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Trace and antitrace maps for aperiodic sequences: Extensions and applications
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We study aperiodic systems based on substitution rules by means of a transfer-matrix approach. In addition
to the well-known trace map, we investigate the so-called ‘‘antitrace’’ map, which is the corresponding map
for the difference of the off-diagonal elements of the 232 transfer matrix. The antitrace maps are obtained for
various binary, ternary, and quaternary aperiodic sequences, such as the Fibonacci, Thue-Morse, period-
doubling, Rudin-Shapiro sequences, and certain generalizations. For arbitrary substitution rules, we show that
not only trace maps, but also antitrace maps exist. The dimension of our antitrace map isr (r 11)/2, wherer
denotes the number of basic letters in the aperiodic sequence. Analogous maps for specific matrix elements of
the transfer matrix can also be constructed, but the maps for the off-diagonal elements and for the difference
of the diagonal elements coincide with the antitrace map. Thus, from the trace and antitrace map, we can
determine any physical quantity related to the global transfer matrix of the system. As examples, we employ
these dynamical maps to compute the transmission coefficients for optical multilayers, harmonic chains, and
electronic systems.
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I. INTRODUCTION

The trace-map technique, first introduced in 1983,1 has
proven to be a powerful tool to investigate the electro
spectrum of various aperiodic systems, such as the Fibon
sequence~FS!,1 the Thue-Morse sequence~TMS!,2 and the
period-doubling sequence.3 It has also been applied to inve
tigate other physical systems, for instance, kicked two-le
systems,4,5 and classical and quantum spin systems.6 The
technique was extended to study aperiodic systems in c
bination with the real-space renormalization-gro
technique.7 Recently, trace maps have been used to evalu
localization properties in a FS tight-binding model.8

This technique was transferred to the field of optics
order to see the scaling of the light transmission coeffici
through a Fibonacci dielectric multilayer.9 Now, we consider
light that is vertically transmitted through a Fibonac
multilayer of two materialsa andb which is sandwiched by
two media of typea. The FS is constructed by the substit
tion ruleb→a, a→ab. The corresponding transfer matrice
Al are written as9

A15PabPbPba , A25Pa , Al 115AlAl 21 , ~1.1!

wherePab(Pba) stands for the propagation matrix from lay
a to b (b to a) andPa is the propagation matrix through th
single layera. They are given by9

Pab5Pba
215S 1 0

0 na /nb
D , Pa5S cosda 2 sinda

sinda cosda
D ,

~1.2!

whereda5knada , na is the refraction index of materiala,
da denotes the thickness of the layers, andk is the wave
number in vacuum. The quantityda is the phase difference
PRB 620163-1829/2000/62~21!/14020~12!/$15.00
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between the ends of a layer. For materialb, the quantities
Pb , db , nb , anddb are defined analogously.

The transmission coefficient is given by9

t l5
4

uAl u212
, ~1.3!

whereuAl u2 is the sum of squares of the four elements ofAl .
Since the transfer matrix is unimodular, we can express
transmission coefficient as

t l5
4

xl
21yl

2
, ~1.4!

wherexl andyl denote the trace and antitrace of the trans
matrix Al , respectively. Here, the so-called ‘‘antitrace’’ of
232 matrix

A5S A11 A12

A21 A22
D ~1.5!

is defined asyA5A212A12, which follows the notion of
Ref. 10. From Eq.~1.4!, we see that the transmission coef
cient is completely determined by the trace and the antitra
i.e., a complete description of the light transmission throu
general aperiodic multilayers requires both the trace and
antitrace map.10

Now, we consider a different system, namely a harmo
chain composed of two kinds of masses,ma andmb , which
are arranged according to the FS, and are coupled by
kinds of springs,Kaa and Kab5Kba . Making use of the
transfer-matrix formalism, the equation of motion is11,12
14 020 ©2000 The American Physical Society
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S un11

un
D5S an

Kn,n11
2

Kn,n21

Kn,n11

1 0
D S un

un21
D5PnS un

un21
D ,

~1.6!

whereun is the displacement of thenth atom from its equi-
librium position,Kn,n61 denotes the strength of the harmon
coupling between neighboring atoms,an5Kn,n211Kn,n11
2mnv2, andv is the vibration frequency.

From the corresponding global transfer matrixAl

5)n5Nl

1 Pn , the transmission coefficientt l and the Lya-

punov exponentG l are given by11,12

t l5
4 sin2 k

~zl cosk2yl !
21xl

2 sin2 k
, ~1.7!

G l5
1

Nl
ln~ uAl u2!5

1

Nl
ln~xl

21yl
222!, ~1.8!

wherezl5(Al)112(Al)22, Nl denotes the number of atom
in the chain, and cosk5ma /(2Kaa).

As our third example of physical systems based on ap
odic substitution sequences, we consider the transmissio
electronic systems. This is closely related to the harmo
chain considered above. The Schro¨dinger equation for a one
dimensional tight-binding model with nearest-neighbor ho
ping can be written in matrix form as follows:13,14

S fn11

fn
D5S E2en

tn,n11
2

tn,n21

tn,n11

1 0
D S fn

fn21
D5MnS fn

fn21
D ,

~1.9!

wherefn denotes the amplitude of the wave function in t
Wannier representation,E the corresponding energy,en the
on-site energy at siten, and tn,n61 the hopping matrix ele-
ment between two neighboring sites.Mn is the local transfer
matrix associated with siten. The transmission coefficient i
given by12,14

t l5
42E2

~zlE/22yl !
21xl

2~12E2/4!
, ~1.10!

where the quantitiesxl , yl , andzl are again related to th
global transfer matrix of the chain, i.e., the productAl

5)n5Nl

1 Mn of the local transfer matrices along the cha

Note the similarity to Eq.~1.7!. The corresponding Lya
punov exponentG l is given by the same expression~1.8!.

For the latter two systems, the Lyapunov exponent
completely determined by the trace and the antitrace; h
ever, we need to knowzl to calculate the transmission coe
ficient. Fortunately, it turns out that the maps forzl and yl
are the same, as will be shown in Sec. IV. Therefore,
trace and antitrace map are sufficient to determine the tr
mission coefficient and the Lyapunov exponent. Thus i
desirable to construct antitrace maps for various aperio
sequences, which is the motivation of the work presen
here.

