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Local compressibilities in crystals
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An application of the atoms in molecules theory to the partitioning of static thermodynamic properties in
condensed systems is presented. Attention is focused on the definition and the behavior of atomic compress-
ibilities. Inverses of bulk moduli are found to be simple weighted averages of atomic compressibilities. Two
kinds of systems are investigated as examples: four related oxide spinels and the alkali halide family. Our
analyses show that the puzzling constancy of the bulk moduli of these spinels is a consequence of the value of
the compressibility of an oxide ion. A functional dependence between ionic bulk moduli and ionic volume is
also proposed.
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I. INTRODUCTION

The partitioning of the observables of physical syste
into additive microscopic contributions has always been
of the means by which complex sets of data are reduce
understandable components. This works surprisingly wel
both the molecular and condensed matter realms. As ch
ists know well, a large number of properties — i.e., energ
electric and magnetic susceptibilities, electric dipolar m
ments — may be partitioned into atomic or group contrib
tions, often with a precision similar to that of the expe
ments themselves, leading us inevitably to the concep
group or atomic property. It is also well known that quantu
mechanics does not easily accommodate this picture. W
developed for around 20 years, the theory of atoms
molecules1 ~AIM ! has proved to be a theoretical frame, co
pletely rooted in quantum mechanics, that allows a smo
interpretation of these phenomena, recovering the conce
atoms and groups of atoms from a system’s wave functio
is now routinely used in molecular quantum chemistry, a
is being progressively applied to gain new insights in so
state problems.2,3 In this field, the theory provides ade facto
geometrization of solids through finite quantum atoms
ions defined in physical three-dimensional space. We h
previously shown that the sizes and properties of these at
or ions are easily associated with those used empiric
since the advent of solid-state physics.4 Since all AIM
atomic properties are additive and quantum atoms fill
space, bulk or thermodynamic properties may also be p
tioned into atomic or group contributions, but work in th
direction has been scarce. One field with interesting comp
sons between existing knowledge and new AIM results
high-pressure solid-state physics.

Understanding the rules that govern the compressibility
simple solids has traditionally been a branch of geoscien
where insufficient knowledge of the behavior of minera
upon compression limits our models of the geological e
lution of our planet.5 Usually, crystalline bulk moduli are
interpreted in terms of, on the one hand, the bulk modul
cation-anion polyhedra and, on the other, the connectivity
these polyhedra across the lattices. The elemental units
are cation-centered anionic polyhedra whose bulk moduli
assumed to be constant. Since the 1920s, with a sem
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paper by Bridgman,6 through the 1979 paper by Hazen an
Finger,7 experiments have shown that polyhedral bu
moduli of minerals are inversely proportional to polyhed
volumes and are directly proportional to the product of bo
the formal charges of cations and anions and to an empir
ionicity measure. To a large extent polyhedral bulk mod
are constant. It has always been clear that these empi
magnitudes may be decomposed into atomic contributio
but to do so a well-defined atomic or group partitioning
the physical space is needed. The AIM theory provides i

Local compressibilities or bulk moduli have also play
an important role in the theory of the~mainly d-d) electronic
spectra of substitutional transition metal impurities in co
pressed crystals. The empirical pressure variation of suita
spectral components has been used as a means to cal
high pressure measurements.8 However, to correctly under-
stand these phenomena, it soon became clear that it was
essary to take into account the differential compression
host and guest ions. In 1961, Minomura and Drickamer9 used
these ideas, together with Bridgman’s10 equations of state
~EOS!, to show that the variation of theDq values of several
transition metal ions in MgO and Al2O3 demonstrated both
the existence of differential compressibilities of impuriti
and host ions and of strong lattice relaxations around
impurities. Since then, a large amount of theoretical11,12,15as
well as experimental work,13,14together with a wealth of new
experimental techniques—electron paramagnetic reson
~EPR!, extended x-ray-absorption fine structure,~EXAFS!,
x-ray appearance near-edge structure~XANES!—that allow
the determination of local host-impurity distances ha
greatly extended our knowledge about these facts and
duced a number of relevant results.16 These may be summa
rized in the intuitive idea that differential compressibilities
impurities with respect to host ions are governed by the s
difference and tuned by the formal charge mismatch betw
host and guest.

