at sufficiently lowl (below ~1-3 K)  confirms our previous resulfsAll terms of our effective
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actiorf were explicitly taken into account in E¢R3). Addi- Let us now come to the analysis of the calculatidSev-
tional terms in the exponehsee Eqs(28),(30)—(34)] indeed  eral comments are in order.
appear, buti) they lead to further suppression of quantum (1) Even if the perturbative calculatiolfsof the weak
coherence andi) for all timest= Ty they are small as com- localization correction in the high temperature limit were
pared to the leading order terms which we already considcorrect, the correct dephasing timg could not be extracted
ered beforé. from these calculations. The reason for that is exactly the
The problem with “unphysical divergences” discussed in Same as for the perturbative calculatidrihe T-independent
the beginning of Appendix C of Ref. 16 does not exist in Ourlinear in time _perturbative contributions Coming from the
analysis either. This can be observed already from the footl@ylor expansion of the exponent and the pre-exponent may
note 32 before Eq(76) of Ref. 6: the actual low frequency €xactly cancel each other in the first order. As it was ex-
cutoff in this equation is ab~ 1/t, see also Eq€46),(47) of pIa|'ned in Sep. Il the problem pf finding the dephasing time
Ref. 7. This cutoff is not imposed by hand, but rather follows T, iS essentially nonperturbative and, hence, the méfhod
from the fact that the integral oves in Eq. (76) of Ref. 6  Should fail already at the point where the exponent (peas-
and related formulas is just the long time approximation oftially) expanded in powers of the interaction.
the sum over discrete Fourier frequencigg=2mn/t. The (2) The perturbative analysfscannot simply be repeated
absence of any “unphysical divergences” in the exact exJor the situation considered by VA because t_he initredn-
pression(23) is also completely transparent. It is hard to Perturbed propagators depend on the classical part of the
understand why VA believe that our results cannot be Cc,m_fluc_tuatlng field. Th!s implies that the Fourier transformation
pared to those obtained within the Caldeira-Leggett model. AN time cannot easily be performed, and the whole calcula-
close similarity between both problems is obvious from ourtion should be redone from the very beginning.
analysis presented in Appendix E. (3) VA's _procgdure can easily be testgd with the aid of the
Another problem of VA with our analysis has to do with results derived in the present paper. Since the authass
the factor{ 1—2n(p,r)] which appears in the real pag of ~ Sume “'Fhat the electron-electron mterz_;lcnon is the o_nly
our effective actiorfsee Eq(A18)]. VA stated that in Ref.6 Mechanism of decoherence” and consider only the high-
we “neglected the time dependence of the momentum.temperature limit, in our formulas of Sec. lI-IV we can put
This is not true. The electron momentum changes its direcl/74=0 and keep only the term
tion after each scattering event, an this fact is explicitly taken
into account in Ref. 6 where the classical electron trajectories 4¢e? D
in a disordered potential were considered. No momentum fra(t)= 3 U—\[;Ttslz (D1)
conservation was imposed in our analysis, rather the electron !

energy conservation on these trajectories was used. This a the exponent of Eq(6) expanding this exponent to the
proximation is fully justified, since the saddle point paths ar€; st order in f,(t)—f1o(t). We also expand the pre-
a(t).

setermined by the "nonnaracing erme 1 1e fecive oo 'k e it order 1 e meractom, ()
9 ¥ ~ A1)+ AD(t), whereAL)(t)=1/(2y/Dt). This proce-

in the exponent. For these saddle point paths the fddtor dure should exactly correspond to the high temperature ex-

_uzitne(F():’lre)a]lr(?\I/’]hd n\?f(;)u) dgits tnomcgiz%nedr %%Sr?ﬁr']gigngoéfpansion of Ref. 16. Then for the weak localization correction
q y 99 (which we now denote a8da, ) we will obtain

time n[p(t)]. Such functions do not contribute to the expo-

nent at all. It is also not clear in which context the

observatiof® that for an odd function of time[p(t)] the e?\D [+=dt © e?\D [+=dt

real part of the actioi®y is of the same order & (taken at OwL= " "3 =& Ut K

. . . m 0 \/f w 0 \/f

T=0) could be important: there is no way how the td®g

can canceb; for real and nonzer&g andS, . The contribu-

tion of the trajectories with nonzer$; to the path integral X ( fo(t)—"fqi(t)—

may only be suppressed further due to the presence of the

oscillating term exp{iSg). o ) )
Trying to justify their arguments VA presented severalHere the first integral determines the “classical” part of the