The paper is organized as follows. In Sec. II, we give
antitrace maps for various classes of aperiodic sequen
i-
in
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including the FS, the TMS, the periodic-doubling sequen
and certain generalizations. The extension to arbitrary s
stitution rules and to maps for matrix elements are discus
in Sec. III and in Sec. IV, respectively. It is shown that t
antitrace maps and the maps for matrix elements exist
arbitrary substitution rules and that the maps for no
diagonal elements and for the difference of the diagonal
ements coincide with the antitrace maps. Applications to
computation of transmission coefficients and Lyapunov
ponents in different aperiodic systems are investigated
Sec. V. Finally, in Sec. VI, we conclude.

II. TRACE AND ANTITRACE MAPS FOR TWO-LETTER
SEQUENCES

We now proceed with the derivation of the antitrace ma
of various classes of aperiodic sequences. We also inc
the corresponding trace maps for reasons which will beco
clear later. In this part, we make ample use of several r
tions for unimodular matrices. Therefore, we append a co
pilation of these relations in Appendix A.

A. Generalized Fibonacci sequences

There are many kinds of generalized FSs. Here, we st
two-letter sequences FS(m,n) that can be generated by th
inflation scheme15,16

S05b, S15a, Sl 115Sl
mSl 21

n , ~2.1!

with arbitrary positive integersm andn, where FS(1,1) cor-
responds to the well-known standard FS. Equivalently, th
can also be generated by the substitution rule

b→a, a→ambn. ~2.2!

The total number of lettersa andb in the wordSl is denoted
by Fl and satisfies the recursion relation

Fl 115mFl1nFl 21 , F05F151. ~2.3!

In the limit of an infinite sequence, the ratio of word lengt
for subsequent inflation steps is given by

s5 lim
l→`

Fl 11

Fl
5

m1Am214n

2
. ~2.4!

Some values ofs and commonly used terms for speci
cases of so-called ‘‘metallic means’’17 are

FS~1,1!: sg5
11A5

2
golden mean,

FS~2,1!: ss511A2 silver mean,

FS~3,1!: sb5
31A13

2
bronze mean,

FS~1,2!: sc52 copper mean,

FS~1,3!: sn5
11A13

2
nickel mean.
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It is known that the sequences FS(m,n) with n51 are qua-
siperiodic and those withn>2 are always aperiodic.

It is interesting to consider two further classes of gen
alized FS’s:18,19

b→bm21a, a→bm21ab, ~2.5!

b→bm22a, a→bm22abm22ab. ~2.6!

The first class~2.5! consists of the so-called Fibonacci-cla
sequences FC(m);18,19 the second ~2.6! occurs in the
renormalization-group analysis of the energy spectrum
FC(m) chains.18 It is easy to check that the inflation schem
of these two generalized FSs are the same as those
FS(m,1), but they differ in the initial words. A natural fur
ther generalization of these sequences is given by

b→bm2ka, a→~bm2ka!kb, ~2.7!

which we denote as FC(m,k). Here, FC(m,1) and FC(m,2)
correspond to the cases~2.5! and ~2.6!. The corresponding
inflation scheme is

S05b, S15bm2ka, Sl 115Sl
mSl 21 , ~2.8!

which is the same as that of FS(m,1) apart from the different
second initial word.

1. The Fibonacci sequence

Let us commence with the simplest example FS(1,1).
consider the case that the two lettersa andb correspond to
two basic unimodular transfer matricesA and B, respec-
tively. Denoting byAl the total transfer matrix correspondin
to a wordSl , the matrix equivalent of Eq.~2.1! for FS~1,1! is

Al 115Al 21Al , ~2.9!

whereA15A andA05B are the transfer matrices of the tw
building blocksa and b. Note the reversed order of matri
multiplication as compared to the concatenation of letters
Eq. ~2.1!, which occurs in the related tight-binding mod
that is usually considered, whereas the order of matrix m
tiplications is not reversed in the optical problem, comp
Eq. ~1.1!. The well-known trace map reads1

xl 115xl 21xl2xl 22 . ~2.10!

Note that in part of the literature a factor 1/2 is introduced
the definition ofxl . Here, we omitted this factor to kee
symmetry between trace and antitrace. From Eq.~A4!, we
obtain the antitrace map

yl 115xlyl 211yl 22 . ~2.11!

The coefficients of the trace map are constants; howe
those of the antitrace map include the traces. So, if we w
to derive the antitrace map, the trace map must also
known. This is why we have to consider trace and antitr
maps at the same time.

2. Generalized Fibonacci sequences FS„m,n…

For FS(m,n), Eq. ~2.1!, the recursion relation for the
transfer matrix is given by
-

f

for

e

n

l-
e

r,
nt
e
e

Al 115Al 21
n Al

m5~Un
( l 21)Al 212Un21

( l 21)I !

3~Um
( l 21)Al2Um21

( l 21)I !. ~2.12!

Here, we used Eq.~A1! and the definition of the functions
Un(x)5Cn21(x/2) given in Appendix A in terms of the
Chebyshev polynomials of the second kindCn(x). Further-
more, we introduced the notation

Un
( l )5Un~xAl

!. ~2.13!

From Eqs.~2.12!, ~A3!, and~A4!, the trace and the antitrac
maps are obtained as

xl 115Un
( l 21)Um

( l )v l2Un21
( l 21)Um11

( l ) 2Un11
( l 21)Um21

( l ) , ~2.14!

v l 115Un
( l 21)Um11

( l ) v l2Un21
( l 21)Um12

( l ) 2Un11
( l 21)Um

( l ) , ~2.15!

yl 115Un
( l 21)~Um

( l )wl2Um21
( l ) yl 21!2Un21

( l 21)Um
( l )yl , ~2.16!

wl 115Un
( l 21)~Um21

( l ) wl2Um22
( l ) yl 21!

1~xl 112Un21
( l 21)Um21

( l ) !yl , ~2.17!

wherev l5xAl 21Al
andwl5yAl 21Al

. Note that the roles ofv l

andwl are subsidiary. Equations~2.14! and~2.15! constitute
the trace map; Eqs.~2.16! and~2.17! give the corresponding
antitrace map.

