Theory for electron-doped cuprate superconductors: *d***-wave symmetry order parameter**

D. Manske, 1 I. Eremin, $1,2$ and K. H. Bennemann¹

¹Institüt für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

2 *Physics Department, Kazan State University, Kremlyovskaya 18, 420008 Kazan, Russia*

(Received 3 May 2000)

Using as a model the Hubbard Hamiltonian we determine various basic properties of electron-doped cuprate superconductors like $Nd_{2-x}Ce_xCuO_4$ and $Pr_{2-x}Ce_xCuO_4$ for a spin-fluctuation-induced pairing mechanism. Most importantly we find a narrow range of superconductivity and, similar to hole-doped cuprates $d_{x^2-y^2}$, symmetry for the superconducting order parameter. The superconducting transition temperatures $T_c(x)$ for various electron doping concentrations *x* are calculated to be much smaller than for hole-doped cuprates due to the different energy dispersion and a flat band well below the Fermi level. Lattice disorder may sensitively distort the symmetry $d_{x^2-y^2}$ via electron-phonon interaction.

It is of general interest to see whether the behavior of hole-doped and electron-doped cuprate superconductors can be explained within a unified physical picture, using for example the exchange of antiferromagnetic spin fluctuations as the relevant pairing mechanism. While hole-doped superconductors have been studied intensively¹ the analysis of electron-doped cuprates remained largely unclear. One expects on general physical grounds, if Cooper pairing is controlled by antiferromagnetic spin fluctuations, that *d*-wave symmetry pairing should also occur for electron-doped cuprates.^{2,3} Previous experiments did not clearly support this and reported mainly *s*-wave pairing.^{4–6} Perhaps as a result of this, so far electron-doped cuprates have received much less attention than hole-doped cuprates. However, phase-sensitive $experiments⁷$ and magnetic penetration depth measurements^{8,9} have recently exhibited *d*-wave symmetry Cooper pairing.

In order to obtain a unified theory for both hole-doped and electron-doped cuprates it is tempting to use the same Hubbard Hamiltonian taking into account, of course, the different dispersions for the carriers.¹⁰ Note, in the case of electron doping the electrons occupy copper *d*-like states of the upper Hubbard band while the holes refer to oxygenlike *p* states yielding different energy dispersion as used in our calculations. Then, assuming similar itinerancy of the electrons and holes the mapping on an effective one-band model seems to be justified. We consider *U* as an effective Coulomb interaction. Hence, for the theoretical analysis of the superconducting properties of electron-doped cuprates we use as a model the two-dimensional (2D) Hubbard Hamiltonian

$$
H = -\sum_{\langle ij\rangle\sigma} t_{ij} (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} . \tag{1}
$$

Such a Hamiltonian has been successfully used for the holedoped cuprates $11,12$ in particular for the determination of the doping dependence of antiferromagnetic order for both electron and hole doping.¹³ In Eq. (1) $c_{i\sigma}^{+}$ creates an electron with spin σ on site *i*, *U* denotes the on-site Coulomb interaction, and t_{ij} is the hopping integral. For the optimally doped $Nd_{2-x}Ce_xCuO_4$ (NCCO) the Fermi surface and dispersion

$$
\epsilon_k = -2t[\cos k_x + \cos k_y - 2t'\cos k_x \cos k_y + \mu/2], \quad (2)
$$

are taken in accordance with photoemission [angle-resolved photoemission spectroscopy $(ARPES)$ experiments.¹⁰ The chemical potential μ describes the band filling. Here and in the following we set the lattice constant $a = b$ equal to unity.

In Fig. 1 the results for ϵ_k of a tight-binding calculation are shown. We choose the parameters $t=138$ meV and t' $=0.3$. For comparison, we also show the results with t $=250$ meV and $t'=0$, which is often used to describe the hole-doped superconductors. One immediately sees the important difference: in the case of NCCO the flat band is approximately 300 meV *below* the Fermi level, whereas for the hole-doped case the flat band lies very close to it. Thus, using the resulting ϵ_k in a spin-fluctuation-induced pairing theory in the framework of the so-called FLEX approximation^{14–16} we get a smaller T_c for electron-doped cuprates than for the hole-doped ones. Furthermore, we also calculate the doping dependence $T_c(x)$, the symmetry of the order parameter $\phi(x)$, and some other basic properties like the dynamical spin susceptibility. Earlier calculations using the FLEX approximation, which were performed in the case

FIG. 1. Results of the energy dispersion ϵ_k of optimally electron-doped NCCO. The solid curve refers to our tight-binding calculation choosing $t=138$ meV and $t'=0.3$. Data (open dots) are taken from Ref. 10. The dashed curve corresponds to using *t* $=$ 250 meV and $t' = 0$ and is typical for hole-doped cuprates.

