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We study aperiodic systems based on substitution rules by means of a transfer-matrix approach. In addition
to the well-known trace map, we investigate the so-called “antitrace” map, which is the corresponding map
for the difference of the off-diagonal elements of the 2 transfer matrix. The antitrace maps are obtained for
various binary, ternary, and quaternary aperiodic sequences, such as the Fibonacci, Thue-Morse, period-
doubling, Rudin-Shapiro sequences, and certain generalizations. For arbitrary substitution rules, we show that
not only trace maps, but also antitrace maps exist. The dimension of our antitrace niap 15/2, wherer
denotes the number of basic letters in the aperiodic sequence. Analogous maps for specific matrix elements of
the transfer matrix can also be constructed, but the maps for the off-diagonal elements and for the difference
of the diagonal elements coincide with the antitrace map. Thus, from the trace and antitrace map, we can
determine any physical quantity related to the global transfer matrix of the system. As examples, we employ
these dynamical maps to compute the transmission coefficients for optical multilayers, harmonic chains, and
electronic systems.

[. INTRODUCTION between the ends of a layer. For matefialthe quantities
Py, 6y, Ny, andd, are defined analogously.
The trace-map technique, first introduced in 198%s The transmission coefficient is given by
proven to be a powerful tool to investigate the electronic
spectrum of various aperiodic systems, such as the Fibonacci 4
sequencdFS),! the Thue-Morse sequend¢&MS),? and the t=—, 1.3
period-doubling sequencdt has also been applied to inves- |A?+2

tigate other physical systems, for instance, kicked two-level 5.
systemé® and classical and quantum spin systénEhe where|A,|? is the sum of squares of the four elementg\pf

technique was extended to study aperiodic systems in comeince t_he_transfer.matrix is unimodular, we can express the
bination with the real-space renormalization-grouptransmission coefficient as
techniqué’. Recently, trace maps have been used to evaluate
localization properties in a FS tight-binding model. 4

This technique was transferred to the field of optics in t
order to see the scaling of the light transmission coefficient

through a Fibonacci dielectric multilay&Now, we consider . wherex, andy, denote the trace and antitrace of the transfer

light that is vertically transmitted through a Fibonacci matrix A, respectivelv. Here. the so-called “antitrace” of a
multilayer of two materials andb which is sandwiched by 252 mz;t’rix P y: '

two media of typea. The FS is constructed by the substitu-
tion ruleb—a, a—ab. The corresponding transfer matrices
A, are written a3 A:<A11 Alg)

A21 A22

- (1.4
XP+yf

(1.5
A1=PapPuPbar  A=Pa, A 1=AA_;, (1.1

whereP ,,(Pp.) stands for the propagation matrix from layer IS defined asya=Az—A;,, which follows the notion of
atob (b to a) andP, is the propagation matrix through the Ref. 10. From Eq(1.4), we see that the transmission coeffi-

single layera. They are given by cient is completely determined by the trace and the antitrace,
i.e., a complete description of the light transmission through
. (1 0 cosd, — siné, general aperiodic multilayers requires both the trace and the
P = P_ = ! = H ’ i 0
av=Poa=|g 1/, ==\ sins, coss, antitrace map

(1.2 Now, we consider a different system, namely a harmonic

' chain composed of two kinds of masses, andmy,, which
where §,=kn,d,, n, is the refraction index of materia@, are arranged according to the FS, and are coupled by two
d, denotes the thickness of the layers, dnés the wave kinds of springs,K,, and Ko,=K,,. Making use of the
number in vacuum. The quanti§, is the phase difference transfer-matrix formalism, the equation of motior'i¥

0163-1829/2000/621)/1402012)/$15.00 PRB 62 14 020 ©2000 The American Physical Society



PRB 62 TRACE AND ANTITRACE MAPS FOR APERIODIC. .. 14021

a, Knn-1 including the FS, the TMS, the periodic-doubling sequence,

Un+a| | K K Up | Un and certain generalizations. The extension to arbitrary sub-

up, )|t Rl A NTIY A FTRY stitution rules and to maps for matrix elements are discussed
1 0 in Sec. Il and in Sec. IV, respectively. It is shown that the

(1.6 antitrace maps and the maps for matrix elements exist for

whereu,, is the displacement of theth atom from its equi- a_rbitrary substitution rules and_ that the maps for non-
librium position,K , ,; denotes the strength of the harmonic diagonal elements and for the difference of the diagonal el-
coupling between neighboring atomes, =K n_1+Kp 1 ements c_0|n(:|de with the antitrace maps. Applications to the
—m,w?, andw is the vibration frequency. computation pf transmlss[on.coeff|C|ents and.LyapL'Jnov ex-

From the corresponding global transfer matri, ponents in different aperiodic systems are investigated in

=1II;_y,Pn, the transmission coefficiert; and the Lya- Sec. V. Finally, in Sec. VI, we conclude.

punov exponent’| are given by*2
II. TRACE AND ANTITRACE MAPS FOR TWO-LETTER

4 si K SEQUENCES
1.7

We now proceed with the derivation of the antitrace maps
of various classes of aperiodic sequences. We also include
1 1 the corresponding trace maps for reasons which will become
F,=Wln(|A||2)=WIn(x,2+y,2—2), (1.8)  clear later. In this part, we make ample use of several rela-
! ! tions for unimodular matrices. Therefore, we append a com-
wherez,=(A)) 11— (A)) 22, N, denotes the number of atoms pilation of these relations in Appendix A.
in the chain, and cds=m,/(2K_,).
As our third example of physical systems based on aperi- A. Generalized Fibonacci sequences
odic substitution sequences, we consider the transmission in
electronic systems. This is closely related to the harmoni
chain consigered above. The S'bdiré;er equation for a one- ?wo—lgtter sequ%ﬁlc(ies Fin) that can be generated by the
dimensional tight-binding model with nearest-neighbor hop—mﬂ"’ltlon schem