For special cases, these expressions simplify consi
ably. For FS(1,n), we obtain, using the properties~A3! of
the functionsUn(x),

xl 115Un
( l 21)v l2Un21

( l 21)xl , ~2.18!

v l 115Un
( l 21)xlv l2Un21

( l 21)~xl
221!2Un11

( l 21) , ~2.19!

yl 115Un
( l 21)wl2Un21

( l 21)yl , ~2.20!

wl 115xl 11yl1Un
( l 21)yl 21 . ~2.21!

Similarly, for FS(m,1), we find

xl 115Um
( l )v l2Um21

( l ) xl 21 , ~2.22!

v l 115Um11
( l ) v l2Um

( l )xl 21 , ~2.23!

yl 115Um
( l )wl2Um21

( l ) yl 21 , ~2.24!

wl 115xl 11yl1Um21
( l ) wl2Um22

( l ) yl 21 . ~2.25!

Equations ~2.22!–~2.25! are quite different from Eqs
~2.18!–~2.21! above. The corresponding aperiodic sequen
show rather different physical properties.10 We also point out
that the trace and antitrace maps for the sequences FC(m,k)
are given by Eqs.~2.22!–~2.25! since they have the sam
inflation scheme.

Eliminating the subsidiary variablesv l and wl in Eqs.
~2.14!–~2.17! for the general case FS(m,n), we obtain

xl 115
Um

( l )Un
( l 21)

Um
( l 21) ~Um11

( l 21)xl2Un11
( l 22)1Un21

( l 22)!

2Um11
( l ) Un21

( l 21)2Um21
( l ) Un11

( l 21) , ~2.26!
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yl 115
Um

( l )Un
( l 21)

Um
( l 21) ~Un

( l 22)yl 221Um21
( l 21)yl !

1Um11
( l ) Un

( l 21)yl 212Um
( l )Un21

( l 21)yl . ~2.27!

Here, we used Eq.~A3! to simplify the result. The above two
equations are alternative forms of the trace and the antit
map.

Again, for the special casesm51 or n51, these equa-
tions simplify. For FS(1,n), we find

xl 115Un
( l 21)~Un21

( l 22)2Un11
( l 22)!1Un11

( l 21)xl , ~2.28!

yl 115Un
( l 21)~Un

( l 22)yl 221xlyl 21!2Un21
( l 21)yl .

~2.29!

The result for FS(m,1) reads

xl 115
Um

( l )

Um
( l 21) ~Um11

( l 21)xl2xl 22!2Um21
( l ) xl 21 , ~2.30!

yl 115
Um

( l )

Um
( l 21) ~yl 221Um21

( l 21)yl !1Um11
( l ) yl 21 . ~2.31!

For FS(1,1), Eqs.~2.26!–~2.31! reduce to Eqs.~2.10! and
~2.11!, as expected. For some other special values ofm and
n, the trace and antitrace maps of FS(m,n) are given in
Appendix B.

B. Generalized Thue-Morse sequences

Another type of aperiodic sequence is the celebrated T
and its generalizations.20,21 Here, we consider generalize
sequences TMS(m,n) with inflation scheme21

b→bman, a→anbm. ~2.32!

Equivalently, TMS(m,n) can be constructed as

S05b, S̃05a, Sl 115Sl
mS̃l

n , S̃l 115S̃l
nSl

m .
~2.33!

For m5n51, this reduces to the standard TMS. The rec
sion relation for transfer matrices of TMS(m,n) reads

Al 115Bl
nAl

m , Bl 115Al
mBl

n , ~2.34!

whereA0 is the matrix corresponding to the building blockb,
andB0 corresponds toa, respectively.

Using the same method as above, we get

xl 115Un
( l )Um

( l )v l2Un21
( l ) Um11

( l ) 2Un11
( l ) Um21

( l ) , ~2.35!

v l 115U2n
( l )U2m

( l ) v l2U2n21
( l ) U2m11

( l ) 2U2n11
( l ) U2m21

( l ) ,
~2.36!

where v l5xBlAl
. These two equations determine the tra

map.
It is somewhat more complicated to derive the antitra

map becauseyAl
ÞyBl

. We defineyl5yAl
andỹl5yBl

. Then,
from Eqs.~2.34!, ~A1!, ~A12!, and~A13!, we have

yl 115Um
( l )~Un

( l )wl2Un21
( l ) yl !2Un

( l )Um21
( l ) ỹl , ~2.37!
ce

S

-

e

e

ỹl 115Um
( l )~Un

( l )w̃l2Un21
( l ) yl !2Un

( l )Um21
( l ) ỹl , ~2.38!

wl 115~U2n
( l )Um

( l )v l2U2n21
( l ) Um11

( l ) 2U2n11
( l ) Um21

( l ) !Um
( l )yl

1U2n
( l )ỹl , ~2.39!

w̃l 115~Un
( l )U2m

( l ) v l2Un21
( l ) U2m11

( l ) 2Un11
( l ) U2m21

( l ) !Un
( l )ỹl

1U2m
( l ) yl . ~2.40!

Here, wl5yBlAl
and w̃l5yAlBl

. The antitrace map is com
pletely determined by Eqs.~2.35!–~2.40!.

For n51 andm51, Eqs.~2.35!–~2.40! reduce to

xl 115v l , ~2.41!

v l 115xl
2~v l22!12, ~2.42!

yl 115wl , ~2.43!

ỹl 115w̃l , ~2.44!

wl 115xl@~xl 1121!yl1 ỹl #, ~2.45!

w̃l 115xl@~xl 1121!ỹl1yl #. ~2.46!

This yields the well-known trace map of the TMS

xl 115xl 21
2 ~xl22!12, ~2.47!

and the antitrace map

yl 115xl 21@~xl21!yl 211 ỹl 21#, ~2.48!

ỹl 115xl 21@~xl21!ỹl 211yl 21#. ~2.49!

