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Defect-induced topological order-to-disorder transitions in two-dimensional binary substitutional
solid solutions: A molecular dynamics study

Mo Li
Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Marylan

~Received 25 May 2000!

The crystal to glass transition is investigated in two-dimensional Lennard-Jones random binary substitutional
solid solutions using constant temperature and pressure molecular dynamics simulation. We find that defects
generated by atomic size disorder are mainly dislocations and dislocation complexes. They are responsible for
crystalline phase instability. The nature of the transition is shown to be determined by defect properties such as
formation energy and density, and by kinetic constraints. We observe a continuous transition from crystal to
glass with an intermediate hexatic phase characterized by short-range translational order and quasi-long-range
orientational order. The implication of these results for melting and solid state amorphization is discussed.
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I. INTRODUCTION

Melting is a well known example of topological order-to
disorder transition. At the melting point, the sharp Bra
peaks of crystalline phase suddenly become smeared
signaling disappearance of the long-range translational s
metry. A less known but frequently occurring phenomenon
solid state amorphization~SSA!, where crystalline solid be
comes amorphous solid. The SSA is ubiquitous. It occur
all types of crystalline solids and can be achieved throu
various means, including mechanical deformation, irrad
tion, solid state reaction, and hydrogen absorption.1 Similar
to melting, the SSA is characterized by disappearance of
Bragg peaks in crystalline phase at the transition. Howe
the disordered phase is amorphous solid. It is liquidlike,
does not have any long-range diffusion and does not s
apparent viscous flow.

The SSA has attracted tremendous attention recentl
has been studied extensively in the past decade as a n
synthesis method to produce bulk amorphous materials.
well understood now how the transition proceeds in differ
systems and under various conditions.1 The current under-
standing is rooted in kinetics of the transformation.
pointed out by Johnson,1 the necessary conditions for th
SSA include the negative enthalpy of mixing of the eleme
tal materials, highly asymmetric diffusivity, and the presen
of structural defects. This understanding has resulted in
cessful prediction of new amorphous phases and ration
ing experimental results.1–3 Very little is known, however,
about microscopic mechanisms and thermodynamic na
of the transition.1–4

In most SSA the initial phases are unmixed elemen
crystalline materials. The transformation to a chemically h
mogeneous amorphous phase needs to proceed by m
these elements first. The transformation, therefore, occu
highly heterogeneous environment, mostly by nucleation
growth of the amorphous phases at the interfaces, and o
structural defects in the intermixing zone, or reaction front
in solid state reaction induced amorphization. As a res
kinetic factors, such as diffusion, interface and grain bou
aries, dislocations, and solute miscibility, become critical
PRB 620163-1829/2000/62~21!/13979~17!/$15.00
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the transition. The prevalence of the kinetic effects in t
SSA, set by the heterogeneous initial conditions, leads to
believe that the SSA is a first order transition.1–3

The question that has not been answered is how this tr
formation proceeds from the atomic point of view. Mo
intriguing is the question of what the transition would loo
like if the inhomogeneity is removed. Since the free ene
of a disordered solid such as an amorphous solid or glas
higher than that of the corresponding crystalline solid w
the same composition, in order to transform the crystall
phase to amorphous solid, the free energy of the crystal
phase has to be raised to be equal or above that of the a
phous phase. Under isothermal condition, which is usu
the case in most experiments, the increase of the free en
is caused by introduction of various types of disorder. F
instance, mechanical attrition introduces dislocations, gr
boundaries and other structure defects;1,2 solid state reaction
between two elemental metals introduces chemical as we
structural defects; and diffusion of hydrogen in rare-ea
metals is believed to cause hydrogen interstitials and o
complexities.1–3 Clearly, these defects directly contribute
the instability of the crystalline phase. The phenomenolo
and the kinetics of different SSA induced by these defe
have been understood and well documented. The wanted
croscopic mechanism, therefore, needs to address the fol
ing question: How do these defects drive the crystall
phases unstable against amorphization?

The answer to this question is a fundamental one. It
only enhances our understanding of how the first order S
proceeds in heterogeneous conditions, but also offers ex
nations and predictions for the SSA that could occur in h
mogeneous systems. It also has an important bearing on
derstanding of melting. The similar questions have be
raised for the crystal to liquid transition: How do defec
destroy the crystallinity? and would melting be the sa
~still be first order! if the heterogeneity such as free surfac
and interfaces are absent? The heterogeneity in melting,
the SSA, is known as the cause for the nucleation of liq
phase. As these defects are always present, melting is a
order transition. As interfaces and free surfaces are redu
the melting point is found to go up. The crystalline pha
can therefore, be superheated considerably with redu
13 979 ©2000 The American Physical Society



it
hi

-
i

e
th
s

s
on

io
s

ro
he
n
ec
tin
h
tu

e
te
ye
b

ys
ta
th
tr
es

re
u
m

on
th

a

c
.
o
r

dy
-
e

ct
rra
n
r

s
ra

on
ding

e
al
n-

ore,
la-
t

nal
act

st

all

J

ch
ring.

for
ary
a-

13 980 PRB 62MO LI
preexiting heterogeneity.5–8 The questions are what the lim
of superheating is; what could be the nature of melting if t
limit is reached; and finally, could melting as we know sim
ply be a special case reduced from the phase transition
trinsic to crystalline instability?

As in the case of the SSA, these questions have not b
answered for melting despite extensive efforts made in
past.7,9–13 In this work, we aim at addressing some of the
questions using model simulations. The model system
our investigation are limited to those under isothermal c
ditionsbelow the glass transition temperature. Although this
is the setting typical for the SSA, it opens a new dimens
for understanding of crystalline instability that is not acce
sible for melting. Defects in this model system can be int
duced into crystals through various means other than by t
mal agitation. Thus temperature becomes an additio
parameter that can be used to control the state of the def
As we show later, the SSA can be considered a mel
transition driven by the frozen defects. By comparing t
SSA and melting, we can learn a great deal about the na
of topological order-to-disorder transitions.

This paper is organized as following. In Sec. II, we d
scribe briefly some important features of the model sys
and simulation methods. Some physical quantities emplo
to characterize different phases and transitions will also
explained. In Sec. III, we present results for two model s
tems of binary solid solutions. One is kept under a cons
atomic size difference between two types of atoms, while
solute concentrations are varied. Another has its concen
tion fixed, while the atomic sizes change. We show that th
systems possess the same types of topological defects
different characteristics in the order parameters and diffe
nature for the transitions. In Sec. IV, we discuss these res
and compare them with those in melting. In Sec. V, we su
marize the results presented in this paper.

II. MODEL AND COMPUTATION METHOD

A. Model

In this work, we use a binary substitutional solid soluti
model to study defects and the SSA. The reason for
choice is as follows.

~1! It is convenient to generate defects and to create
environment free of preexisting inhomogeneities~free sur-
faces, interfaces, grain boundaries, and dislocations!. By
simply varyingatomic size differenceof the two constituent
components, we can obtain a variety of topological defe
such as disclinations, dislocations, and grain boundaries~2!
The amorphous phase formed in the binary system, as c
pared with monoatomic system, is stable at temperatu
close to the glass transition temperature (T,Tg). It gives us
a large time window to measure dynamic and thermo
namic properties.~3! This binary solid solution model repre
sents a large class of systems that are known from exp
ments undergoing SSA. In cases such as solid state rea
induced SSA, hydrogen absorption induced SSA, and i
diation induced SSA, metastable crystalline solid solutio
form before and during SSA.1 In general, one can conside
the formation of solid solution in the crystalline phase a
necessary precursor to the polymorphic amorphization t
s
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sition. Therefore, without losing generality, the solid soluti
model serves as a simplest model system for understan
crystalline instability in SSA.