= )
" (2, cosk—y) 2+ X sirP k

There are many kinds of generalized FSs. Here, we study

. . . . 14
ping can be written in matrix form as follows: Sy=b, S;=a, S,;,=5"" ,, 2.1)
& E-e B thn-1 & & with arbitrary positive integersr andn, where FS(1,1) cor-
( “+1) =| thn+1 [ ( n ): Mn( n ) responds to the well-known standard FS. Equivalently, they
én 1 0 $n-1 $n-1 can also be generated by the substitution rule
(1.9 b—a, a—a™". (2.2

where ¢, denotes the amplitude of the wave function in the

Wannier representatiort, the corresponding energy, the

on-site energy at site, andt, ,., the hopping matrix ele-

ment between two neighboring sitéd,, is the local transfer

matrix associated with site. The transmission coefficient is

given by In the limit of an infinite sequence, the ratio of word lengths
for subsequent inflation steps is given by

The total number of lettera andb in the wordS, is denoted
by F, and satisfies the recursion relation

F|+1=mF|+nF|,1, F0:F1:1. (23)

4-E?

= : (1.10 >
(2 El2—y))2+x3(1—E?/4) . IimFII:+1:m+ r; +4n.
|

|00

t)

(2.9

where the quantitieg,, y,, andz are again related to the

global transfer matrix of the chain, i.e., the produst Some values ofr and commonly used terms for special
=l'[%=N|Mn of the local transfer matrices along the chain. cases of so-called “metallic means”are

Note the similarity to Eq.(1.7). The corresponding Lya-

punov exponent’| is given by the same expressi¢h). . 1+ V5

For the latter two systems, the Lyapunov exponent is FLD: 0g= 2 golden mean,
completely determined by the trace and the antitrace; how-
ever, we need to know; to calculate the transmission coef- FS2,1): o=1+ \/E silver mean,
ficient. Fortunately, it turns out that the maps fprandy;
are the same, as will be shown in Sec. IV. Therefore, the 3+4/13
trace and antitrace map are sufficient to determine the trans- FS3,): o= 5 bronze mean,

mission coefficient and the Lyapunov exponent. Thus it is
desirable to construct antitrace maps for various aperiodic
sequences, which is the motivation of the work presented
here.

The paper is organized as follows. In Sec. Il, we give the FS13): o= 1+13
antitrace maps for various classes of aperiodic sequences, e n 2

FS1,2: o.=2 copper mean,

nickel mean.
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It is known that the sequences F$f) with n=1 are qua- A=A A= (UYL 0Dy
siperiodic and those with=2 are always aperiodic. 1 -
It is interesting to consider two further classes of gener- xUE DA -ul-PH. (212

H 118,19
alized FS's. Here, we used EqAl) and the definition of the functions

b—b™ la, a—b™ lab, 2 U,(x)=C,,_1(x/2) given in Appendix A in terms of the
- - 29 Chebyshev polynomials of the second ki@g(x). Further-
b—b™2a a—b™ 2ab™ 2ab (2.6) more, we introduced the notation
The first clasq2.5) consists of the so-called Fibonacci-class U= Un(Xa,)- (2.13

sequences F@();*®1° the second(2.6) occurs in the
renormalization-group analysis of the energy spectrum o
FC(m) chains'® It is easy to check that the inflation schemes

From Egs.(2.12, (A3), and(A4), the trace and the antitrace
maps are obtained as

of these two generalized FSs are the same as those for _ u-1ym, _yt-ny® _yi-Hyo 21

FS(m,1), but they differ in the initial words. A natural fur- ~ % " w01~ Un gt Ui =UneiUney, - (229

ther generalization of these sequences is given by v|+1=Uﬁ'_l)Uﬂllerﬂ__f)U%z—Uﬁljll)Uﬁr',), (2.15
b—b™ ka, a—(b™ ¥a)b, (2.7

Yie1=U8 DUPw - UR 1y ) -UITPURy, (2.1
which we denote as F@{,k). Here, FC(n,1) and FC(,2)

correspond to the casé®.5) and (2.6). The corresponding W, 1=U{" DU w,—Ul) Ly, )

inflation scheme is

+(x11~ULTPUR Dy, (2.17
— — -k _chm
So=b, $=b""a, =S4, (2.8 wherev,zxAlflAI andw|=yAlflAl. Note that the roles of,
which is the same as that of A8(1) apart from the different andw, are subsidiary. Equatiori®.14 and(2.19 constitute
second initial word. the trace map; Eq$2.16 and(2.17) give the corresponding
antitrace map.
1. The Fibonacci sequence For special cases, these expressions simplify consider-

Let us commence with the simplest example FS(1,1). W hblyf. Fotr_ FSSSn)’ we obtain, using the propertiga3) of

consider the case that the two letterend b correspond to e functionsln(x),
two basic unimodular transfer matricés and B, respec- _110-1) (1-1)

. . . . Xi+1=U —Up_1'X, 2.1
tively. Denoting byA, the total transfer matrix corresponding T n-1 A (2.18
to a wordS;, the matrix equivalent of Eq2.1) for FS(1,1) is Bys1= U(I—l)xlvl_ U("ll’(xf— 1)— U(|—11) (2.19

n n— n+1 :