It is important to recognize that both the polyhedral a
impurity local bulk moduli commented above are actua
linear compressibilities. They are always obtained throu
pressure derivatives of interatomic distances, and this
serious drawback if we try to use them additively. It
clearly not easy to avoid the problem unless we are able
divide this distances or volumes into atomic contributions
13 970 ©2000 The American Physical Society
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PRB 62 13 971LOCAL COMPRESSIBILITIES IN CRYSTALS
We show in this paper how the AIM theory applied to t
problem of partitioning bulk moduli in crystals provides a
ditive atomic-ionic compressibilities with properties fulfil
ing all physical and chemical requirements. These new
jects may be compared to previous local measures
compressibility as well as applied to theab initio prediction
of bulk moduli of materials or to the interpretation of inte
esting empirical facts from an atomic point of view. To
lustrate their behavior we have computed them in~i! a num-
ber of related oxide spinels, with very similar bulk modu
and ~ii ! the alkali halides, whose widely different bul
moduli vary periodically on changing their constitutive ca
ions and anions. We will show how these two striking
different behaviors have the same origin, and how some g
eral rules, both empirically and intuitively sound, arise fro
the amount of physical space~now a well-defined observ
able! occupied by the different kinds of atoms found in
crystal. The local bulk moduli here defined provide a qua
titative measure of the ability of an atom or ion to defor
insidea crystal. These magnitudes are, therefore, system
pendent. As the alkali halide example will clearly demo
strate, it seems that this dependence is simple and basi
dominated by the atomic volume.

We have organized the paper as follows. In Sec. II
define the concept of local atomic bulk moduli after a ve
brief account of the basics of the AIM theory. Section
presents the computational models used to obtain both
equations of state of the systems studied and the wave f
tions that feed the AIM topological analysis. Some numeri
considerations about the precision of the several magnitu
used to obtain the local bulk moduli will also be made. S
tion IV will be devoted to discussing some experimen
facts in oxo-spinels and alkali halides, as well as our co
puted local bulk moduli for both of them. We will also ra
tionalize here our findings in terms of simple ideas. Fina
Sec. V will present our conclusions and some future pr
pects.

II. LOCAL COMPRESSIBILITIES IN CRYSTALS

The AIM theory1 provides a sound and unique partitio
ing of physical space rooted in nonrelativistic quantum m
chanics. It shows how Schwinger’s stationary acti
principle17 may be generalized to three-dimensional su
systems if some boundary conditions are assured on the
faces separating them. Those surfaces are defined thr
the zero local flux condition of the electron density gradie
vector field,

¹r~rW !•nW ~rW !50, ~1!

whererW is any point lying on the boundary surfaces char
terized by exterior normal vectorsnW .

The subsystems so defined satisfy Heisenberg equa
of motion and turn out to be governed by the same dyna
laws as the whole quantum system. Moreover, the expe
tion values of every quantum mechanical observable^Ô& are
univocally defined for each quantum subsystemi,

^Ô& i5E
Vi

dv Ô~rW !, ~2!
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and quite evidently add up to the observable for the wh
system. It is the topology of the electron density that w
rants the existence of this kind of partitioning of the physic
space. In the vast majority of cases, each quantum subsy
encloses one and only one nucleus, and we identify it wit
quantum atom. These quantum atoms fill the space, an
crystals bear a finite volume. The peculiarities of the AI
theory as applied to crystals have been studied in deta
previous works.3,4

In this paper we are interested in the partitioning of o
servables into atomic contributions. Given a scalar elect
density coming from either theory or experiment, the pa
tioning is assured if the associated gradient vector field m
be computed with appropriate precision. To work out sim
expressions, let us consider static thermodynamic condit
~zero temperature, no zero-point effects!. In this case, the
static compressibility (k) and bulk modulus~B! of a con-
densed system are defined as

k52
1

V S ]V

]p D5
1

B
. ~3!

If temperature is to be taken into account, then isotherma
isentropic magnitudes arise, according to which external
gree of freedom is kept constant along the differentiati
These more realistic and complex cases might be studie
appropriate statistical averages of electron densities w
available. In the following, only the static case will be co
sidered.

Let us now topologically divide a unit formula within th
crystal. This can be done by specifying a nuclear arran
ment and analyzing the subsequent electron density of
system as summarized above. This procedure is alw
univocally defined, so the molar volumeV̄ may be written as
a sum over atomic volumesVi : V̄5( iVi . We are now in a
position to define static local bulk moduliBi and static local
compressibilitiesk i for each quantum subsystem within th
system,

Bi52Vi S ]p

]Vi
D5

1

k i
, ~4!

and using the volume partitioning, arrive at the followin
expression:

k5(
i

f ik i ,
1

B
5(

i
f i

1

Bi
, ~5!

where f i5Vi /V̄ is the fractional volume occupancy due
quantum subsystemi in a unit formula volume.