In this work, we focus our attention only on th
topological-order-to-disorder transition in two-dimension
~2D! binary solid solutions because it is convenient to ge
erate and characterize various defects in 2D. Furtherm
the large number of theoretical work and computer simu
tions on 2D melting9,14,15 offer a rich set of references tha
can be used to compare with our work.

The model system of the binary random substitutio
solid solutions consists of two types of atoms that inter
with Lennard-Jones~LJ! potentials~1a!. To ensure that they
go to zero smoothly at the finite cutoffsr c ~1b!, LJ potentials
are modified by using a cubic spline switch function:16

f~r !524eabF S sab

r D 12

2S sab

r D 6GS~r !, ~1a!

S~r !5H 1, r<r l ,

12
~r 2r l !

2~3r c2r l22r !

~r c2r l !
3 , r l,r ,r c ,

0, r>r c

J ,

~1b!

wherea andb denote the two atomic species~A andB!. The
cutoffs arer c52.45s, and r l51.90s, wheres is defined
below. r c is roughly between the fourth and fifth neare
neighbors, respectively.

For the potential depth, we use the same value for
interatomic interactions in the binary solid solution,

eab5e, ~2!

for a, b5A,B, but different atomic sizes,

sAA5s,

sBB5asAA5as, ~3!

sAB5
1

2
~sAA1sBB!5

1

2
~11a!s,

where the parameter

a5
sBB

sAA
~4!

is the atomic size ratio between the solute atoms~denoted as
B!, and the solvent atoms~denoted asA!. Therefore, only
two parameters,e and a, are used to parametrize the L
interactions.

The potentials with the same depths could avoid su
phenomena as chemical short-range ordering, or cluste
These unwanted complications could obscure the results
SSA. At a given temperature and pressure, the 2D bin
solid solutions are completely determined by only two p
rameters,a, and the concentrationx of the solute atomsB,

x5
NB

Ntotal
5

NB

NB1NA
, ~5!
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whereNB andNA are the number of solute and solvent ato
andNtotal is the total number of atoms in the system.

To simplify the model further, we set the mass of bo
types of atoms to be equal,mA5mB5m. This choice might
have some consequences in the transport properties. Bu
system is kept at sufficiently low temperatures so that lo
range atomic migration is absent. Therefore, the effect of
choice is insignificant. All quantities calculated in this mod
are expressed in reduced LJ units, scaled by two parame
s ande. For instance, temperature is in the units ofe/kB and
time has the unitsA(ms2/e).

B. Computation procedure

Atomic configurations, thermodynamic properties, a
dynamic properties of the model system are obtained u
constant temperature and pressure molecular dynamics s
lation method. Details of the simulation technique can
found in Refs. 17 and 18. The computation procedu
unique for the binary random arrays are briefly describ
below.

Starting from a pure LJ crystal made of bigger atomsA on
the hexagonal lattice, we prepared the substitutional bin
solid solutions in two ways. One is to replace the big ato
randomly by the smaller atomsB with the relative concen-
tration x at each given atomic size ratioa. Each new solid
solution is generated from the previous one by gradu
increasing the solute concentrationx. In the present work, we
chose to increasex by 2.5% each time a new solid solutio
was generated. The second method is to varya of the binary
mixtures at a givenx. Starting from the pure LJ crystallin
solid, each new solid solution is generated from the previ
one by decreasinga by 0.05. No significant difference i
found for the samples with the samex and a prepared via
two different paths.

The smallesta used in this work is 0.7 at which the b
nary solid solution can still remain homogeneous witho
formation of short-range order or cluster. Further reduct
of a may result in undesired local packing where too sm
solute atoms might be trapped in the interstitial positions
larger solvent atoms, or some ordered configurations sim
to intermetallic compounds might be favored. We sho
point out that it is equally valid to chose large atoms
solute and small ones as solvent, and the results shoul
main the same.

To maintain chemical homogeneity, or polymorphism
the transition, we need to prevent long range diffusion fr
occurring. To do it, we keep the binary arrays below t
liquid-to-glass transition temperatureTg . At such low tem-
peratures, it is difficult for both solvent and solute atoms
diffuse. As a result, defects cannot migrate afar to form
gregates. HereTg is determined previously by quenching th
corresponding binary liquids using constant pressure
with a quench rate of 106 K/s. Tg was found to be almost a
constant for different binary arrays with the same atomic s
ratio but different concentrations.

Since the binary arrays are kept below liquid to gla
transition temperature, long simulation time is required
reach equilibrium and then to obtain physical properti
Typically, 10526 MD steps are used for equilibration and a
equal number of steps are used to collect physical proper
s
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Close to the crystal to glass transition, 107 MD steps are
used. This corresponds to a few hundred nanoseconds fo
LJ parameters of argon. The sample size also varys dep
ing on how close the system is to the amorphization tran
tion. Typically 5000–8000 atoms are used close to the tr
sition, and smaller systems with a few thousands of ato
are used for ordered phases.

In addition to time averages, we also performed config
ration averages to obtain thermodynamic properties for
random solid solutions. This ensures the reliability of o
results for different arrays with different initial random so
ute distribution with finite sample sizes. We normally took
to 10 different configurations to obtain the configuration a
erage for each solution with the same values ofa andx but
different initial solute distributions.

C. Defects

The simplest structural defect in 2D is disclination. Di
locations in 2D are composed of two nearest neighbor
clinations, one positive and one negative.19,20To reduce long
range elastic energy, dislocations form pairs with two dis
cations of opposite Burgers vectors. When a large numbe
dislocations are present, or if they are sufficiently mob
they tend to form more complicated defects such as g
boundaries in order to reduce the elastic energy resul
from their mutual interactions.21 The successive occurrenc
of different types of defects starting from elementary disc
nations, to dislocations, and to other more complicated
fect aggregates are determined by both strain energy
elemental defect density. We show in Sec. III A 3 that o
particular type of defect complex in the binary solid sol
tions, the short chain of dislocations, plays a very import
role in the SSA. The large, connected chains form gr
boundaries.21

In 2D, dislocations, grain boundaries, and dislocati
complexes made of the two types of elemental disclinati
can be identified by mapping out the nearest neighbor co
dinates of each atom.19,20 The coordination numbers of a
atom are accounted usually using the Voronoi polyhed
construction that locates the minimum volume polyhedr
for each atom with each face bisecting the atomic bo
linking the nearest neighbor atoms. In binary arrays cons
ing of different types of atoms of very different sizes, we u
the radical plane method developed by Fisher and Koc22

Because of the difference in atomic size, the polyhedron
termined by simply bisecting atomic bonds using Voron
method may not be minimal. The radical plane method
counts adequately for the atomic size difference in determ
ing the nearest neighbor atoms.

