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The crystal to glass transition is investigated in two-dimensional Lennard-Jones random binary substitutional
solid solutions using constant temperature and pressure molecular dynamics simulation. We find that defects
generated by atomic size disorder are mainly dislocations and dislocation complexes. They are responsible for
crystalline phase instability. The nature of the transition is shown to be determined by defect properties such as
formation energy and density, and by kinetic constraints. We observe a continuous transition from crystal to
glass with an intermediate hexatic phase characterized by short-range translational order and quasi-long-range
orientational order. The implication of these results for melting and solid state amorphization is discussed.

[. INTRODUCTION the transition. The prevalence of the kinetic effects in the
SSA, set by the heterogeneous initial conditions, leads to the
Melting is a well known example of topological order-to- believe that the SSA is a first order transitior.
disorder transition. At the melting point, the sharp Bragg The question that has not been answered is how this trans-
peaks of crystalline phase suddenly become smeared od@rmation proceeds from the atomic point of view. More
signaling disappearance of the long-range translational symdtriguing is the question of what the transition would look
metry. A less known but frequently occurring phenomenon idike if the inhomogeneity is removed. Since the free energy
solid state amorphizatiofSSA), where crystalline solid be- ©f @ disordered solid such as an amorphous solid or glass is
comes amorphous solid. The SSA is ubiquitous. It occurs ifigner than that of the corresponding crystalline solid with

all types of crystalline solids and can be achieved througﬁhe same composition, in order to transform the crystalh_ne
various means, including mechanical deformation, irradiaphase to amorphous solid, the free energy of the crystalline

tion, solid state reaction, and hydrogen absorptiGimilar phase has to be raised to be equal or above that of the amor-

to melting, the SSA is characterized by disappearance of th hous phase. Under isothermal condition, which is usually

B ks | calli h t the t i H e case in most experiments, the increase of the free energy
ragg peaks in crystalliné phase at the transition. HOWeVely ., \geq by introduction of various types of disorder. For

the disordered phase is amorphous solid. It is liquidlike, buf,siance  mechanical attrition introduces dislocations, grain
does not have any long-range diffusion and does not shoyw,;nqaries and other structure defedsolid state reaction
apparent viscous flow. . between two elemental metals introduces chemical as well as
The SSA has attracted tremendous attention recently. Yiyyctural defects; and diffusion of hydrogen in rare-earth
has been studied extensively in the past decade as a nov@ktals is believed to cause hydrogen interstitials and other
synthesis method to produce bulk amorphous materials. It isomplexities:—® Clearly, these defects directly contribute to
well understood now how the transition proceeds in differenthe instability of the crystalline phase. The phenomenology
systems and under various conditidn§he current under- and the kinetics of different SSA induced by these defects
standing is rooted in kinetics of the transformation. Ashave been understood and well documented. The wanted mi-
pointed out by Johnschthe necessary conditions for the croscopic mechanism, therefore, needs to address the follow-
SSA include the negative enthalpy of mixing of the elemen-4ng question: How do these defects drive the crystalline
tal materials, highly asymmetric diffusivity, and the presencephases unstable against amorphization?
of structural defects. This understanding has resulted in suc- The answer to this question is a fundamental one. It not
cessful prediction of new amorphous phases and rationaliznly enhances our understanding of how the first order SSA
ing experimental results:® Very little is known, however, proceeds in heterogeneous conditions, but also offers expla-
about microscopic mechanisms and thermodynamic natuneations and predictions for the SSA that could occur in ho-
of the transitiont™ mogeneous systems. It also has an important bearing on un-
In most SSA the initial phases are unmixed elementallerstanding of melting. The similar questions have been
crystalline materials. The transformation to a chemically ho+aised for the crystal to liquid transition: How do defects
mogeneous amorphous phase needs to proceed by miximgstroy the crystallinity? and would melting be the same
these elements first. The transformation, therefore, occurs istill be first ordey if the heterogeneity such as free surfaces
highly heterogeneous environment, mostly by nucleation andnd interfaces are absent? The heterogeneity in melting, as in
growth of the amorphous phases at the interfaces, and othéte SSA, is known as the cause for the nucleation of liquid
structural defects in the intermixing zone, or reaction front aphase. As these defects are always present, melting is a first
in solid state reaction induced amorphization. As a resultprder transition. As interfaces and free surfaces are reduced,
kinetic factors, such as diffusion, interface and grain boundthe melting point is found to go up. The crystalline phase
aries, dislocations, and solute miscibility, become critical tocan therefore, be superheated considerably with reduced
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preexiting heterogeneify’® The questions are what the limit sition. Therefore, without losing generality, the solid solution
of superheating is; what could be the nature of melting if thismodel serves as a simplest model system for understanding
limit is reached; and finally, could melting as we know sim- crystalline instability in SSA.
ply be a special case reduced from the phase transition in- In this work, we focus our attention only on the
trinsic to crystalline instability? topological-order-to-disorder transition in two-dimensional

As in the case of the SSA, these questions have not beerD) binary solid solutions because it is convenient to gen-
answered for melting despite extensive efforts made in th&rate and characterize variqus defects in 2D. Furthgrmore,
past’®13In this work, we aim at addressing some of thesethe large numbe( oflghl%oretmal \{vork and computer simula-
questions using model simulations. The model systems ions on 2D melting**** offer a rich set of references that
our investigation are limited to those under isothermal con£an be used to compare with our work. o
ditions below the glass transition temperaturlthough this The model system of the binary random substitutional
is the setting typical for the SSA, it opens a new dimensiorﬁqlld solutions consists of tw_o types of atoms that interact
for understanding of crystalline instability that is not acces-With Lennard-JonegLJ) potentials(1a). To ensure that they
sible for melting. Defects in this model system can be intro-0 to zero smoothly at the finite cutoffg (1b), LJ potentials
duced into crystals through various means other than by theAre modified by using a cubic spline switch functiSn:
mal agitation. Thus temperature becomes an additional 12

) -

parameter that can be used to control the state of the defects. B(r)=—4e
As we show later, the SSA can be considered a melting A r
transition driven by the frozen defects. By comparing the

6
) }S(r), (1a

SSA and melting, we can learn a great deal about the nature 1, r<r,,
of topological order-to-disorder transitions. (r=r)2(3re—r,—2r)
This paper is organized as following. In Sec. I, we de- S(r)=4 1- ¢ 3 ;o n<r<re, ¢,
scribe briefly some important features of the model system (re=n)
and simulation methods. Some physical quantities employed 0, r=r.
to characterize different phases and transitions will also be (1b)

explained. In Sec. lll, we present results for two model sys- . .
terﬂs of binary solid soluti[())ns. One is kept under a const)fe\nwherea and,B_denote the two_atomlc Specios and B). The
atomic size difference between two types of atoms, while th utoffs arere= 2.4%, andr,=1.9Qr, where o IS defined
solute concentrations are varied. Another has its concentr _e!ow. Fe 1S rough!y hetween the fourth and fiith nearest
tion fixed, while the atomic sizes change. We show that thes@e'ghbo};s' respec_tnlle(;y. h h lue f I
systems possess the same types of topological defects bu% or t € potentlg ept , We use t € Same vaiue for a
different characteristics in the order parameters and differert’ eratomic interactions in the binary solid solution,

nature for the transitions. In Sec. IV, we discuss these results € —e @)
and compare them with those in melting. In Sec. V, we sum- ap™ =
marize the results presented in this paper. for a, B=A,B, but different atomic sizes,

opp— O,

II. MODEL AND COMPUTATION METHOD
A. Model 7BBT ATAAT AT @

In this work, we use a binary substitutional solid solution 1 1
model to study defects and the SSA. The reason for this UAB:E(UA/PL UBB):§(1+“)‘T'
choice is as follows.