This simple relation is the basis of all our following arg
ments. It shows that local compressibilities may be rig
ously defined within the AIM theory and that the bulk com
pressibility of a condensed system is a volume-weighted s
of atomic or ionic contributions. Of course, the idea of r
constructing compressibilities of compounds from those
their constituents is not new, and has been applied repeat
in the past. However, even in the simplest cases, the con
tual problems associated with partitioning space into lo
volumes introduced severe limitations to the approach.
example, the compressibility of solid solutions of differe
alkali halides never varies linearly with composition.18 The
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13 972 PRB 62A. MARTÍN PENDÁS et al.
present approach is physically sound and unique, and all
us to firmly root in theoretical grounds some well-know
behaviors of materials and to rationalize others that are
well understood.

Given its simplicity, the analysis of Eq.~5! is straightfor-
ward. Only two factors enter in the construction of bulk co
pressibilities from our local magnitudes:~i! the relative vol-
ume occupied by a given quantum atom in the materi
molar volume and~ii ! its own local compressibility. Both
factors, as we will see, run generally side by side, in agr
ment with the usual thinking. Large, bulky atoms or ions a
usually more compressible than small, stiff quantum s
systems. Another interesting effect comes from the rela
occupation factors, since if any quantum atom largely do
nates the unit formula of a compound, the compressibility
the whole system will be dominated by its own contributio
no matter what the compressibility of its neighbors. Th
effect is greatly enhanced if the species dominating the
formula is also the most compressible one.

We have chosen two classes of systems to present
results. A few related inorganic spinels with very simil
experimental bulk moduli will illustrate the decisive influ
ence of the occupancy factors in global compressibilities.
the other hand, the alkali halide series will be used to as
the transferability of local compressibilities across co
pounds and to discover the main variables on which th
new magnitudes depend.

III. COMPUTATIONAL DETAILS

The computation of static local compressibilities in pu
crystals rests in the calculation of pressure derivatives
topologically partitioned quantum subsystems. Three ba
ingredients are then needed. First, we need a method to c
pute reliable electron densities at selected nuclear config
tions. These electron densities are to be fed into a cod
determine zero-flux surfaces and integrate the unit den
operator in Eq.~2! to obtain topological volumes. Secon
these topologically partitioned densities are to be obtaine
the thermodynamical equilibrium nuclear configurations
the system under study for a number of pressures in
range of interest, so a method to obtain the static EOS
needed. Finally, a suitable numerical differentiation is to
performed to obtain the atomic compressibilities. The wh
process is numerically intensive.

As in other works, we have used theab initio perturbed
ion method~aiPI!,19–21 a localized, linear scaling quantum
mechanical scheme devised in our laboratory that has b
successfully used to obtain the electronic structure an
wide range of properties in ionic and partially ionic solids.
usually gives equilibrium geometries within a few perce
and bulk moduli within 10% of the empirical data. Densiti
are analyzed by ourCRITIC program.22 Integration of the unit
operator within the atomic basins is done by numeri
quadratures in spherical coordinates centered at the n
positions, the obtention of the zero-flux surface for ea
nucleus-centered ray being both the bottleneck and the m
source of error in the algorithm. Usually, 90360360 points
in the radial,u and f coordinates are used, with atom
volumes converged to the mbohr3.

EOS have been obtained by selecting a grid of crystal
s

ot

-

s

e-
e
-
e
i-
f
,

it

ur

n
ss
-
e

f
ic
m-
ra-
to
ty

at
f
e
is
e
e

en
a

t

l
lei
h
in

e

molar volumes around the calculated unstressed equilibr
positions, minimizing the total crystal energy with respect
lattice and internal parameters at each volume. This invol
a one-dimensional optimization of the internal parameter
the direct spinel structure and a single-point calculation
the alkali halide case. Volume-energy (V̄,E) data are then
fitted to Vinet’s universal EOS~Ref. 23! with our GIBBS

code.24 This method provides us with the requiredp(V) re-
lation and the bulk modulus of the lattice,B, which enters
Vinet’s equation as a parameter. The procedure has prove
be extremely useful in avoiding numerical errors when co
puting second derivatives from (V̄,E) data. Analysis of elec-
tron densities at eachV̄ point produces parallelVi tables that
have been also fitted to the Vinet EOS to give us local b
moduli for each atomic subsystem.

Final data have been checked for consistency at eacV̄
point in a twofold manner: crystal compressibilities must fu
fill Eq. ~5!, and local volumes must add to the whole latti
volume at eachV̄ point.