A=A A, 2.9 _ _

A 29 Yisa=US B -0l (2:20
whereA;=A andA,=B are the transfer matrices of the two
building blocksa and b. Note the reversed order of matrix Wie1=X 1y +Ul By . (2.21)
multiplication as compared to the concatenation of letters irb. iarly. for ESm 1 find
Eqg. (2.1), which occurs in the related tight-binding model imilarly, for FS{n,1), we fin

that is usually considered, whereas the order of matrix mul- 0 0)
e ) . ) Xr1=Ur v — Uyl 11, 2.2
tiplications is not reversed in the optical problem, compare 417 M m I m-17-1 (2.22
Eq. (1.1). The well-known trace map redds
q ( ) W W P U|+1:UE]!])+11)|_UE]!])X|_1, (223)
Xi+1=X|—1X|— X|_2. (2.10
1= X-1X ~ X2 Vie1=U0w,—ul Ly (2.24

Note that in part of the literature a factor 1/2 is introduced in | |
the definition ofx,. Here, we omitted this factor to keep Wi =X 51y F U wi— Uy g (2.29
symmetry between trace and antitrace. From &dl), we

obtain the antitrace map Equations (2.22—(2.25 are quite different from Egs.

(2.189—(2.21) above. The corresponding aperiodic sequences
_ show rather different physical properti€s/e also point out
Y =Xyt Yi-2. @1D  hat the trace and antitrace ma

ps for the sequences &g (
The coefficients of the trace map are constants; howevegre given by Egs(2.22—(2.29 since they have the same
those of the antitrace map include the traces. So, if we warinflation scheme.
to derive the antitrace map, the trace map must also be Eliminating the subsidiary variables; and w; in Egs.
known. This is why we have to consider trace and antitracé2.14—(2.17) for the general case F&(n), we obtain
maps at the same time.

2. Generalized Fibonacci sequences @8,n) X|+1:W(Ug+i)xl - Ug+ 12)—1— Ug—lZ))
For FSfn,n), Eqg. (2.1, the recursion relation for the

transfer matrix is given by —uQ), ul-h—ul)  ulD, (2.26
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y _UnUn D 1)(U(| 2y, ,+Ul-Dy,) Vi1 =URUPwW - ULy -UPUR iy, (2.38
1+17 - |
gD
" (I-1) My (- l:(Ug%US\L)Ul_U(2|%*1U§1!1)+1_U(2|3+1U$7|1)71)U#|)y|
+UQ Ul Yy —uQul Dy (.27

+U8y, (2.39
Here, we used E4A3) to simplify the result. The above two
;q;panons are alternative forms of the trace and the antitrace y,  , =u®uy —u® ud . —u® ud Huly,
Again, for the special cases=1 or n=1, these equa- +UDy,. (2.40

tions simplify. For FS(Iy), we find ~ ) ]
Here,w;=yg s and Wi=YapB, The antitrace map is com-
=U0TDUP -+ Ul DX, (228 pletely determined by Eq€2.35—(2.40.
Forn=1 andm=1, Eqgs.(2.39—(2.40 reduce to
Y|+1:Ugil)(Ugiz)yszrXM—l)—Ug:ll))h-

(2.29 Xj+1=01, (241
The result for FSf,1) reads v|+1=X|2(v|—2)+2, (2.42
u®
Xj+1= U(I 1)(Um+1X| X|72) U( 1X| 1 (23© Yier =W, (243
m ~ ~
Yi+1= W, (2.49
U(l) I-1 ~
Y=g — 2 UGTDY)+UR Y g (23D Wi =X[(X 41—~ DY+ Vi, (2.49
For FS(1,1), Eqgs(2.26—(2.3)) reduce to Egs(2.10 and Wi =X [ (X1~ DYyl (2.46

(2.11), as expected. For some other special values aind
n, the trace and antitrace maps of RS() are given in

Appendix B. X 1=X21(x—2)+2, (2.47

and the antitrace map

This yields the well-known trace map of the TMS

B. Generalized Thue-Morse sequences

Another type of aperiodic sequence is the celebrated TMS Vier=X_1[(x— 1)y _1+Y_1], (2.48
and its generalizatiorfS:?* Here, we consider generalized
sequences TM®(,n) with inflation schem& Vie1=X_a [ (X —1)Y_1+Yi_1]. (2.49
b—bMa", a—a"b™. (2.32  The above two equations give
Equivalently, TMSfn,n) can be constructed as Vier=X 1l (X FX 2= 2)Y| 1+ X —3X|—2(2— X _2) Y| 3],
(2.50
— T _ oif&n s _ m
So=b, S=a, $:1=5'9, 1= »3 which is an alternative form of the antitrace map.
(2.33 From Egs.(2.35—(2.40, we can solve for the subsidiary

Form=n=1, this reduces to the standard TMS. The recurquantitiesv,, w,, andVv| , for instance,
sion relation for transfer matrices of TM®(n) reads

U(zl)U(l)
A 1=B'A", B.;=A"B, (2.34 U|+1:W[ xi+ UL (UYx—U{) )
whereA, is the matrix corresponding to the building bldak " | " | | | | |
and B, corresponds t@, respectively. UG 1 (UDx—UE ) ]-U% 1 (USx— U8 )
Using the same method as above, we get
—UG 1(USx - U8 ). (2.5

OO, —g® O —g® i
Xi+1=Up'Uo;=UpZ U = Ui Uy, (239 The combination of Eqg2.395 and(2.51) gives an alterna-

tive form of the trace map of TM$(,n).
DIRN( | | | '
UI+1:U(2r)1U(2r)nU _U(Zrzflu(Zr)nJrl_U(Zr)HlUZm 1