FIG. 2. Momentum dependence of the real part of the spin susceptibility along the Brillouin zone (BZ) route $(0,0) \rightarrow (\pi,0)$ $\rightarrow (\pi,\pi) \rightarrow (0,0)$ at $T=100$ K for $\omega=0$ (solid curve) and ω $=\omega_{\rm sf} \approx 0.47t$ (dashed curve). The main contributions to the corresponding pairing interaction come from \mathbf{q}_{pair} (along the antinodes) and \mathbf{Q}_{pair} (along the "hot spots") as illustrated in Fig. 5.

of hole-doped superconductors, were rather successful in determining many physical quantities. $1,14-16$

In order to investigate the pairing interaction we show in Fig. 2 results for the real part of the spin susceptibility at 100 K and $U=4t$ in the weak-coupling limit for $\omega=0$ (solid curve) and for $\omega = \omega_{sf} \approx 0.47t$ (dashed curve). ω_{sf} denotes the spin fluctuation (paramagnon) energy, where a peak in Im $\chi(\mathbf{Q}, \omega)$ occurs. The commensurate peak of Re $\chi(\mathbf{q}, \omega)$ (50) at $\mathbf{Q}=(\pi,\pi)$ is in accordance with recent calculations in Ref. 17, where it was pointed out that the exchange of spin fluctuations yields a good description of the normal state Hall coefficient R_H for both hole- and electron-doped cuprates. Furthermore, we also find a linear temperature dependence of the in-plane resistivity $\rho_{ab}(T)$ if we do not take into account an additional electron-phonon coupling. This will be discussed later. Concerning the superconducting properties, note that the lower tiny peak would favor d_{xy} pairing symmetry, but the dominating larger peak leads to $d_{x^2-y^2}$ symmetry and is also pair breaking for d_{xy} symmetry. Evidently, the electron-doped cuprates are not close to d_{xy} pairing symmetry as stated previously.¹⁸ This explains why the resultant superconducting order parameter $\phi(\mathbf{k},\omega)$ exhibits almost pure $d_{x^2-y^2}$ symmetry.

In Fig. 3 we present our result for the superconducting order parameter $\phi(\mathbf{k},\omega)$ calculated from the generalized Eliashberg equations using the FLEX approximation. We show $\phi(\mathbf{k},\omega=0)$ for an electron doping $x=0.15$ at $T/T_c=0.8$, where the gap has just opened. The gap function clearly has $d_{x^2-y^2}$ -wave symmetry. This is in agreement with the reported linear and quadratic temperature dependence of the in-plane magnetic penetration depth for low temperatures in the clean and dirty limit, respectively, $8,9$ and with phasesensitive measurements.⁷ From our obtained result of a pure $d_{x^2-y^2}$ -wave superconducting order parameter we expect a zero-bias conductance peak¹⁹ $(ZBCP)$ as recently observed in optimally doped NCCO (Ref. 20) and also in the holedoped superconductors.⁵ Note, its absence in some other experiments may be attributed to small changes in the surface quality and roughness²¹ or to disorder.²² The incommensurate structure in the order parameter close to $(\pi,0)$ results

FIG. 3. Calculated $d_{x^2-y^2}$ -wave symmetry of the superconducting order parameter at $T/T_c = 0.8$ for $x = 0.15$ in the first square of the BZ.

from the double-peak structure in Re χ at $\omega \approx \omega_{sf} = 0.47t$ shown in Fig. 2. It means physically that the Cooper-pairing interaction occurs mainly not for a spin-fluctuation wave vector $\mathbf{Q} = (\pi,\pi)$ but mostly for $\omega = \omega_{sf}$ and for $\mathbf{Q}^* = (\pi, \pi)$ δ , π + δ). Furthermore, from Figs. 2, 3, and 5 we conclude that *no* d_{xy} -symmetry component is present in the superconducting order parameter, since the dominating $d_{x^2-y^2}$ -type pairing suppresses d_{xy} pairing. The ARPES study might test this.