The above two equations give

yl 115xl 21@~xl1xl 2222!yl 211xl 23xl 22~22xl 22!yl 23#,
~2.50!

which is an alternative form of the antitrace map.
From Eqs.~2.35!–~2.40!, we can solve for the subsidiar

quantitiesv l , wl , andw̃l , for instance,

v l 115
U2n

( l )U2m
( l )

Un
( l )Um

( l ) @xl1Un21
( l ) ~Um

( l )xl2Um21
( l ) !

1Um21
( l ) ~Un

( l )xl2Un21
( l ) !#2U2n21

( l ) ~U2m
( l ) xl2U2m21

( l ) !

2U2m21
( l ) ~U2n

( l )xl2U2n21
( l ) !. ~2.51!

The combination of Eqs.~2.35! and ~2.51! gives an alterna-
tive form of the trace map of TMS(m,n).

C. Period-doubling sequence

The period-doubling sequence can be generated by
substitution rule3

b→ba, a→b2, ~2.52!

or the inflation scheme

S05b, S15ba, Sl 115SlSl 21
2 . ~2.53!
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The inflation scheme is the same as that of FS(1,2). Th
fore, from Eqs.~2.26!–~2.27!, the trace and the antitrac
maps are obtained as

xl 115xl 21~xlxl 212xl 22
2 12!2xl , ~2.54!

yl 115xl 21xl 22yl 221xlxl 21yl 212yl . ~2.55!

This yields also the trace and antitrace map for the cop
mean sequence FS(1,2).

III. ARBITRARY SUBSTITUTION SEQUENCES

As there exist trace maps for arbitrary substituti
sequences,22–24 one natural question is whether antitra
maps also exist for arbitrary sequences. The answer is a
mative. We commence our argument in analogy with
discussion in Ref. 22 and restrict ourselves to the case
unimodular matrices.

Let A1 ,A2 , . . . ,Ar be 232 matrices and define the fo
lowing 2r matrices:

Be1e2¯er
5A1

e1A2
e2
¯Ar

er , ~3.1!

wheree jP$0,1% for 1< j <r . Then, from Eq.~A9!, any mo-
nomial Aj 1

Aj 2
¯Aj s

, with 1< j i<r and 1< i<s, can be

written as a linear combination of the matricesBe1e2¯er
,

namely,22

Aj 1
Aj 2

¯Aj s
5 (

e150

1

(
e250

1

¯ (
er50

1

ce1e2¯er
Be1e2¯er

,

~3.2!

where each coefficient is a polynomial in the tracesxAj
, 1

< j <r , and the tracesxAjAk
, 1< j ,k<r .

This result not only yields the trace map, but also giv
the antitrace map for any substitution sequence. We defi

Be1e2¯er ,l5A1l
e1A2l

e2
¯Arl

er , ~3.3!

with e jP$0,1%, 1< j <r , and l>0, whereAjl is the unimo-
dular 232 matrix associated to thel-th iterate of thej th
letter. Since each matrix inBe1e2¯er ,l 11 is, by definition, a

monomial in the matricesAjl , they can be expanded in term
of the matricesBe1e2¯er ,l according to Eq.~3.2!. Then the

trace ofBe1e2¯er ,l 11 is a polynomial in the 2r21 traces of

Be1e2¯er ,l ; and the antitrace ofBe1e2¯er ,l 11 is a polynomial

in the 2r21 antitraces ofBe1e2¯er ,l . Therefore, we con-
clude that both the trace and antitrace maps exist for arbit
substitution sequences, and the dimension of the antit
map is 2r21. Next, we present a concrete example to illu
trate this conclusion.

The Rudin-Shapiro sequence can be defined by mean
a substitution rule on four letters.25 The substitution rule is

a→ac, b→dc, c→ab, d→db, ~3.4!

and the corresponding matrix recursion relations are
e-

er

r-
e
of

s
e

ry
ce
-

of

Al 115ClAl , Bl 115ClDl ,

Cl 115BlAl , Dl 115BlDl . ~3.5!

We have the useful relation22

Dl5ClAl
21Bl , ~3.6!

which effectively reduces the sequence to three basic let
Now, we choose the seven matricesAl , Bl , Cl , Dl , AlCl ,
AlBl , andBlCl as our basic set of matrices.

In what follows, we denote the traces and antitraces b

al5xAl
, bl5xBl

, cl5xCl
, dl5xDl

,

el5xAlCl
, f l5xAlBl

, gl5xBlCl
,

ãl5yAl
, b̃l5yBl

, c̃l5yCl
, d̃l5yDl

,

ẽl5yAlCl
, f̃ l5yAlBl

, g̃l5yBlCl
. ~3.7!

By using Eqs.~A9! and ~A12!, we obtain

Al 115ClAl ,

Bl 115clDl2alBl1AlBl ,

Cl 115BlAl ,

Dl 115~algl2cl f l !Bl2clAl1blDl2~gl2blcl !AlBl

1~ f l2albl !ClBl1ClAl ,

Al 11Cl 115 f lClAl2blCl1ClBl ,

Al 11Bl 115cl@~12al
2!Bl1elDl1alAlBl #2ClBl ,

Bl 11Cl 115blcl@~ f lal2al
2bl1bl !Cl1alDl2ClBl

2~ f l2albl !ClAl #2bl@~ f l2albl !~alI 2Al !

1blI 1~al
221!Bl2alAlBl #2clCl1I . ~3.8!

Note that the order of multiplication of two matrices on th
right-hand sides of these equations may differ from the or
of our basic matrix productsAlCl , AlBl , or BlCl . We can
use Eqs.~A9! to reverse the order to obtain a systems
equations that closes with our seven basic matrices.

Now, from Eq. ~3.8! and ~A4!, the trace and antitrace
maps are obtained as

al 115el ,

bl 115cldl2albl1 f l ,

cl 115 f l ,

dl 115bldl2alcl1el ,

el 115el f l2blcl1gl ,

f l 115cl~dlel2al
2bl1al f l1bl !2gl ,
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gl 115blcl~alcl f l2el f l2al
2blcl1alblel1blcl1aldl1gl !

2bl
22cl

212,

ãl 115cl ãl1al c̃l2ẽl ,

b̃l 115cl d̃l2al b̃l1 f̃ l ,

c̃l 115blãl1al b̃l2 f̃ l ,

d̃l 115~algl2alblcl !b̃l1bld̃l2~gl2blcl ! f̃ l1~ f l2albl !