IV. RESULTS

A. Spinels

Spinels are extremely versatile compounds with gene
unit formula AB2X4, whereA and B are cations andX de-
notes an anion. For a givenX the structure may host a wealt
of differently sizedA or B cations. The ideal structure i
usually described as a distorted cubic close-packed arra
anions with one-eight of the tetrahedral and one-half of
octahedral interstices occupied by cations. In the normal,
dered distribution, theA divalent cations occupy the tetrahe
dral positions and theB trivalent cations the octahedral in
terstices. A large amount of cationic disorder, however,
allowed. Distortion of the ideally close-packed structure
the anions is measured by a single internal crystallograp
coordinateu, equal to 0.25 in the ideal case. It is we
known25 that the empiricalu parameter is controlled by th
A,B cationic pair through relative size coordinates. Bu
moduli of many oxo-spinels have been determined a
turned out to cluster around 200 GPa. Hazen and Fing7

suggested that all oxide spinels might have such similar b
moduli. Here we will focus in the four normal oxide spine
formed when A5Mg,Zn and B5Al,Ga. Computed and
room-temperature experimental structural parameters at
pressure are shown in Table I. A unit cell of a typical spin
is seen in Fig. 1.

We have obtained the static EOS of the four spinels in
range 0–80 GPa. A first indication of the differential beha

TABLE I. Zero-pressure structural properties of MgAl2O4 ,
ZnAl2O4 , MgGa2O4, and ZnGa2O4. Lattice parameters in Å .

MgAl2O4 ZnAl2O4 ZnGa2O4 MgGa2O4

a 7.886 7.835 7.977 8.021
8.0832a 8.086a 8.330a 8.270b

u 0.2688 0.2675 0.2673 0.2683
0.2624a 0.2636a 0.2617a 0.2614b

aExperimental values from Ref. 37.
bCalculated values from Ref. 38.
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PRB 62 13 973LOCAL COMPRESSIBILITIES IN CRYSTALS
ior of the A,B cations with pressure is obtained from th
variation of theu parameter. As is usual in normal spinels,u
decreases slightly with pressure: in our cases, about 0
units in the pressure range studied. Inorganic solids are
ally described in terms of cationic coordination polyhed
From elementary lattice calculations, the ideal octahed
(B31) and tetrahedral (A21) volumes are v tet58a3(u
21/8)3/3 andvoct516a3(u23/8)2u/3. This gives an octahe
dral site that almost doubles the volume of the tetrahe
one at commonu’s. As can easily be seen from the abo
expressions, a decreasingu value with pressure means a pr
gressively smallerv tet/voct ratio and, in some way, reflect
the larger compressibility of the tetrahedral site with resp
to the octahedral one. It has been customary to define p
hedral bulk moduli or compressibilities and try to rationali
the bulk compressibilities from the polyhedral ones.7,25 A
clear trend has been found from these studies: a given
ionic polyhedron displays a mostly constant polyhedral co
pressibility. Hard linked structures~i.e., those with large
amounts of face sharing or edge sharing polyhedra! display
bulk moduli directly related to these polyhedral compre
ibilities. Soft linked structures do not. In spinels, it has be
shown that bulk moduli are almost the arithmetic mean
the octahedral and tetrahedral bulk moduli,26 and this fact
has been algebraically understood only very recently.27 We
should bear in mind here, however, that polyhedral co
pressibilities are a mixture of anionic and cationic local co
tributions without quantum mechanical sense.

It may seem paradoxical, at first sight, that the intuitive
smaller trivalent cations enter the structure at the larg
polyhedral site. Some authors have tried to explain the
preference of cations in terms of electronic~crystal-field!
effects.28 Others even suggested arattling model for the
trivalent cation in its oxide ion cage.29 However, closed-shel
cations do show clear site preferences, and today it is c

FIG. 1. Structural elements in the unit cell of a typical norm
spinel. Divalent ions are not shown, hidden at the center of t
coordination tetrahedra. Trivalent ions are displayed as small b
at the centers of a clearly distorted oxide octahedron, while ox
ions are shown as large balls. Notice the perfect tetrahedra of e
oxide ions drawn in thick lines. The thinnest lines are just
boundaries of the cell.
02
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monly accepted that size is the main variable affecting th
facts. A closer look allows us to understand this fact bet
In a first spherical ion approximation, the cation-anion d
tance d shows an octahedral to tetrahedral ratiodoct/dtet

equal to 1.15 in the ideal spinel and about 0.94 for theu
values found here, so theu distortion increases the size ava
able to the divalent cation while decreasing that of the tri
lent one. Theu value at which the first neighbors of the oxid
ions change from the divalent to the trivalent cations isu
50.263. Moreover, the oxide ion neighbor structure is on
that of a more or less distorted cubic closed-packed lattic
a smallu range going from 0.250 to 0.267. Another simp
phenomenon is also driving the distortion. The Madelu
energy of spinels peaks at aboutu50.281, so there exists
strong electrostatic tendency towards largeu values and
small octahedral sites. Most direct spinels haveu values sig-
nificantly larger than 0.25 and clearly correlated with t
classical size ratio between theA andB cations.