equations[Egs. (C12—(C15) of Ref. 16 which are some- weak localization corre(;tion while Fhe second integrql gives

what reminiscent to ones obtained, e.g., in Sec. IV of thighe “quantum” correction. Both integrals can easily be

paper. For instance, the combination “cettanh” appears €valuated. Combining Eqs¢30), (83), and (109 [the last

in Eq. (C15 of Ref. 16 in a correct forni63) rather than in ~ equation allows to evaluate the terA{"(t)/A{”(t)] and

the form(62) used by some other authors. Unfortunately VA keeping only the leading corrections from the high-

did not evaluate their E{C15) but just concluded “we see temperature expansion we obtain

that the contribution of high frequencies is exponentially

AM(1)
AL (1)

) e fia(®, (D2)

suppressed.” In Sec. IVB we have demonstrated just the AW (1) (12 & D
opposite: the high frequency contribution is not exponen- fl(t)_flcl(t)_éTz—_\/:tﬁ- (D3)
tially suppressed even @t—0 and, moreover, it leads to the APy 2 oV

presence of diverging terms already in the first order in the

interaction[see Eq.(67)]. Exactly the same terms are con- As before, thel-independent linear in time terms contained
tained in Eq.(C15 of Ref. 16 and, hence, the above in fi(t) (30) and in A{P(t)/A{9(t) exactly cancel each
statemerif is explicitly incorrect. other. This cancellation illustrates again why the correct
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dephasing time at low as well as the leading order high- CL model. The validity range of various approximations is
temperature correction to the classical dephasing rate canndiscussed in the subsection 4.
be recovered by means of a high-temperature expansion for For reference purposes it is convenient to present here
the conductance. From Eq®1)-(D3) we find some exact results obtained for a quantum particle with co-

ordinate x interacting with an infinite bath of oscillatofs.
{(1/2) D The time evolution of the density matrix of such a particle is
AN defined by Eq(1) and the kernel is given by the following
(2m)32 T path integral:

(D4)

1/3

2640'1D
I(1/3)+

o= ( 97T

. ‘](taxlfIXZf!Xli 1X2i)
We conclude that the procedure developed by VA in Ref. 16
does not provide correct information about the interaction- [ *1f Xaf :
induced dephasing in disordered conductors. _f Dxl(t)LZi Dxa(t)expliSo[x.(1)]

X1i

—iSg[ Xo(1) ]IS X1 (1), Xo(t) ] = S[X1(1),X2(t) ]},
(ED

APPENDIX E: CALDEIRA-LEGGETT MODEL

As we have already discussed befdfe?1*the physical
nature of the interaction-induced decoherence can be under-

— (LAt (s ; ; ;
stood with the aid of a simple model of a quantum particleWhereSO[X]_fOdt (mx?/2) is the action of a free particle.

interacting with a bath of harmonic oscillatdfs?® By a The interaction part of the action has the form
proper choice of both the interaction term and the frequency
spectrum of the bath oscillators one can easily realize th [t 4 B
important limit of Ohmic dissipation and arrive at the %R[Xl’XZ]_ Odtl 0 dtz{r(ty ~ t2)Xe(t)Xy(t2)
Caldeira-LeggettCL) model®

An important advantage of this model is that the density —ar(ty—t2)Xa(t1)Xo(t2) + ap(ty—t2)
matrix and the expectation values of the quantum mechanical
operators can be calculated exactly. This enables one not XX (t1)Xa(t2) — ar(ta = t2)Xa(t1) X (t)}

only to avoid worries concerning the validity range of vari- 1 dw 2l(w)) [t
ous approximations, but also to test these approximations +51 | 5= f dt/[x5(t")—x3(t")],
. . 2 2T w 0
employed in some other models which cannot be solved ex-
actly. In particular, here we are interested in checking the (E2)
approximations which have led various

authord®11131517.18285 3 conclusion about the absence of . .