D. Translational and orientational order

A general relationship between translational and orien
tional symmetry and crystalline defects is proposed in
theory of 2D melting by Kosterlitz, Thouless,23 Nelson,
Halperin,24 and Young25 ~KTNHY !. According to this
theory, melting occurs when dislocation-pairs, presuma
generated by thermal agitation, start unbinding. The surv
ing orientational order is destroyed later as further unbind
of dislocation singlets into isolated disclinations.24 The
‘‘hexatic phase’’ is a liquid-crystal-like phase characteriz
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by short-range translational symmetry and quasi-long-ran
orientational symmetry. Although conflicting results still r
main as for the exact nature of 2D melting,9,14,15,26,27general
concepts such as translational and orientational order an
relation to defects have provided a powerful tool for anal
ing topological order-to-disorder transitions in 2D. We sh
use this approach in this work to assess crystalline diso
in the 2D solid solutions.

The translational order parameter is defined as

rG~r !5eiG•r, ~6!

wherer is the atom position andG is chosen as the shorte
reciprocal lattice of the hexagonal lattice~corresponding to
the first Bragg peak position!. As Nelsonet al.24,27,28pointed
out, the translational symmetry is most susceptible to
presence of dislocations, stacking faults, and grain bou
aries. The orientational order parameter is defined as

rm~r !5eimu~r !, ~7!

whereu(r ) is the angle of the bond between the atom and
nearest neighbor with respect to a reference axis. Herm
56 for a hexagonal lattice andm54 for a system with
square symmetry. Orientational symmetry is less suscep
to dislocations and stacking faults; it is disturbed instead
disclinations and grain boundaries.

The correlation functions of these symmetry order para
eters are

CG~r !5^^rG* ~r !rG~0!&& ~8!

and

Cm~r !5^^rm* ~r !rm~0!&&, ~9!

where ^^¯&& denotes the time and configuration averagin
From the correlation lengths of these correlation functio
one can measure the spatial extension of both kinds of or
For a crystalline phase, both order correlation functions
long-ranged. In 2D, the long-range translational correlati
are destroyed by fluctuations of the long wavelength pho
modes, making the translational symmet
quasi-long-ranged.24 The translational correlation functio
decays in a power law fashion over distance. For a liquid
amorphous phase, both order correlation functions are sh
ranged and manifested in an exponential decay. The hex
phase, on the other hand, is characterized by a short-r
translational symmetry and quasi-long-range orientatio
symmetry.

Besides the order correlation functions, we also comp
the local order parameters defined as averages of the o
parameter over the entire sample,29

LTO5
1

Ntotal
(

i

Ntotal

rG~r i ! ~10!

and

LOO5
1

Ntotal
(

i

Ntotal F 1

Ni
(

j

Ni

rm~r j !G , ~11!

whereNi is the number of the nearest neighbors of thei th
atom. HereLTO andLOO stand for local translational orde
d
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and local orientational order. BothLTO andLOO are close to
unity in a crystalline phase, and become nearly zero i
liquid or amorphous phase. A hexatic phase has a nearly
LTO but finite LOO.

E. Atomic displacements

Both melting and SSA are topological order-to-disord
transition involving changes in atomic positions from a t
pological ordered phase to disordered one. This chang
measured quantitatively by the atomic displacement field
fined as

ui5r i2Ri5ui
d1ui

s , ~12!

wherer i is the instantaneous position of thei th atom andRi

is its position in a perfect crystalline, or ordered phase;ui
d is

the dynamic displacement arising from thermal vibrations
the atom around the mean atomic position; andui

s is the
static displacement from the ordered positions caused
various structural defects. Both quantities contribute to
Debye-Waller factor describing the broadening of the Bra
peaks of crystalline phases.

The dynamic displacement fields can be written as

ui
d5r i2^r i&, ~13!

where ^¯& stands for time average, and^r i& is the mean
atom position averaged over many configurations due
thermal vibration. The static displacement field is written

ui
s5^r i&2Ri . ~14!

Ri is the atomic position of the reference lattice with t
same density as the disordered one.~Otherwise an additiona
displacement needs to be added to account for change
lattice parameter. However, such uniform change in latt
parameter is irrelevant to representing topological order
disorder transition.!

The degree of atomic position disorder can be measu
by the mean values of the atomic displacements. The
namic and static mean square atomic displacements~MSD!
are written as

^~dud!2&5
1

Ntotal
(

i

Ntotal

^~ui
d!2& ~15!

and

^~dus!2&5
1

Ntotal
(

i

Ntotal

~ui
s!2. ~16!

Equation~15! is the familiar one used by Lindemann to pr
dict the onset of melting.12 We will use the mean static dis
placement~16! to measure the disorder in SSA caused
defects.

III. RESULTS

Some relevant thermodynamic state variables and ph
cal properties are briefly described below for the subst
tional random binary arrays:

The melting temperature of the pure 2D LJ crystal at z
external pressure is found to be 0.41–0.43, which is in ag
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ment with the previous work.9 With the quenching rate o
106 K/s, we find the glass transition temperature for the p
LJ liquid between 0.22 and 0.25. Asx increases the melting
temperature decreases from the pure LJ values while
glass transition temperature remains almost constant.

The binary arrays are characterized by four state v
ables, temperatureT, external pressureP, the solute concen
trationx, and the atomic size ratioa. Practically, it is almost
impossible to study all systems specified by these par
eters. To be as representative as possible, the parameter
can best serve our purpose are as follows.

Throughout our simulation, we takeP50 and T
50.20(,Tg) for all systems studied. For the given pressu
and temperature, the binary arrays are simulated along
paths specified byx and a. The first is to vary solute con
centrationa at a given atomic size ratiox, and the second is
to vary atomic size ratioa at a given solute concentrationx.
Figure 1 shows the atomic size-solute concentration ph
diagram for the systems studied. Several topologically dis
dered phases are shown at different atomic size ratios
solute concentrations. There is a critical atomic size diff
ence,a'0.825, abovewhich only crystalline phases exis
~see Fig. 1!. In the following section, we will present resul
from one of the binary arrays with atomic size ratio ata
50.75 and varying solute concentrations.

A. Binary arrays with „x,aÄ0.75… at TÄ0.20,PÄ0.0

1. Structure

As shown in Fig. 2, the structural evolution of the bina
arrays can be seen from their radial distribution functio
~RDF!. The RDF shows that the binary arrays become m
and more disordered as we gradually increase the solute
centration. As the solute concentration increases, all peak
the RDF becomes broadened and the ones at large dista
become flattened first. A quantitative change of the R
occurs atx50.20 where the peaks of RDF become smea

FIG. 1. Phase diagram of the two-dimensional binary rand
substitutional solid solutions atT50.20 andP50.0. Cross signs
mark the systems that were actually simulated.
e
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at distances beyond the fourth nearest neighbors. Furthe
creasing of solute concentration does not change the R
quantitatively.

Amorphous phase with isotropic interatomic interactio
is often identified by the split-second peaks in the RD
However, in 2D hexagonal lattice, the second and third pe
in the RDF are very close~see the RDF atx50), a feature
that is retained even in the amorphous phase. Therefore,
criterion cannot be used to identify the amorphous pha
formed from the hexagonal crystalline phase. The par
RDF are not useful either since the second and third pe
are even more persistent. Although an alternative met
was proposed by Wong and Chester30 to identify the second-
split peaks for 2D glasses from rapid quenched liquids,
results suggest that other methods should be considered

The most straightforward method is to map out the atom
configurations. It is particularly suitable to a 2D glass. Pro
lems may arise regarding the reliability of such metho
since there is no true long-range translational order in t
dimensions.24 In practice, this concern is essential
unnecessary.9 Figure 3 shows the snapshots of the atom
configurations of the binary arrays at different solute conc
trations.