3~bl c̃l2g̃l !1al c̃l2ẽl ,

ẽl 115 f l~cl ãl1al c̃l2ẽl !1cl b̃l2g̃l ,

f̃ l 115cl~2al
2b̃l1ed̃l1al f̃ l !2bl c̃l1g̃l ,

g̃l 115bl~12cl
2!~ f l2albl !ãl1bl~12al

22cl
2!b̃l2cl c̃l

1alblcl d̃l1blcl~ f l2albl !ẽl1albl f̃ l1blcl g̃l .

~3.9!

Thus, we derived the trace and antitrace maps of the Ru
Shapiro sequence.

Now, we discuss the dimension of the antitrace map.
A, B, andC be 232 matrices. Then22

ABC5@~xABC2xABxC2xAxBC1xAxBxC!I

1~xBC2xBxC!A2xACB1~xAB2xAxB!C1xCAB

1xBAC1xABC#/2. ~3.10!

Taking the trace on both sides of Eq.~3.10!, we are led to a
trivial identity. However, if we take the antitrace, we obta

yABC5@~xBC2xBxC!yA2xACyB1~xAB2xAxB!yC1xCyAB

1xByAC1xAyBC#/2. ~3.11!

The antitrace of any monomial can be written as a lin
combination of a polynomial in the antitracesyAj

, 1< j <r ,

and the antitracesyAjAk
, 1< j ,k<r . Each coefficient is a

polynomial in the tracesxAj
, 1< j <r and the tracesxAjAk

,

1< j ,k<r . From this observation we conclude that the
mension of our antitrace map isr (11r )/2, i.e., the dimen-
sion is reduced from 2r21. Here, for the dimension of th
antitrace map, we do not take into account the dimensio
the trace map, which enters the coefficients of the antitr
map. Thus, the full dimension of the trace and antitrace m
is given by the sum of their respective dimensions.

Let us consider two ternary sequences as examples26,27

Our first example of a three-letter substitution rule and
corresponding recursion relation for the transfer matrices26

a→b, b→c, c→ca,

Al 115Bl , Bl 115Cl , Cl 115AlCl . ~3.12!

Using Eqs.~A10! and ~A12!, we obtain

Al 115Bl ,
n-

t

r

-

of
e
p

e

Bl 115Cl ,

Cl 115AlCl ,

Bl 11Al 115ClBl ,

Cl 11Bl 115xCl
AlCl2Al ,

Al 11Cl 115BlAlCl ,

Bl 11Al 11Cl 115BlAl1xBlAlCl
Cl2xBlAl

I . ~3.13!

Taking the trace of the above equation, we obtain the tr
map. The dimension of the trace map is 232157. Taking
the antitrace of the sixth line of the above equation, we c
expand it according to Eq.~3.11!. Therefore, the last equality
in Eq. ~3.13! is not necessary, and the dimension of the a
titrace map is 3(311)/256.

Our second example is the three-component FS gener
by27

a→b, b→c, c→abc,

Al 115Bl , Bl 115Cl , Cl 115ClBlAl . ~3.14!

The corresponding maps for the matrices are

Al 115Bl ,

Bl 115Cl ,

Cl 115ClBlAl ,

Bl 11Al 115ClBl ,

Cl 11Bl 115BlAl2xBlAl
I 1xClBlAl

Cl ,

Cl 11Bl 11Al 115Al2xAl
I 1xClBlAl

ClBl . ~3.15!

We see that, for this particular sequence, both the trace
antitrace maps are six-dimensional.

IV. MAPS FOR MATRIX ELEMENTS

As discussed in Sec. I, we need to know all elements
the global transfer matrix in order to compute certain phy
cal quantities. Thus, the trace and antitrace maps may no
sufficient, and one would like to determine analogous m
for each of the matrix elements.

Actually, from Eq.~3.2!, we know that such matrix ele
ment maps exist for any substitution rule, and Eqs.~3.8!,
~3.13!, and ~3.15! already contain examples of matrix ele
ment maps. Now, we investigate the maps for the ma
elements of the FS(m,n) and TMS(m,n).

Using Eqs.~A9!, ~A12!, and~A13!, we obtain the matrix
maps of FS(m,n) as Eq.~2.12! and
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Ml 115Un
( l 21)Um21

( l ) Ml1~xl 112Un21
( l 21)Um21

( l ) !Al

2Un
( l 21)Um22

( l ) Al 21

1~Un21
( l 21)Um22

( l ) 1v l 112xlxl 11!I , ~4.1!

whereMl5Al 21Al . The tracesxl 11 andv l 11 appearing on
the right-hand side of Eq.~4.1! are given in terms ofv l via
Eqs.~2.14! and ~2.15!, respectively.

Similarly, the matrix map of TMS(m,n) is obtained as

Al 115Un
( l )~Um

( l )Nl2Um21
( l ) Bl !2Un21

( l ) ~Um
( l )Al2Um21

( l ) I !,
~4.2!

Bl 115Un
( l )~Um

( l )Ñl2Um21
( l ) Bl !2Un21

( l ) ~Um
( l )Al2Um21

( l ) I !,
~4.3!

Nl 115~U2n
( l )Um

( l )v l2U2n21
( l ) Um11

( l ) 2U2n11
( l ) Um21

( l ) !

3~Um
( l )Al2Um21

( l ) I !1U2n
( l )Bl2U2n11

( l ) I , ~4.4!

Ñl 115~Un
( l )U2m

( l ) v l2Un21
( l ) U2m11

( l ) 2Un11
( l ) U2m21

( l ) !

3~Un
( l )Bl2Un21

( l ) I !1U2m
( l ) Al2U2m11

( l ) I , ~4.5!

whereNl5BlAl and Ñl5AlBl . We can eliminate the sub
sidiary matricesMl , Nl , andÑl from Eqs.~2.12! and~4.1!–
~4.5!. For example, Eq.~4.1! becomes

Ml5
1

Um
( l 21) ~Um21

( l 21)Al1Un
( l 22)Al 222Un21

( l 22)I !