interaction-induced decoherence in disordered metal§ at sl[xl,xz]zf dtlf ldtz{al(tl_tz)xl(tl)xl(tZ)
=0, or to the conclusidf that the quantum correction to the 0 0

classical decoherence rate is small and decreases this rate
below its classical value. Since it is well known that the ot~ t)xa(t)Xo(tz) —a(ty = o)
off-diagonal elements of the particle density maiwi,x") X Xq1(t1)Xo(to) — a;(t1—to)Xa(t1) X1 (t2)}.
are suppressed due to interaction with the CL bath even at

T=0 in equilibrium(this effect is nothing but nonzero deco- (E3
herence af=0), it is interesting to test if it is possible to The k | d : by the int |
reproduce this result within the approximations employed in € Kernelsa, andag are given by the integrais
the above papers.

Also, it is sometimes speculated that the results derived [ de et
within the CL model cannot be compared to ones obtained aR(t) =~ J’ ﬁl(w)e ’ (E4)

for electrons in a disordered metal because of different sta-

tistics. One could conjecture that electrons in a disordered

metal should have zero de_coherence_rat@*ao predomi- a,(t)= f d_"’|(w)cothzﬂefiwt, (E5)

nantly due to the Pauli principle, while in the CL model 2w T

nonzero decoherence @t=0 is allowed because no exclu-

sion principle exists for bosons. The role of the Pauli prin-where [ (w) is the spectral density of the oscillators. This

ciple can also be clarified by performing a direct comparisorfunction can be arbitrary, but we will consider here only the

of the results obtained within the CL model with ones forcase of Ohmic dissipatioh(w)= 7w (w.—|w|), with w,

electrons in a disordered metal. being the high cutoff frequency. This spectrum is the most
On a perturbative level this program will be carried out inrelevant in view of comparison to the disordered metal. The

the subsection 1 of this appendix. In the subsection 2 we willast term in the actiorBg (E2) compensates potential renor-

discuss the relation between the exponent and the prenalization caused by the interaction and maintains the trans-

exponent for the CL model and illustrate the analogy bedational invariance of the system.

tween the results of this subsection and those of Sec. lll. We The kerneld (E1) can be found exactly as the integrals

will develop this comparison further in the subsection 3over the coordinates are Gaussian. One fisdg, e.g., Refs.

where we analyze the properties of the “Cooperon” in the8,9)
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Xt : 7 COX X e X — e X —x Xy
1X 7X 1X i 1X i)= ex
1 X2 1 R1j X2 2m(1l—e M) Y 1
= 7{91(DX 2+ 9o (X; =% )Z+ga(X (X¢ =% )}, (E6)
|
where the preceding sectigrand perform the time integration only

at the last stage of the calculation.
l1-e Let us consider the first order correction to the kerhel
27(Tlw,)’ due to the interaction. This correction is again given by the

. sum of the four diagrams of Fig. 2. The current operajqrs
t>w: ", (E7) are, however, not applied. Also the “photon propagators”
) are now different. Namely, instead of the functiét(t;
1t t ,(eVS— 1)G(s—s')(e” —1) —t4,r3—r,) one should substitute the functioag(ts
92(t)= Efodsfods (e"—1)2 ' —14)X3X4, While instead ofl (t3—t4,r;—r4) one should use
(E8) a(t3—t4)X3x, [see Eqs(E4),(E5)]. In contrast to the case
of an electron propagating in a disordered metal6)—
¢ ¢ G(s— S,)(eysf —1) (A19) the action in the exponent of E(E1) does not contain
g3(t):f dSJ ds’ ) (E9  the factor 1-2n(p,r). Therefore the operator-12p, related
o Jo (e”-1) to the Fermi statistics, does not appear in the perturbation
theory. The free particle states are labeled by its momentum,
therefore the indices; in the diagrams of Fig. 2 should be
o do © 1 aT 2 understﬁod aks th(;: k:nomentum \I/Ialues. A | "
G(t)zf s—wcoth-—e '“'=— —(—) . For the sake of brevity we will omit the general result for
02T o m\sini(# Ty the first order correctionsd® to the operatord which is
(E10 expressed in terms of the same functigb® and(61) with
gMHEp. Rather we immediately go over to the part of the

kernelJ describing the evolution of the diagonal elements of
Since in practically all cases the conclusion about the zerghe density matrix, which corresponds to the “diagonal” part
decoherence in the interacting systemsTat0 in equilib-  of the conductivity(64). This is sufficient for our illustration
rium was reached only within the first order perturbationpurposes. For the probability of the transition from the state
theory in the interaction, it is instructive to examine the with the momentung to the state with the momentupmafter
structure of the first order perturbative terms in the CLthe timet we find
model.
Let us expand the kernel of the evolution operdt) in (1) )
the interaction part of the actidSg+S, . In the zeroth order ~ 9Jppaa(t) = (Plx {Alx, O3 (tXar X1 Xar  X2i) [P)xy | A,
we get a simple result