(1) It is convenient to generate defects and to create awhere the parameter
environment free of preexisting inhomogeneitiéee sur-
faces, interfaces, grain boundaries, and dislocatioBy a:@ (4)
simply varyingatomic size differencef the two constituent TAA
components, we can obtain a variety of topological defects L i
such as disclinations, dislocations, and grain boundaf@s. 'S the atomic size ratio between the solute atédeioted as
The amorphous phase formed in the binary system, as conf®): @nd the solvent atomglenoted asA). Therefore, only
pared with monoatomic system, is stable at temperaturé¥/0 Parameterse and «, are used to parametrize the LJ
close to the glass transition temperatufe<(Ty). It gives us ~ 'nteractions. _ _
a large time window to measure dynamic and thermody- 1€ Potentials with the same depths could avoid such
namic properties(3) This binary solid solution model repre- phenomena as chemical short-range ordering, or clustering.

sents a large class of systems that are known from experi[hese unwanted complications could obscure the results for

ments undergoing SSA. In cases such as solid state reactigtp”+ Al @ given temperature and pressure, the 2D binary

induced SSA, hydrogen absorption induced SSA, and irraS0lid solutions are completely determined by only two pa-
and the concentratiox of the solute atom$,

diation induced SSA, metastable crystalline solid solutiond@Metersa,
form before and during SSAIn general, one can consider N N
the formation of solid solution in the crystalline phase as a x=—5 —__ 8
necessary precursor to the polymorphic amorphization tran- Nigtai N+ N’

®
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whereNg andN, are the number of solute and solvent atomsClose to the crystal to glass transition,”MD steps are
and Ny is the total number of atoms in the system. used. This corresponds to a few hundred nanoseconds for the
To simplify the model further, we set the mass of bothLJ parameters of argon. The sample size also varys depend-
types of atoms to be equah,=mg=m. This choice might ing on how close the system is to the amorphization transi-
have some consequences in the transport properties. But otién. Typically 5000—8000 atoms are used close to the tran-
system is kept at sufficiently low temperatures so that longsition, and smaller systems with a few thousands of atoms
range atomic migration is absent. Therefore, the effect of thigire used for ordered phases.
choice is insignificant. All quantities calculated in this model |In addition to time averages, we also performed configu-
are expressed in reduced LJ units, scaled by two parametefgtion averages to obtain thermodynamic properties for the
o ande. For instance, temperature is in the unitsstg and  random solid solutions. This ensures the reliability of our
time has the units/(ma?/e). results for different arrays with different initial random sol-
ute distribution with finite sample sizes. We normally took 5
to 10 different configurations to obtain the configuration av-
B. Computation procedure erage for each solution with the same valuesrandx but

Atomic configurations, thermodynamic properties, anddifferent initial solute distributions.
dynamic properties of the model system are obtained using
constant temperature and pressure molecular dynamics simu- C. Defects
lation method. Details of the simulation technique can be
found in Refs. 17 and 18. The computation procedure
unique for the binary random arrays are briefly describe
below.

The simplest structural defect in 2D is disclination. Dis-
ocations in 2D are composed of two nearest neighbor dis-
linations, one positive and one negati¥é’To reduce long
. . range elastic energy, dislocations form pairs with two dislo-
h S;artlng fro:nl attpure LJ crystal r%a?ﬁ of bég%_frtatohlmg_ cations of opposite Burgers vectors. When a large number of

€ hexagonal 1atlice, we prepare € substitutional binaryiqqcations are present, or if they are sufficiently mobile,
solid solutions in two ways. One IS to replace_ the big atomsthey tend to form more complicated defects such as grain
randomly by the smaller aton with the relative concen- boundaries in order to reduce the elastic energy resulting

tra|t|ct>_n xat each gltvedn fatom't(;] Size ratia Each rtl)ew socl;d I from their mutual interaction&: The successive occurrence
solution 1S generated 1rom the previous one by graduallyy gitterent types of defects starting from elementary discli-
increasing the solute concentratiarin the present work, we

h 0] by 2 50 h i lid soluti nations, to dislocations, and to other more complicated de-
chose to mt;r%as_,ll_eh y odeac thm(;? at new th' Sou 10N fact aggregates are determined by both strain energy and
was generated. The second method 1S to vagf the NArY  elemental defect density. We show in Sec. Ill A3 that one
mixtures at a giverx. Starting from the pure LJ crystalline

lid h lid solution i ted f " .~ particular type of defect complex in the binary solid solu-
Solid, each new solid solution 1S generated rom the previolyq g the short chain of dislocations, plays a very important
one by decreasingr by 0.05. No significant difference is

. . role in the SSA. The large, connected chains form grain
found for the samples with the sameand « prepared via ! g ns gral

two different paths boundaries:
The smallestx used in this work is 0.7 at which the bi- " 2D dislocations, grain boundaries, and dislocation

) ) . ) . complexes made of the two types of elemental disclinations
nary solid solution can still remain homogeneous without. '\, identified by mapping out the nearest neighbor coor-
formation of short-range order or cluster. Further reductio

' it in undesired local packi ol lrlbinates of each ator??° The coordination numbers of an
0 latma¥ resu .'nhtug e;swe é)(_:a trr:ac_ Itng \tNt elre O'(t)' sma tatom are accounted usually using the Voronoi polyhedron
solute atoms might be trapped in the nterstitial positions Ok, yqtrction that locates the minimum volume polyhedron

larger solvent atoms, or some ordered configurations similairOr each atom with each face bisecting the atomic bonds

to intermetallic compounds might be favored. We ShOUIdIinking the nearest neighbor atoms. In binary arrays consist-

point out that it is equally valid to chose large atoms aSmg of different types of atoms of very different sizes, we use
solute and small ones as solvent, and the results should r

; fhe radical plane method developed by Fisher and Kdch.
main the same. . ) .
> . . . Because of the difference in atomic size, the polyhedron de-
To maintain chemical homogeneity, or polymorphism at

" e termined by simply bisecting atomic bonds using Voronoi
the transition, we need to prevent long range diffusion frommethod may not be minimal. The radical plane method ac-

?Cc%mng'l To do 't’. we keep the #)lna;?/ arra;]yf below thecounts adequately for the atomic size difference in determin-
iquid-to-glass transition temperatufig,. At such low tem- ing the nearest neighbor atoms.

peratures, it is difficult for both solvent and solute atoms to
diffuse. As a result, defects cannot migrate afar to form ag-
gregates. Her& is determined previously by quenching the
corresponding binary liquids using constant pressure MD A general relationship between translational and orienta-
with a quench rate of PaK/s. T4 was found to be almost a tional symmetry and crystalline defects is proposed in the
constant for different binary arrays with the same atomic sizeheory of 2D melting by Kosterlitz, Thoulegs, Nelson,
ratio but different concentrations. Halperin®® and Young® (KTNHY). According to this
Since the binary arrays are kept below liquid to glasstheory, melting occurs when dislocation-pairs, presumably
transition temperature, long simulation time is required togenerated by thermal agitation, start unbinding. The surviv-
reach equilibrium and then to obtain physical propertiesing orientational order is destroyed later as further unbinding
Typically, 1P~ 8 MD steps are used for equilibration and an of dislocation singlets into isolated disclinatioifs.The
equal number of steps are used to collect physical propertieShexatic phase” is a liquid-crystal-like phase characterized

D. Translational and orientational order
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by short-range translational symmetry and quasi-long-rangednd local orientational order. BothTO andLOO are close to
orientational symmetry. Although conflicting results still re- unity in a crystalline phase, and become nearly zero in a
main as for the exact nature of 2D meltihdf->252general  liquid or amorphous phase. A hexatic phase has a nearly zero
concepts such as translational and orientational order and itsTO but finite LOO.

relation to defects have provided a powerful tool for analyz-
ing topological order-to-disorder transitions in 2D. We shall
use this approach in this work to assess crystalline disorder Both melting and SSA are topological order-to-disorder