1v l I 2xlxl 21I 1xlAl 21 . ~4.6!

Thus, we obtain another form of the matrix map of FS(m,n)
given by Eqs.~2.12! and ~4.6!.

For m5n51, Eqs.~2.12! and ~4.6! reduce to

Al 115~xl 112xlxl 21!I 1xlAl 211Al 22 . ~4.7!

This is the matrix map of the FS. For the TMS, we find fro
Eqs.~4.2!–~4.5! for m5n51

Al 115xl 21@~xl21!Al 211Bl 212xl 21I #1I , ~4.8!

Bl 115xl 21@~xl21!Bl 211Al 212xl 21I #1I . ~4.9!

The maps for the matrix elements are easily obtained fr
the matrix map, thus we do not give them explicitly.

Specifically, we consider the FS. From Eq.~4.7!, it is
interesting to find that the maps for the non-diagonal e
ments, and for the difference of the diagonal elements, c
cide with the antitrace map, Eq.~2.11!. From Eqs.~4.8! and
~4.9!, this fact also holds for the TMS. Actually, as aga
follows from Eq.~3.2!, we arrive at the important conclusio
that the maps for the antitrace, the non-diagonal eleme
and the difference of the diagonal elements are all the s
for arbitrary substitution rules. This means that the kno
edge of the trace and antitrace maps suffices to compute
physical quantities related to the global transfer matrix.
m

-
n-

ts,
e

-
ny

V. APPLICATIONS

We now turn our attention to applications of the dynam
cal map method developed in this paper. In what follows,
are going to consider three examples.

A. Optical multilayers

As our first example, we show how to use the antitra
map to calculate light transmission coefficients.

The transmission of light through aperiodic multilaye
arranged according to the FS,9,28 the ‘‘non-Fibonacci’’
sequence,10,29 the TMS,30 and the generalized TMS’s~Ref.
20! was studied in the literature. Possible applications
quasiperiodic multilayers as optical switches and memo
have been suggested by Schwartz.31 Huanget al.32 and Yang
et al.19 found an interesting switchlike property in the ligh
transmission through a FC(m) multilayer.

Using the antitrace map, we reinvestigate the light tra
mission through FC(m) which is sandwiched by two medi
of typeb. In analogy with the discussion of Ref. 19, we wri
the corresponding transfer matrices as

A15Pb , A25Pb
m21PbaPaPab , Al 115Al

mAl 21 .
~5.1!

The recursion relation for the transfer matrix~5.1! is a little
different from Eq.~2.1! for FS(m,1). It can easily be seen
that the trace map is the same, but that the antitrace
differs slightly. The antitrace map is given by

yl 115Um
( l )w̄l2Um21

( l ) yl 21 , ~5.2!

w̄l 115xl 11yl1Um21
( l ) w̄l2Um22

( l ) yl 21 , ~5.3!

wherew̄5yAlAl 21
.

We consider the case that the light vertically transmits
multilayer and choose the thicknesses of the layersda anddb
appropriately in order to makenada5nbdb . Then, we have
phase differencesda5db5d; compare Eq.~1.2!. For d
5(n11/2)p, the propagation matrices become

Pa5Pb5S 0 21

1 0 D . ~5.4!

From the above equation and Eqs.~5.1!, ~A1!, and~A3!, we
can obtain the initial conditions for the trace and antitra
maps as

x150, x252Um21~0!%1 , v25Um22~0!%1 ,

y152, y252Um22~0!%1 , w̄252Um21~0!%1 ,
~5.5!

where

%m5Rm1R2m, R5na /nb . ~5.6!

The initial conditions depend on the parameters%1 and m,
while the recursion relations only depend onm. From Eq.
~A3!, we know that
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Um~0!5
1

2
@12~21!m# i m215H 0 for m52k,

~21!k for m52k11.
~5.7!

SinceUm14(0)5Um(0), i.e., the functionUm(0) is periodic
in m with period four, the initial conditions, given in Table
also show this periodicity. The initial conditions for FC(2q),
q51,2,3, . . . , or for FC(2q11), only differ by the sign of
the parameterR. Thus, it is natural to divide the FC(m) into
two classes, FC(2q) and FC(2q11).

From the initial conditions and recursion equations,
can directly obtain the trace, the antitrace and the transm
sion coefficients of FC(2q), which are given in Table II. It
can be seen that the trace and the antitrace vanish alterna
The trace shows periodicity with period four for odd valu
of q, and period two for evenq, but the antitrace shows n
periodicity. Thus, the transmission coefficient also is not
riodic in l. For evenl, the transmission coefficient does n
depend onm. However, for oddl, the transmission coeffi
cient depends onm and l, see Table II.

Table III shows the results for FC(2q11). In this case,
the trace, the antitrace and the transmission coefficient
periodic in l with period six. The transmission coefficien
are the same forl 52, l 53, andl 56 and do not depend o
m. We find that the multilayer is transparent forl 56i 11,
i 50,1,2 . . . .

Here, we not only recover the recent results of Ref.
but also give a natural classification of FC(m) and derive the
periodicities of the trace and antitrace maps.

B. Harmonic chains

As our second example, we show how to apply the m
for the matrix elements to calculate some physical quanti
for a harmonically coupled Fibonacci chain. The transm

TABLE II. The trace, antitrace, and transmission coefficients
FC(m) with m52q. The upper~lower! signs refer to even~odd!
values ofq.

l x l yl t l

1 0 2 1
2 6%1 0 4/%1

2

3 0 1/%m 4/%m
2

4 %1 0 4/%1
2

5 0 1/%2m 4/%2m
2

6 6%1 0 4/%1
2

7 0 1/%3m 4/%3m
2

TABLE I. The initial conditions for the trace and antitrace map

m51 m52 m53 m54

x1 0 0 0 0
x2 0 2%1 0 %1

v2 2%1 0 %1 0
y1 2 2 2 2
y2 %1 0 2%1 0

w̃2
0 2%1 0 %1
e
is-

ely.

-

re

,

p
s
-

sion coefficient and the Lyapunov exponent were alrea
given in Eqs.~1.7! and ~1.8!. We know the trace~2.10! and
antitrace maps~2.11! for this system. In order to determin
the transmission coefficient, we additionally need to kn
the map for the differencezl of the diagonal elements in Eq
~1.7!. As discussed in Sec. IV, the map forzl is the same as
the map for the antitraceyl .