The atomic configurations show that the binary arrays
maintain their crystallinity up untilx50.20, where the amor
phous phases start forming. Abovex50.20 we see that the
amorphous phase actually contains tortuous crystal-like
gions interweaved with disordered regions. This feature
specially noticeable in the concentration range betweex
50.25– 0.30. Each of the crystalline regions retains hexa

FIG. 2. Radial distribution functions~RDF! for two-dimensional
arrays witha50.75, atT50.20 andP50.0.
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FIG. 3. Atomic configurations of the two-dimensional binary arrays witha50.75, atT50.20 andP50.0. Circles are solvent atoms an
filled circles are solute atoms.
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nal symmetry of the parent crystalline phase but differs m
obviously in their relative orientations. Their sizes range
average from ten to a few hundred atoms across. The ave
sizes of these regions become smaller with increasing so
concentration. It appears that the disordering occurs v
mechanism of fragmentation of the parent crystalline ph
by addition of solute atoms. In the following sections, w
will explore the connections between this mechanism
various defects present in the binary arrays.

2. Order, correlation functions, and hexatic phases

More detailed structural features exhibited by the vario
phases of the binary arrays are revealed by the translati
and orientational order parameters and their correlation fu
tions. In Fig. 4, we plot the average LTO and LOO for t
binary arrays. Both order parameters decrease slowly w
increasing solute concentration untilx50.15. Beyond this
point, they start to decline dramatically. The LTO decrea
faster. Atx50.20 where the amorphous phase was show
form, the LTO already becomes nearly zero, typical fo
st
n
ge
te
a
e

d

s
al

c-
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s
to

FIG. 4. Average local translational and orientational order
rameters for binary arrays witha50.75 atT50.20 andP50.0.
Triangles denote the translational order and filled circles denote
orientational order.
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liquid. But the LOO still remains at a relatively large valu
and vanishes only later atx50.40. The amorphous phase
betweenx50.20– 0.40 are characterized by absence of
long-range translational order and finite orientational ord
suggesting the existence of a hexatic amorphous phase.24,28,31

Figures 5 and 6 show the translational and bond orie
tional order correlation functions as defined in Eqs.~8! and
~9!. The translational order correlation function for a pure
solid is long-range, but apparently decays over distan
Such behavior is characteristic of 2D crystals. This qua
long-range decay of the translational order correlation fu
tion is caused by fluctuations of the long waveleng

FIG. 5. The translational order correlation functions for bina
arrays witha50.75 atT50.20 andP50.0.

FIG. 6. The bond orientational order correlation functions
binary arrays witha50.75 atT50.20 andP50.0.
e
r,

a-

e.
i-
-

phonons that spontaneously destroy the true long-ra
translational order. In contrast, the bond orientational or
correlation function of the pure LJ solid stays constant o
distance, indicating that the orientational order is truly lon
range.

Increasing the solute concentration leads to further de
in the translational correlation functions. The correlati
lengths associated with these translational correlation fu
tions at different solute concentrations remain quasi-lo
range. Atx>0.20, where the RDF in Fig. 2 as well as th
LTO in Fig. 4 show the onset of the amorphous phase,
translational correlation function approaches zero at d
tances of about the fourth and fifth nearest neighbors. Fur
increase of solute concentration beyond this point result
translational correlation functions showing no crystalli
features but over damped oscillations. The correlat
lengths match the average size of the crystal-like regi
observed in the atomic configuration in Fig. 3.

The orientational order correlation function behaves qu
differently. As more solute atoms are added, it begins
show the familiar quasi-long-range decay, but much slow
than the translational order correlation function. Of particu
interest is that in the concentration range above 0.20 wh
amorphous phase appears, the orientational order correla
functions still maintain the familiar quasi-long-range beha
ior. This correlates well with the behavior of the LOO show
in Fig. 4. Such persistent orientational order starts to fa
only at much higher solute concentrations (x>0.40), where
the orientational correlation function becomes short-rang

The amorphous phase between 0.20<x<0.30 character-
ized by short-range translational order and quasi-long-ra
orientational order could well be the hexatic phase.24,28 A
careful inspection of the atomic configurations~to obtain the
best result, the reader is advised to view these configurat
from directions at a small inclined angle away from the p
per; translational and orientational symmetry breaking can
perceived the best in this way by rotating the figures ab
the normal of the paper!, reveals that in the concentratio
range between 0.20 and 0.40, the crystal-like regions sho
much less abrupt change in therelative orientationthan in
the translational order. Beyond the distance correspondin
the translation correlation length defining the size of t
crystalline fragments, the atomic lines~corresponding to
atomic planes in three dimensions! in the crystal-like regions
terminate suddenly at the edges of the domains where e
atomic lines emerge~which are edge dislocations in 3D!.
The relative rotation of these atomic lines from one cryst
like region to its adjacent ones changes, however, relativ
smoothly.

According to the KTNHY theory of 2D melting, the
hexatic phase forms as a result of unbinding of dislocat
pairs into dislocation singlets. These dislocation singlets
stroy translational order but leave orientational order inta
Indeed, the detailed defect configurations, as shown in
next section, exhibit such behavior.

Finally, to eliminate any concern that the intermedia
hexaticlike phases are transient phases resulting from
sible hysteresis and slow kinetics, all simulations for bina
arrays having solute concentrations at or close to the hex
region were done with exceedingly long equilibration tim
~typically 107 – 8MD steps!. Based on the results obtaine

r
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FIG. 7. The atomic configurations of defects in the binary arrays witha50.75 atT50.20 andP50.0. Triangles represent disclination
with four nearest neighbors, crosses represent disclinations with five nearest neighbors, plus signs represent seven nearest neig
nations, and asterisks represent eight nearest neighbor disclinations. A 5 NN and a 7 NNdisclination separated by a lattice spacing forms
single dislocation. To present a better view of defect, we use squares to represent solute atoms and circles for solvent atoms
overwhelming number of dislocation pairs in the binary arrays that always have two solute-solvent pairs~two circles and two squares!.
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thus far, we conclude that the intermediate hexatic phas
indeed a unique phase for 2D binary LJ solid solutions.

3. Defects

Using the technique described in Sec. II C, we mapp
out various defect configurations at different solute conc
trations. As shown in Fig. 7, there are many interesting f
tures exhibited in the defect configurations.

First, the defects are generated exclusively by atomic
differences between the solvent and solute atoms. Def
always occur at or around the solute atoms. The smaller
ute atoms that induce defects always have five-nearest ne
bor disclinations; and the solvent atoms have seven-nea
neighbor ones.

Second, dislocations always form pairs in the crystall
phases so as to reduce the elastic energy from the long-r
elastic strain fields associated with the dislocation singl
We have found only a neglectable number of isolated dis
cations composed of a negative and a positive disclina
is

d
-
-

e
ts
l-
h-

est

e
ge

s.
-
n

pair in the binary arrays. As the solute concentration
creases, especially beyondx50.20, we find that dislocations
tend to form more complicated configurations, presuma
for the same reason of reducing elastic energy. As show
Fig. 7, they appear as chains made of elongated disloca
singlets and pairs, or dipoles. As the solute concentra
increases further, the chainlike clusters become connec
and at higher concentrations, they grow into the rest of
crystalline regions, and gradually lose their identity.