(2.39 C. Period-doubling sequence
wherev,=xg s These two equations determine the fracé 15 harind-doubling sequence can be generated by the

map. . . _ substitution ruld

It is somewhat more complicated to derive the antitrace
map becausg, #yg,. We definey; =y, andy,=yg. Then, b—ba, a—b? (2.52
from Egs.(2.34, (A1), (A12), and(A13), we have or the inflation scheme

yi=UQUPw -0y -uPu 1y, (237 So=b, S;=ba, S,;=SS%,. (2.53
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The inflation scheme is the same as that of FS(1,2). There- A.1=CA,, B,.;=CD,
fore, from Egs.(2.26—(2.27), the trace and the antitrace
maps are obtained as Ci.1=BA,, D, ,1=B/D,. (3.5
2
= — +2)— . .
X1+ 1 =X -1 (XiXi 1= X+ 2) =X, 254 \Ve have the useful relatiéh
Vi+1= X —1X—2Y -2 XX —1Y -1 Y] - (2.59 D,=CA By, (3.6)

This yields also the trace and antitrace map for the coppehich effectively reduces the sequence to three basic letters.

mean sequence FS(1,2).

Now, we choose the seven matricks B, C;, D;, A C,,

AB,, andB,C, as our basic set of matrices.

Ill. ARBITRARY SUBSTITUTION SEQUENCES

As there exist trace maps for arbitrary substitution
sequence®?* one natural question is whether antitrace
maps also exist for arbitrary sequences. The answer is affir-
mative. We commence our argument in analogy with the
discussion in Ref. 22 and restrict ourselves to the case of
unimodular matrices.

Let A, A,, ... A be 2X2 matrices and define the fol-
lowing 2" matrices:

In what follows, we denote the traces and antitraces by

a=Xa, b=xg, C=xc, d=Xp,

e=Xac, fi=Xap, 9=Xgc,

alzyAp BIZyB|1 CIZyC|= a|:yD|v

& =Yac i =Yas 9= Yg,c:

(3.7)

By using Egs(A9) and (A12), we obtain

_ A€ELpE €
B =AJAZ AT

€1€) "€, r

(3.2

wheree;€{0,1} for 1<j=r. Then, from Eq(A9), any mo-
nomial ALAL AL with 1<j;<r and I<i<s, can be
written as a linear combination of the matricBglez...er,
namely??

1 1 1
AA A =D D D c.oiBe e,
11" o s o o o €1€x € T €1€x €L

'

(3.2

where each coefficient is a polynomial in the tra«xgjs 1
<j=<r, and the tracexAjAk, l<sj<ksr.

This result not only yields the trace map, but also gives
the antitrace map for any substitution sequence. We define

AST

rl?

Belez"'er | :AiiLA;Z ' (33)
with €;€{0,1}, 1<j=r, andl=0, whereA; is the unimo-
dular 2x2 matrix associated to theth iterate of thejth

letter. Since each matrix iBElEZ...Er 1+1 Is, by definition, a

A1=CA,
Bi+1=¢D—aB+AB,
Ci+1=BiA,

Diy1=(a9—¢/f))B—c/A+bD—(g,—Dbic)AB,
+(fj—ab)C/B+CA,,

A +1C1=fCA—-bC+CB,

A1Bi1=c[(1—-a})B,+eD +aAB]-CB,

Bi+1Ci+1=bici[(fia—afb;+b))C+aD,—CB

—(fi—ab)CA]=bi[(fi—ab)(al-A)

+bl+(a?—1)B,—aAB]-¢C+I. (3.9

Note that the order of multiplication of two matrices on the
right-hand sides of these equations may differ from the order
of our basic matrix products,C,, A/B,, or B|C,. We can

monomial in the matrices,, , they can be expanded in terms Use Egs.(A9) to reverse the order to obtain a systems of

I
of the matricesB, ..., | according to Eq(3.2). Then the

trace ofB, ., .. ,i+1 IS @ polynomial in the 2-1 traces of
Bejey e 1 and the antitrace (Bflfz'“fr 1+1 Is a polynomial
in the 2—1 antitraces OfBele2~~~e,,|- Therefore, we con-
clude that both the trace and antitrace maps exist for arbitrary
substitution sequences, and the dimension of the antitrace
map is 2—1. Next, we present a concrete example to illus-
trate this conclusion.

The Rudin-Shapiro sequence can be defined by means of
a substitution rule on four lettefS.The substitution rule is

a—ac, b—dc, c—ab, d—db, (3.9

and the corresponding matrix recursion relations are

equations that closes with our seven basic matrices.
Now, from Eg. (3.8 and (A4), the trace and antitrace
maps are obtained as

a+1=€,
by.1=cidi—ab+f,

C+1=f,
di+1=bd—ac+e,
e1=efi—bc+g,

fira=c(die—ab +af+b)—g,
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9i+1=bici(acifi—ef—a’bic +abe+bic+ad+g) B 1=Cy,

—bZ—c?+2,
[ Ci+1=AC,
a.1=Ca+ac—e, B AL —CB
1+1A1+1=C/By,
by 1=cdi—ab+7,
B L Ci+1Bir1=xc AC— A,
Ciri=ba+ab—f,

- - - - Ai+1C 1 1=BAC,
diy1=(ag9—abic)b+bd—(g,—bic)f+(f—ab)

X (bjc,—g) +ac —e, Bi+1AI+1C1+1=BAI+XgacCi—Xgal. (3.13

B1=fi(ca+ac—e)+cb -0, Taking the trace of the above equation, we obtain the trace
map. The dimension of the trace map $21=7. Taking
the antitrace of the sixth line of the above equation, we can
expand it according to Eq3.11). Therefore, the last equality
in Eq. (3.13 is not necessary, and the dimension of the an-
titrace map is 3(3-1)/2=6.