—27Tt

1 [t t
gl(t)z—f dsf ds'G(s—s')=Tt+In
2Jo Jo

and

1. Perturbation theory

27500 [id? [ o2
= ~—w
Jo(t, X5, Xo , X1i ,X21) = U (t,X1¢,X3) U ™ (t,Xo6 ,Xai), "%ags ek | 2
(E11)
here U ip/2 is a f icl « [ coth +1 |10 (Ea™ B @)t]
wnere t,Xs, %) =(X:|exp(—i m)|X;) IS a free particle co
(t.x¢,%;) = (X¢|exp(=ip“t/2m) | x;) p hoT (EqEr_w)?

evolution operator. Investigating the transport properties of
disordered conductors one usually expresses the results in do o
terms of advanced and retarded Green functiGfs". In +277|qu|2] Z_w(COch_T_1>
order to emphasize the analogy with the CL model, we note ™

that the expressiofE11) can be rewritten as Xl—cos{(Ep— Eq—)t]

R A 2 ) (E13
‘JO(tIle7X2f1Xli 1X2i):G (t7le1Xli)G (_t1x2f1X2i)1 (Ep_Eq_w)
(E12
where  GR(t,x;,x)=—i60(t)U(t,x¢,x;), GA(t, ¢ ,X)) Wherexpk=(p|x|k> is the matrix element of the operater

=i6(—t)U(t,x;,x;). Comparing this expression to that for andE,= p2/2m=0 is the energy of the free particle with the
the conductivity of a disordered metéA15), we note that momentump.

the latter contains an additional time integraks fdtJy(t). Let us first evaluate the above expression within the stan-
This difference is not important though, in order to simplify dard golden rule approximation. As it was already discussed
the comparison of the corresponding perturbative results oni@ Sec. IV B, this approximation is equivalent to the replace-
can always keep the timefinite (exactly as it was done in  ment
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1-co§(Ep,— Eq— w)t] W o L [2m E, , [ do
A o mta(Ey—Eq ). (E14  Sppp()= 29\ oA — T EK Xpd* | 5@
(Ep—Eq— o)

w 1-co3(E,—Ey—w)t
coth2—+1 $(Ep— B o)t]
T (Ep—Ex—w)?

1 /2= , [ do
r2ni S bod? | oo
1-cod(Epy—Eq—w)t]

w
cothz—_l_ 1) (Ep—Eq—w)2

The first term in this expression, as well as in the expression
(E13), originates from the self-energy diagrafagand(b) in % exp( _ E) _ (E18
Fig. 2. This term describes the out-scattering rate. It is equal T
to the sum over all possible transitions from the initial state
to all finite statek. It is mostly important as far as dephasing
is concerned. The second term in E(S13),(E15 just gives
the transition rate from a given initial stagto a given final
statep. It comes from the vertex diagranis) and(d) in Fig.
2.

Now let us investigate the time evolution of the density f d_“’w
matrix provided the initial density matrix is just the equilib- 2
rium one for a free particle. In the momentum representation

Performing this replacement in E¢E13) we get «

Eq—Ex
SI (D)=~ ntapqg Xl 2(Eq— Ek)( coth—5=—+1

2 Ep—Eq
+7]t|qu| (Ep_Eq) COthT—l . (ElS) y

As was already done for the case of a disordered ni8t.
IVB), let us consider the first part of this expression deter-
mined by the self-energy diagrams of Figga)2(b) In the
zero-temperature limit we find

1-cod(Epy—o)t]

T—0 (Epk_w)z

w
cothz—_l_ +1

it has the form Ept . Epid fwc d_w(i_ |Epk|)
2 2 |Epk|277 ® 2
pd=¢ E\lz—wex;{ _p_z) X (1—coswt,) (E19
Pa TPAL NmT 2mT)’ 1