The topological features of the electron densities of th
materials are simple. In all cases examined, there are
three kinds of bond paths:A and B to first-neighbor oxide
ions and oxide ion to first neighbor oxide ions. Only wh
examining the complete topological graph do these spin
differ among themselves. As far as volume-dependent pr
erties being studied, this fact is of no practical interest. F
ure 2 shows the shape of the basins of all different io
bonded to a given oxide ion in the ZnAl2O4 system and the
perfect tetrahedra of oxide ions formed by a given anion a
its first anionic neighbors. This structural element will b
extremely important in what follows, as its size determin
the u parameter. Data come from ourCRITIC code as ren-
dered byGEOMVIEW.30 As usual,4 cations display convex
ionic basins. Trivalent cations are homomorphic to cub
~sixfold coordination!, while divalent ones are tetrahedra. N
direct cation-cation contacts have been found, though thB
cations may display almost bidimensional wings that av
more oxide-oxide contacts. As found in most inorganic m
terials, the anionic basins are more complex than those o
cations. Oxides haveC3v symmetry, and three symmetry
related oxide ions together with three symmetry-relatedB
cations bond to them on one side of the basin, while the o
side gets fully occupied by a slightly convex interatom
surface that corresponds to theA-oxide ion bond. As sphe-
ricity of ions is concerned, it decreases in the orderB31

.A21.O22.
All Laplacians at bond points are small and positive, a

all cations have lost their outermost electronic shell. Our fo
spinels are highly ionic compounds, and AIM ionic charg
in the range 0–80 GPa are shown in Fig. 3. These cha
are almost coincident with the nominal ones, the bigg
fractional deviation being that of the Ga31 ion, going from
0.10 to 0.11 on passing from 0 to 80 GPa. Deviations fr
nominal charge increase with pressure in all cases. Th
fore, in some sense, ionicity slightly decreases with incre
ing pressure. It is clear from the figure that trivalent catio
have almost constant charge at eachp value, behaving them-
selves as hard species in a generalized chemical se
Charge dispersion in theA cations is larger but still quite
small and it is largest when the oxide ions are consider
The latter adapt their charges according to electroneutra
requirements. It is also interesting to notice that the cha

l
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13 974 PRB 62A. MARTÍN PENDÁS et al.
variation of each cation has a clearly distinctive slop
whereas that for the anion is again dictated by electroneu
ity. Moreover, the Zn21 ion, a 3d system, is significantly
different from the rest.

Let us return to atomic volumes, shown in Table II. Fi
we can observe that the oxide ions are much more volu
nous than the cations. When weighted by thef stoichiometry
factors, they outweigh the rest by far. The divalent catio
are in both cases larger than the trivalent ones, being no
able in that when theA andB volumes approach each oth
~like in the MgGa spinel!, the observed structures turn out

FIG. 2. ~a! Ionic basins in ZnAl2O4 at zero pressure. We show
here a central oxide ion surrounded by a Zn21 cation ~bottom,
right!, an almost cubic Al31 ~center, left!, and another oxide ion
~top, right!. Notice the size difference among different basins,
convexity of the cation-anion contact faces, and the planar an
anion contacts.~b! Perfect tetrahedron of oxide ions in the spin
structure as main structural element. We see theB31 socket at the
figure’s center and the almost planarA-oxide ion interatomic sur-
faces in the outer sides.
,
l-

t
i-

s
e-

be inverse or highly disordered. All ions display a rath
constant volume at a given pressure, a very interesting re
pointing towards the plausibility of a particular pressure b
havior for each chemical species. We will comment on t
later. On compression, ionic volumes decrease, but not
formly. The size of the cations decreases about a 12%
going from 0 to 80 GPa, while that of the anions shrinks
a 25%. Oxides are much more compressible than cati
Furthermore, ionic charge and ionic volume turn out to

e
n-

FIG. 3. Variation of AIM topological charges in the four spine
vs pressure. Relative deviations with respect to the ionic nom
charges (Qnom) are represented.

TABLE II. AIM topological volumes~in a.u.! in the four spinels
vs pressure.

MgAl2O4 Mg Al O p ~GPa!

34.413 19.151 78.879 0
32.389 18.187 72.415 20
30.897 17.470 67.718 40
29.720 16.899 64.046 60
28.751 16.426 61.043 80

MgGa2O4 Mg Ga O p ~GPa!

