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Mesoscopic mechanism of exchange interaction in magnetic multilayers
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We discuss a mesoscopic mechanism of exchange interaction in ferromagnet-nonferromagnet-ferromagnet
metallic multilayers. We show that in the case when the thickness of the nonferromagnetic metal layer is larger
than the electron mean free path, the relative orientation of magnetizations in the ferromagnets is perpendicu-
lar. The exchange energy between ferromagnets decays with the thickness of the nonferromagnetic metal layer
as a power law.
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I. INTRODUCTION

Both the experiment and the theory of ferromagn
nonferromagnet-ferromagnet metallic multilayers have
tracted a lot of attention.1–6 An example of such a structur
consisting of two ferromagnetic metal films separated b
nonferromagnetic metallic film is shown in Fig. 1. In th
case when the thicknessL of the nonferromagnetic metal i
much smaller than the electron scattering mean free pal
the sign of the exchange interaction energy between the
romagnets’ magnetizations oscillates as a function ofL with
a period of order of the Fermi wavelength. As a result
magnetic structure of the system oscillates between fe
magnetic and antiferromagnetic orientations of the ferrom
nets’ magnetizations.1–6 The explanation of this phenomeno
is based on the fact that the interlayer exchange energy is
to the Ruderman-Kittel interaction between electron spins
different ferromagnets.

At low temperatures the exchange energy between
localized spinŝ J(r,r8)& averaged over the scattering pote
tial configurations decays exponentially withur2r8u ~Ref. 7!
for ur2r8u@ l . Here r and r8 are coordinates of spins an
bracketŝ & stand for averaging over realizations of the sc
tering potential in the metal and the ferromagnets. Rec
experiments on ferromagnet-nonferromagnet-ferromag
metallic multilayers8 imply, however, that the exchange e
ergy between the ferromagnets does not decay exponen
at L@ l and that the relative orientation of the ferromagne
magnetizations is perpendicular independently ofL. Phe-
nomenologically, this situation can be described by an eff
tive energy per unit area

E52J0~m1
0
•m2

0!1B@~m1
0
•m2

0!221# ~1!

in the case 2B@uJ0u. Herem1
0 andm2

0 are unit vectors par-
allel to spatially averaged magnetizations of the ferrom
netic films. Indices 1,2 indicate the first and the second
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romagnetic film, respectively,J0 and B(u) are bilinear and
biquadratic coupling coefficients. In general,B(u) is a func-
tion of the angleu betweenm1

0 andm2
0.

In this paper we discuss a theory of this phenomenon
has been shown in Refs. 9–11 that the exponential deca
the averagêJ(r,r8)& is connected to the fact thatJ(r,r8) has
a random sign at largeL. The modulus of the exchange in
teraction decays withL as a power law.

We can introduce a local exchange energyJ(r) between
the ferromagnets as an average ofJ(r,r8) over a ferromagnet
surface area of order ofL2. Herer is the coordinate along
the films. Since the interfilm’s exchange energyJ(r) is small
compared to the exchange energy inside the ferromagn
films, the spatial dependence of the magnetizations can
neglected on the scale of order ofL. According to
Slonczewski,12,13 the biquadratic term proportional toB in
Eq. ~1! can originate from the existence of spatial fluctu
tions of the sign of the exchange interactionJ(r)5^J&
1dJ(r) along the layers. The fluctuations ofJ(r) cause
fluctuations of directions of magnetizations. The energy
sociated with spatial fluctuations of the magnetization dir
tion can be represented as

E@J~r!,mi~r!#

52E d2rJ~r!@m1~r!•m2~r!#

1adE d2rF]m1~r!

]r
•

]m1~r!

]r
1

]m2~r!

]r
•

]m2~r!

]r G ,
~2!

where the first term corresponds to the interfilm exchan
energy, the second term is associated with the gradient
magnetizations inside the films,d is the thickness of the fer
romagnetic films thickness, anda is an intralayer ferromag-
netic stiffness.
13 899 ©2000 The American Physical Society
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In the case whendJ(r)@^J& andJ(r) has a random sign
the energyE@J,mi(r)# has a minimum at a sample-specifi
realizationmi(r)5mi

01dmi(r;@dJ#) with m1
0'm2

0 ~Refs. 12
and 14! and

B[
B0

ad
G~u!, ~3!