Our second example is the three-component FS generated

Tioi=c(—afb+ed+af)—bc+g,
9111=bi(1-c)(fi—ab)a+b(1-al—c)Hb—cc

+a|b|C|a|+b|C|(f|_a|b|)~é|+a|b|Tf‘|+b|C|§| .

by?’
(3.9
Thus, we derived the trace and antitrace maps of the Rudin- a—b, b—c, c—abg
Shapiro sequence.
Now, we discuss the dimension of the antitrace map. Let A .=B;,, B+1=C,, C.,;=CBA,. 319
A, B, andC be 2x2 matrices. Theff
The corresponding maps for the matrices are
ABC=[(Xapc™XapXc—XaXgct XaXgXc)!
+(XBC_XBXC)A_XACB+(XAB_XAXB)C+XCAB A|+1:B| ’
+XxgAC+x,BC]/2. (3.10 B..—C
I+17 ~1»
Taking the trace on both sides of E§.10, we are led to a
trivial identity. However, if we take the antitrace, we obtain Ci.1=C/B/A,,
Yac=[(Xac—XgXc)Ya—Xacys+ (Xap—XaXs)YctXcYas
Bi+1A+1=CB,
+XgYact XaYecl/2. (3.11
The antitrace of any monomial can be written as a linear Ci+1Bi+1=BiA —Xgal +Xc g Cr,
combination of a polynomial in the antitracy§j, 1<j=r,
and the antltraceijAk, 1=<j<k=r. Each coefficient is a Cis1Bis1A1=A—Xa | +XcgaCiBl.  (3.19

polynomial in the tracexAj, 1<j=<r and the tracexAjAk,

1<j<ksr. From this observation we conclude that the di-We see that, for this particular sequence, both the trace and
mension of our antitrace map If1+r)/2, i.e., the dimen- antitrace maps are six-dimensional.

sion is reduced from "2-1. Here, for the dimension of the

antitrace map, we do not take into account the dimension of

the trace map, which enters the coefficients of the antitrace IV. MAPS FOR MATRIX ELEMENTS

map. Thus, the full dimension of the trace and antitrace map As discussed in Sec. I, we need to know all elements of

is given by the sum of their respective dimensions. the global transfer matrix in order to compute certain physi-

Let us consider two ternary sequences as exanipfés. cal quantities. Thus, the trace and antitrace maps may not be
Our first example of a three-letter substitution rule and thesyfficient, and one would like to determine analogous maps
corresponding recursion relation for the transfer matrices is for each of the matrix elements.

Actually, from Eq.(3.2), we know that such matrix ele-
ment maps exist for any substitution rule, and E(@8),
_ _ _ (3.13, and (3.15 already contain examples of matrix ele-

A+1=B, Biii=Ci Ca=AC. 312 ep maps. Now, we investigate the maps for the matrix
Using Egs.(A10) and (A12), we obtain elements of the F$¢,n) and TMS(n,n).
Using Egs.(A9), (A12), and(A13), we obtain the matrix
AL1=B, maps of FSf,n) as Eq.(2.12 and

a—b, b—c, c—ca,
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MI+1:U§1I_1)UST|1)—1MI+(XI+1 U(' 1)u(|) )A V. APPLICATIONS
_U(|—1)U(|) A We now turn our attention to applications of the dynami-
- cal map method developed in this paper. In what follows, we
+UITDUY oy =Xl (4.1)  are going to consider three examples.

whereM,;=A,_;A,. The trace, ,; andv,,, appearing on
the right-hand side of Eq4.1) are given in terms ob, via ] )
Egs.(2.14 and(2.15), respectively. As our first exgmple, we ;ho_w how to use the antitrace

Similarly, the matrix map of TMSf,n) is obtained as map to caIcuIa_te _I|ght transmission coefﬂu_ent.s. .

The transmission of light through aperiodic multilayers
arranged according to the B%® the “non-Fibonacci”
sequencé®?® the TMS® and the generalized TMS'&Ref.

20) was studied in the literature. Possible applications of
quasiperiodic multilayers as optical switches and memories
B 1 =UPWUWON-UY B)-uP (uPa—-ul) ), have been suggested by Schwaftkuanget al* and Yang
(4.3 etall® found an interesting switchlike property in the light
transmission through a F@&() multilayer.

A. Optical multilayers

A 1_U()(U(|)N U(') 1BI) U(I)l(U(I)A U(') 1|)
4.2

Nis1=(UQUDy —uD O —ud, vl Using the antitrace map, we reinvestigate the light trans-
A 01~ Uzn- U= UznsaUm-o) mission through FGf) which is sandwiched by two media
x(UWA U H+udB-ud. I, (4.4  oftypeb. In analogy with the discussion of Ref. 19, we write

the corresponding transfer matrices as

IO TONTIORTIONRTIONTION -
=( n-iTemel o EntlEamol A1=Py, Ay=P 'PpPaPan,  Ani=AMA;.

x(Uﬂ)B|—Uﬂ)_ll)+U(2'r)nA,—U(2'r’n+ll, (4.5 CRY

The recursion relation for the transfer mat(k ) is a little

whereNy=BA, and Ni=AB;. We can eliminate the sub- itterent from Eq.(2.1) for FS(m,1). It can easily be seen
sidiary matricesM , Ny, andN, from Egs.(2.12 and(4.))—  that the trace map is the same, but that the antitrace map

