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Elasticity of high-volume-fraction fractal aggregate networks: A thermodynamic approach
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The elastic modulus of a colloidal aggregate network is dependent on the amount and spatial distribution of
mass, as well as particle properties including size, shape, and particle-particle interactions. At high volume
fractions, the elastic properties of a network of close-packed particle flocs is dependent on the strength of the
interfloc links. A previously developed weak-link fractal scaling theory relates the elastic constant~K! of the
network to the volume fraction of solids~F!, namelyK;F1/(32D). In this paper, we extend this theory to
include a pre-exponential factor and obtain an exact expression for relationship between the Young’s modulus
and the volume fraction of solids.
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INTRODUCTION

The structural network of many soft viscoelastic materi
of industrial interest is the product of an aggregation proc
of molecules into particles, and of particles into increasin
larger clusters, until a space-filling three-dimensional n
work is formed ~Fig. 1!. Macroscopic properties such a
hardness, opacity, and structural stability are directly in
enced by this underlying network. Of particular importan
is the relationship between network structure and ela
properties. Mathematical formulations for the relationship
the elastic modulus of an aggregate network to the amo
and spatial distribution of network mass have been de
oped using fractal scaling relationships.1–10 However, the
elastic modulus is not solely influenced by the amount a
spatial distribution of network mass, but also by partic
properties, including size, shape, rigidity, and partic
particle interactions.5,7–9 A general formulation for the rela
tionship between the elastic modulus and the amount of s
material in an aggregate network, considering both part
properties and their spatial distribution in the network,
therefore required.

Early developments of a theory to explain the elas
properties of colloidal gels were carried out by Brown a
Ball at Cambridge.1 Brown and Ball proposed a power-la
dependence of the shear elastic modulus of a colloidal ag
gate network on the volume fraction of network mass, wh
the exponent of the volume fraction term was related to
mechanism of particle aggregation. This formulation w
subsequently verified experimentally, and the theory furt
developed by other groups.3–5,7 In 1990, Shihet al.6 outlined
the development of a scaling theory to explain the ela
properties of colloidal gels by again considering the struct
of the gel network, like their predecessors did, as a collec
of close-packed fractal flocs of colloidal particles~Fig. 1!.
However, these authors also defined two separate rheolo
regimes depending on the relative strength of the inter
links vis-a-vis that of the flocs. Their formulation of the
strong-link regime ~applicable at low volume fractions!,
where the flocs yield under an applied stress, was identic
that of Brown and Ball. Their formulation of the weak-lin
regime~applicable at high volume fractions!, where the in-
terfloc links yield under an applied stress, differed from th
suggested by Brown and Ball. The main objective of t
above-mentioned studies was to explore the influence of
PRB 620163-1829/2000/62~21!/13951~5!/$15.00
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spatial distribution of network mass on elastic properties, a
to infer a particle aggregation mechanism responsible
network formation. However, the elastic properties of su
materials are not solely influenced by the amount and spa
distribution of network mass, but also by particle properti
including size, shape, rigidity, and particle-partic
interactions.5,7–9 A general formulation for the relationshi
between the elastic modulus and the amount of solid mate
in the gel network, considering both particle properties a
their spatial distribution in the network is therefore require
In this paper we develop such a model, maintaining con
tency with the model developed by Shihet al.6

MODEL

According to thermodynamic theory, the change in fr
energy (]G) of a system at constant pressure, volume, a
temperature equals the change in internal energy (]U) minus
the product of the change in entropy (]S) times temperature
~T!:

]G5]U2T]S. ~1!

The change in free energy of a flocculated colloidal netw
as a function of changes in strain~]g!, at constant tempera
ture, pressure~P!, volume (V), and composition~m!, where
deformation takes place without any rupture of bonds,
been shown by Sonntag, Strenge, and Schilov11 to equal the
product of stress~s! times volume:

S ]G

]g D
T,P,V,m

5S ]U

]g D
T,P,V,m

2TS ]S

]g D
T,P,V,m

5s•V. ~2!

The main assumption in this model is that the change in f
energy of the network upon deformation arises due
changes in elastic energy (]E), namely,

]G

]g
5

]E

]g
. ~3!