35.456 33.135 75.742 0
33.309 31.313 69.457 20
31.444 30.042 65.019 40
30.511 29.115 61.523 60
29.499 28.339 58.740 80

ZnAl2O4 Zn Al O p ~GPa!

54.073 19.018 76.674 0
50.393 18.083 70.437 20
47.682 17.387 65.892 40
45.555 16.838 62.343 60
43.714 16.409 59.436 80

ZnGa2O4 Zn Ga O p ~GPa!

56.405 32.809 73.615 0
52.549 31.104 67.507 20
49.736 29.885 63.146 40
47.534 28.950 59.787 60
45.733 28.202 57.082 80
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PRB 62 13 975LOCAL COMPRESSIBILITIES IN CRYSTALS
largely correlated, so that the charge hardness previousl
troduced is actually related to compressibility. Figures 1 a
2~b! can now be reinterpreted. The primary tetrahedra
oxide ions in the structure are the basic structural units
support deformation. Both the internal stress, coming fr
the hardness of the cations, and the external one, com
from applied pressure, transmit themselves to these tetr
dra, which shrink or expand on need, fixing the observeu
distortion. As we are starting to see, the oxide ions are pla
constituents of these spinel structures.

Local bulk moduli have been calculated as explained
Sec. III. Fractional occupancy factors at zero pressure
shown in Table III. It is clear from the data that the bu
compressibility of these crystals is to be dominated by
anionic contribution and that a given cation has an alm
constant volume occupancy, the oxide ions behaving
volume buffers. Local and global bulk moduli are found
Table IV. In reasonable agreement with experiment, the g
bal B values cluster around 213 GPa, and not surprisin
those of the oxide ions gather around 200 GPa. All spe
show basically constantB values in different compounds
This fact, together with the charge and volume consta
noted before, points towards a very interesting transferab
of atomic properties among compounds. Cations are q
less compressible than oxide ions, and a clear relation am
the local bulk moduli and both the atomic volumes and
pological charges is found, in agreement with previous e
pirical models already cited.31,7

Several interesting particular comparisons are due.
example, among theB cations, which display a localB
around 300 GPa, Ga31 is clearly more compressible tha
Al31, while among the divalent cations, Mg21 is less com-
pressible than Zn21, in agreement with chemical intuition
Pressure derivatives of local bulk moduli (Bi8) are also in-
formative, being again determined by the most compress
component: theB cation. In this way, the two Gallium
spinels show a largeB8 due to a large trivalent componen
Fine details are also easy to rationalize. Ga31 and Al31 are
less compressible in the presence of the larger Zn21 ion than

TABLE III. Fractional occupancy factors~f! in the four spinels
studied at zero pressure.

f (A) f (B) f (O)

MgAl2O4 0.0886 0.0987 0.8127
MgGa2O4 0.0876 0.1638 0.7486
ZnAl2O4 0.1356 0.0954 0.7690
ZnGa2O4 0.1354 0.1576 0.7070

TABLE IV. Local and global bulk moduli~GPa!, together with
their first pressure derivatives, for the spinels under study at
pressure.

Spinel B B8 BB BB8 BA BA8 BO BO8

MgAl2O4 215.2 3.81 331.9 6.00 282.1 5.18 201.6 3
MgGa2O4 211.2 4.38 283.9 7.69 261.2 5.45 196.1 3
ZnAl2O4 214.8 3.84 335.2 6.56 246.0 4.14 203.3 3
ZnGa2O4 213.3 4.28 308.6 7.22 241.2 4.48 195.7 3
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in the Mg21 compounds. The contrary is true for the dipos
tive cations: Zn21 and Mg21 are less compressible in the A
compounds than in the Ga ones. This means that the
available for trivalent cations controls their compressibili
while other factors, notably the large polarizing ability
Al31, control the size of divalent ions. As already notice
oxide ions accommodate their size to lattice constrain
Nevertheless, this variation does not affect much their co
pressibility. This is probably true in any system with larg
compressible oxide ions, where not too large volume va
tions will induce negligible compressibility changes, but w
turn progressively wrong as the oxide ion volume decrea
The latter situation is expected in rocksalt oxides like Mg
and its halide equivalent will be discussed in the next s
section.

The whole set of ideas presented here forms a very e
to grasp frame under which many structural aspects of th
compounds may be understood in a compact manner.
preference,u distortion, bulk moduli, cell size, etc., turn ou
to be mainly controlled by atomic size and its resistance
variation.