In Fig. 4 we present our results for the phase diagram $T_c(x)$ and $T_N(x)$. We find in comparison to hole-doped superconductors smaller T_c values and that superconductivity occurs in a narrower doping range as also observed in experiment.²³ Responsible for this are poorer nesting properties of the Fermi surface and the flat band around $(\pi,0)$ which lies well below the Fermi level. The narrow doping range for T_c is due to antiferromagnetism up to $x=0.13$ and rapidly decreasing nesting properties for increasing *x*.

FIG. 4. Phase diagram $T(x)$ for electron-doped cuprates. The AF transition curve is taken from Ref. 13. The solid curve corresponds to our calculated T_c values obtained from $\phi(\mathbf{k},\omega)=0$. The inset shows $T_c(x)$ for the doping region 0.18 $\lt x \lt 0.12$ and experimental data (squares from Ref. 26, circles from Ref. 27, triangle from 28). The dotted curve refers to $T_s \propto n_s$.

FIG. 5. Calculated Fermi surface for (optimally doped) NCCO. The $+ (-)$ and the dashed lines refer to the signs of calculated momentum dependence (see Fig. 3) of the $d_{x^2-y^2}$ gap function $\phi(k,\omega=0)$ and its nodes, respectively.

In order to understand the behavior of $T_c(x)$ in underdoped electron-doped cuprates we have calculated the Cooper-pair coherence length ξ_0 , i.e., the size of a Cooper pair, and find similar values for electron-doped and holedoped superconductors (from 6 Å to 9 Å). If due to strong-coupling lifetime effects the superfluid density n_s becomes small, the distance *d* between Cooper pairs increases. If for $0.15 \ge x \ge 0.13$ the Cooper pairs do not overlap significantly, i.e., $d/\xi_0 > 1$, then Cooper-pair phase fluctuations get important.^{24,25,12} Thus we expect the same as for hole-doped superconductors $T_c \propto n_s$. Assuming that n_s increases approximately linearly from $x \approx 0.13$ to $x \approx 0.15$ we estimate a T_c which is smaller than that calculated from $\phi(\mathbf{k},\omega)=0$; see the dashed curve in Fig. 4. As a consequence, more experiments determining T_c for $x \le 0.15$ should be performed to check on the Uemura scaling $T_c \propto n_s$.

On general grounds we expect a weakening of the $d_{x^2-y^2}$ -pairing symmetry if we include the electron-phonon interaction and if this plays a significant role. The absence of an isotope effect $(\alpha_0 = d \ln T_c / d \ln M \approx 0.05)$ for doping *x* =0.15 (see Ref. 29) suggests the presence of a pure $d_{x^2-y^2}$ symmetry. We know from Fig. 2 that phonons connecting the Fermi surface with wave vector $Q_{pair}=(\pi,\pi)$ will add destructively to the spin fluctuation pairing.³⁰ If, due to the exchange of spin fluctuations a $d_{x^2-y^2}$ -symmetry instability is the dominant contribution to the pairing interaction, an additional electron-phonon coupling with wave vector q_{pair} $=$ (0.5 π ,0) would be also pair building. Note, we generally expect that due to the poorer nesting the pairing instability due to electron-phonon and spin fluctuation interaction become more easily comparable. In this case the electronphonon coupling would definitely favor *s*-wave symmetry of the underlying superconducting order parameter. This can be analyzed in detail by adding a term $\alpha^2 F(\mathbf{q}, \omega)$ to the pairing interaction.³⁰