The elastic energy of the network can be expressed in te
of deformation (DL), or strain (g5DL/L):
13 951 ©2000 The American Physical Society
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E5
1

2
k~DL !25

1

2
L2kg2, ~4!

where k is the elastic constant of the network. The elas
constantk can be substituted byA«/L, where« corresponds
to the Young’s modulus,A is the area over which the force
acting, andL is the size of the system. The product of t
area times the length corresponds to the volume of the
work, while the product of the Young’s modulus times t
strain corresponds to stress~s!. Thus, the change in elasti
energy as a function of strain can be expressed as

]E

]g
5

]

]g S 1

2
LA«g2D5V«g5Vs. ~5!

Sonntag and Strenge12 have shown that the entropic contr
bution to the change in free energy of a flocculated colloi
network upon a small elastic deformation is much sma
than the contribution from changes in the internal energy
that network. Thus, for the case where]U@T ]S,

]G

]g
'

]U

]g
5V«g. ~6!

Upon integration and rearrangement, an expression for
Young’s modulus of the network can be obtained:

«5
2DU

Vg2 , ~7!

whereDU corresponds to the change in the internal ene
of the network upon deformation, which equals the to
floc-floc interaction energy.

The volume of the system can be expressed as a func
of the particle volume fraction~F! and the total volume oc
cupied by the particles,

FIG. 1. Putative microstructure of a fractal colloidal aggreg
network.
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V5
VaNaNj

F
, ~8!

whereVa is the volume of an individual particle,Na is the
number of particles in a floc, andNj is the total number of
flocs in the system. The number of particles in a floc is giv
by

Na;S j

aD D

, ~9!

wherej is the diameter of the flocs,a is the diameter of the
particles within the floc, andD is the fractal dimension for
the arrangement of particles within the floc. The volum
fraction of particles within the floc (Fj) is therefore given
by

Fj;
NaVa

NsVs
;S j

aD D2d

, ~10!

whereNs is the number of available embedding space e
ments within the floc@Ns;(j/a)d#,Vs is the volume of an
element of embedding space, andd is the Euclidean dimen-
sion. At this point we will assume that a particle volume
equal to the volume of an element of embedding spa
namelyVa5Vs . Thus, the diameter of the flocs varies wi
the volume fraction of particles within the floc as

j;aFj
1/~D2d! . ~11!

Flocs pack in a regular, close-packed, Euclidean fash
hence, at the floc level of structure, the material can be c
sidered as an orthodox amorphous substance. Within
flocs, however, particles pack in a non-Euclidean, frac
fashion. For such a structural arrangement, the volume f
tion of particles in a floc (Fj) is equivalent to the volume
fraction of particles in the entire system~F!, namely Fj

5F. This well-known relation of polymer physics13 has
been experimentally shown to also apply to colloidal agg
gates above their gelation threshold.14

e

FIG. 2. Idealized flocculated colloidal network under compre
sion. Particles~a! are packed in a fractal fashion within flocs~j!. A
force acting upon the network causes the links between floc
yield, and the original length of the system in the direction of t
applied force~L! to decrease (DL). Thus, the interfloc separatio
distance in the absence of an applied force (d0) decreases.
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Thus, considering all of the above, for spherical partic
packed in a fractal fashion within a floc, the Young’s mod
lus of the network can be expressed as

«;
12DU

pa3Njg
2 Fd/~d2D !. ~12!

In the weak-link rheological regime described by Sh
et al.,6 the links between flocs of colloidal particles yie
under an external stress, i.e., the flocs are mechanic
stronger than the links between them. Thus, in this regi
the macroscopic deformation of the network (DL) can be
related to the interfloc deformation,DL5n(d02d), where
d0 is the equilibrium distance between flocs,d corresponds
to the distance between flocs under an applied stress, an
corresponds to the number of flocs in the direction of
applied stress~Fig. 2!. The number of flocs in the directio
of the applied stress roughly equals the number of links
tween flocs for the case whereL@j. Substitution of one of

FIG. 3. Polarized light micrograph of the fat crystal network
milkfat crystallized at 22 °C demonstrating the existence of p
ticles and particle flocs.
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the strain terms withn(d02d)/L, L/n with j, j with
aF21/(d2D), a2 with j2F2/(d2D), and rearrangement, lead
to the expression:

«;

12S DUj

~d02d! D
pajg

F1/~d2D !, ~13!

whereDUj(DUj5DU/Nj) corresponds to the change in in
ternal energy per floc-floc bond. Knowledge of the nature
interparticle interactions would allow for substitution o
DUj /(d02d) for the expression of a force into Eq.~13!.

