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Mesoscopic mechanism of exchange interaction in magnetic multilayers
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We discuss a mesoscopic mechanism of exchange interaction in ferromagnet-nonferromagnet-ferromagnet
metallic multilayers. We show that in the case when the thickness of the nonferromagnetic metal layer is larger
than the electron mean free path, the relative orientation of magnetizations in the ferromagnets is perpendicu-
lar. The exchange energy between ferromagnets decays with the thickness of the nonferromagnetic metal layer
as a power law.

[. INTRODUCTION romagnetic film, respectivel\d® and B(#) are bilinear and
biguadratic coupling coefficients. In generBl,#) is a func-

Both the experiment and the theory of ferromagnet-tion of the angled betweenm(l) and mg.
nonferromagnet-ferromagnet metallic multilayers have at- In this paper we discuss a theory of this phenomenon. It
tracted a lot of attentioh=® An example of such a structure has been shown in Refs. 9—11 that the exponential decay of
consisting of two ferromagnetic metal films separated by ahe averagéJ(r,r’)) is connected to the fact tha¢r,r’) has
nonferromagnetic metallic film is shown in Fig. 1. In the a random sign at large. The modulus of the exchange in-
case when the thicknessof the nonferromagnetic metal is teraction decays with as a power law.
much smaller than the electron scattering mean free path  We can introduce a local exchange enedgp) between
the sign of the exchange interaction energy between the fethe ferromagnets as an averagelff,r’) over a ferromagnet
romagnets’ magnetizations oscillates as a functioh with  surface area of order df?. Herep is the coordinate along
a period of order of the Fermi wavelength. As a result thethe films. Since the interfilm’s exchange enedgyp) is small
magnetic structure of the system oscillates between ferrasompared to the exchange energy inside the ferromagnetic
magnetic and antiferromagnetic orientations of the ferromagfiims, the spatial dependence of the magnetizations can be
nets’ magnetization’.® The explanation of this phenomenon neglected on the scale of order df. According to
is based on the fact that the interlayer exchange energy is d@&onczewski>*® the biquadratic term proportional #® in
to the Ruderman-Kittel interaction between electron spins irgq. (1) can originate from the existence of spatial fluctua-
different ferromagnets. tions of the sign of the exchange interactidp)=(J)

At low temperatures the exchange energy between two- s3(p) along the layers. The fluctuations dfp) cause
localized spingJ(r,r')) averaged over the scattering poten-fluctuations of directions of magnetizations. The energy as-
tial configurations decays exponentially with-r’| (Ref. 7 sociated with spatial fluctuations of the magnetization direc-
for [r—r'|>I. Herer andr’ are coordinates of spins and tion can be represented as
brackets() stand for averaging over realizations of the scat-
tering potential in the metal and the ferromagnets. Recent[ 3(p),m(p)]
experiments on ferromagnet-nonferromagnet-ferromagnet

metallic multilayer§ imply, however, that the exchange en- B 2

ergy between the ferromagnets does not decay exponentially ~ f d*pd(p)LMy(p)- mMa(p)]

atL>1| and that the relative orientation of the ferromagnet’s

magnetizations is perpendicular independentlyLofPhe- +adf dzp{ dmy(p) IMy(p) . Ima(p)  IMy(p)

nomenologically, this situation can be described by an effec- ap ap ap ap |

tive energy per unit area )
E=—J%m{-md)+B[(m{-mJ)?—1] (1)  where the first term corresponds to the interfilm exchange

energy, the second term is associated with the gradients of
in the case B>|J°. Herem? andmj are unit vectors par- magnetizations inside the filmd,is the thickness of the fer-
allel to spatially averaged magnetizations of the ferromagromagnetic films thickness, andis an intralayer ferromag-
netic films. Indices 1,2 indicate the first and the second fernetic stiffness.