To continue the discussion why the symmetry of the order parameter depends for electron-doped cuprates more sensitively on electron-phonon interaction, we show in Fig. 5 the calculated Fermi surface for optimally doped NCCO. Note, the topology of the Fermi surface for the electron-doped cuprates is very similar to optimally hole-doped $Bi₂Sr₂CaCu₂O_{8+\delta}$ (BI2212), as was also pointed out recently in Ref. 31. We estimate that mainly no phonons are present along the edges $(-0.25\pi,\pi)\rightarrow(0.25\pi,\pi)$ bridging Brillouin zone (BZ) areas, where the superconducting order parameter, $\phi(\mathbf{k},\omega)$, is always positive (denoted by $+/+)$. Note, attractive electron-phonon coupling bridging $+/-$ areas $(-0.5\pi,-0.5\pi) \rightarrow (0.5\pi,0.5\pi)$ is *destructive* for $d_{x^2-y^2}$ -symmetry Cooper pairing. However, due to poorer nesting conditions, pairing transitions of the type $+/+$ are somewhat contributing and then a mixed symmetry $\{d_{x^2-y^2}\}$ $+\alpha s$ } may occur.³²

Further experimental study of the doping dependence of the oxygen-isotope effect are necessary for a better understanding of the role played by the electron-phonon interaction. For example, if due to structural distortion and oxygen deficiency in the CuO₂ plane the phonon spectrum $F(\mathbf{q},\omega)$ changes significantly, then this affects the isotope coefficient α_0 and reduces T_c . Possibly the reported large isotope effect of α_0 =0.15 for slightly changed oxygen content, i.e., $Nd_{1.85}Ce_{0.15}CuO_{3.8}$, could be related to this.^{33,34} As an example, one might think of the oxygen out-of-plane B_{2u} mode, which becomes active if O_4 is replaced by $O_{3.8}$.³⁵ A further signal of a significant electron-phonon coupling might be the quadratic temperature dependence of the resistivity.36

In summary, our unified model for cuprate superconductivity yields for electron-doped cuprates, as for hole-doped ones, pure $d_{x^2-y^2}$ symmetry pairing in a good agreement with recent experiments.^{$7-9$} In contrast to hole-doped superconductors we find for electron-doped cuprates smaller T_c values due to a flat dispersion ϵ_k around $(\pi,0)$ well below the Fermi level. Futhermore, superconductivity only occurs for a narrow doping range $0.18 > x > 0.13$, because of the onset of antiferromagnetism and, on the other side, due to poorer nesting conditions. We get $2\Delta/k_BT_c=5.3$ for *x* $=0.15$ in reasonable agreement with experiment.⁴ We argue that if the electron-phonon coupling becomes important, for example due to oxygen deficiency, then the *s*-wave pairing instability competes with $d_{x^2-y^2}$ -wave symmetry. This might explain a possible *s*-wave symmetry order parameter as reported in earlier measurements.

Our results seem physically clear in view of the discussion presented in connection with Figs. 2 and 5, in particular. Moreover, the important input of the calculation, namely the dispersion $\epsilon_{\mathbf{k}}$, was taken in agreement with ARPES measurements. The canonical value used for the strength of the effective Coulomb interaction *U* is in accordance with this. Thus, it is no surprise that by also calculating Im $\chi(\mathbf{q},\omega)$ we obtain reasonable agreement with inelastic-neutron scattering measurements.³⁷ This sheds light on the general validity of our results.

It is a pleasure to thank R. Hackl, M. Opel, R. Prozorov, L. Alff, K. Scharnberg, and T. Dahm for useful discussions. One of us $(I.E.)$ would like to thank the German Academic Exchange Service (DAAD), the Freie Universität Berlin, and Russian Scientific Council on Superconductivity (Grant No. 98014) for financial support.