These dislocation network defects cannot be conside
as grain boundaries yet because their scales are only m
scopic. The sizes of the chainlike dislocation segments ra
from a few atomic spacings in the binary arrays with lo
solute concentrations (x50.0 to 0.15! to a few hundred
atomic spacings at high solute concentrations (x50.20 to
0.50!. Furthermore, they do not form closed loops in t
crystalline phase until very high density of dislocations
reached (x.0.25). We therefore, prefer to call themdislo-
cation network chains. They are apparently the precursor
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grain boundaries made of elongated edge dislocations
poles in 2D caused by the characteristic interactions betw
edge dislocations. The SSA transition in 2D is closely rela
to this type of defect.

The average defect density calculated for the binary
rays is presented in Fig. 8. It is summed over the atoms a
cores of disclinations and divided by the total number
atoms. Since most disclinations are five- and seven-nea
neighbor disclinations that occur in pairs~with few four- or
eight-nearest neighbor disclinations!, a half of the density is
that of the dislocations. Similarly, one fourth of the disclin
tion density is the dislocation pair density.

The defect density rises atx50.15, prior to which the
only defects are dislocation pairs. At the onset of the am

FIG. 8. The average defect density of the binary array witha
50.75 atT50.2 andP50.0.
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phization (x50.20), the total disclination density reach
approximately 25%, or 13% of dislocations. If we divide th
density by the total area of the samples, we get the dislo
tion density in the order of 1012nm22 which is typical for
severely deformed metals.21 Incidentally, this value is also
close to the critical density in order to induce melting.32

Furthermore, a careful observation of the defect confi
rations in Fig. 7 reveals that the defects in the binary arr
at x50.20 are quantitatively different. The tightly bonde
dislocation pairs start breaking loose. Some form isola
dislocation singlets while others become elongated to fo
short dislocation network chains. Defining the isolated dis
cations as those that are separated by at least one la
spacing, we find that at the hexatic phase transition roug
15% of the total number of dislocations are singlets; a
approximately an equal number of dislocations are in
dislocation network chains. If we count the dislocations
short dislocation network chains as isolated dislocations~be-
cause of their severe elongation!, the density of isolated dis
locations reaches 25–30 %. This large number of separ
dislocation singlets atx50.20 provides a strong evidence o
formation of a hexatic phase.

4. Elastic behavior

Because of their important roles in characterizing insta
ity of crystalline phase as pioneered by Born,1,3,4,11the elas-
tic constants of the binary arrays have also been investig
~Fig. 9!.

Since the 2D hexagonal crystalline phase and the am
phous phase are both isotropic, the condition of elastic is
ropy, C445(C122C44)/2, reduces the total number of inde
pendent elastic constants to two. They are usually expre
-
n

-

FIG. 9. Isothermal elastic con
stants versus solute concentratio
in the binary arrays witha50.75
at T50.20 andP50.0. They are
all in units of NtotalkBT/A, where
A is the equilibrium area of each
binary array. The inset is the Pois
son ratio.
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as Lame´ coefficient, l5C12 and the shear modulus,m
5C44. The bulk modulus is then given byB5(C11

1C12)/25l1m and the Poisson ratio iss5l/(l12m).
The typical error for calculated elastic constants using
type of MD is about 5%.14 Close to the SSA, large structura
fluctuations and slow relaxation lead to errors typica
around 10%.

As expected, the bulk modulus decreases very slo
with increasing solute concentration and shows little cha
at the concentration where amorphization occurs. In contr
the shear modulus decreases sharply. When the he
amorphous phase forms atx50.20, it plunges more than
50% from the initial shear modulus of the pure, perfect cr
talline phase. As a comparison, the measured shear mod
of amorphous phase is usually about 30% smaller than
of the corresponding crystalline phase.33 Such a large chang
of shear modulus signals a possible phase transition.
behavior of the Poisson ratio, which is determined mostly
the shear modulus, also increases very rapidly in the con
tration rangex50.15– 0.25 and levels off in the amorpho
region.

This sharp lose of shear elastic rigidity can be underst
in terms of the defects present in the binary arrays.Local
atomic position disorder and lattice strainare two most im-
portant contributions from the defects. Since the ela
modulus is related to the long-wavelength part of the str
fluctuations,34 as more defects are generated, the inter
strain fluctuations become larger and the shear elastic m
lus becomes smaller. The contributions from the local dis
der at the defect cores and their immediate vicinity are re
tively complicated. If the fraction of atoms in the defe
cores is small, one can, and often does as in continuum
chanics, ignore their contributions to the total elastic mo
lus. However, this practice is no longer justified if the de
sity is high. These severely deformed regions need to
treated as a ‘‘second phase’’ with different~often lower!
elastic modulus. The total elastic modulus is, therefore,
weighted average from both disordered and order regions
addition, dislocation network chains and grain boundar
also contribute to the softening of elastic modulus by cha
ing crystallographic properties of the lattice, such as orien
tion of the lattice. The misorientation of each crystalline d
mains can impede sound wave propagation effectively.35,36

Since the coupling constant of dislocations depends on
shear elastic modulus,37 the binding energy of dislocation
pairs becomes weaker as the lattice becomes less rigid w
more defects are generated. Taking into account of incr
ing entropy by dispersing single dislocations on 2D, Kost
litz and Thouless23 proposed that the dislocation pairs shou
begin to separate when the dislocation coupling constant
creases below a critical value. The decrease of the ela
shear rigidity of the lattice in turn, makes it easier to gener
more defects. Taking this into account, Nelson a
Halperin24 calculated the critical dislocation coupling co
stants that should reach a universal value of 16p at the
hexatic phase formation. Although this result is derived
thermal disordering, it can be applied to other cases inc
ing SSA involving stability of dislocation pairs.

In 2D the coupling constant between two edge dislo
tions with opposite Burgers vectors can be expres
as23,24,37
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m~m1l!

~2m1l!
, ~17!

wherea is the lattice spacing of the lattice. Using the Lam´
coefficients obtained from the elastic constants, we ca
lated the coupling constantK as a function ofx. As shown in
Fig. 10, K exhibits a rapid decline as solute concentrati
increases. At the hexatic phase transition, it approaches
instability value, 16p, which agrees with our observatio
that dislocation pairs unbind at the hexatic phase format
As solute concentration increases further,K levels off and
remains almost constant in the amorphous phases.

This behavior is in sharp contrast to that in melting whe
K remains finite at the melting point and then suddenly dro
to zero as the metastable crystalline phase becomes liq9

One can estimate the instability temperature correspond
to K→16p by extrapolating the finiteK at the melting point
to the universal value. It is found that this temperature is w
above the equilibrium melting point, and therefore, is t
ultimate instability point inaccessibleto experiments.9 In
contrast, our results show a continuous SSA, or a continu
‘‘melting’’ from a crystalline phase to amorphous phase~fro-
zen liquid!, with an intermediate hexatic phase. As discuss
below, this is only possible because of kinetic constraint i
posed on the system.

5. Kinetic constraint and diffusion

Restricting atoms from executing long-range diffusion
a crystalline solid solution is a necessary condition for
SSA.1 This polymorphic constraint ensures the following:~1!
The disordered crystalline phases do not form equilibri
crystalline phases~which normally occur through long-rang
diffusion! other than the metastable hexatic and amorph
phases;~2! the compositions remains homogeneous in b
the starting crystalline and the final amorphous phase~poly-
morphic transition!; and ~3! defects generated by solute a
oms are immobile as the consequence of the polymorp
constraint.