0163-1829/2000/621)/138994)/$15.00 PRB 62 13899 ©2000 The American Physical Society



13900 BRIEF REPORTS PRB 62

L/2+d F m, o ' ' r
L2
AT o] T

ipp—m—mooou N :

-Lp2-d FIG. 2. Diagrams for calculation of the correlation function

(6N(pm1,61)5N(um0,6,)). Solid lines correspond to electron

Green’s functions and dashed lines correspond to the correlation
FIG. 1. A schematic picture of the ferromagné)-normal  fynction of the scattering potentiaU (r)U(r’)).

metal (N)-ferromagnet system.

dratic contribution described by Eg&) and (6) dominates

In the case whedJ(p)>(J) andJ(p) has arandom sign, oy change energy between the ferromagnetic films.

the energyE[J,m;(p)] has a minimum at a sample-specific

realizationm;(p) =m>+ sm;(p;[ 53]) with m21L mJ (Refs. 12
and 14 and Il. DERIVATION OF RESULTS

B To derive the results presented above we describe the ex-
B= _OG(g)’ 3 change energy splitting in the ferromagnet with the help of
ad an effective Hamiltonian

G= f d’p(83(p) 53(0)). (4) H=Ho+h(r:0)o. @

Here Hy is the Hamiltonian of the free-electron gas in a
random potential(r), h(r,8)=wym(r,d) is the effective
magnetic field which is acting only on electron spingr, 6)
denotes the unit vector parallel to the magnetic moment in
the ferromagnets in the case when the angle betwgeand

=.D/wg and that the thermal coherence length= D/T m, is 6, and U_{UX’UY’Uz} 'S the_ Pauli mat_rlces vector.
s We assume the following correlation properties of the ran-

is larger thand and L. The latter inequality allows us to dom potential:  (U(r))=0 and  (U(NU("))

neglect the temperature dependenc@8oHereD is the dif- = 1(2 s N H i the density of
fusion constant of conducting electrons, which is assumed tq | ( m,’OIT)] I(rfr 21 ere Vof IS the density o statfeslat
be the same in the ferromagnetic and nonferromagnetic parf3€ Fermi level,r is the mean free scattering time of elec-

of the sample, and is the exchange spin splitting energy in rons. . . .
the ferromagnets. \SNe will show that in the cdse< L To get the correlation functiogsJ(0)8J(p)) we consider
' sample specific fluctuations of the thermodynamic potential

Q(0) of the electrons as a function &f

HereB, is a number of order unit}/*

Let us consider the case whé(p) has a random sign due
to mesoscopic fluctuations of Ruderman-Kittel oscillations
inside the metal-*! We assume that the thickness of ferro-
magnetic filmsd is larger than the spin diffusion length

E.\?
G= e>(f) (5)
Q(6)=(Q(0)+5Q(6). ®
while in the casd.>L,
Using the identityd 5Q.(6)/d 6= [d?psJ(p) we get

Wg 2
so={( % ) 9
Here y and y, are smooth functions of of order unity and
E.=D/xL? is the Thouless energy. Qualitatively, E4S)
and(6) can be understood as follows: In the céiser’|>|
the random oscillations od(r,r") exhibit long-range sign
correlations’® In the casel <L these long-range correla-
tions should be cut off at a length of the orderlofAs a
result, the amplitude of fluctuations of the exchange energ
averaged over the area of order lof is of orderE,; and
. . u
tgqe.y(;r.eé correlated at distances larger thanThis leads to (506, 50(6,)) = fo dpedpn( SN( g, 0) SN( iz, 0)).
In the opposite limitLs>L the cut off length id. The (10)
amplitude of fluctuations of the exchange energy averaged
over the area of ordelr§ is of orderwg. This leads to Eq. To calculate it we use the usual diagram technique for aver-
(6), which is independent df. aging over configurations of the disordered potertfiddia-
At large nonferromagnetic metal thicknesées| the av-  grams for the correlation function of the number of electrons
erageJ°~ exp(—L/l) decays exponentialfyand the biqua- are shown in Fig. 2. As a result we have

In the case of noninteracting electrons we can express the
thermodynamic potential &= [§duN(u) , whereN(u) is

the number of electrons at a given chemical potential
Then, the correlation function of fluctuations of the thermo-
§iynamic potential has the form
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(ON(p1,601)ON(p2,65))