- 1 See, for example D.J. Scalapino, Phys. Rep. 250 , 329 (1995).
- ²If the dominant *repulsive* pairing contribution in high- T_c superconductors can be mainly described by their spin susceptibility, then the underlying order parameter must change its sign. From group theory we know (Ref. 3) that for a nested Fermi surface described by $\mathbf{Q} = (\pi, \pi)$, i.e., $\epsilon_{\mathbf{k}+\mathbf{Q}} = -\epsilon_{\mathbf{k}}$, the $d_{x^2-y^2}$ -symmetry order parameter is the simplest possibility.
- 3M. Sigrist and T.M. Rice, Z. Phys. B: Condens. Matter **68**, 9 $(1987).$
- ⁴B. Stadlober *et al.*, Phys. Rev. Lett. **74**, 4911 (1995).
- 5 L. Alff *et al.*, Phys. Rev. B **58**, 11 197 (1998).
- 6 S.M. Anlage *et al.*, Phys. Rev. B **50**, 523 (1994).
- ⁷ C.C. Tsuei and J.R. Kirtley, Phys. Rev. Lett. 85 , 182 (2000).
- ⁸ J. David Kokales et al., Phys. Rev. Lett. **85**, 3696 (2000).
- ⁹R. Prozorov, R.W. Gianetta, P. Furnier, and R.L. Greene, Phys. Rev. Lett. **85**, 3700 (2000).
- ¹⁰D.M. King *et al.*, Phys. Rev. Lett. **70**, 3159 (1993).
- 11T. Dahm, D. Manske, and L. Tewordt, Phys. Rev. B **55**, 15 274 $(1997).$
- 12D. Manske, T. Dahm, and K.H. Bennemann, cond-mat/9912062 (unpublished).
- ¹³G. Baumgärtel, J. Schmalian, and K.H. Bennemann, Phys. Rev. B **48**, 3983 (1993).
- 14N.E. Bickers, D.J. Scalapino, and S.R. White, Phys. Rev. Lett. **62**, 961 (1989).
- ¹⁵T. Dahm and L. Tewordt, Phys. Rev. Lett. **74**, 793 (1995).
- ¹⁶M. Langer, J. Schmalian, S. Grabowski, and K.-H. Bennemann, Phys. Rev. Lett. **75**, 4508 (1995).
- 17H. Kontani, K. Kanki, and K. Ueda, Phys. Rev. B **59**, 14 723 $(1999).$
- ¹⁸K. Kuroki and H. Aoki, J. Phys. Soc. Jpn. **67**, 1533 (1998).
- 19M. Fogelstrom, D. Rainer, and J.A. Sauls, Phys. Rev. Lett. **79**, 281 (1997).
- 20F. Hayashi, E. Ueda, M. Sato, K. Kurahashi, and K. Yamada, J. Phys. Soc. Jpn. **67**, 3234 (1998).
- ²¹ J.A. Appelbaum, Phys. Rev. **154**, 633 (1967).
- 22M. Aprili, M. Covington, E. Paraoanu, B. Niedermeier, and L.H. Greene, Phys. Rev. B 57, 8139 (1998).
- 23C. Almasan and M. B. Maple, in *Chemistry of High-Temperature* $Superconductors, edited by C. N. R. Rao (World Scientific, Sin$ gapore, 1991).
- ²⁴ B.K. Chakraverty, A. Taraphder, and M. Avignon, Physica C **235-240**, 2323 (1994).
- 25 V.J. Emery and S.A. Kivelson, Nature (London) 374 , 434 (1995).
- ²⁶ E.F. Paulus *et al.*, Solid State Commun. **73**, 791 (1990).
- 27H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. **62**, 1197 $(1989).$
- ²⁸G. Liang *et al.*, Phys. Rev. B **40**, 2646 (1989).
- ²⁹B. Batlogg *et al.*, Physica C **185-189**, 1385 (1991).
- 30T. Dahm, D. Manske, D. Fay, and L. Tewordt, Phys. Rev. B **54**, 12 006 (1996).
- 31T. Tohoyama and S. Maekawa, Supercond. Sci. Technol. **13**, R17 $(2000).$
- ³²Due to our tetragonal ansatz, one component of the resulting order parameter must be imaginary, e.g., $\{d_{x^2-y^2}+i\alpha s\}$. However, a slight orthorhombic distortion would allow our proposed ${d_{x² - y² + \alpha s}}$ symmetry.
³³ J. P. Franck, in *Physical Properties of High Temperature Super-*
- *conductors*, edited by D. Ginsberg (World Scientific, Singapore, 1994).
- 34M. Onada, S. Kondoh, and M. Sato, Solid State Commun. **70**, 1141 (1989).
- ³⁵ E.T. Heyen *et al.*, Solid State Commun. **74**, 1299 (1990).
- ³⁶ J.L. Peng, E. Maiser, T. Venkatesan, R.L. Greene, and G. Czizek, Phys. Rev. B 55, 6145 (1997).
- 37D. Manske, I. Eremin, and K.H. Bennemann, cond-mat/0007083 (unpublished).