(4.5). For example, Eq(4.1) becomes differs slightly. The antitrace map is given by
M= (US-DA +U0-DA, ,—Ul-2)) Yie1=UQw—UQ 1y, (5.2
I Ugrl) n-1
W= M w (1
ol = XX gl F XA 1. (4.6) W1 =Xyt U Wi = Unloyi g, (5.3
Thus, we obtain another form of the matrix map of FSq) wherew=yua .
given by Egs.(2.12 and(4.6). We consider the case that the light vertically transmits the
Form=n=1, Egs.(2.12 and(4.6) reduce to multilayer and choose the thicknesses of the laggrandd,,

appropriately in order to make,d,=n,d,. Then, we have
A== XX D) H XA A . (4.7) ghase differencess, = 5b=_5; compare Eq.(1.2. For §
=(n+1/2)7, the propagation matrices become
This is the matrix map of the FS. For the TMS, we find from
Egs.(4.2—(4.5 for m=n=1

0 -1
) (5.9

Pa:Pb:(l 0

From the above equation and E@5.1), (A1), and(A3), we
can obtain the initial conditions for the trace and antitrace
maps as

The maps for the matrix elements are easily obtained from

the matrix map, thus we do not give them explicitly. X1=0, Xo=—Up_1(0)01, vo=U,_2(0)04,
Specifically, we consider the FS. From Ed.7), it is

interesting to find that the maps for the non-diagonal ele- —

ments, and for the difference of the diagonal elements, coin- Y1=2, ¥2=—Up 2(0)01, W= —Um—1(0)91,5

cide with the antitrace map, EQ.11. From Eqs.(4.8) and 59

(4.9), this fact also holds for the TMS. Actually, as again where

follows from Eq.(3.2), we arrive at the important conclusion

that the maps for the antit_race, the non-diagonal elements, 0n=R™R™™ R=n,/n,. (5.6)

and the difference of the diagonal elements are all the same

for arbitrary substitution rules. This means that the knowl-The initial conditions depend on the parametgrsand m,

edge of the trace and antitrace maps suffices to compute amyhile the recursion relations only depend on From Eq.

physical quantities related to the global transfer matrix. (A3), we know that

Aci=X—1[(X—DA _1+B_1—x 41 ]+1, (4.8

Biri=X-1[(x—1)Bj_1+A _1—Xx_1]+I. (4.9
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TABLE I. The initial conditions for the trace and antitrace map. TABLE Ill. The trace, antitrace, and transmission coefficients
for FC(m) with m=2q+1. The upperlower) signs refer to even
m=1 m=2 m=3 m=4 (odd) values ofq.

X1 0 0 0 0 | X, v, t,

X3 0 —01 0 Q1

U2 — Q1 0 01 0 1 0 2 1

Vi 2 2 2 2 2 0 1oy 4lo%

ya 01 0 -0, 0 3 -0, 0 4lo%

W, 0 -0 0 0, 4 0 F1lome1 4lon,
5 0 1o 4lp2
6 01 0 4lo?

U(0) 1[1 (—1)mim1 0 for m=2k,
= — —(— | =
" 2 (-1 form=2k+1. sion coefficient and the Lyapunov exponent were already
(5.7 given in Egs.(1.7) and(1.8). We know the tracé€2.10 and

SinceU 0)=U.(0). i.e.. the functiorl (0) is periodic antitrace m_ap_:éZ.lJ) for_ t_his system. I_n_ order to determine
inlmwitwpta(rigd foEE, t)hel initial c:nditlions:ng(;iv)elrsn i?] Tlablle ] the transmission coefficient, we additionally need to know

: o P " the map for the differency of the diagonal elements in Eq.
also show this periodicity. The initial conditions for FQ(R ! . )
q=1.23..., opr for FC(yZ4+1), only differ by the sign of (1.7). As discussed in Sec. IV, the map fgris the same as

o o - the map for the antitracg, .
the parameteR. Thus, it is natural to divide the F@Y) into . 1 .
two classes, FC(@ and FC(2y+1). Now, this leaves us with the problem to determine the

From the initial conditions and recursion equations, WeInltlal conditions. By a so-called transfer matrix

“ : : 11l ;
can directly obtain the trace, the antitrace and the transmis_renormahzatlon, the transfer matrix product can be re-

sion coefficients of FC(@), which are given in Table II. It written in terms of “renormalized” transfer matrices such

can be seen that the trace and the antitrace vanish alternateggf"It these are arranged according to the FS. Following the

The trace shows periodicity with period four for odd values tscr:ussmn in Ref. 11, we choose a special value of param-
of g, and period two for even, but the antitrace shows no eters

periodicity. Thus, the transmission coefficient also is not pe- a—2B+1 muw?

riodic in |. For evenl, the transmission coefficient does not = =2 , (5.9

depend onm. However, for oddl, the transmission coeffi- a(l=p) Kab

cient depends om and|, see Table II. _ wherea=my,/m, and f=K /K,y The first two renormal-
Table Il shows the results for FC{2+1). In this case, jzed transfer matrices are

the trace, the antitrace and the transmission coefficient are

periodic inl| with period six. The transmission coefficients 1 0 -1 0

are the same fdr=2, 1=3, andl=6 and do not depend on A1=( - 1)- 2=( s 1>, (5.9

m. We find that the multilayer is transparent for 6i +1,

i=0,12.... where7;=2(a¢—2) andn,=2(1-«a). Note that these two
Here, we not only recover the recent results of Ref. 19matrices commute with each other for arbitrary valuesypf

but also give a natural classification of F@Y and derive the and 5,. From this equation, we obtain

periodicities of the trace and antitrace maps.