Once the defects are created, they are pinned down
long as atoms do not diffuse away beyond several lat

FIG. 10. The dislocation pair coupling constant versus sol
concentration for the binary arrays witha50.75 atT50.2 andP
50.0.
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parameters. The frozen defects will remain random and
mogeneous. Therefore, they have less possibility to fo
clusters and other defect complexes that can compete
preempty the dislocation unbinding.

This polymorphic constraint is achieved by keeping t
systems below the glass transition temperature. In sim
tions, this is checked constantly by monitoring the dynam
properties of the binary arrays. Figure 11 shows the ti
dependent mean square displacement for the binary arra
different solute concentrations. We see that the MSD for
binary arrays reach plateau regions after some initial
namic relaxations, indicating the absence of long-range
fusion. This is also checked independently by computing
nearest neighbor atom distribution.

6. Atomic displacement

The atomic displacements, as defined in Sec. II, can
used to measure disordering and strength of the strain fi
associated with defects. Since the binary arrays are kep
low Tg , the dynamic atomic displacements are negligible
compared with the static ones.

Figure 12 shows the static atomic displacement fields
the binary arrays. The arrows are the displacement vec
us(Ri). For binary array atx50.30,us(Ri) is magnified by a
factor of 2 for ease of viewing. The principal results a
summarized below.

First, in crystalline phases the displacements are ma
associated with defects. The largest displacements occ
the cores of the defects with severe disorder around the
fects. The displacements show decreasing magnitudes
increasing distance away from the cores. Furthermore,
displacement vectors~or orientations! are highly correlated,
especially when the defect density is low. This explains w
orientational order~which is related to the nearest neighb
atomic bond orientation!, persists longer than the transl
tional order upon displacement of atoms. In particular,
notice that the displacements form vortices with their cen
located around the atoms in crystal-like regions. At relativ
low solute concentrations, these displacement vortices ca

FIG. 11. Time-dependent mean square displacement~MSD! of
the binary arrays witha50.75 atT50.20 andP50.0. It is in the
unit of s2. The solid line is forx50.0, dotted line forx50.1,
broken line forx50.148, dashed line forx50.199, and dash-dotte
line for x50.30.
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well resolved and thus, the entire sample appears to be
titioned by vortices of various sizes. At higher defect den
ties, the displacements become less correlated and the
placement vectors are more chaotic. They appear smalle
higher solute concentrations and eventually loose their id
tity in amorphous phases. By comparing atomic displa
ment fields and the defect configurations, we are now abl
see how defects disrupt the crystalline order and how S
proceeds. It is the dislocation and dislocation complexes
contribute to the breakdown of translational as well as ori
tational order.

Second, as more and more defects are generated and
dislocation network chains form, the displacements beco
inhomogeneous or localized. Most disordering occurs ins
the ~existing! dislocation network chains, especially whe
the solute concentrations are high.

The degree of disordering can be estimated by the st
mean square displacements~SMSD! using Eq. ~16!. As
shown in Fig. 13, it changes continuously with increasi
solute concentration and shows no abrupt increase before
onset of the hexatic phase formation atx50.20. This in-
crease slows down when the binary array becomes am
phous. This behavior is in sharp contrast to that of the m
square dynamic displacement at melting where the M
shows a sudden jump and then diverges due to onset ofdif-
fusionat melting.

Third, from the displacement fields one can perceive
strain fields in the disordered crystalline binary arrays. T
strain field eab(r ) is proportional to the derivatives of th

FIG. 12. Static atomic displacement fields for binary arrays w
a50.75 atT50.2 andP50.0. The small atoms sometimes cau
displacements that are connected to form a long chain. Howeve
does not lead to topological disorder.
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displacement vectors,eab51/2@]aub(r )1]bua(r )#. As
shown in Fig. 12, the varying displacement vectors in diff
ent parts of the sample indicate that the strain fields ass
ated with defects are highly inhomogeneous. As more
fects are introduced, the correlation of atomic displaceme
over distance decreases, resulting in short ranged s
fields. The presence of an internal strain field not only c
tributes directly to the increase of the free energy for
disordered crystalline binary arrays, but also to the decre
of elastic shear modulus.

7. Density

Figure 14 shows the molar density of the binary arra
versus solute concentration. The density shows three dis
tive regions, with nearly linear density changes in each
gion. The first region (x,0.05) is the equilibrium binary
solute solutions. The increase of the density is caused ma
by addition of smaller solute atoms to replace larger solv
atoms. Of particular interest is the density change across
hexatic phase transition. There is no significant change in
molar density from the crystalline phase to the hexatic am
phous phase; only slopes at two sides of the density are
ferent.

FIG. 13. Mean square static displacement for the binary arr
with a50.75 atT50.2 andP50.0.

FIG. 14. Molar density of the binary arrays witha50.75 atT
50.20 andP50.0.
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The nearly continuous molar density change across
crystalline-hexatic amorphous phase boundary implies
under isothermal (dT50) and polymorphic (dxi50, i
5A,B) conditions, the entropy change of the binary arra
between the crystalline phase and the hexatic amorph
phase is small.38 It appears that the binary array undergo
the transition with very small latent heat, which is in sha
contrast with that of ordinary melting.

Similar results are observed for the molar enthalpy. T
molar enthalpies of both crystalline and amorphous phase
extrapolated to the critical composition of the hexatic pha
change only slightly. The molar enthalpy of the amorpho
phase remains nearly constant with further increase of
solute concentration. This slow response to solute addi
~also observed in the elastic properties! is a general charac
teristic of the amorphous phase.

B. Binary arrays with „0.50,a… at TÄ0.20,PÄ0.0

The model system is the equimolar binary arrays w
solute concentration fixed atx50.50 with T50.2 and P
50.0. The computation procedure for this model system
the same as that used in the previous case, except tha
variable is the atomic size ratio,a. Similar equimolar binary
arrays was investigated by Bocquetet al.,39 who studied the
amorphization transition induced by atomic size differenc
in the binary solution with pure repulsive interatomic inte
actions. They reported a first order SSA transition. In
following, we summarize the principal results for the mod
binary array with LJ potentials using constant pressure
temperature MD.

Our simulation shows a quantitatively different RD
which resembles that of a liquid at the critical atomic si
ratio, ac50.825. Both local translational and orientation
order parameters, as shown in Fig. 15, vanish at the crit
atomic size ratio. This is quantitatively different from that
the binary arrays at the fixed atomic size ratio in Fig.
Correspondingly, asac is approached, both order correlatio
functions rapidly decay to zero at the same rate at about
third nearest neighbor distances.

Furthermore, the number of the total disclination defec
as shown in Fig. 16, is negligible at atomic size ratios lar

s

FIG. 15. The order parameters for binary arrays withx50.50 at
T50.20 andP50.0. The triangles are for the average local tran
lational and the filled circles are for the orientational order.
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than 0.845 where crystalline phases are stable. It then
abruptly to about 25% when the binary array becomes am
phous atac . The defect configuration reveals that the d
fects are composed predominantly of 5- and 7-nearest ne
bor disclinations. At the criticalac , however, the dislocation
pairs do not form isolated dislocation singlets or dislocat
network chains. Instead, they form large dislocation agg
gates. The dislocation pair coupling constant,K, remains fi-
nite in the crystalline phase slightly aboveac and shows a
discontinuous drop at the transition as reflected in the sh
modulus~see Fig. 17!. These results lead us to the concl
sion that the hexatic amorphous phase is no longer pre
when the crystalline phase is destabilized. The crysta
glass transition appears to be first order, which agrees
the results reported in Ref. 38.