. o where we defined,,=E,—E,. We observe a close simi-
wherelL is the length of the system. Substituting all these|arity between the resultéE19) and (67). In both cases the
results into Eq.(1) we obtain the following expression for first two terms in the right hand side are the same as in the
the occupation probability of the stafewithin the golden  golden rule approximation, they cancel each othef a.
rule approximation In both cases the third term survives eveil &0, it is due to

guantum noise and originates only from the coth-part of the

1 (24 effective action. Moreover, we observe that the last terms in
5Pélp)(t)= RAAY ﬁz |Xpkl *(Ep—Ey) Egs. (67) and (E19 are exactlythe same, one should only
X identify the energy differencé;, in Eq. (67) with E in Eq.
E,—Ex Ep (E19. Thus we conclude that a&=0 the only difference
X cothT+ 1 ex;{ - —) between the two problems considered here lies in the matrix

elements of the interaction. Everything else is the same and,
1 [2# hence, we explicitly demonstrated that the Pauli principle
+ ﬂt[ m—E |qu|2(Ep_ Eg) cannot cause any important distinction between the problems
d in question aff=0. The above difference in the matrix ele-
E—E E ments results only in some quantitatively different features,
COth% - l) ex;{ - ?q) (E1®  such as, e.g., different functional dependences of the density
matrix on time, however, the decay of the off-diagonal ele-
We observe that the combination ments ofp (and thu; deco_heren)cis present in both models
at any temperature including= 0. In both cases at low tem-
peratures this decay cannot be correctly described within the
exp{—E (E17) golden rule approxim_ation. This approxir_nation fail_s com-
T pletely atT— 0. Dropping the cos term while evaluating the
result(E18 (this approximation is equivalent to one we dis-
appeared in the resulE16). It is very similar to the combi- cussed in the end of Sec. IV Bs clearly insufficient at low
nation (62) in the case of a disordered metal. Keeping intemperaturessee below.
mind the conditionE,>0, one can easily see that this com-  Finally, a close similarity between the perturbative results
bination again yields zero result dt=0, i.e., within the obtained here and in Sec. IV B demonstrates again that aver-
golden rule approximation relaxation processes are forbiddeaging over disorder is absolutely irrelevant for the issue of
in the zero-temperature limit. cancelation(or non-cancelationof the diagrams in the first
Now let us perturbatively find the occupation probabilitiesorder of the perturbation theory. In the CL model no such
without making the golden rule approximation. We get average exists at all, however,Tat 0 diagrams cancel or do

X

e Bk g
cot—T
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not cancel depending on whether to employ or not to employure of the actioflE1)—(E3) one easily observes that its real
the golden rule approximation. This property is completelypart can be represented in the form

general, and it does not depend on the form of the matrix

elements, Fermi or Bose statistics, averaging over disorder iSo[X11—iSo[Xo]—iSRr[X1,X,]=ix"Lx*, (E21)

and other details of the model. o ) .
while its imaginary part has a different structure:

2. Exponent and pre-exponent S,[xl,xz]zx’Ax*, (E22
As the structure of the first order result in the perturbation ) R

theory is clear from the above consideration one can try tovhereL and A are two different operators. The Gaussian

proceed further and calculate higher order terms. Then onigtegrals can be easily performed and we get

can try to sum up diagrams in all orders in order to recover

the nonperturbative result. This program appears to be quite J DX’J Pyt el Ixt—x A

involved from a technical point of view and, to the best of

our knowledge, was not yet carried out. Fortunately in the

case of the Caldeira-Leggett model one does not need to sum

up diagrams, the exact result can be obtained much easier,

just by performing several Gaussian integrations. In this way

one arrives at Eq3E6)—(E10 which are, of course, equiva- (E23

lent to thg result okxactsummation ofall diagrams of_ the  This relation proves that the pre-exponent&20) [or (E6)]
perturpatlon theory. The resule6) can be expressed in the s getermined solely by the real part of the actig and
following form: does not depend on its imaginary p&tat all.
Thus the above analysis allows for a clear distinction be-
)= 7 exdiR(D-T()], (E20 tween the two parts of the effective actidh:determines the