Now, this leaves us with the problem to determine t
initial conditions. By a so-called transfer matri
‘‘renormalization,’’11 the transfer matrix product can be re
written in terms of ‘‘renormalized’’ transfer matrices suc
that these are arranged according to the FS. Following
discussion in Ref. 11, we choose a special value of par
eters

V5
a22b11

a~12b!
5

mav2

Kab
, ~5.8!

wherea5mb /ma andb5Kaa /Kab . The first two renormal-
ized transfer matrices are11

A15S 1 0

h1 1D , A25S 21 0

h2 21D , ~5.9!

whereh152(a22) andh252(12a). Note that these two
matrices commute with each other for arbitrary values ofh1
andh2. From this equation, we obtain

A35A1A25S 21 0

h22h1 21D . ~5.10!

Thus, the initial conditions are given by

x152, x2522, x3522,

y15h1 , y25h2 , y35h22h1 ,

z15z25z350. ~5.11!

From the antitrace map~2.11!, we find thatzl50 for all l.
Using the trace map~2.10!, we easily obtainx3i 1152,
x3i 12522, andx3i522. That is, the trace map is period
in l with period three. Then, from Eqs.~1.7! and ~1.8! the
transmission coefficient and the Lyapunov exponent have
simple forms

t l
21511

yl
2

4 sin2 k
, ~5.12!

r

TABLE III. The trace, antitrace, and transmission coefficien
for FC(m) with m52q11. The upper~lower! signs refer to even
~odd! values ofq.

l x l yl t l

1 0 2 1
2 0 1/%1 4/%1

2

3 2%1 0 4/%1
2

4 0 71/%m11 4/%m11
2

5 0 1/%m 4/%m
2

6 %1 0 4/%1
2
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G l5N21 ln~yl
212!. ~5.13!

From the initial conditions foryl and the antitrace map
~2.11!, we easily find that the modulus ofyl is

uyl u5uFlh22Fl 21h1u, l>3, ~5.14!

whereFl denotes the Fibonacci number defined by the rec
sion Fl5Fl 211Fl 22 with F05F151.

Finally, the transmission coefficient and the Lyapunov e
ponent are obtained as

t l
21511

~Flh22Fl 21h1!2

4 sin2 k
, ~5.15!

G l5N21 ln@~Flh22Fl 21h1!212#. ~5.16!

Thus, using our matrix element maps, we have rederived
result of Ref. 11.

C. Electronic systems

We now apply the trace and antitrace method to the tra
mission problem in electronic systems for the examples
the FS and the TMS. In what follows, we choose the para
eters asea52eb5e, tab51, andtaa5tbb5t.

1. Fibonacci sequence

For the FS, there are actually four different local trans
matricesMn ~1.9!, because the hopping matrix elements d
pend on three subsequent letters in the FS. Nevertheless
transfer matrix product can be rewritten14 in terms of two
matrices

Mb5S E2e 21

1 0 D S E1e 21

1 0 D ,

Ma5S E2e 2t

1 0 D S ~E2e!/t 21/t

1 0 D S E1e 21

1 0 D ,

~5.17!

such that the resulting transfer matrix product is again
ranged according to the Fibonacci sequence.

For the trace and antitrace maps, we only need to kn
the first three matricesA15Ma , A25MbMa , and A3
5MaMbMa . From Eq.~5.17!, these matrices and thus th
initial conditions are easily obtained. In order to obtain
analytical result, we restrict ourselves to the caseE5e50.
For this particular choice of parameters, Eq.~1.10! simplifies
to

t l5
4

xl
21yl

2
, ~5.18!

which is formally the same as Eq.~1.4!. The initial condi-
tions become

x150, x250, x352,

y152t21/t, y25t11/t, y350. ~5.19!

From the trace and antitrace map equations~2.10! and~2.11!
for the FS, we can easily find that both the tracexl and the
r-

-

e

s-
f
-

r
-
the

r-

w

antitraceyl are periodic inl with period six. In one period the
traces are 0, 0, 2, 0, 0,22, and the antitraces are2t
21/t, t11/t, 0, t11/t, t11/t, 0. From Eq.~5.18!, we de-
duce that the transmission coefficientt l is periodic inl with
period three. For one period, the transmission coefficients
given by 4/(t11/t)2, 4/(t11/t)2, and 1. If the hopping pa-
rametert51, the transmission coefficientt l51 for all values
of l, which is the trivial~periodic! case. Next we consider th
electronic transmission for the TMS.

2. Thue-Morse sequence

We consider the on-site model for the TMS, i.e., the ho
ping parametert51. So there are only two kinds of transfe
matrices:

B05S E1e 21

1 0 D , A05S E2e 21

1 0 D . ~5.20!

From these, we can calculate the matricesA1 , B1 , A2, and
B2, and thus the initial conditions for the trace and antitra
map. Again, in order to obtain an analytical result, we lim
ourselves to the case where the parametere and the energyE
fulfill a particular relation,E5A21e2. In this case, the ini-
tial conditions become

x05A21e22e, x150, x252224e2,

y05 ỹ052, y15 ỹ152A21e2, y252 ỹ254e,

z05A21e22e, z̃05A21e21e,

z15 z̃152, z252 z̃254eA21e2, ~5.21!

wherezl5(Al)112(Al)22 and z̃l5(Bl)112(Bl)22. From Eq.
~2.47!, we deduce that the tracesxl52 for all l>3. From the
antitrace map equations~2.48! and~2.49! and the above ini-
tial conditions, we easily find thatyl5zl50 for l>3. Thus,
we obtain the result that the transmission coefficientt l51
for l>3. Forl 51 andl 52, the transmission coefficients ar
given by t15(22e2)/(21e2) and t25(22e2)/(217e2

14e4), respectively.
The examples considered here show that trace and

trace maps provide a convenient tool for the computation
physical quantities related to the global transfer matrices
aperiodic substitution systems. In the applications presen
above, we mainly concentrated on obtaining analytical
sults, and therefore had to restrict the discussion to spe
values of the parameters. The trace and antitrace map e
tions, of course, are not restricted to these cases, but t
will be no simple closed-form solutions to the recursion
lations in general. The particular parameter values con
ered above correspond to periodic orbits of the associa
dynamical systems. These cases, and probably all exam
where simple solutions exist, share the property that, a
certain stage, different transfer matrices commute with e
other, and thus are simultaneously diagonalizable. This
explains why these systems turn out to be transparent,
cause it does not matter in which order one multiplies ma
ces that commute with each other. In spite of these co
ments, the method presented here is expedient and usefu
the investigation of physical systems built on aperiodic s
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stitution sequences, because the trace and antitrace
equations can very efficiently be used in numerical inve
gations of large, but finite, systems.