E. Atomic displacements

in the 2D solid solutions. transition involving changes in atomic positions from a to-
The translational order parameter is defined as pological ordered phase to disordered one. This change is
_ measured quantitatively by the atomic displacement field de-
pe(r)=€'¢T, (6) fined as
wherer is the atom position an@ is chosen as the shortest u=r,—R=ul+us, (12)

reciprocal lattice of the hexagonal lattiéeorresponding to

the first Bragg peak positionAs Nelsonet al?*?"?pointed  wherer; is the instantaneous position of thé atom ancR,

out, the translational symmetry is most susceptible to thés its position in a perfect crystalline, or ordered phageis

presence of dislocations, stacking faults, and grain boundthe dynamic displacement arising from thermal vibrations of

aries. The orientational order parameter is defined as the atom around the mean atomic position; anidis the

__ime(n) static displacement from the ordered positions caused by

pm(r)=e ' @) various structural defects. Both quantities contribute to the

whered(r) is the angle of the bond between the atom and itdPebye-Waller factor describing the broadening of the Bragg

nearest neighbor with respect to a reference axis. kere Peaks of crystalline phases.

=6 for a hexagona| lattice anth=4 for a System with The dynamic displacement fields can be written as

square symmetry. Orientational symmetry is less susceptible d

to dislocations and stacking faults; it is disturbed instead by up=r;—(ri), (13

disclinations and grain boundaries. where (---) stands for time average, add;) is the mean
The correlation functions of these symmetry order paramz; position averaged over many configurations due to
eters are thermal vibration. The static displacement field is written as

Co(r)={(p&(r)pc(0))) ® U= (r)—R,. (14)

and R; is the atomic position of the reference lattice with the
/o * same density as the disordered of@therwise an additional

C(r)={{pm(r)pm(0))), © displacement needs to be added to account for changes in
where((:--)) denotes the time and configuration averaging.attice parameter. However, such uniform change in lattice
From the correlation lengths of these correlation functionsparameter is irrelevant to representing topological order to
one can measure the spatial extension of both kinds of ordedisorder transition.
For a crystalline phase, both order correlation functions are The degree of atomic position disorder can be measured
long-ranged. In 2D, the long-range translational correlationdy the mean values of the atomic displacements. The dy-
are destroyed by fluctuations of the long wavelength phonomamic and static mean square atomic displacem@ng&D)
modes, making the translational symmetry are written as
quasi-long-range® The translational correlation function

decays in a power law fashion over distance. For a liquid or 42 Notal 2
amorphous phase, both order correlation functions are short- ((ou)%)= Now E. ((u)9) (15
ranged and manifested in an exponential decay. The hexatic o
phase, on the other hand, is characterized by a short-rangad
translational symmetry and quasi-long-range orientational N
symmetry.
Besides the order correlation functions, we also compute ((ou)?)= Niotal Z (u)?, (16)
the local order parameters defined as averages of the order
parameter over the entire samﬁ?e, Equation(15) is the familiar one used by Lindemann to pre-
N dict the onset of melting? We will use the mean static dis-
ol placement(16) to measure the disorder in SSA caused by
LTO=5— 2 pa(n) (10 defects.
total |
and IIl. RESULTS
Nowl [ N Some relevant thermodynamic state variables and physi-
LOO= N Z E; pm(r;) |, (1) cal properties are briefly described below for the substitu-

tional random binary arrays:
whereN; is the number of the nearest neighbors of ttte The melting temperature of the pure 2D LJ crystal at zero
atom. HereLTO andLOO stand for local translational order external pressure is found to be 0.41-0.43, which is in agree-



PRB 62 DEFECT-INDUCED TOPOLOGICAL ORDER-TO. .. 13983

1.0 X X T T T T T
X Crystal X Xg= 0.300
0.9 X X 30}
’ X X
s X X Xg = 0.250
0.8 X XX XXX X X X % X—= — _
XX KK X X XX TN~
- / N ~ o~
€ 07 o ;X NN o
& exatic ’ N E
4 w
N L c
o 0.6
@ Amorphous %
.g 5
Z 0.5 ~§
= = 2
0.1 2
]
l | | L g
2
0.0 0.2 0.4 0.6 0.8 1.0 g
2

Small Atom Concentration X

FIG. 1. Phase diagram of the two-dimensional binary random
substitutional solid solutions &t=0.20 andP=0.0. Cross signs
mark the systems that were actually simulated.

ment with the previous work.With the quenching rate of
10° K/s, we find the glass transition temperature for the pure
LJ liquid between 0.22 and 0.25. Asincreases the melting 1/
temperature decreases from the pure LJ values while the

glass transition temperature remains almost constant.

The binary arrays are characterized by four state vari
ables, temperatur€, external pressurB, the solute concen-
trationx, and the atomic size ratie. Practically, it is almost  at distances beyond the fourth nearest neighbors. Further in-
impossible to study all systems specified by these paranereasing of solute concentration does not change the RDF
eters. To be as representative as possible, the parameters thahntitatively.
can best serve our purpose are as follows. Amorphous phase with isotropic interatomic interactions

Throughout our simulation, we take®=0 and T s often identified by the split-second peaks in the RDF.
=0.20(<T) for all systems studied. For the given pressureqowever, in 2D hexagonal lattice, the second and third peaks
and temperature, the binary arrays are simulated along tWg, the RDF are very closésee the RDF ax=0), a feature
paths specified by and «. The first is to vary solute con- 4 s retained even in the amorphous phase. Therefore, this
centrationa at a given atomic size ratiq and the Secof‘d IS criterion cannot be used to identify the amorphous phases
to vary atomic size ratia at a given solute concentration o med from the hexagonal crystalline phase. The partial
F]gure 1 shows the atomic ;lze—solute concentration p.haSﬁDF are not useful either since the second and third peaks
diagram for the systems studied. Several topologically dISOI’ée even more persistent. Although an alternative method

delred phases are Sho‘%‘fﬂ at different atlomic s.ize.raticcj).sﬁa as proposed by Wong and Chedteo identify the second-
solute concentrations. There is a critical atomic size dif ersplit peaks for 2D glasses from rapid quenched liquids, our
ence,a~0.825, abovewhich only crystalline phases exist

) . ; . results suggest that other methods should be considered.
(see Fig. 1 In the following section, we will present results 1o o5t straightforward method is to map out the atomic
from one of the binary arrays with atomic size ratio@t  .qnfigurations. It is particularly suitable to a 2D glass. Prob-
=0.75 and varying solute concentrations. lems may arise regarding the reliability of such method,
since there is no true long-range translational order in two
A. Binary arrays with (x,a=0.75 at T=0.20,P=0.0 dimension€* In practice, this concern is essentially
unnecessary.Figure 3 shows the snapshots of the atomic
configurations of the binary arrays at different solute concen-

As shown in Fig. 2, the structural evolution of the binary trations.

arrays can be seen from their radial distribution functions The atomic configurations show that the binary arrays do
(RDF). The RDF shows that the binary arrays become morgnaintain their crystallinity up untk=0.20, where the amor-
and more disordered as we gradually increase the solute cophous phases start forming. Aboxe=0.20 we see that the
centration. As the solute concentration increases, all peaks @morphous phase actually contains tortuous crystal-like re-
the RDF becomes broadened and the ones at large distanagens interweaved with disordered regions. This feature is
become flattened first. A quantitative change of the RDFspecially noticeable in the concentration range between
occurs atx=0.20 where the peaks of RDF become smeared=0.25-0.30. Each of the crystalline regions retains hexago-

FIG. 2. Radial distribution functiondRDF) for two-dimensional
arrays witha=0.75, atT=0.20 andP=0.0.