For example, if the main type of interaction forces b
tween the structural elements of a network are van
Waals’ forces, substitution ofDUj /(d02d) with the expres-
sion of a van der Waals’ force allows for the calculation
the Young’s modulus. The exact expression can vary d
matically depending on the morphology of the floc. For e
ample, the interaction force between two spheres isAj/12d0

2,
two blocksAj2/6pd0

3, and between two objects with a shap
intermediate between blocks and spheres,Aj1.5/8d0

2.5.15

Thus, expressions for the Young’s modulus of a floccula
colloidal network, where the sole interaction forces are v

-

FIG. 4. Shear stress sweep of a tallow sample~5 °C, 1 Hz!
demonstrating the existence of a linear elastic region of cons
storage modulus (G8) at very small strains.
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FIG. 5. Frequency sweeps o
~A! palm oil at 5 °C,~B! lard at
5 °C, ~C! milkfat at 5 °C, ~D! co-
coa butter at 20 °C. Dynamic
stresses varied, depending on th
sample, from 400 to 10 000 Pa. A
these low stresses/strains, the
plastic materials behave esse
tially as solids, indicated by the
frequency independence of th
storage modulus (G8), and the
fivefold difference between stor
age ~s! moduli and loss ~d!
moduli (G9).
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der Waals’ forces, can be obtained for the case where
flocs are spheres («S), blocks («B), or a shape intermediat
between that of spheres and blocks («SB), namely,

«S;
A

pagd0
2 F1/~d2D !, ~14!

«B;
Aj

1
2 p2agd0

3
F1/~d2D !, ~15!

«SB;
Aj0.5

2
3 pagd0

2.5
F1/~d2D !, ~16!

whereA is the effective Hamacker’s constant~J! for the in-
teraction between two flocs. The choice of model will d
pend on the morphological characteristics of the flocs wit
a particular network.

Our group has shown that crystal networks of triacylgly
erols in fats are structured in a similar fashion as floccula
colloidal networks.8 Upon crystallization, primary crystal
lites aggregate via mass and heat transfer-limited proce
to form larger fractal clusters or flocs~Fig. 3!, until a space-
filling, continuous three-dimensional network is formed. T
solidlike properties of such plastic materials are largely d
to this underlying network of crystal aggregates. At low d
namic stresses/strains, these materials behave predomin
as solids, displaying a clear linear elastic region~Fig. 4!.
Storage moduli (G8) in this region are independent of fre
quency, and are about fivefold higher than loss moduli~Fig.
5!. Thus, at low stresses/strains, it is possible to characte

FIG. 6. Power-law dependence of the storage modulus (G8) on
the volume fraction of solids~F! for ~A! palm oil and~B! tallow.
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the elastic properties of these plastic soft materials, and
relate them to their structural features.

We also developed a structural and mechanical mo
which explained both the power-law dependence of
Young’s modulus of such networks to solids’ volume fra
tion ~Fig. 6!, and the influence of network structural featur
on the relative magnitude of the elastic modulus.9 One of the
problems with our model, though, was the inability to es
mate several of the parameters in the pre-exponential te
and the fact that the derived relationships were not exact,
proportional. This made a direct calculation of the elas
modulus not possible. The model developed in this pa
allows for the direct calculation of a Young’s modulus f
any high volume fraction aggregated particulate netw
from knowledge of the nature of interfloc interactions, a
network structural characteristics. Our group has charac
ized the structural features of several fat crystal networ
and thus a value for the Young’s modulus could be cal
lated and compared to experimental values~Table I!. Inter-
particle and interfloc interactions in fat crystal networks ta
place solely via van der Waals’ forces.15,16 For certain sys-
tems, the agreement was quite good. Particularly encou
ing was the fact that upon deformation, the combined int
floc separation distances could roughly account for
experimentally observed strain levels~about 0.01%!, provid-
ing further support to weak-link rheological behavior
these high-volume fraction particulate aggregate netwo
This is particularly important since in previous research,
tercrystallite values in the range 0.4 to 2.0 nm~Refs. 15, 16!
had been proposed. These values, however, are not rea
considering the strain levels imposed in dynamic rheolog
tests.16