VI. CONCLUSIONS

In conclusion, we have extended the well-studied tra
map method for the investigation of aperiodic substitut
systems by considering corresponding maps for the antit
and the matrix elements of the transfer matrices. Our m
results are the following.

First, we obtained the trace and antitrace maps for vari
aperiodic sequences, such as generalized FSs and TMS
periodic-doubling sequence, examples of ternary sequen
and the four-letter Rudin-Shapiro sequence. The dimen
of the dynamical systems defined by the trace map and
antitrace maps isr (r 11)/2 plus the dimension of the trac
map itself, wherer denotes the number of basic letters in t
aperiodic sequence. Secondly, we showed that trace and
titrace maps can be constructed for arbitrary substitu
rules. Thirdly, we introduced analogous maps for spec
matrix elements of the transfer matrix, but it turns out th
the maps for the off-diagonal elements and those for
difference of the diagonal elements coincide with the a
trace map. Thus, from the trace and antitrace map, we
determine any physical quantity related to the global tran
matrix of the system. Finally, as examples of applications
the trace and antitrace map method, we investigated
transmission problem for optical multilayers, harmon
chains, and electronic systems arranged according to th
or the TMS.

The trace and antitrace map method developed here
be expected to have many applications in the study of o
dimensional aperiodic systems.
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APPENDIX A: RELATIONS FOR UNIMODULAR
MATRICES

For convenience, we present a collection of relevant id
tities, which are used in the construction of the trace a
antitrace maps in Secs. II, III, and IV.

The nth power of a unimodular 232 matrix A can be
written as15,33

An5Un~xA!A2Un21~xA!I , ~A1!

whereI is the unit matrix and

Un~xA!5
l1

n 2l2
n

l12l2
, l65

xA6AxA
224

2
. ~A2!

HerexA andl6 denote the trace and the two eigenvalues
A, respectively, andl1l25det A51. The functionsUn(x)
are related to the Chebyshev polynomials of the second
Cn(x) by Un(x)5Cn21(x/2). From the definition of the
functionsUn(x), it follows that
ap
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U21~x!521, U0~x!50, U1~x!51,

U2~x!5x, U3~x!5x221,

U4~x!5x322x, Un11~x!5xUn~x!2Un21~x!,

Un
2~x!5Un11~x!Un21~x!11. ~A3!

In order to study the antitrace maps, we need the follo
ing identity:10

yAB5xByA1xAyB2yBA ~A4!

for the antitraces of two unimodular 232 matricesA andB.
Now, we briefly prove this identity by introducing an auxi
iary matrix

g5S 0 1

21 0D , g252I , det~g!51. ~A5!

For the matrixA, we have

yA5xAg . ~A6!

Then the antitrace ofAB is given by

yAB5xABg52xgAggB . ~A7!

Let A, B, andC be unimodular matrices. Then24

xABAC5xABxAC1xBC2xBxC . ~A8!

Applying the above identity to Eq.~A7! and using Eq.~A6!
again, we obtain Eq.~A4!.

It should be pointed out that Eq.~A4! is valid for any pair
of 232 matrices, and it follows directly from the identity

AB5~xAB2xAxB!I 1xAB1xBA2BA, ~A9!

which holds for any pair of 232 matrices. The detailed
proof of this identity can be found in Ref. 22. Here, we on
need to consider unimodular matrices.

For n52, Eq. ~A1! becomes

A25xAA2I . ~A10!

This is the well-known Cayley-Hamilton theorem. From th
theorem, we have
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A1A215xAI , xA215xA ,

xBA1xBA215xAxB , yBA1yBA215xAyB . ~A11!

From Eqs.~A9! and~A11!, we can prove the following use
ful relations:

BAB5A2xAI 1xABB5xABB2A21,

BA21B5~xAxB2xAB!B2A. ~A12!

Finally, from Eqs.~A1!, ~A3!, and~A10!, we obtain the fol-
lowing relations:

xA25xA
222, xAn5Un11~xA!2Un21~xA!,

yA25xAyA , yAn5Un~xA!yA . ~A13!

This completes our collection of identities.

APPENDIX B: ANTITRACE MAPS FOR SOME
METALLIC MEAN SEQUENCES

The trace and antitrace maps for the golden mean and
copper mean sequences were discussed explicitly in the m
part of this paper. Here, we give the trace and antitrace m
for some other prominent examples of metallic mean
quences.
er

. B
.

.

s.
.

.

he
in

ps
-

From Eqs.~2.26!, ~2.27!, and~A3!, the trace and antitrace
maps for the silver mean case (m52, n51) are obtained as

xl 115
xl

xl 21
@xl~xl 21

2 21!2xl 22#2xl 21 , ~B1!

yl 115
xl

xl 21
~yl 221yl !1~xl

221!yl 21 . ~B2!

For the bronze mean sequence (m53, n51), we find

xl 115
xl

221

xl 21
2 21

@xl~xl 21
3 22xl 21!2xl 22#2xlxl 21 ,

~B3!

yl 115
xl

221

xl 21
2 21

~yl 221xl 21yl !1~xl
322xl !yl 21 . ~B4!

Finally, for the nickel mean case (m51, n53), the result
reads

xl 115~xl 21
2 21!~xlxl 212xl 22

3 13xl 22!2xlxl 21 ,
~B5!

yl 115~xl 21
2 21!~xl 22

2 21!yl 221xl~xl 21
2 21!yl 212xl 21yl .

~B6!
.
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