1. Structure
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FIG. 3. Atomic configurations of the two-dimensional binary arrays with0.75, atT=0.20 andP=0.0. Circles are solvent atoms and
filled circles are solute atoms.

nal symmetry of the parent crystalline phase but differs most

w

obviously in their relative orientations. Their sizes range on % 1.0 . . |

average from ten to a few hundred atoms across. The averag | o

sizes of these regions become smaller with increasing solut¢§

concentration. It appears that the disordering occurs via eg = °®" 7

mechanism of fragmentation of the parent crystalline phaseg

by addition of solute atoms. In the following sections, we £ o.6} ~

will explore the connections between this mechanism andg

various defects present in the binary arrays. E 0.4k |
2

2. Order, correlation functions, and hexatic phases u_-: o2k
More detailed structural features exhibited by the variouss | 1 e
phases of the binary arrays are revealed by the translationeé» I f?-\__b__k'_""":
and orientational order parameters and their correlation func-% %95 0.1 0.2 0.3 0.4

tions. In Fig. 4, we plot the average LTO and LOO for the
binary arrays. Both order parameters decrease slowly with
increasing solute concentration unti=0.15. Beyond this FIG. 4. Average local translational and orientational order pa-
point, they start to decline dramatically. The LTO decreasesameters for binary arrays withk=0.75 atT=0.20 andP=0.0.
faster. Atx=0.20 where the amorphous phase was shown tGriangles denote the translational order and filled circles denote the
form, the LTO already becomes nearly zero, typical for aorientational order.

Solute Concentration, X
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1.0 T T T T T T T phonons that spontaneously destroy the true long-range
translational order. In contrast, the bond orientational order
correlation function of the pure LJ solid stays constant over
distance, indicating that the orientational order is truly long-
range.

Increasing the solute concentration leads to further decay
in the translational correlation functions. The correlation
lengths associated with these translational correlation func-
tions at different solute concentrations remain quasi-long-
range. Atx=0.20, where the RDF in Fig. 2 as well as the
LTO in Fig. 4 show the onset of the amorphous phase, the
translational correlation function approaches zero at dis-
tances of about the fourth and fifth nearest neighbors. Further
increase of solute concentration beyond this point results in
translational correlation functions showing no crystalline
features but over damped oscillations. The correlation
lengths match the average size of the crystal-like regions

Translational Order Correlation Functions

0.4 l | i I ! | { observed in the atomic configuration in Fig. 3.
0 2 4 6 8 10 12 14 18 The orientational order correlation function behaves quite
differently. As more solute atoms are added, it begins to
rio show the familiar quasi-long-range decay, but much slower
FIG. 5. The translational order correlation functions for binary i[han the_tran3|a_tional order Corre_lation function. Of particular
arrays witha=0.75 atT=0.20 andP =0.0. interest is that in the concentration range above 0.20 where

amorphous phase appears, the orientational order correlation

liquid. But the LOO still remains at a relatively large value functions still maintain the familiar quasi-long-range behav-
and vanishes only later at=0.40. The amorphous phases ior. This correlates well with the behavior of the LOO shown

betweenx=0.20—0.40 are characterized by absence of thd Fig. 4. Such persistent orientational order starts to fade
long-range translational order and finite orientational order®Nly at much higher solute concentrations%0.40), where
suggesting the existence of a hexatic amorphous pH&&&! the orientational correlation function becomes short-range.
Figures 5 and 6 show the translational and bond orienta- 1he amorphous phase between 6:36<0.30 character-
tional order correlation functions as defined in E(®.and ~ 12€d by short-range translational order and quasi-long-range
(9). The translational order correlation function for a pure LJorientational order could well be the hexatic phase. A
solid is long-range, but apparently decays over distancesareful inspection of the atomic configuratiols obtain the
Such behavior is characteristic of 2D crystals. This quasi_best result, the reader is advised to view these configurations
long-range decay of the translational order correlation funcfrom directions at a small inclined angle away from the pa-

tion is caused by fluctuations of the long wavelengthPer: translational and orientational symmetry breaking can be
perceived the best in this way by rotating the figures about

the normal of the papgrreveals that in the concentration
range between 0.20 and 0.40, the crystal-like regions show a
much less abrupt change in thelative orientationthan in

the translational order. Beyond the distance corresponding to
the translation correlation length defining the size of the
crystalline fragments, the atomic linggorresponding to
atomic planes in three dimensions the crystal-like regions
terminate suddenly at the edges of the domains where extra
atomic lines emergéwhich are edge dislocations in 3D
The relative rotation of these atomic lines from one crystal-
like region to its adjacent ones changes, however, relatively
smoothly.

According to the KTNHY theory of 2D melting, the
hexatic phase forms as a result of unbinding of dislocation
pairs into dislocation singlets. These dislocation singlets de-
stroy translational order but leave orientational order intact.
Indeed, the detailed defect configurations, as shown in the
next section, exhibit such behavior.

Finally, to eliminate any concern that the intermediate
hexaticlike phases are transient phases resulting from pos-
sible hysteresis and slow kinetics, all simulations for binary
arrays having solute concentrations at or close to the hexatic

FIG. 6. The bond orientational order correlation functions for region were done with exceedingly long equilibration times
binary arrays withe=0.75 atT=0.20 andP=0.0. (typically 10°~8MD steps. Based on the results obtained
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FIG. 7. The atomic configurations of defects in the binary arrays witt0.75 atT=0.20 andP=0.0. Triangles represent disclinations
with four nearest neighbors, crosses represent disclinations with five nearest neighbors, plus signs represent seven nearest neighbor discli
nations, and asterisks represent eight nearest neighbor discling&i&nsN and a 7 NNdisclination separated by a lattice spacing forms a
single dislocation. To present a better view of defect, we use squares to represent solute atoms and circles for solvent atoms. Note the
overwhelming number of dislocation pairs in the binary arrays that always have two solute-solveffitwmaicgcles and two squargs

thus far, we conclude that the intermediate hexatic phase igair in the binary arrays. As the solute concentration in-
indeed a unique phase for 2D binary LJ solid solutions.  creases, especially beyore:0.20, we find that dislocations
tend to form more complicated configurations, presumably
for the same reason of reducing elastic energy. As shown in
Using the technique described in Sec. IIC, we mappedig. 7, they appear as chains made of elongated dislocation
out various defect configurations at different solute concensinglets and pairs, or dipoles. As the solute concentration
trations. As shown in Fig. 7, there are many interesting feaincreases further, the chainlike clusters become connected:
tures exhibited in the defect configurations. and at higher concentrations, they grow into the rest of the
First, the defects are generated exclusively by atomic sizerystalline regions, and gradually lose their identity.
differences between the solvent and solute atoms. Defects These dislocation network defects cannot be considered
always occur at or around the solute atoms. The smaller soks grain boundaries yet because their scales are only micro-
ute atoms that induce defects always have five-nearest neigheopic. The sizes of the chainlike dislocation segments range
bor disclinations; and the solvent atoms have seven-nearebm a few atomic spacings in the binary arrays with low
neighbor ones. solute concentrationsxE0.0 to 0.15 to a few hundred
Second, dislocations always form pairs in the crystallineatomic spacings at high solute concentratiors- (.20 to
phases so as to reduce the elastic energy from the long-ran@es0. Furthermore, they do not form closed loops in the
elastic strain fields associated with the dislocation singletscrystalline phase until very high density of dislocations is
We have found only a neglectable number of isolated disloreached Xx>0.25). We therefore, prefer to call thedislo-
cations composed of a negative and a positive disclinatiogation network chainsThey are apparently the precursor of

3. Defects
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0.5 T T T phization &=0.20), the total disclination density reaches
approximately 25%, or 13% of dislocations. If we divide this
0.4k i density by the total area of the samples, we get the disloca-
. tion density in the order of #nm~2 which is typical for
'g o~ . severely deformed metafS.Incidentally, this value is also
s o3r 1 close to the critical density in order to induce meltiig.
g ” Furthermore, a careful observation of the defect configu-
© o2f ,"' . rations in Fig. 7 reveals that the defects in the binary arrays
,‘_g at x=0.20 are quantitatively different. The tightly bonded
dislocation pairs start breaking loose. Some form isolated
01 . ~ . . . .
dislocation singlets while others become elongated to form
R— o short dislocation network chains. Defining the isolated dislo-
0. Q=== 0f1 ofz ofa o4 cations as those that are separated by at least one lattice

spacing, we find that at the hexatic phase transition roughly
15% of the total number of dislocations are singlets; and
approximately an equal number of dislocations are in the
dislocation network chains. If we count the dislocations in
short dislocation network chains as isolated dislocatitwes

_ ) ) ) cause of their severe elongatjothe density of isolated dis-
grain boundaries made of elongated edge dislocations djycations reaches 25-30%. This large number of separated

poles in 2D caused by the characteristic interactions betwe?\slocation singlets at=0.20 provides a strong evidence of
edge dislocations. The SSA transition in 2D is closely relateq mation of a hexatic phase.

to this type of defect.

