Electronic structure of the double-exchange ferromagnet La_{0.825}Sr_{0.175}MnO₃ studied by optical reflectivity

K. Takenaka,* Y. Sawaki, R. Shiozaki, and S. Sugai Department of Physics, Nagoya University, Nagoya 464-8602, Japan

(Received 24 July 2000)

Temperature-dependent optical reflectivity spectra were measured on cleaved surfaces of $La_{0.825}Sr_{0.175}MnO_3$ single crystals up to 6.6 eV. The present result demonstrates that the exchange-gap excitation in the optical conductivity spectrum splits into two parts (~3.2 and ~5 eV). This indicates that the t_{2g} orbitals also participate in the reconstruction of the optical excitation caused by spin polarization. Based on the present result, we propose and discuss a model for the electronic structure of this prototypical double-exchange material. We also discuss the charge dynamics of the conducting carriers in terms of being a *bad metal*.

Optical spectroscopy is an effective tool for investigating the electrical properties of conducting carriers as well as the electronic structure in the vicinity of the Fermi level (E_F). For doped manganites, which show the intriguing phenomenon of colossal magnetoresistance,¹ the optical spectrum has frequently been used as an experimental basis to help explain the theories behind it.^{2–10} However, the optical spectra, and especially the reflectivity $R(\omega)$ spectra, are rather confused and controversial in the field.^{11–17} Recently, we have ascertained that this is because the $R(\omega)$ spectra of the manganites are quite sensitive to the surface condition.^{14,17}

We discuss the electronic structure of a doped manganite La_{0.825}Sr_{0.175}MnO₃ (LSMO, $T_C = 283$ K) based on reliable $R(\omega)$ spectra measured on *cleaved* surfaces, which cover the energy range 0.02-6.6 eV at 10-295 K and 0.005-40 eV at 295 K. The present result shows that the exchange-gap excitation in $\sigma(\omega)$ of LSMO splits into two parts (~3.2 eV and ~5 eV). This indicates that not only the e_g but also the t_{2g} orbitals participate in the reconstruction of the optical excitation, or the transfer of spectral weight in $\sigma(\omega)$, caused by spin polarization in a double-exchange (DE) system. We propose a band diagram for LSMO and also discuss the charge dynamics of the conducting carriers in terms of being a *bad metal*.

Single crystals of LSMO were grown by a floating-zone method.¹⁸ All of the reflectivity spectra were measured on cleaved surfaces, typically $1 \times 1 \text{ mm}^2$, using a Fourier-type interferometer (0.005–1.6 eV), a grating spectrometer (0.8–6.6 eV), and a Seya-Namioka type spectrometer (4.0–40 eV) at Institute for Molecular Science, Okazaki National Research Institutes. The details of the experiments were described in our previous papers.^{14,17}

Figure 1 shows the temperature (*T*) dependent reflectivity spectra of LSMO on a logarithmic *R* scale. The dashed line represents $R(\omega)$ obtained at 295 K. As *T* decreases, $R(\omega)$ changes from insulating to metallic behavior; the reflectivity edge at about 1.6 eV becomes sharpened and the optical phonons are screened. In addition, one should note that the present spectra exhibit *T* dependence up to ~6 eV, which is much larger than that of the other strongly correlated materials, which are at most, ~3 eV.¹⁹

In order to make more detailed and quantitative discussions, we deduce optical conductivity $\sigma(\omega)$ (Fig. 2) from $R(\omega)$ via a Kramers-Kronig transformation.¹⁷ For the extrapolation at the low-energy part, we assumed a constant R for the insulating phase (T=295 K) and a Hagen-Rubens formula for the metallic phase ($T \leq 278$ K). Since variation of the extrapolation procedures had a negligible effect on $\sigma(\omega)$ above ~30 meV, the following arguments are independent of the extrapolation. Above 6.6 eV we assumed that the reflectivity is independent of temperature and the 295-K spectrum (inset of Fig. 1) was used for the spectra at all temperatures, because the T variation of $R(\omega)$ in the range 6–6.6 eV was negligibly small and the connection was smooth. In addition, the integrated spectral weight defined by

$$N_{\rm eff}^*(\omega) = \frac{2m_0 V}{\pi e^2} \int_0^\omega \sigma(\omega') d\omega' \tag{1}$$