An important conclusion from this work is that the sha
of the clusters can greatly influence the value of the Youn
modulus~Table I!. It is not adequate, thus, to consider th
shape of these clusters as spherical—knowledge of the m
phology of the flocs is essential. Expressions for large bo
interactions considering particle morphology are sorely la
ing in the literature. It would be advantageous if theory cou
be advanced in this area.

In conclusion, a general model for the relationship b
tween the Young’s modulus and the microstructure of h
volume fraction aggregate networks has been obtained.
elastic properties of such materials are a function of the t
amount of solid material present, the properties of the p

TABLE I. Comparison of theoretical and experimentally dete
mined elastic moduli considering the morphology of the flocs.

Systema
F

~%! D
«S

~MPa!
«B

~MPa!
«SB

~MPa!
G8

~MPa!

Tallow 72.5 2.41 6.59 8.393104 14.0 22.5
Cocoa

butter 75.2 2.37 9.10 1.163105 1.933103 60.0
Milkfat 53.3 2.59 5.72 7.283104 1.213103 6.90
Palm Oil 64.7 2.82 2.36 3.013104 501 10.1
Lard 38.6 2.88 9.531023 121 2.01 1.25

aFor all systems,A5531020 J, d055 nm, a5131026 m, j
510031026 m ~«B and«SB!.
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ticles which make up the solid, and the spatial distribution
solid particles within the network. This model can be utiliz
to better understand and modify the macroscopic rheolog
properties of soft materials at high volume fractions.
o

J.

c.

.

t,
f

al

ACKNOWLEDGMENTS

This work was funded by the Natural Sciences and En
neering Research Council of Canada. The valuable c
ments of Dr. Suresh S. Narine are gratefully acknowledg
ci.

v.
1W. D. Brown, Ph.D. thesis, Department of Physics, University
Cambridge, Cambridge, England, 1987.

2R. C. Ball, Physica D38, 13 ~1989!.
3R. C. Sonntag and W. B. Russel, J. Colloid Interface Sci.116,

485 ~1987!.
4R. Buscall, P. D. A. Mills, J. W. Goodwin, and D. W. Lawson,

Chem. Soc., Faraday Trans. 184, 4249~1988!.
5L. G. B. Bremer, T. van Vliet, and P. Walstra, J. Chem. So

Faraday Trans. 185, 3359~1989!.
6W. H. Shih, W. Y. Shih, S. I. Kim, J. Liu, and I. A. Aksay, Phys

Rev. A 42, 4772~1990!.
7L. G. B. Bremer, B. H. Bijsterbosch, R. Schrijvers, T. van Vlie

and P. Walstra, Colloids Surface51, 159 ~1990!.
8S. S. Narine and A. G. Marangoni, Phys. Rev. E59, 1908~1999!.
f

,

9S. S. Narine and A. G. Marangoni, Phys. Rev. E60, 6991~1999!.
10N. B. Uriev and I. Ya. Ladyzhinsky, Colloids Surf., A108, 1

~1996!.
11H. Sonntag, K. Strenge, and V. N. Schilov, Colloid Polym. S

255, 292 ~1977!.
12H. Sonntag and K. Strenge,Coagulation Kinetics and Structure

Formation ~Plenum, New York, 1987!, p. 173.
13P. G. De Gennes,Scaling Concepts of Polymer Physics~Cornell

University Press, Ithaca, NY, 1979!.
14G. Dietler, C. Aubert, D. S. Cannell, and P. Wiltzius, Phys. Re

Lett. 57, 3117~1986!.
15M. Van den Tempel, J. Colloid Interface Sci.16, 284 ~1961!.
16C. J. Nederveen, J. Colloid Sci.18, 276 ~1963!.