The average defect density calculated for the binary ar-
rays is presented in Fig. 8. It is summed over the atoms at the
cores of disclinations and divided by the total nhumber of Because of their important roles in characterizing instabil-
atoms. Since most disclinations are five- and seven-neareiy of crystalline phase as pioneered by Béritt!the elas-
neighbor disclinations that occur in paiwith few four- or  tic constants of the binary arrays have also been investigated
eight-nearest neighbor disclinationa half of the density is  (Fig. 9).
that of the dislocations. Similarly, one fourth of the disclina-  Since the 2D hexagonal crystalline phase and the amor-
tion density is the dislocation pair density. phous phase are both isotropic, the condition of elastic isot-

The defect density rises at=0.15, prior to which the ropy, C4u=(C1,—C44)/2, reduces the total number of inde-
only defects are dislocation pairs. At the onset of the amorpendent elastic constants to two. They are usually expressed

Solute Concentration, X

FIG. 8. The average defect density of the binary array with
=0.75 atT=0.2 andP=0.0.

4. Elastic behavior
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as Lame coefficient, \=C,, and the shear modulugy LA I B I
=Cyy. The bulk modulus is then given bg=(C,; 300¢ .
+Cy9)/2=\+pu and the Poisson ratio igs=N/(N+2u). \ ]
The typical error for calculated elastic constants using this 250 E
type of MD is about 5% Close to the SSA, large structural . \ ]
fluctuations and slow relaxation lead to errors typically 2 299F o E
around 10%. = " \. ]
As expected, the bulk modulus decreases very slowly = 150;_ \ E
with increasing solute concentration and shows little change 1002_ ° E
at the concentration where amorphization occurs. In contrast, r \ p
the shear modulus decreases sharply. When the hexatic 502 ‘\= 1
L ]

amorphous phase forms at&=0.20, it plunges more than

50% from the initial shear modulus of the pure, perfect crys- ob i

talline phase. As a comparison, the measured shear modulus 0.00 0.10 0.20  0.30 0.40 0.50

of amorphous phase is usually about 30% smaller than that

of the corresponding crystalline phaSesuch a large change

of shear modulus signals a possible phase transition. The F|G. 10. The dislocation pair coupling constant versus solute

behavior of the Poisson ratio, which is determined mostly bytoncentration for the binary arrays with=0.75 atT=0.2 andP

the shear modulus, also increases very rapidly in the concer-0.0.

tration rangex=0.15-0.25 and levels off in the amorphous

region. o 4a’ p(pt\)
This sharp lose of shear elastic rigidity can be understood T 2aEn

in terms of the defects present in the binary arrdyscal BT (2u+))

atomic position disorder and lattice straare two most im- wherea is the lattice spacing of the lattice. Using the Lame

portant contributions from the defects. Since the E|aSt.'Ccoefficients obtained from the elastic constants, we calcu-

modulus is related to the long-wavelength part of the strai ated the coupling constatas a function ok As shown in

fluctuations’* as more defects are generated, the internal. I : . .
X : . ig. 10, K exhibits a rapid decline as solute concentration
strain fluctuations become larger and the shear elastic modu- ; -, .
L .___Increases. At the hexatic phase transition, it approaches the

lus becomes smaller. The contributions from the local disor- o : X ;
L . . instability value, 16r, which agrees with our observation

der at the defect cores and their immediate vicinity are rela;

tively complicated. If the fraction of atoms in the defect that dislocation pairs unbind at the hexatic phase formation.

) - ) As solute concentration increases furthir]evels off and
cores is small, one can, and often does as in continuum me-__ " .
femains almost constant in the amorphous phases.

chanics, ignore their contributions to the total elastic modu- This behavior is in sharp contrast to that in melting where
lsults Eome\rl]er#]rgzep;a:\fgzls ggfcl)?:]ngee; JrLéStilgﬁg :‘:ézg ?gnt;K remains finite at the melting point and then suddenly drops
tre{;\ted a% 'a “second hasye” with differe%nﬁen lowe) fo zero as the metastable crystalline phase becomes fiquid.
; P . , One can estimate the instability temperature corresponding
elastic modulus. The total elastic modulus is, therefore, th?o K— 16 by extrapolating the finit& at the melting point

weighted average from both disordered and order regions. Ipo the universal value. It is found that this temperature is well

addition, dislocation network chains and grain boundariesabove the eauilibrium meltina point. and therefore. is the
also contribute to the softening of elastic modulus by Chang_ultimate instgbilit ointinacgespsible;to ex erimenté’, In
ing crystallographic properties of the lattice, such as orienta- y P ) P -

contrast, our results show a continuous SSA, or a continuous

tion of the lattice. The misorientation of each crystalline do"‘melting” from a crystalline phase to amorphous phafe-

mains can impede sound wave propagation effectively. en liquid, with an intermediate hexatic phase. As discussed

Since the coupling constant of dislocations depends on th o . S T
shear elastic modul, the binding energy of dislocation elow, this is only possible because of kinetic constraint im-
' sed on the system.

pairs becomes weaker as the lattice becomes less rigid whé?
more defects are generated. Taking into account of increas-
ing entropy by dispersing single dislocations on 2D, Koster-
litz and Thoules? proposed that the dislocation pairs should  Restricting atoms from executing long-range diffusion in
begin to separate when the dislocation coupling constant dex crystalline solid solution is a necessary condition for the
creases below a critical value. The decrease of the elastB8SA?! This polymorphic constraint ensures the followirih)
shear rigidity of the lattice in turn, makes it easier to generat&he disordered crystalline phases do not form equilibrium
more defects. Taking this into account, Nelson andcrystalline phase&vhich normally occur through long-range
Halperirt* calculated the critical dislocation coupling con- diffusion) other than the metastable hexatic and amorphous
stants that should reach a universal value ofrl& the phases(2) the compositions remains homogeneous in both
hexatic phase formation. Although this result is derived forthe starting crystalline and the final amorphous pHaséy-
thermal disordering, it can be applied to other cases includmorphic transitioft and (3) defects generated by solute at-
ing SSA involving stability of dislocation pairs. oms are immobile as the consequence of the polymorphic
In 2D the coupling constant between two edge dislocaconstraint.
tions with opposite Burgers vectors can be expressed Once the defects are created, they are pinned down as
ag32437 long as atoms do not diffuse away beyond several lattice

X

(17

5. Kinetic constraint and diffusion
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FIG. 11. Time-dependent mean square displacerfdBD) of
the binary arrays withw=0.75 atT=0.20 andP=0.0. It is in the
unit of o2. The solid line is forx=0.0, dotted line forx=0.1,
broken line forx=0.148, dashed line for=0.199, and dash-dotted
line for x=0.30.