2m(l—e ) real part of the exponent(t) and governs the decay of the
off-diagonal elements of the density matthence, playing a
wherey= 5/m, the functionR=R(t,x; ,x;) does not depend crucial role for dephasing while Sz determines the time
on temperature, while the functidigt) is proportional to the ~dependence of the pre-exponent which is only relevant for
frequency integral of the combinatiascoth/2T) [see Eqgs. the kinematics of classical trajectories and has nothing to do
(E6)—(E10)] rather than the combinatiom[ coth@@/2T)+1]  With the issue of decoherence. In the first order perturbation
[see Eqs(E16)—(E19)]. theory the terms from the exponent and the pre-exponent mix
By looking at the above formulgor at Eq. (E6)] one  and partially cancel each other, thus making any clear dis-
immediately observes that this result cannot be simplyfinction between them impossible. This situation is fully
guessed from the first order perturbation theory, e.g., just b@nalogous to one encountered in the preceding sections for
exponentiating the first order results or by a similar procethe problem of electron dephasing in disordered conductors.
dure. As it was demonstrated above, the combination “coth Depending on the boundary conditioBg can also con-
+ 1" (E17) appears in the perturbation theory, while thetribute to the imaginary part of the exponeRt[see Eq.
time dependence of a real pa(t) of the exponentE20) [or (E6)]. However, thi;imaginary part does nqt determine the_
Eq. (E6)] is governed only by “coth” and not by “cotht decay of the off-diagonal elements and in no way can it
1.” This implies that in the course of the exact summation ofcancel(or contribute to the real part of the exponent(t)
all the diagrams terms combine in a nontrivial way, so thatdetermined exclusively b, . On top of that, for the bound-
“coth” gets split from “1,” this combination does not ap- ary conditions corresponding to the “Cooperon” this imagi-
pear in hlgher orders in the same form as in the first Ordehary part of the exponent Vani?hz 0. This particular case
result. From the exact resulE6)—(E10) one can immedi- will be considered below for illustration.
ately draw a conclusion omow “coth” gets split from “1":
all terms of the diagrammatic expansion containing “coth”
gather in the exponent. Moreovemly such terms contribute
to the real part of the exponeTY(EZO). In other words, since
“coth” is contained only in the imaginary part of the effec-
tive actionS; (E3), we conclude that the real part of the
exponentT (E20 [or Eq. (E6)] is determined only bS, . This means the path integrétl) is evaluated on the trajec-
This result could, of course, be expected in advance becaugeries with the time reversed boundary conditiong= X,
it is the imaginary part of the actioB, which should be =0x;=Xy;=x or, equivalently,x;" =x{ =x/2,x; = —x; =
responsible for the decay of the kerdelE6) in time. —X. Substituting these boundary conditions into EG6)
The real part of the actioBg (E2), in contrast, does not one easily finds
(and cannot contribute to the real part of the expondnt
Now we will demonstrate thaBg (and onlySg) contributes n
to the pre-exponential function in Eq&20),(E6). The pre- C(t.x)= mexr{— 791(1)
exponent is determined by the path integifal) with zero
boundary conditionsg;; = X,; = X1 =X,;=0. From the struc- +4g,(t) —2g5(t)}x2]. (E25

1 7
detl 2m(1—e )

= f Dx~8(LTx e X A =

3. “Cooperon” in the Caldeira-Leggett model

Let us define the “Cooperon” configuration as

C(t,x)=J(t,x,0;0x%). (E29
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This is the exact result. In the long time limjit>1 we frames of the perturbation theory only, and an additional
obtain assumption about the decay of the Cooperon in time should
necessarily be made. For instance, AAG assumed that the

C= 1 o 02 (t)th+|n1_972WTt Cooperon decay is purely exponenti@(t)=Cy(t)e "¢
2m S 2m(Tlwe) [see, e.g., Eq$2.45 and(3.2) of Ref. 13. Assuming such a
(E26)  form here and combining it with the perturbative result