B. Alkali halides

The alkali halides (AX) in the rocksalt (B1) phase con-
stitute a class of compounds whose behavior upon comp
sion is very different to that of oxo-spinels. It is well know
that their bulk moduli, as well as their lattice paramete
show a gradation on running over both cations and anion32

Using ouraiPI technology, theoretical analyses of their ele
tronic structure, EOS, globalB values, and their first pressur
derivatives, phase transitions, and other thermodynam

TABLE V. Computed unit formula and ionic volumes~a.u.! in
alkali halides at null pressure. Fractional occupancy factors are
given. Notice that not all of theseB1 phases are the thermodynam
cally preferred ones.

Compound V̄ VA VX f (A) f (X)

LiF 100.4 16.93 83.41 0.1687 0.8312
LiCl 234.2 25.38 208.9 0.1083 0.8916
LiBr 279.1 25.61 253.3 0.0918 0.9081
LiI 395.3 29.62 365.6 0.0749 0.9250
NaF 155.4 49.69 105.5 0.3201 0.6798
NaCl 295.9 61.34 234.5 0.2073 0.7926
NaBr 352.7 62.25 290.3 0.1765 0.8234
NaI 474.2 68.61 405.6 0.1447 0.8553
KF 258.8 136.5 121.9 0.5282 0.4717
KCl 470.5 167.9 301.9 0.3574 0.6425
KBr 529.7 163.3 365.6 0.3087 0.6912
KI 679.3 173.8 505.2 0.2560 0.7439
RbF 263.5 159.6 103.5 0.6066 0.3934
RbCl 512.4 217.6 294.0 0.4252 0.5747
RbBr 582.6 214.2 367.6 0.3682 0.6317
RbI 745.2 228.1 516.1 0.3064 0.6935
CsF 229.3 156.6 72.30 0.6841 0.3158
CsCl 514.5 274.2 239.4 0.5339 0.4660
CsBr 573.6 268.2 304.5 0.4682 0.5317
CsI 776.6 302.3 473.2 0.3897 0.6102

ll
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properties have already been presented.21,33 A study of these
systems under the AIM formalism, with topologic
schemes, ionic shapes, etc., has also been reported,4,34 so we
will focus here just on atomic volumes and local compre
ibilities. All AX’s are extremely ionic as measured by top
logical charges, with values exceeding 0.94 electrons.

The 1:1 stoichiometry of the alkali halides, together w
the general ideas of Sec. II, suggests in general that
volume is shared more equally than in the spinels and
we should expect the observedB gradation. Table V con-
firms this. Neither cations nor anions have constant volum
a fact that is well known from the study of empirical an
theoretical ionic radii.4 Cationic volumes evolve with a com
mon pattern: they are much smaller in the fluoride salts t
in the rest of the halides, where they have almost cons
values. This head of the group anomaly is found in ev
chemistry textbook, and depends on the large polariz
power of the fluoride ion. Halide volumes display a mo
complex behavior, with a maximum on increasing the atom
number of the cation. This is likely to be related to a co
petition between anion-anion and cation-cation interactio

Rocksalt alkali halides display a full range off factors. On
the one hand, we have systems like LiI where the cati
occupy a mere 7.5% of the total volume. In these extre
cases our previous discussion concerning the spinels sh
apply directly. KF, on the other hand, shows an almost eq
partitioning of volume between ions and, finally, other sy
tems like CsF belong to a rather strange class of mate
dominated by cationic volume~almost 70%!. Global and lo-
cal bulk moduli obtained from our EOS are shown in Tab
VI. All of our general principles are here playing together
construct lattice compressibilities, and need not be furt
commented on. Li1 and Na1 are far less compressible tha

TABLE VI. Global and local bulk moduli~GPa! for the 20
rocksalt alkali halides at zero pressure. Pressure derivatives of
moduli are also shown.

Compound B B8 BA BA8 BX BX8

LiF 80.93 4.68 94.16 5.53 78.59 4.53
LiCl 31.58 3.86 35.91 4.24 31.15 3.82
LiBr 29.41 4.27 34.30 5.15 28.98 4.20
LiI 17.23 4.21 20.20 5.18 17.03 4.14
NaF 65.83 4.33 82.46 5.52 60.45 3.84
NaCl 28.67 4.77 35.49 5.81 27.40 4.53
NaBr 26.75 4.71 32.69 6.47 25.79 4.41
NaI 17.28 4.52 22.19 6.16 16.63 4.31
KF 30.34 4.36 33.66 4.69 27.31 4.00
KCl 15.69 4.29 19.93 4.77 14.03 4.00
KBr 15.64 4.66 18.95 5.60 14.49 4.30
KI 11.48 4.78 13.25 6.32 11.01 4.35
RbF 27.18 3.82 29.24 4.08 24.51 3.45
RbCl 15.01 3.84 18.54 4.42 13.15 3.45
RbBr 14.21 4.26 16.89 5.15 13.00 3.83
RbI 11.03 4.39 13.13 5.39 10.29 4.02
CsF 31.25 3.76 31.49 3.74 30.74 3.79
CsCl 10.14 2.97 11.61 3.24 8.84 2.66
CsBr 10.83 4.12 12.17 4.57 9.86 3.76
CsI 7.60 3.90 8.82 4.53 6.97 3.57
-
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the rest of cations, which cluster around a constantB value.
The same happens for anions when fixing the cation,
head of the group, F2, being clearly different from the rest
All anions are more compressible than the correspond
cations on a given crystal, whereas this is not so when c
pared across a series.