parameters. The frozen defects will remain random and ho-
mogeneous. Therefore, they have less possibility to form
clusters and other defect complexes that can compete an S
preempty the dislocation unbinding. = ,i’“'

This polymorphic constraint is achieved by keeping the ™
sfystems' b.EIOW the glass transition tempergture. In S|mu!a- FIG. 12. Static atomic displacement fields for binary arrays with
tions, this is checked constantly by monitoring the dynamic,_j 75 4tT=02 andP=0.0. The small atoms sometimes cause

properties of the binary arrays. Figure 11 shows the tim&;gpjacements that are connected to form a long chain. However, it
dependent mean square displacement for the binary arrays @es not lead to topological disorder.

different solute concentrations. We see that the MSD for all

binary arrays reach plateau regions after some initial dygye|| resolved and thus, the entire sample appears to be par-
namic relaxations, indicating the absence of long-range difgiiioned by vortices of various sizes. At higher defect densi-
fusion. This is also checked independently by computing thgjes the displacements become less correlated and the dis-
nearest neighbor atom distribution. placement vectors are more chaotic. They appear smaller at
higher solute concentrations and eventually loose their iden-
tity in amorphous phases. By comparing atomic displace-

The atomic displacements, as defined in Sec. I, can benent fields and the defect configurations, we are now able to
used to measure disordering and strength of the strain fieldsee how defects disrupt the crystalline order and how SSA
associated with defects. Since the binary arrays are kept beroceeds. It is the dislocation and dislocation complexes that
low T, the dynamic atomic displacements are negligible asontribute to the breakdown of translational as well as orien-
compared with the static ones. tational order.

Figure 12 shows the static atomic displacement fields of Second, as more and more defects are generated and more
the binary arrays. The arrows are the displacement vectodislocation network chains form, the displacements become
u%(R;). For binary array ak=0.30,u%(R;) is magnified by a inhomogeneous or localized. Most disordering occurs inside
factor of 2 for ease of viewing. The principal results arethe (existing dislocation network chains, especially when
summarized below. the solute concentrations are high.

First, in crystalline phases the displacements are mainly The degree of disordering can be estimated by the static
associated with defects. The largest displacements occur atean square displacementSMSD) using Eq. (16). As
the cores of the defects with severe disorder around the deshown in Fig. 13, it changes continuously with increasing
fects. The displacements show decreasing magnitudes witplute concentration and shows no abrupt increase before the
increasing distance away from the cores. Furthermore, thenset of the hexatic phase formationat0.20. This in-
displacement vector®r orientation are highly correlated, crease slows down when the binary array becomes amor-
especially when the defect density is low. This explains whyphous. This behavior is in sharp contrast to that of the mean
orientational ordefwhich is related to the nearest neighbor square dynamic displacement at melting where the MSD
atomic bond orientation persists longer than the transla- shows a sudden jump and then diverges due to onsaif-of
tional order upon displacement of atoms. In particular, wefusionat melting.
notice that the displacements form vortices with their centers Third, from the displacement fields one can perceive the
located around the atoms in crystal-like regions. At relativelystrain fields in the disordered crystalline binary arrays. The
low solute concentrations, these displacement vortices can tgtrain field €,4(r) is proportional to the derivatives of the

6. Atomic displacement
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FIG. 15. The order parameters for binary arrays with0.50 at
T=0.20 andP=0.0. The triangles are for the average local trans-

displacement vectors,e,g=1/24 d,up(r) +dpua(r)]. As lational and the filled circles are for the orientational order.

shown in Fig. 12, the varying displacement vectors in differ-
ent parts of the sample indicate that the strain fields associ- The nearly continuous molar density change across the
ated with defects are highly inhomogeneous. As more deerystalline-hexatic amorphous phase boundary implies that
fects are introduced, the correlation of atomic displacementander isothermal dT=0) and polymorphic §x;=0, i

over distance decreases, resulting in short ranged straia A,B) conditions, the entropy change of the binary arrays
fields. The presence of an internal strain field not only conbetween the crystalline phase and the hexatic amorphous
tributes directly to the increase of the free energy for thephase is smafl® It appears that the binary array undergoes
disordered crystalline binary arrays, but also to the decreas@e transition with very small latent heat, which is in sharp

of elastic shear modulus. contrast with that of ordinary melting.
Similar results are observed for the molar enthalpy. The
7. Density molar enthalpies of both crystalline and amorphous phase, as

Figure 14 shows the molar density of the binary arraysextrapolated to the critical composition of the hexatic phase,

. g . “7~change only slightly. The molar enthalpy of the amorphous
versus solute concentration. The density shows three d'St'n%'hase remains nearly constant with further increase of the

t'\./e re_[g;]on?_, V,;”th qearly<l|(;1%2r Qerl[ilty ChaFSPTS n bgach "®Solute concentration. This slow response to solute addition
gion. The Trst region X<0.05) is the equilibrium dINary 5155 opserved in the elastic properjies a general charac-
solute solutions. The increase of the density is caused main

by addition of smaller solute atoms to replace larger solven fistic of the amorphous phase.
atoms. Of particular interest is the density change across the
hexatic phase transition. There is no significant change in the ) ] ] )
molar density from the crystalline phase to the hexatic amor- The model system is the equimolar binary arrays with
phous phase; only slopes at two sides of the density are difolute concentration fixed at=0.50 with T=0.2 andP
ferent. =0.0. The computation procedure for this model system is
the same as that used in the previous case, except that the
variable is the atomic size ratie, Similar equimolar binary

B. Binary arrays with (0.50, @) at T=0.20,P=0.0

ook | arrays v_vas_investiga_\t_ed t_Jy Bocquettal,*° V\_/ho _studi_ed the
' . amorphization transition induced by atomic size differences
_,f in the binary solution with pure repulsive interatomic inter-
T o.sf N actions. They reported a first order SSA transition. In the
& yd following, we summarize the principal results for the model
= 096 4 binary array with LJ potentials using constant pressure and
= s temperature MD.
§ o.e4| & i Our simulation shows a quantitatively different RDF
2 r which resembles that of a liquid at the critical atomic size
e = ratio, a.=0.825. Both local translational and orientational
0.2 ' 7] order parameters, as shown in Fig. 15, vanish at the critical
.......... « atomic size ratio. This is quantitatively different from that of
0.90%" . i \ — the binary arrays at the fixed atomic size ratio in Fig. 4.
0.0 0.1 0.2 0.3 0.4 Correspondingly, ag. is approached, both order correlation
Solute Concentration, X functions rapidly decay to zero at the same rate at about the
third nearest neighbor distances.
FIG. 14. Molar density of the binary arrays with=0.75 atT Furthermore, the number of the total disclination defects,

=0.20 andP=0.0. as shown in Fig. 16, is negligible at atomic size ratios larger
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FIG. 16. Average defect density for the binary array with
=0.50 atT=0.2 andP=0.0. 1.10% |
than 0.845 where crystalline phases are stable. It then rises ;7? 1.05| -. —
abruptly to about 25% when the binary array becomes amor- § o0
phous ata.. The defect configuration reveals that the de- = 4 gol- .
fects are composed predominantly of 5- and 7-nearest neigh- 2 ..
bor disclinations. At the criticak., however, the dislocation }

. . ; . X : . 0.95F .. .
pairs do not form isolated dislocation singlets or dislocation
network chains. Instead, they form large dislocation aggre-
gates. The dislocation pair coupling constafitremains fi- 0.90- ' | : I *
nite in the crystalline phase slightly abowg and shows a 0.75 0.80 0.85 0.90 0.95 1.00
discontinuous drop at the transition as reflected in the shear e .