This expression decays in time, and the analog of the dephagE3l)’ we find

ing time (which we will also denote as, herg can be de-

fined from the equation 1 o%ed) 7 (E32
hert 7 t 2
791(7)X*~1. (E27) ¢

L . omparing this equation with EE27) which follows from
We observe that this time is determined only by the exponeqﬁe er(actgresuI(E%S) we observg th7()a presence of an addi-

of Eq. (E25). . _ ; . L
Let us now expand separately the combination 0ft|onal term — »/27 in Eqg. (E32. This term originates from

g-functions in the exponent and the pre-exponent in the exac;Te expansion of the pre-exponent and has nothing to do with

. . ) . ephasing. However, it is not small and can strongly influ-
result(E23 to the first order in the interaction parameter ence the result for,, provided the latter is determined from

each. We get the perturbative expansioft31). Depending on the choice
m 7 of x one can obtain positive, almost zero and even negative
C(t,x)= ?4— E) exd — ngpen(t)xz], (E28)  values of the dephasing timisee Sec. )| which is an obvi-

ous nonsense. This simple example demonstrates again that
where it is impossible to make any conclusion about the long time
behavior of the systertand, hence, about the dephasing time

1t ) ss  s+¢’ ) 7,) from the first order expansion in the interaction, since
Gperd V=5 Ods ds 1+4t_2_2 {|C(s—s ) the latter is valid in the short time limit only.
[ (IN(wt)+y—1)/m, Tt<1, (E29 4. Other approximations
| Tw3, Tt=1. Let us check some other approximations which are some-

times employed in the literature. A deficiency of the golden
rule approximation applied within the perturbation theory
has already been illustrated above. In certain situations one
proceeds beyond the perturbation theory, correctly get
“coth” in the exponent, and only then apply the golden rule
approximation. Also in this case the true low-temperature
behavior will be missing completely. In order to observe this
property let us evaluate the functian(t) (E7) within the
golden rule approximatiofE14). Extending the integral over
79perl r¢)x2~1, (E30) s—s’_ in (E7) to ir_1finite limits and _performing_ this_ integra-
tion first we obtain the delta-functiod(w). This is just the

the result will differ from the exact one only by a numerical golden rule approximation, see EdF14). After that the re-
factor of order one which anyway can be absorbed in thenaining integrals trivially yield
definition of 7,. As before[see Eq.(E27)] the dephasing
time extracted from this equation will depend only on the g.(t)=Tt,
exponent(i.e., onS;), while the pre-exponent in EE28
(defined bySg) must be ignored again.

Now let us expand the whole expressi@®5) in powers
of n. The first order correction for the Cooperon has the
form

The functiong,e is just the imaginary part of the action
S,(t) (EJ) evaluated on the two time reversed patkg:s)
=xs/t and x,(s")=x(t—s')/t. These are the saddle point
paths for the noninteracting part of the actign Comparing
the functionsgpe (E29 and g,(t) (E26) we observe that
with a sufficient accuracy one hasg.{t)=g,(t) for Tt<1
andgpet)=g4(t)/3 for Tt>1. Hence, if the dephasing time
7, i determined from the perturbative res(#28) as

i.e., only the first term in Eq(E7) [or (E26)] is reproduced,
while the second term is missing. After that one could incor-
rectly conclude that no quantum decoherence occurs in the
CL model atT=0. An obvious mistake here is to extend the
integral overs—s' to infinite limits. An exact calculation of
the function g4,(t) allows us to recover both the zero-
, (E3D frequency contributiot as well as an additional terfisee
Eq. (E26)] which originates from frequencies>T and does
whereCy(t)=m/2xt is the Cooperon in the absence of the not vanish aff=0.
interaction defined, e.g., by EGE12). Equation(E31) is The above approximation was applied, e.g., in a recent
nothing but the short time expansion of the exact result bepaper by LevinsoR® In this paper a transparent formulation
cause the interaction parameterlways enters into this re- of the problem of quantum decoherence in quantum dots is
sult being multiplied byt. This expansion is fully equivalent derived. Within this formulation Levinson arrived at the re-
to the perturbation theory in the interaction in the weak lo-sult for the equilibrium dephasing rate which contains only
calization theory. “coth,” while “tanh” or “1” do not appear in the exponent
As it was already discussed in Sec. I, it is impossible toat all [see Eqs(4), (5), (7), and(14) of Ref. 33. It is inter-
unambiguously define the dephasing timg within the  esting that a nonzero dephasing ratd at0 is contained in

nt
2

0C4(t,x)=Co(t,x) om- 7lgperl(t)x2
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these formulas before the golden rule approximation is madeure behavior by means of a high-temperature expansion. For