This conclusion is further supported by thermodynam
and elastic properties of the binary arrays: The shear ela
modulus does not decrease continuously witha across the
crystalline/amorphous phase boundary. It drops abruptly
a50.825~Fig. 17!. Similar behavior is observed in ordinar

FIG. 17. Isothermal shear elastic constant versus solute-so
atomic size ratio in the binary arrays withx50.50 atT50.20 and
P50.0.

FIG. 16. Average defect density for the binary array withx
50.50 atT50.2 andP50.0.
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melting.9,13 The static mean square displacements, mo
density, and molar enthalpy also exhibit the same discont
ous change at the transition~Fig. 18!, indicating a first order
transition.

IV. DISCUSSION

The results from above two case studies demonstrate
dislocations and dislocation complexes play a crucial role
the SSA in 2D crystalline solids. For binary substitution

nt

FIG. 18. ~a! Mean square static displacement,~b! molar density,
and ~c! molar enthalpy, for the binary arrays withx50.50 at T
50.2 andP50.0.
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arrays, these defects are clearly seen to be generate
atomic size difference. The insights we learned from t
work helps delineating the role of the atomic size differen
that plays in the atomic size induced topological-order-
disorder transitions in 2D. In the following, we discuss t
underlying mechanisms.

A. Coordination number change, dislocation formation, and
symmetry breaking

The direct consequence caused by the size differenc
the change in interatomic interactions among the ato
within the cut-off distance of the interatomic potentials@Eqs.
~1a! and ~1b!#. If one replaces the solvent atoms by solut
the big solvent atoms would relax toward the small sol
atoms as the large solvent is sitting at the position in
solvent-solute interatomic potential that has a negative slo
This results in position displacements of the surrounding
vent neighbors. The displacement field is symmetric cente
around the solute atom@Fig. 19~a!#, making it appear that the
solute is under a hydrostatic pressure. From a pure geom
point of view, if the solute atom is small enough, such as
our case~25% smaller!, the solute would prefer to have onl
five bigger solvent atoms as its nearest neighbors@Fig.
19~b!#. The neighboring solvents in this case would form
closed ring, leaving no extra space around the small so
This change in coordination number is thought to be driv
by the hydrostatic pressure resulting from the atomic volu
disparity between the small and big atoms.40 The small sol-
ute, which has more space surrounding it upon being pla
on the position occupied previously by the large solve

FIG. 19. The schematics of the local disorder, or symme
breaking, induced by dislocation pairs when small solute atoms
added~see Fig. 7 for detailed atomic defect configurations!. ~a!
Addition of a solute atom~the filled circle! with size difference
causes position disorder for surrounding solvent atoms.~b! Five
nearest neighbors are preferred geometrically for solute atom
smaller in radius~Ref. 40!. ~c! But a seven nearest neighbor ring f
solvent A also needs to be created to maintain the overall m
nearest neighbors at six. The energy associated with this 5–7
location is too high to allow this to happen. Thus the sixfold loc
symmetry is intact.~d! If a second solute is added to substitute o
of the nearest neighbor solvents of the original solute~the number 3
solvent!, a dislocation pair made of two 5- and 7-nearest neigh
disclination pairs are created~the two solutes and the number 2 an
4 solvents!. As a result, the fair-field distortion and strain field a
canceled.
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appears under tension while the solvents are under comp
sion. This simple argument led to the theory40 predicting that
if the atomic size difference reaches a critical value, the pr
sure surrounding the solute would cause the local~extra!
space to collapse. As a result, the original six nearest ne
bors of the solute become five. The topological instability
the local structure or symmetry is therefore proposed as
mechanism resulting from the change of the nearest neigh
coordination shell. According to this theory, the 5- a
7-nearest neighbor coordination number defects in the
binary array should form when the atomic size ratio reac
25% as a result of the local coordination number change
fluctuation induced by the hydrostatic pressure due to ato
size disparity.40 As discussed below, there is a crucial pie
that is missing in this theory in assessing the energy barr
to form such a defect. As a result, this proposition may ne
to be reconsidered for topological order-to-disorder tran
tions or SSA in two dimensions.

Since the mean coordination number in the 2D hexago
lattice is six, if the small solute has five neighbors, one of
neighbors must have seven nearest neighbors. Therefore
ating a dislocation with a 5–7 nearest neighbor coordinat
number ~disclination pair! is equivalent to squeezing th
small solute atom into the 6 member ring of the near
neighbor solvents of the solvent atom A that is the n
nearest neighbor to the solute atom@see Figs. 19~a! and
19~c!#: This 7-nearest neighbor defect needs to be create
maintain the mean coordination number at six. One poss
way to accommodate the solute atom which is 25% sma
is for the six nearest neighbor solvent atoms of A to mo
outward a distance about 20% of the radius of the cen
solvent atom A to open up a 45.2° gap in the nearest ne
bor ring @Fig. 19~c!#. This operation, however, requires
40% area expansion, and may be too costly energetic
Therefore, although the geometric packing favors
5-nearest neighbor arrangement around the small solut
7-nearest neighbor configuration also needs to be crea
This corporative arrangement around the two atoms, whic
not accounted for from a pure geometric point of view40

requires a relatively high energy associated with the lo
area expansion.

If this high cost of energy alone is not sufficient to pr
vent the 5- and 7-nearest neighbor coordination defect fr
forming, the additional increase in the energy barrier c
certainly prohibit its formation. The additional energy is co
tributed from the long-range strain field of this defect: T
highly correlated defect configuration is an edge dislocat
in 2D.19–21 The energy associated with creating the afo
mentioned 7-neighbor coordination defect is simply alocal
event at the dislocation core; the additional energy aris
from the long-range strain field of the single dislocation
made of a pair of 5- and 7-nearest neighbor disclinations
result of anonlocal event. As is known,21,37 its energy is
divergent. Therefore the probability to form such a sing
dislocation is extremely low. Indeed, our results show t
there are almost no 5–7 disclination pairs, or single dislo
tions to form~Fig. 7!. The very few ones that do show up a
shown in Fig. 7~a! are only the transient ones. They eith
disappear after some short period of time, or combine w
other dislocations nearby. Therefore, we conclude that
tortion from asingle solute atom alone is not sufficient t
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break the sixfold symmetry, even when the atomic size
ference is close to or above the critical size ratio in the
binary array for topological/geometric instability.40

However, if one can substitute one of the nearest neigh
solvent atoms of the first solute by another solute atom@see
Fig. 19~d!#, an additional 5–7 disclination pair can be creat
by slightly rearrangement of the neighbors using the ex
space created around the second solute. This new 5–7 d
nation pair is the immediate neighbor of the existing 5
disclination pair. As a result, adislocation pairis created. As
is known,21,37 the dislocation pair has much lower strain e
ergy as compared with the single dislocation due to the c
cellation of the long-range strain field. It can be seen clea
in Fig. 7 that the defects are indeed composed mostly of
5- and 7-nearest neighbor dislocation pairs. As illustrated
Fig. 19~d! as well as in Fig. 7, the far-field distortion aroun
the dislocation pair, which is usually manifested as ex
atomic lines and curved atomic lines, is virtually abse
Therefore, both thelocal atomic position displacement dis
order, which leads to the formation of dislocation cores, a
their long-range strain fieldsin the lattice need to be consid
ered in evaluation of the coordination number change.
other words, the atomic size mismatch alone is not suffic
to break the six-fold symmetry in 2D. It requires a corpo
tive arrangement of a number of atoms, two neighbor
solutes and their solvent neighbors, to accomplish the jo