=—T > w Rej drd®r'D(r, 1" wn) D L1 T wp)

T wn>0
d’q
=—T Re
T a%o J(zw)Z

> : TRCE)

m [En(601,0,)+ D"+ wp+i(pug—uo)]
where w,=27nT is the Matsubara frequency,=1,2
and «,B,y,u are spin indices. Diffusion propagators
D2s(r.r';w,) obey the equation

{[_ DA+ wn+i(/‘l’l_lu“Z)]aag&y,u_l—i[h(r; 01)07/15(15
—h(r;0,) 0,6, 1}DEE (11 wn) =8(r—1")3,,,0, 4-
(12)

The second equality in E@11) is the representation in terms
of eigenvalues of Eq12). In the case of the system geom-
etry shown in Fig. 1, the eigenvalues are equalDxq?
+E(64,65). Here the spectrunk,(6,,0,) is determined
by the equation

2
—D5a§5w‘E+i[h(r;Hl)a'wﬁag—h(r;ﬁz)(ragﬁw]
XU n(Zu,6) =EnWin(zy,a). (13
To calculate Eq(11) we use following equalities
d2
Ent Do+ i
f (27)22[ QP+ on iy pp)] 2
_ J' d’g 1
"~ dog) (2m7)2 47
fd 1 dIndetp)
p 0? dp
—+Dq +onti(pug— o)
ln[detlpo)de(—lpo)] (14

~ 87D dw,

Here detp)=11,,(p—E,,) is the spectral determinant of Eq.
(13), and pg=(L?/D)[wp+i(m1—um2)]. In Eq. (14) the
integration contouiC runs around zeros of det]. Let us
note that although Eq$10) and(11) are formally divergent,
their contribution to{(d5Q/d#)?) is finite.

Let us consider the case;<L,d when results do not
depend onw,. To define boundary conditions for E@.3) it
is convenient to introduce operators

1
S.=5[1=(m(z;6,) o) [M(Z; 6,) o5} (15

Then the boundary conditions for¥ (z;y,«) are:
(d/d2)S,¥,=0 at z=*(d+L/2) andS_¥,=0 atL/2
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<|z|<d+L/2. As a result the solution of the eigenvalue
problem Eq.(13) gives the following spectral determinant:

defip)=1 sinhp sinh(1+2d/L)p

+[l_ COS( 01_ 92)]

1+ cosr(2dp/L)]
4

X {1+ cosi2+2d/L)p—[1+ cog 6,+ 65)]

(16)

1+ cosKde/L)]
X——— |-

Integrating over the chemical potentials, summing over Mat-
subara frequencies, and considering the chseD/T
>L;d we get

G=—E2f dpp°®
o PP (p)
1d sin 26
7] i—cosz||” 17
1+d(p) ———
4
where
1+ coshdp/L
(18

®(p)= sinhp sinh(1+2d/L)p"

The main contribution to the integral in E¢L7) is from
region thep>1. In this caseb(p)<1 and the expression in
the brackets in Eq17) can be approximated as $ifwith a
precision of order unity. The case whegs-L can be studied
in the same way giving EJ6).

Ill. CONCLUSION

We have shown that the biquadratic part of the exchange
energy between the ferromagnetic films, which originates
from mesoscopic fluctuations, decays as a power law of the
nonferromagnetic metal thickne&s[see Eqs(5) and (6)].
Since the average exchange energy decays exponentially
with L, the exchange energy has a random sign. This leads to
the perpendicular relative orientation of magnetizations of
the ferromagnetic films.

Let us estimate the magnitude of the exchange interaction
between the magnetizations of the ferromagnetic films. As-
suming thatL=6x10"" cm, d=1,5x10 " cm, D~1
—10 cnf/sec, ws=10° K, and a~2x 10 ® erg/lcm we get
an estimate Ls~10"7 cm and B(6)~(10 %-101%)

X (erglent). We think that the theory presented above can
be relevant for the experiménivhere biquadratic coupling
magnitude was of order 16 erg/cnt.
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