. (b) Atomic Size Ratio, o
modulus(see Fig. 1). These results lead us to the conclu-
sion that the hexatic amorphous phase is no longer present o B
. . e <. T T T T
when the crystalline phase is destabilized. The crystal to
glass transition appears to be first order, which agrees with 2 60k |
the results reported in Ref. 38. R o ]
This conclusion is further supported by thermodynamic | A .
. . . . . (o} -265 I~ -
and elastic properties of the binary arrays: The shear elastic & .
modulus does not decrease continuously witlacross the E s 70l ‘ |
crystalline/amorphous phase boundary. It drops abruptly, at "‘g o
a=0.825(Fig. 17). Similar behavior is observed in ordinary g 0 78]
1 20 - T T T T ] -2.80F ) -
.................... * Q“

= 100k X =05 T _ -2.85 L L L L

5 0.75 080 085 090 095 1.00

§ 80 ' i (c) Atomic Size Ratio, y

o

= FIG. 18. (a) Mean square static displacemefity molar density,

-% 601 ;’ 7] and (c) molar enthalpy, for the binary arrays witt=0.50 atT

© L =0.2 andP=0.0.

W 40t =

(v

9 melting®!® The static mean square displacements, molar

® 201 ‘ 7 density, and molar enthalpy also exhibit the same discontinu-

) — o ? ous change at the transiti¢Rig. 18), indicating a first order
ot | ! ! . transition.
0.75 0.80 0.85 0.90 0.95 1.00
Atomic Size ratio, « IV. DISCUSSION

FIG. 17. Isothermal shear elastic constant versus solute-solvent The results from above two case studies demonstrate that

atomic size ratio in the binary arrays wii+=0.50 atT=0.20 and

P=0.0.

dislocations and dislocation complexes play a crucial role in
the SSA in 2D crystalline solids. For binary substitutional
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appears under tension while the solvents are under compres-

OQQG%OQOQO % sion. This simple argument led to the thergredicting that
O - }

if the atomic size difference reaches a critical value, the pres-

@@ sure surrounding the solute would cause the ldextra
QCDOQCD@DOOO (b) space to collapse. As a result, the original six nearest neigh-
bors of the solute become five. The topological instability of
() Q Q OO O Q the local structure or symmetry is therefore proposed as the
O @%O O mechanism resulting from the change of the nearest neighbor
OQQ O @. QQ O coordination shell. According to this theory, the 5- and
©6®© Q @@@ Q 7-nearest neighbor coordination number defects in the 2D

OO Q QOO Q O binary array should form when the atomic size ratio reaches

25% as a result of the local coordination number change, or
(©) G)) fluctuation induced by the hydrostatic pressure due to atomic
. ) size disparity’® As discussed below, there is a crucial piece
FIG. 19. The schematics of the local disorder, or symmetrythat js missing in this theory in assessing the energy barriers
breaking, induced by dislocation pairs when small solute atoms arg, form such a defect. As a result, this proposition may need
added(see Fig. 7 for detailed atomic defect configuratio®) 4 he reconsidered for topological order-to-disorder transi-
Addition of a solute atontthe filled circle with size difference tions or SSA in two dimensions

causes po'_s,ition disorder for surrounding solvent atofs.Five Since the mean coordination number in the 2D hexagonal
nearest neighbors are preferred geometrically for solute atom 250{%1ttice is six, if the small solute has five neighbors, one of its

i iugRef. 40. (c) But a seven nearest neighbor ring for . .
smaller in radiug 0.(©) arest neig g neighbors must have seven nearest neighbors. Therefore, cre-
solvent A also needs to be created to maintain the overall mean

nearest neighbors at six. The energy associated with this 5-7 di?—tlng a dls_loc_atlop with ‘.ﬁi 5._7 ne_arest neighbor Coqrdlnatlon
location is too high to allow this to happen. Thus the sixfold local number (dlscllnatlon. paiy is equivalent t? squeezing the
symmetry is intact(d) If a second solute is added to substitute onesm_aII solute atom into the 6 member ring of Fhe nearest
of the nearest neighbor solvents of the original solttie number 3 Neighbor solvents of the solvent atom A that is the next
solveni, a dislocation pair made of two 5- and 7-nearest neighbof€arest neighbor to the solute atdsee Figs. 1&) and

disclination pairs are creatéthe two solutes and the number 2 and 19(C)]: This 7-nearest neighbor defect needs to be created to
4 solventy. As a result, the fair-field distortion and strain field are Maintain the mean coordination number at six. One possible

canceled. way to accommodate the solute atom which is 25% smaller
is for the six nearest neighbor solvent atoms of A to move

arrays, these defects are C|ear|y seen to be generated @ytward a distance about 20% of the radius of the central
atomic size difference. The insights we learned from thissolvent atom A to open up a 45.2° gap in the nearest neigh-
work helps delineating the role of the atomic size differencebor ring [Fig. 19c)]. This operation, however, requires a

that plays in the atomic size induced topological-order-to-40% area expansion, and may be too costly energetically.

disorder transitions in 2D. In the following, we discuss the Therefore, although the geometric packing favors the
underlying mechanisms. 5-nearest neighbor arrangement around the small solute, a

7-nearest neighbor configuration also needs to be created.
This corporative arrangement around the two atoms, which is
not accounted for from a pure geometric point of vi,
requires a relatively high energy associated with the local
The direct consequence caused by the size difference &rea expansion.
the change in interatomic interactions among the atoms If this high cost of energy alone is not sufficient to pre-
within the cut-off distance of the interatomic potentigEgs.  vent the 5- and 7-nearest neighbor coordination defect from
(1a) and(1b)]. If one replaces the solvent atoms by solutesforming, the additional increase in the energy barrier can
the big solvent atoms would relax toward the small solutecertainly prohibit its formation. The additional energy is con-
atoms as the large solvent is sitting at the position in theributed from the long-range strain field of this defect: The
solvent-solute interatomic potential that has a negative slopénighly correlated defect configuration is an edge dislocation
This results in position displacements of the surrounding solin 2D.2°~?* The energy associated with creating the afore-
vent neighbors. The displacement field is symmetric centerethentioned 7-neighbor coordination defect is simplioeal
around the solute atofifrig. 19@)], making it appear that the event at the dislocation core; the additional energy arising
solute is under a hydrostatic pressure. From a pure geometrfrom the long-range strain field of the single dislocation
point of view, if the solute atom is small enough, such as inmade of a pair of 5- and 7-nearest neighbor disclinations is a
our casg25% smalley, the solute would prefer to have only result of anonlocal event. As is knowr>*’ its energy is
five bigger solvent atoms as its nearest neighddtig.  divergent. Therefore the probability to form such a single
19(b)]. The neighboring solvents in this case would form adislocation is extremely low. Indeed, our results show that
closed ring, leaving no extra space around the small solutehere are almost no 5—7 disclination pairs, or single disloca-
This change in coordination number is thought to be drivertions to form(Fig. 7). The very few ones that do show up as
by the hydrostatic pressure resulting from the atomic volumehown in Fig. 7a) are only the transient ones. They either
disparity between the small and big atofiS’he small sol-  disappear after some short period of time, or combine with
ute, which has more space surrounding it upon being placedther dislocations nearby. Therefore, we conclude that dis-
on the position occupied previously by the large solventtortion from asingle solute atom alone is not sufficient to

A. Coordination number change, dislocation formation, and
symmetry breaking
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break the sixfold symmetry, even when the atomic size difangle grain boundari€d. The true amorphous phase forms
ference is close to or above the critical size ratio in the 2Dwhen dislocations become aggregated at higher defect den-
binary array for topological/geometric instabilit. sity.