Some other interesting facts arise, however. There i
general softening of the systems as the lattice volume
creases, together with a noticeable tendency towards
equalization of cationic and anionic bulk moduli. For e
ample, cationic, anionic and global bulk moduli in LiF a
94, 79, and 81 GPa, respectively; 20, 17, and 17 GPa in
and 9, 7, and 8 GPa in CsI. We have not found a succes
explanation for this fact at the moment, but we think th
some general mechanism lies behind these equaliza
forces, and that this fact deserves further study.

Tables V and VI show a very interesting correlation.
seems as if each ion might display a commonB at a given
ionic volume. Were this confirmed, it would mean that t
general compressibility of an atomic-ionic species would
basically a function of its volume. Atoms or functiona
groups would be transferable on a generalized diagram
given a volume, atomic properties would be fixed. Figure
shows a collection of all cationicB values obtained not only
at zero pressure, but for all the cell volumes and pressure
our computational grids. Taking into account numerical
rors, it is clear that the alleged correlation exists. Excepti
do occur for all the cations, however, as two kinds of curv
appear for each of them. A closer examination reveals
the leftmost curves are always associated with fluorides.
effects of the head of the group anion preclude a comp
transferability, but in the absence of this strongly polarizi
anion, the alkali ions follow well-definedB versusV curves.
Similar correlations, with somewhat greater dispersion,
found for the anions.

V. CONCLUSIONS

We have shown in this paper how the AIM theory may
used to partition static thermodynamic properties in co
densed systems as applied to the particular problem of b
moduli. The local basin properties so defined add up to

lk

FIG. 4. Variation of the cationic bulk moduli vs the cation
volumes for all the cell sizes of our grids in the various alk
halides.
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bulk observable and behave in a physical and chemic
sound way. Transferability of basins together with th
properties among compounds seems feasible, provided
certain volume requirements are met.

As bulk moduli are concerned, we have shown that b
compressibilities are just a weighted average of atomic c
pressibilities, the weight factor being the fractional volum
occupancy in a unit formula of the species considered
very simple, intuitive limit emerges from this finding. Whe
ever a particular constituent dominates the unit formula~as is
common in natural, oxygen-rich minerals!, the bulk com-
pressibility will be very near to that of the dominant atom
ion. The similarity of the compressibilities of related spine
is not a puzzle, then. It is related to the dominance of ox
ions in retrieving the bulk modulus of the crystals. This
actually what we have found in the examples studied. T
bulk modulus of an oxide ion in these compounds is ab
200 GPa, and this should be a rough estimate valid for
bulk moduli of oxygen-rich oxides, as found empiricall
Our analyses do not only show the ability of a particular i
to deform under pressure. They provide other clues to un
standing empirical facts. Oxides in spinels and anions
general, are quite bigger and more compressible than cat
particularly those with a high charge. Their basins used
deviate largely from sphericity, filling interstices in a glu
like manner. Oxides do form closed packings, not of tang
ta
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spheres, but of entities that occupy the largest amoun
space possible and that, at the same time, are very e
deformed, controlling the overall compressibilities and c
sizes. This description is closer to the ideas of Burdett35 than
to the classical ones. Distortion of spinels~and likely of other
compounds! from ideal structures turns out to be controlle
by the size and compressibility of cations on distorting t
underlying oxide ion array.

When volume is more equally shared, compressibilit
vary widely from one compound to the other. This is the ca
found in alkali halides. What is interesting here is the pla
sibility of an ion displaying a well-definedB-V correlation
and the implications of this fact for transferability purpose

We think that these sets of ideas should be of wide ap
cability to general condensed matter theory and to hi
pressure research in particular. In this respect, the defini
of local pressures within the AIM theory, successfully e
plored by Bader and Austen,36 remains to be applied to ac
tual solid-state electron densities. Work in this direction w
clearly contribute to clarify the effect of pressure on solid
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