B. Continuous crystal-to-amorphous transition

The phase diagram in Fig. 1 shows different phases
responding to different regions of atomic sizes and so
concentrations. When atomic size difference is large~slightly
below the critical size difference,ac), the transitions are
continuous as solute concentration changes. There is an
parent intermediate hexatic phase bridging the crystal
phase and the true amorphous phase. On the other han
the high solute concentration~close to equimolar point!, the
intermediate hexatic amorphous phase does not exist an
thermodynamic properties show a discontinuous cha
when the critical atomic ratio is traversed. There is an app
ent critical point where the discontinuous crystal-t
amorphous transition becomes a continuous transition.
attribute this difference to the strain field present in the s
tem under the polymorphic and kinetic constraints. In
second part of this work, we will present a theoretical mo
to explain this crossover phenomenon.41

In the case of continuous SSA, when the atomic size
ference is larger than the critical one~but not too large to
form compound and short-range ordering!, the defect density
is largely controlled by the randomly distributed solutes. T
defect density increases continuously with the increase
solute concentration, but the polymorphic constraint preve
the defects from migrating too far. They remain scarce in
crystalline phases and interact with long range strain fie
As the hexatic phase is approached, the paired dislocat
tend to unbind to form hexatic phases as driven by the
creasing elastic shear modulus and the increasing ent
contributed by the isolated dislocations. At higher disloc
tion density, strong interactions between dislocations lead
formation of dislocation network chains, a precursor of sm
f-
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angle grain boundaries.21 The true amorphous phase form
when dislocations become aggregated at higher defect
sity.

For the binary arrays close to the equimolar concen
tion, the high solute density provides the basis for genera
a large number of defects. When the atomic size differe
reaches the critical atomic size difference, defects are ge
ated spontaneously. This overwhelmingly large number
defect become clustered immediately,42 preemptying forma-
tion of the hexatic amorphous phase.

C. Solid state amorphization and melting

These findings shed light on the topological order-
disorder transition in general. In particular, we would like
point out the difference between melting and solid-st
amorphization.

Following the path of alloying at low temperature, we c
control the defect density to make the binary arrays
proaching the conditions specified by Kosterlitz a
Thouless.23 This advantage is virtually absent in the case
thermal melting. Since dislocations in these systems are g
erated by thermal vibrations as the crystal is heated, the
fect density is determined by both temperature and the in
atomic potentials~closely related to the defect formatio
energy!. A large number of defects are generated at the m
ing temperature due to large-amplitude vibrations.9,43 Fur-
thermore the lattice strain associated with the defects is
laxed quickly through thermal vibration. Even mo
significant is the defect clustering driven by defect intera
tions and further facilitated by diffusion. At an elevated tem
perature close to melting point, dislocations are able to m
rapidly with the assistance of atomic diffusion to form low
energy configurations such as grain boundaries and disl
tion aggregates.9,44 Since dislocation pair unbinding can oc
cur only when dislocations are relatively scarce and there
no dislocation complexes such as grain boundaries,23 pres-
ence of the overwhelmingly large numbers of clustered d
locations can preempt the pair unbinding.44 These defect ag-
gregates become seeds for nucleation and subsequent g
of liquid phases.

Our work also provides microscopic details missing in t
early proposition for the SSA.40 As our work has shown, the
topological disorder, as observed in the 2D model solid
lution, is the direct consequence of the strongly correla
stress~or strain! fields originating from the local distortion
around the solute atoms.Isolated solutes alone cannot brea
the local symmetry, even though the atomic size difference
close to the critical value.40 The ~far-field! stress field asso
ciated with different sized atoms, which is considered to
hydrostatic compression and tension stress only,40 does not
vanish by simply changing of their coordination numbe
The unique relationship between the coordination num
defect and dislocation in 2D requires more intricate arran
ment of atoms and their coordination numbers. It is the c
porative efforts involving a group of atoms, as dictated
the interacting strain fields, that eventually result in break
the local order. This is evidenced by the formation of t
dislocation pairs and their complexes in our simulations.

Our work also indicates that it is the shear stress~field!
arising from the dislocations, not the hydrostatic press
caused by the atom volume difference for different siz
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atoms,40 that is responsible for the local topological instab
ity, or nearest neighbor coordination number change.
direct evidence from the present work shows that there
more space created when dislocation pairs form. Instea
reducing the space surrounding the solute presumably u
the hydrostatic~tension! pressure generated by atomic si
difference40 the space surrounding the two 7-nearest nei
bor disclinations and the 5-nearest neighbor disclinations
dislocation pair become even bigger due to the ineffici
packing. The molar volume around the solute atom in
dislocation pair is larger than that surrounding the same
ute before relaxation takes place in the initial crystalline l
tice ~see Fig. 7!. The extra space, or free volume,46 is cre-
ated, even with an increase of~local! energy, as the result fo
the system to lower its~long-range! strain energy arising
from single dislocations. The later is prohibitively large, b
becomes much smaller when two single dislocation comb
to form dislocation pairs. The extra space remains stabl
long as the dislocation pairs are present.

V. CONCLUSION

It has been a general belief starting with Born1–4,45 that
the elastic shear instability is a cause of crystalline insta
ity. This idea has been used to explain the SSA.1,4 However,
it is known that this model is not adequate to provide inf
mation on what the resulting phase should be when the
stability is reached and how the transition is related to
croscopic structures and defects. Another proposition is
melting, as well as SSA, could not be continuous becaus
absence of the symmetry relation between the topologic
ordered and disordered phase. Although KTNHY theory p
dicts an alternative mechanism, an overwhelmingly la
amount of work,44 especially that from compute
simulations,9,14,15 appear to preclude such a transition. D
spite the simplicity of the model system, our work sho
unambiguously that crystalline instability is caused by va
ous topological defects; and most importantly, the transit
could be continuous. As shown, the crystalline defects c
tribute directly to atomic position disorder and lattice stra
It is the interplay of the two that leads to softening of elas
e
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modulus and final collapse of the crystallinity.
As demonstrated in the two examples for binary arra

transition from crystalline phase to amorphous phase
closely related to defect properties and the kinetic c
straints. If the dislocation density is low and dislocations a
pinned by solute atoms, the transition could be continu
with an intermediate hexatic phase. However, if the num
of dislocations are high and they form clusters, the transit
is abrupt. Since defect complexes are energetically favo
as defect density increases, collective defects such as d
cation network chains, grain boundaries, and dislocat
clusters start to play a more important role in disrupting cr
talline order than the elemental defects do. If the distribut
and mobility of defects can be controlled by kinetic co
straints, the topological ordered phase can undergo a
tinuous transition to the disordered one.

As a final note, a great caution needs to be taken to g
eralize the results to three dimensions. There are severa
connections that are missing when one goes from 2D to
The first is that it is not obvious how the extended defe
such as disclination, dislocation, and grain boundaries
related to solute atoms, or point disorder. The questions
whether or not the solute-induced topological defects e
and if they do, how to characterize them remain to be
swered. The second is the diminishing role of the therm
fluctuations from 2D to 3D. This may make it more difficu
to destabilize the crystallinity in 3D. Finally, the contributio
of entropy from dislocations to destabilization of crystallin
order is much less in 3D, which may lead to disappearanc
the hexatic phase and also the continuous topological or
to-disorder transition manifested by it.
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