However, if one can substitute one of the nearest neighbor For the binary arrays close to the equimolar concentra-
solvent atoms of the first solute by another solute afsee  tion, the high solute density provides the basis for generating
Fig. 19d)], an additional 5-7 disclination pair can be created@ large number of defects. When the atomic size difference
by slightly rearrangement of the neighbors using the extrd€aches the critical atomic size difference, defects are gener-

space created around the second solute. This new 5-7 discted Spontaneously. This overwhelmingly large number of
nation pair is the immediate neighbor of the existing 5—7d€fect become clustered immediatéfypreemptying forma-

disclination pair. As a result, dislocation pairis created. As 10N of the hexatic amorphous phase.
is known?%" the dislocation pair has much lower strain en-
ergy as compared with the single dislocation due to the can-
cellation of the long-range strain field. It can be seen clearly These findings shed light on the topological order-to-
in Fig. 7 that the defects are indeed composed mostly of tw@lisorder transition in general. In particular, we would like to
5- and 7-nearest neighbor dislocation pairs. As illustrated ifPoint out the difference between melting and solid-state
Fig. 19d) as well as in Fig. 7, the far-field distortion around amorphization. _

the dislocation pair, which is usually manifested as extra Following the path of alloying at low temperature, we can
atomic lines and curved atomic lines, is virtually absent.control the defect density to make the binary arrays ap-

Therefore, both théocal atomic position displacement dis- proaclhinsgs tL\_e conditions specifi”ed by K_ostﬁrlitz andf
order, which leads to the formation of dislocation cores, and| hPuless:” This advantage is virtually absent in the case o

their long-range strain fieldn the lattice need to be consid- thermal melting. Since dislocations in these systems are gen-

ered in evaluation of the coordination number change. | crated by. thgrmal V|b_rat|ons as the crystal is heated, th.e de-
o . : .. _Tect density is determined by both temperature and the inter-
other words, the atomic size mismatch alone is not sufficien

. ) . tomic potentials(closely related to the defect formation
to break the six-fold symmetry in 2D. It requires a corpora- P ( y

) f b f iahbori energy. A large number of defects are generated at the melt-
tive arrangement of a number of atoms, two neighboring, emperature due to large-amplitude vibratiBf%.Fur-

solutes and their solvent neighbors, to accomplish the job. yermore the lattice strain associated with the defects is re-
laxed quickly through thermal vibration. Even more
significant is the defect clustering driven by defect interac-
tions and further facilitated by diffusion. At an elevated tem-
The phase diagram in Fig. 1 shows different phases cotperature close to melting point, dislocations are able to move
responding to different regions of atomic sizes and soluteapidly with the assistance of atomic diffusion to form lower
concentrations. When atomic size difference is ldgightly ~ energy configurations such as grain boundaries and disloca-
below the critical size differencey.), the transitions are tion aggregate$** Since dislocation pair unbinding can oc-
continuous as solute concentration changes. There is an apdr only when dislocations are relatively scarce and there are
parent intermediate hexatic phase bridging the crystallineo dislocation complexes such as grain boundarigses-
phase and the true amorphous phase. On the other hand,exice of the overwhelmingly large numbers of clustered dis-
the high solute concentratidelose to equimolar poifitthe  locations can preempt the pair unbindifgrhese defect ag-
intermediate hexatic amorphous phase does not exist and tigeegates become seeds for nucleation and subsequent growth
thermodynamic properties show a discontinuous changef liquid phases.
when the critical atomic ratio is traversed. There is an appar- Our work also provides microscopic details missing in the
ent critical point where the discontinuous crystal-to- early proposition for the SSA’ As our work has shown, the
amorphous transition becomes a continuous transition. Wepological disorder, as observed in the 2D model solid so-
attribute this difference to the strain field present in the sysiution, is the direct consequence of the strongly correlated
tem under the polymorphic and kinetic constraints. In thestress(or strain fields originating from the local distortions
second part of this work, we will present a theoretical modelaround the solute atomksolated solutes alone cannot break
to explain this crossover phenomerfdn. the local symmetryeven though the atomic size difference is
In the case of continuous SSA, when the atomic size difclose to the critical valu&® The (far-field) stress field asso-
ference is larger than the critical oribut not too large to ciated with different sized atoms, which is considered to be
form compound and short-range ordejinie defect density hydrostatic compression and tension stress $hijoes not
is largely controlled by the randomly distributed solutes. Thevanish by simply changing of their coordination numbers.
defect density increases continuously with the increase ofhe unique relationship between the coordination number
solute concentration, but the polymorphic constraint preventsgefect and dislocation in 2D requires more intricate arrange-
the defects from migrating too far. They remain scarce in thanent of atoms and their coordination numbers. It is the cor-
crystalline phases and interact with long range strain fieldsporative efforts involving a group of atoms, as dictated by
As the hexatic phase is approached, the paired dislocatioriRe interacting strain fields, that eventually result in breaking
tend to unbind to form hexatic phases as driven by the dethe local order. This is evidenced by the formation of the
creasing elastic shear modulus and the increasing entromislocation pairs and their complexes in our simulations.
contributed by the isolated dislocations. At higher disloca- Our work also indicates that it is the shear strégdd)
tion density, strong interactions between dislocations leads tarising from the dislocations, not the hydrostatic pressure
formation of dislocation network chains, a precursor of smallcaused by the atom volume difference for different sized

C. Solid state amorphization and melting

B. Continuous crystal-to-amorphous transition
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atoms?° that is responsible for the local topological instabil- modulus and final collapse of the crystallinity.
ity, or nearest neighbor coordination number change. The As demonstrated in the two examples for binary arrays,
direct evidence from the present work shows that there arransition from crystalline phase to amorphous phase is
more space created when dislocation pairs form. Instead aflosely related to defect properties and the kinetic con-
reducing the space surrounding the solute presumably undstraints. If the dislocation density is low and dislocations are
the hydrostatiqtension pressure generated by atomic size pinned by solute atoms, the transition could be continuous
differencé® the space surrounding the two 7-nearest neighwith an intermediate hexatic phase. However, if the number
bor disclinations and the 5-nearest neighbor disclinations in af dislocations are high and they form clusters, the transition
dislocation pair become even bigger due to the inefficients abrupt. Since defect complexes are energetically favored
packing. The molar volume around the solute atom in theas defect density increases, collective defects such as dislo-
dislocation pair is larger than that surrounding the same soleation network chains, grain boundaries, and dislocation
ute before relaxation takes place in the initial crystalline lat-clusters start to play a more important role in disrupting crys-
tice (see Fig. 7. The extra space, or free volufiéis cre-  talline order than the elemental defects do. If the distribution
ated, even with an increase (dcal) energy, as the result for and mobility of defects can be controlled by kinetic con-
the system to lower itglong-range strain energy arising straints, the topological ordered phase can undergo a con-
from single dislocations. The later is prohibitively large, buttinuous transition to the disordered one.
becomes much smaller when two single dislocation combine As a final note, a great caution needs to be taken to gen-
to form dislocation pairs. The extra space remains stable agralize the results to three dimensions. There are several key
long as the dislocation pairs are present. connections that are missing when one goes from 2D to 3D.
The first is that it is not obvious how the extended defects
such as disclination, dislocation, and grain boundaries are
) ] ] s related to solute atoms, or point disorder. The questions of
It has been a general belief starting with Bbfh*that  \hether or not the solute-induced topological defects exist
the elastic shear instability is a cause of crystalline instabily,g if they do, how to characterize them remain to be an-
ity. This idea has been used to explain the SSMowever,  swered. The second is the diminishing role of the thermal
it is known that this model is not adequate to provide infor-fiyctuations from 2D to 3D. This may make it more difficult
mation on what the resulting phase should be when the ing gestabilize the crystallinity in 3D. Finally, the contribution
stability is reached and how the transition is related to mi-f entropy from dislocations to destabilization of crystalline
croscopic structures and defects. Another proposition is tha§rqer is much less in 3D, which may lead to disappearance of

melting, as well as SSA, could not be continuous because ghe hexatic phase and also the continuous topological order-
absence of the symmetry relation between the topologicallys_gisorder transition manifested by it.

ordered and disordered phase. Although KTNHY theory pre-
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