-1 0
Az=A A= . 5.1
B. Harmonic chains s ( M= 1M —1) (.19
As our second example, we show how to apply the maprhys, the initial conditions are given by
for the matrix elements to calculate some physical quantities
for a harmonically coupled Fibonacci chain. The transmis- X1=2, Xo=—2, Xz=-—2,
TABLE Il. The trace, antitrace, and transmission coefficients for Yi=11, Yo=72, Y3=72— 171,
FC(m) with m=2q. The upper(lower signs refer to everiodd
values ofq. 2,=2,=23=0. (5.11
| X| Yi t) From the antitrace maf2.11), we find thatz,=0 for all |.
Using the trace map2.10, we easily obtainxs, =2,
1 0 2 1 . ! o
5 +o 0 4102 X3i12=—2, andx;;=—2. That is, the trace map is periodic
—=t 3 in | with period three. Then, from Eq$1.7) and (1.8) the
3 0 1o 4lp? o tici h have th
4 0 4102 transmission coefficient and the Lyapunov exponent have the
€1 o1 simple forms
5 0 1o om 4/p5.,
6 +0, 0 4lp? y?
7 0 11037 4102, t, =1+ (5.12

4 sirfk’
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I''=N"tIn(y?+2). (5.13

From the initial conditions fory, and the antitrace map

(2.17), we easily find that the modulus §f is

|y||:|F|772_F|*1771|1 |>37 (514)
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antitracey, are periodic ifl with period six. In one period the
traces are 0, 0, 2, 0, 0+ 2, and the antitraces aret
-1k, t+ 1k, O, t+ 14, t+1/, 0. From Eq.(5.18, we de-
duce that the transmission coefficignis periodic inl with
period three. For one period, the transmission coefficients are
given by 4/¢+ 1/t)2, 4/(t+ 1/t)2, and 1. If the hopping pa-

whereF, denotes the Fibonacci number defined by the recurrametert=1, the transmission coefficiejt=1 for all values

sion F|:F|_1+ F|_2 with F0:F1:1.

of I, which is the trivial(periodig case. Next we consider the

Finally, the transmission coefficient and the Lyapunov ex-electronic transmission for the TMS.

ponent are obtained as

(Fima—F1_17m1)?

2. Thue-Morse sequence

t[1=1+ - , (5.15 We consider the on-site model for the TMS, i.e., the hop-
4sirfk ping parametet=1. So there are only two kinds of transfer
matrices:
[ =N~ In[(F 9~ F_171)°+2]. (5.19
Thus, using our matrix element maps, we have rederived the Bo= Ete 1)' Ag= ( E-e 1)_ (5.20
result of Ref. 11. 1 0 1 0

C. Electronic systems

From these, we can calculate the matriégs B;, A,, and
B,, and thus the initial conditions for the trace and antitrace

We now apply the trace and antitrace method to the tranghap. Again, in order to obtain an analytical result, we limit
mission problem in electronic systems for the examples oPurselves to the case where the parametand the energf
the FS and the TMS. In what follows, we choose the paramiulfill a particular relationE= 2+ €2. In this case, the ini-

eters asx,= —ep=¢€, typ=1, andt,=ty,=t.

1. Fibonacci sequence

For the FS, there are actually four different local transfer
matricesM , (1.9), because the hopping matrix elements de-
pend on three subsequent letters in the FS. Nevertheless, the

transfer matrix product can be rewrittérin terms of two

matrices
E—e¢ —1\/[E+e -1
Mo={ 4 0 1 0/
E-e —t\((E—e)t —1t\[E+e -1
Ma={ 4 0 1 0 1 0/

(5.17

such that the resulting transfer matrix product is again ar

ranged according to the Fibonacci sequence.

For the trace and antitrace maps, we only need to knov%/ra

the first three matricesA;=M,, A,=MyM,, and A;

=M _MyM,. From Eq.(5.17), these matrices and thus the
initial conditions are easily obtained. In order to obtain an

analytical result, we restrict ourselves to the cksee=0.
For this particular choice of parameters, Ef10 simplifies
to

4

t=——s.
X{+yf

(5.18
which is formally the same as E¢l.4). The initial condi-
tions become

X]_:O,

X2:O, X3:2,

yl:_t_]./t, y2:t+1/t, y3:O (519)

From the trace and antitrace map equatith&0 and(2.11)
for the FS, we can easily find that both the trageand the

tial conditions become

Xo=V2+€’—€, X1=0, X,=—2—4¢

Yo=Y0=2, Y1=Y1=2V2+€>, y,=—Y,=4e,

Zp= 2+ €2—¢, ~ZO= 2+ €2+,

Z,=—2,=4€\2+ €, (5.20)

wherez = (A)11— (A1) 22 andz=(B,) 13— (B) .. From Eq.
(2.47), we deduce that the traces=2 for all |=3. From the
antitrace map equationi®.48 and(2.49 and the above ini-

tial conditions, we easily find that =z =0 for |=3. Thus,

we obtain the result that the transmission coefficigrtl
for1=3. Forl=1 andl =2, the transmission coefficients are
given by t;=(2—€?)/(2+€?) and t,=(2—€?)/(2+7¢?
+4€%), respectively.