G5E d2r^dJ~r!dJ~0!&. ~4!

HereB0 is a number of order unity.14

Let us consider the case whenJ(r) has a random sign du
to mesoscopic fluctuations of Ruderman-Kittel oscillatio
inside the metal.9–11 We assume that the thickness of ferr
magnetic filmsd is larger than the spin diffusion lengthLs

5AD/vs and that the thermal coherence lengthLT5AD/T
is larger thand and L. The latter inequality allows us to
neglect the temperature dependence ofB. HereD is the dif-
fusion constant of conducting electrons, which is assume
be the same in the ferromagnetic and nonferromagnetic p
of the sample, andvs is the exchange spin splitting energy
the ferromagnets. We will show that in the caseLs,L,

G5g~u!S Ec

L D 2

~5!

while in the caseLs.L,

G5g1~u!S vs

Ls
D 2

. ~6!

Hereg andg1 are smooth functions ofu of order unity and
Ec5D/pL2 is the Thouless energy. Qualitatively, Eqs.~5!
and ~6! can be understood as follows: In the caseur2r8u@ l
the random oscillations ofJ(r,r8) exhibit long-range sign
correlations.15 In the caseLs!L these long-range correla
tions should be cut off at a length of the order ofL. As a
result, the amplitude of fluctuations of the exchange ene
averaged over the area of order ofL2 is of orderEc ; and
they ared correlated at distances larger thanL. This leads to
Eq. ~5!.

In the opposite limitLs@L the cut off length isLs . The
amplitude of fluctuations of the exchange energy avera
over the area of orderLs

2 is of ordervs . This leads to Eq.
~6!, which is independent ofL.

At large nonferromagnetic metal thicknessesL@ l the av-
erageJ0; exp(2L/l) decays exponentially7 and the biqua-

FIG. 1. A schematic picture of the ferromagnet~F!-normal
metal ~N!-ferromagnet system.
s
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dratic contribution described by Eqs.~5! and ~6! dominates
exchange energy between the ferromagnetic films.

II. DERIVATION OF RESULTS

To derive the results presented above we describe the
change energy splitting in the ferromagnet with the help
an effective Hamiltonian

H5H01h~r;u!s. ~7!

Here H0 is the Hamiltonian of the free-electron gas in
random potentialU(r), h(r,u)[vsm(r,u) is the effective
magnetic field which is acting only on electron spins,m(r,u)
denotes the unit vector parallel to the magnetic momen
the ferromagnets in the case when the angle betweenm1

0 and
m2

0 is u, and s5$sx ,sy ,sz% is the Pauli matrices vector
We assume the following correlation properties of the ra
dom potential: ^U(r)&50 and ^U(r)U(r8)&
5@1/(2pn0t)#d(r2r8). Heren0 is the density of states a
the Fermi level,t is the mean free scattering time of ele
trons.

To get the correlation function̂dJ(0)dJ(r)& we consider
sample specific fluctuations of the thermodynamic poten
V(u) of the electrons as a function ofu,

V~u!5^V~u!&1dV~u!. ~8!

Using the identityddV(u)/du5*d2rdJ(r) we get

G~u!5 K S ddV

du D 2L . ~9!

In the case of noninteracting electrons we can express
thermodynamic potential asV5*0

mdmN(m) , whereN(m) is
the number of electrons at a given chemical potentialm.
Then, the correlation function of fluctuations of the therm
dynamic potential has the form

^dV~u1!dV~u2!&5E
0

m

dm1dm2^dN~m1,u1!dN~m2 ,u2!&.

~10!

To calculate it we use the usual diagram technique for av
aging over configurations of the disordered potential.16 Dia-
grams for the correlation function of the number of electro
are shown in Fig. 2. As a result we have

FIG. 2. Diagrams for calculation of the correlation functio
^dN(m1 ,u1)dN(m2 ,u2)&. Solid lines correspond to electro
Green’s functions and dashed lines correspond to the correla
function of the scattering potential^U(r)U(r8)&.
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^dN~m1 ,u1!dN~m2 ,u2!&

5
2

p
T (

vn.0
vnReE

V
d3rd3r8Dab

gn ~r,r8;vn!Dba
ng ~r8,r;vn!