In order to see that it is sufficient to combine E¢S), (7), instance, the terms exp(—2#Tt) cannot be recovered in any

and(14) of Ref. 33, substitute them into E(4) of the same order in 17t.

paper and perform the time integration. A finite result for the  Finally, let us briefly discuss the role of the low frequency

decoherence rate will follow immediately at all temperaturegnodes of the effective environment. One could conjecture

including T=0. High frequencies will contribute to this re- that, since high frequencies up @, contribute to the

sult which will actually depend on a physical high frequencydephasing time, the result will not change even if one intro-

cutoff. However, if one applies the golden rule approxima-duces the low frequency cutotbe,. In order to test this

tion, only the zero frequency contribution will be recovered cOnjecture it is again sufficient to consider the behavior of

[Eq. (6) of Ref. 33 and the whole decoherence effect at low € functiong,(t). Introducing the low frequency cutodc

T will tr)ggmissing. At lowT the decay of correlations in the N the integral(E7), at T=0 one readily finds

problent” is not exponential in time. But also in this situa- - s

tion the dephasing time, can be easily defined. This time gl(t)_ I”.(‘”_c/wco), weot>1, | (E39

just sets a scale on which the quantum coherence is suffwhile in the opposite limitwt=<1 the result is the same as

ciently suppressed and the integral over tiEe. (4) of Ref. ~ Without the low frequency cutoff, i.eg(t)=Inwc. Thus

33] becomes convergent. the cutoff atw~ weo leads to a qlfferent long time behavior
For nonzero(but possibly relatively smallvalues of T of g,(t). It increases at short tlmes_but then saturates at a

one can try to argue that at long times it is sufficient toV&!ue ~In(wc/wg). In this case no time decay of the off-

: P, . diagonal elements of the density matrix occurs at long times
consider the limifTt>1 and expand the functiogy(t) (E7) .
[or Eq. (E26)] in powers of 1Tt. Then one gets and therefore the coherence is not fully suppressed. How-

ever, it is not the long time limit which is interesting in the
dephasing problem, but rather the system behaviot at
91(O~Tt+In(we/T), B33 If weor,<1 [r, was defined, e.g., itE27)], by the
while all higher order terms of this expansion will be equaltime the behaviofE34) is reached the coherence will already
to zero becausg, (t) is a nonanalytic function of Tk. From  be very strongly suppressed. Thus from a practical point of
Eg. (E33 one could conclude that the first term in this equa-view there is no substantial difference between the cases
tion describes dephasing due to thermal fluctuations whilev;o=0 and w¢7,<1. In the opposite limitwy7,>1 the
the second term is the “interaction correction” which doesfunctiong(t) saturates earlier than quantum coherence gets
not depend on time and has nothing to do with dephasingsuppressed. In this case cutting out the low frequency oscil-
Since the first term vanishes in the limit—0, one could lators changes the result significantly.
again arrive at the conclusion that no decoherence is present This simple consideration clarifies the role of the low fre-
in the CL model aff—0. As it is clear from the exact solu- quency modes in the dephasing problem. At ldwthese
tion (E6)—(E10), this conclusion is not correct. modes do not really affect the expression fQrwhich de-
The expansion in T/t (or in 1/T7y) is just the expansion pends on the high frequency cuteéf. . However, if the low
performed in Ref. 13 within the first order perturbation frequency cutoff is chosen such that,7,>1, the dephas-
theory in the interactiorisee also Sec. IVD and Appendix ing time 7, simply looses its meaning becaugg(t) satu-
C). As it was already discussed in Sec. IV B, this expansiorrates already at much shorter tintesl/w,<7,. The same
is equivalent to dropping the oscillating cos term, e.g., in theconclusion applies to disordered metals in which case the
expression(70) [or, equivalently, in the expressigi18 for  function f4(t) (23) should be considered instead of(t).
the CL mode]. Obviously, this approximation has nothing to For an extended discussion of various approximations ana-
do with averaging over disorder. The above example alstyzed for the exactly solvable CL model we refer the reader
invalidates any attempt to approach the correct low temperao the Ref. 34.
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