The examples considered here show that trace and anti-
ce maps provide a convenient tool for the computation of
physical quantities related to the global transfer matrices of
aperiodic substitution systems. In the applications presented
above, we mainly concentrated on obtaining analytical re-
sults, and therefore had to restrict the discussion to specific
values of the parameters. The trace and antitrace map equa-
tions, of course, are not restricted to these cases, but there
will be no simple closed-form solutions to the recursion re-
lations in general. The particular parameter values consid-
ered above correspond to periodic orbits of the associated
dynamical systems. These cases, and probably all examples
where simple solutions exist, share the property that, at a
certain stage, different transfer matrices commute with each
other, and thus are simultaneously diagonalizable. This also
explains why these systems turn out to be transparent, be-
cause it does not matter in which order one multiplies matri-
ces that commute with each other. In spite of these com-
ments, the method presented here is expedient and useful for
the investigation of physical systems built on aperiodic sub-

21221: 2,
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stitution sequences, because the trace and antitrace map U_1(x)=—1, Uyx)=0, U;(x)=1,
equations can very efficiently be used in numerical investi-
gations of large, but finite, systems.
Uo(x)=x, Us(x)=x2—1,
VI. CONCLUSIONS

In conclusion, we have extended the well-studied trace- ~ U, (x)=x3—2x, U, 1(X)=xUn(X)—U,_1(X),
map method for the investigation of aperiodic substitution
systems by considering corresponding maps for the antitrace
and the matrix elements of the transfer matrices. Our main Uﬁ(x)=Un+1(x)Un_1(x)+1. (A3)
results are the following.

First, we obtained the trace and antitrace maps for various
aperiodic sequences, such as generalized FSs and TMSs, the'"'
periodic-doubling sequence, examples of ternary sequence§9 !
and the four-letter Rudin-Shapiro sequence. The dimension
of the dynamical systems defined by the trace map and our
antitrace maps is(r+1)/2 plus the dimension of the trace
map itself, where denotes the number of basic letters in the

aperiodic sequence. Secondly, we showed that trace and agy the antitraces of two unimodular22 matricesA andB.

titrace maps can be constructed for arbitrary substitutionyow, we briefly prove this identity by introducing an auxil-
rules. Thirdly, we introduced analogous maps for specifiGary matrix

matrix elements of the transfer matrix, but it turns out that

the maps for the off-diagonal elements and those for the

difference of the diagonal elements coincide with the anti- ( 0 1
’y:

In order to study the antitrace maps, we need the follow-
dentity®

YaB=XgYAT XaYB~ YBA (A4)

trace map. Thus, from the trace and antitrace map, we can ~1 0

determine any physical quantity related to the global transfer

matrix of the system. Finally, as examples of applications of

the trace and antitrace map method, we investigated thgg, the matrixA, we have

transmission problem for optical multilayers, harmonic

chains, and electronic systems arranged according to the FS

or the TMS. YA= XAy - (AB)
The trace and antitrace map method developed here can

be expected to have many applications in the study of one-

dimensional aperiodic systems. Then the antitrace oAB is given by

), y>=—1, dety)=1. (A5)
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XaBac=XaXact Xgc—XgXc - (A8)
APPENDIX A: RELATIONS FOR UNIMODULAR

MATRICES Applying the above identity to EA7) and using Eq(A6)

For convenience, we present a collection of relevant iden@gain, we obtain EqA4). o _
tities, which are used in the construction of the trace and It should be pointed out that EGA4) is valid for any pair

antitrace maps in Secs. 11, lll, and IV. of 2X 2 matrices, and it follows directly from the identity
The nth power of a unimodular 2 matrix A can be

written as®>* AB=(Xag—XaXg)l +XsB+xgA—BA,  (A9)
A"=U(Xxa) A= U1 (xa)l, (A1)

which holds for any pair of X2 matrices. The detailed
proof of this identity can be found in Ref. 22. Here, we only
AT A" Xat \Xa—4 need to consider unimodular matrices.

—+ —
S }\i_T- (A2) Forn=2, Eq.(Al) becomes

wherel is the unit matrix and

Un(Xa)=

Herex, and\ .- denote the trace and the two eigenvalues of
A, respectively, and . A _=detA=1. The functiondJ,(x)

are related to the Chebyshev polynomials of the second kind
Ch(xX) by Uy(x)=C,_1(x/2). From the definition of the This is the well-known Cayley-Hamilton theorem. From the
functionsU,(x), it follows that theorem, we have

AZ=x,A—1. (A10)
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A+A_l:XA|, XAfl:XA,

YeatYea-1=XaYg. (All)

From Egs.(A9) and(A11), we can prove the following use-
ful relations:

XgaT Xga-1=XaXg,

BAB=A—Xal + XpAgB=XagB— A1,

BA 1B=(xaXg—Xag)B—A. (A12)

Finally, from Eqgs.(Al), (A3), and(A10), we obtain the fol-
lowing relations:

Xp2= Xi— 2, Xan=Upi1(Xa)—Up_1(Xa),

Yaz=XaYa,  Yan=Un(Xa)Ya- (A13)

This completes our collection of identities.

APPENDIX B: ANTITRACE MAPS FOR SOME
METALLIC MEAN SEQUENCES

The trace and antitrace maps for the golden mean and the
copper mean sequences were discussed explicitly in the main
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From Eqgs.(2.26), (2.27), and(A3), the trace and antitrace
maps for the silver mean casm€ 2, n=1) are obtained as

X

Xi+1= 5 [X(XP = 1) =X o] = X1, (B1)

-1

X|
Y|+1:E(y|—2+Y|)+(X|2_1)Y|—1- (B2

For the bronze mean sequence=3, n=1), we find

x2—
Xj+1=
2
Xi—1—

[X|(X|371_2X|—1)—X|—2]_X|X|—1,

(B3)
x2—1
y'“:ﬁ

-1

(Yi—a X1y + (¢ —2%)y 1. (B4

Finally, for the nickel mean casan=1, n=3), the result
reads

X|+1:(X|2—1_ 1)(X|X|71_X|372+3X|72)_X|X|71,
(B5)

part of this paper. Here, we give the trace and antitrace maps
for some other prominent examples of metallic mean sey, ;= (x?_;—1)(x2,— 1)y, _o+X (X2 1 —1)Y|_1— X 1Y -

qguences.
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