5
2

p
T (

vn.0
ReE d2q

~2p!2

3(
m

vn

@Em~u1 ,u2!1Dq21vn1 i ~m12m2!#2
, ~11!

where vn52pnT is the Matsubara frequency,n51,2 . . .
and a,b,g,m are spin indices. Diffusion propagato
Dab

gn (r,r8;vn) obey the equation

$@2Dn1vn1 i ~m12m2!#dajdgm1 i @h~r;u1!sgmdaj

2h~r;u2!sajdgm#%Djb
mn~r,r8;vn!5d~r2r8!dg,nda,b .

~12!

The second equality in Eq.~11! is the representation in term
of eigenvalues of Eq.~12!. In the case of the system geom
etry shown in Fig. 1, the eigenvalues are equal toDq2

1Em(u1 ,u2). Here the spectrumEm(u1 ,u2) is determined
by the equation

S 2Ddajdgm

d2

dz2
1 i @h~r;u1!sgmdaj2h~r;u2!sajdgm# D

3Cm~z;m,j!5EmCm~z;g,a!. ~13!

To calculate Eq.~11! we use following equalities

E d2q

~2p!2 (
m

@Em1Dq21vn1 i ~m12m2!#22

52
d

dvn
E d2q

~2p!2

1

4p i

3E
c
dp

1

Dp2

L2
1Dq21vn1 i ~m12m2!

d ln det~p!

dp

5
1

8pD

d

dvn
ln@det~ ip0!det~2 ip0!#. ~14!

Here det(p)5)m(p2Em) is the spectral determinant of Eq
~13!, and p05A(L2/D)@vn1 i (m12m2)#. In Eq. ~14! the
integration contourC runs around zeros of det(p). Let us
note that although Eqs.~10! and~11! are formally divergent,
their contribution tô (ddV/du)2& is finite.

Let us consider the caseLs!L,d when results do no
depend onvs . To define boundary conditions for Eq.~13! it
is convenient to introduce operators

S65
1

2
@16~m~z;u1!s1!@m~z;u2!s2#%. ~15!

Then the boundary conditions forCm(z;g,a) are:
(d/dz)S1Cm50 at z56(d1L/2) and S2Cm50 at L/2
,uzu,d1L/2. As a result the solution of the eigenvalu
problem Eq.~13! gives the following spectral determinant:

det~ ip !5H sinhp sinh~112d/L !p

1@12 cos~u12u2!#
11 cosh~2dp/L !

4 J
3H 11 cosh~212d/L !p2@11 cos~u11u2!#

3
11 cosh~2dp/L !

2 J . ~16!

Integrating over the chemical potentials, summing over M
subara frequencies, and considering the caseLT[AD/T
@L;d we get

G5
S

8L2
Ec

2E
0

`

dpp5F~p!

3F 12
1

2

d

du S sin 2u

11F~p!
12 cos 2u

4
D G , ~17!

where

F~p!5
11 cosh 2dp/L

sinhp sinh~112d/L !p
. ~18!

The main contribution to the integral in Eq.~17! is from
region thep.1. In this caseF(p),1 and the expression in
the brackets in Eq.~17! can be approximated as sin2 u with a
precision of order unity. The case whenLs@L can be studied
in the same way giving Eq.~6!.

III. CONCLUSION

We have shown that the biquadratic part of the excha
energy between the ferromagnetic films, which origina
from mesoscopic fluctuations, decays as a power law of
nonferromagnetic metal thicknessL @see Eqs.~5! and ~6!#.
Since the average exchange energy decays exponen
with L, the exchange energy has a random sign. This lead
the perpendicular relative orientation of magnetizations
the ferromagnetic films.

Let us estimate the magnitude of the exchange interac
between the magnetizations of the ferromagnetic films.
suming that L5631027 cm, d51,531027 cm, D;1
210 cm2/sec,vs5103 K, and a;231026 erg/cm we get
an estimate Ls;1027 cm and B(u);(102321021)
3(erg/cm2). We think that the theory presented above c
be relevant for the experiment8 where biquadratic coupling
magnitude was of order 1023 erg/cm2.
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