 $(m_0 \text{ is the bare-electron mass; } V \text{ is the unit-cell volume})$ almost converges $(\Delta N_{\text{eff}}^*/N_{\text{eff}}^* \lesssim 1.5\%)$ at 6.6 eV (inset of Fig. 2). These facts seem to support our analytical procedure.

FIG. 1. Temperature-dependent optical reflectivity spectra measured on the cleaved surfaces of $La_{0.825}Sr_{0.175}MnO_3$. Dashed line represents the data taken at 295 K. Inset: Reflectivity spectrum measured at 295 K up to 40 eV.

13 864

FIG. 2. Temperature-dependent optical conductivity spectra of La_{0.825}Sr_{0.175}MnO₃ deduced from the reflectivity spectra via a Kramers-Kronig transformation. Inset: Effective carrier number $N_{\text{eff}}^{*}(\omega)$ defined as the integration of $\sigma(\omega)$.

With decreasing *T*, the spectral weight above the reflectivity edge, $\sim 1.6 \text{ eV}$, decreases, but the spectral weight below it increases instead. There are two regions in $\sigma(\omega)$, around 3 and 5 eV, where the spectral weight decreases with decreasing *T*. The spectral weight transfers from the higherenergy regions to a Drude-like ($\omega = 0$ centered) structure as *T* decreases.

The two energy regions with large *T* dependence are more clearly shown by the differential conductivity defined by $\Delta \sigma(\omega, T) \equiv \sigma(\omega, T) - \sigma(\omega, 10 \text{ K})$ [Fig. 3(a)]. The low-energy (less than 2 eV) *T* dependence in $\Delta \sigma$ is probably induced by both the spectral weight and spectral width of the intraband (or free-carrier) term. Fortunately, this falls off at higher frequencies. Therefore, we conclude that there are *two* higher-lying bands at ~3.2 eV and at ~5 eV.

The DE model predicts that the spectral weight of the exchange-gap excitation is scaled to $1 - (M/M_S)^2 [M(T)]$ is the magnetization; M_S is the saturated magnetization] and the missing spectral weight at the higher-lying exchange-gap excitation is transferred to the lower-lying intraband (Drude) excitation as T decreases.² The integrated spectral weight of the 3.2-eV and the 5-eV bands in $\Delta \sigma(\omega, T)$, S_{2-4} and S_{4-7} , are estimated by Eq. (1). Here, the suffixes 2-4 and 4-7mean that the integrating energy ranges are 2-4 eV and 4 -7 eV, respectively. In Fig. 3(b), S_{2-4} and S_{4-7} are found to be proportional to $1 - (M/M_s)^{2.20}$ Namely, both the 3.2-eV and the 5-eV bands are the exchange-gap excitations. Although the higher (5-eV) band has not been clearly observed so far, our result is reasonable in terms of the f-sum rule because the lower (3.2-eV) band compensates only half of the spectral weight associated with the intraband excitation (inset of Fig. 2). In addition, the optical absorption study also suggests that the spectrum varies with T above 4 eV.¹³ The split of the exchange-gap excitation indicates that the t_{2g} orbitals also participate in the reconstruction of the optical excitation caused by spin polarization. The previous treatment of the t_{2g} electrons as the localized spin s = 3/2 may be oversimplified.

FIG. 3. (a) Differential conductivity $\Delta \sigma(\omega,T) \equiv \sigma(\omega,T) = -\sigma(\omega,10 \text{ K})$. (b) Spectral weight of the higher-lying two bands in $\Delta \sigma$, S_{2-4} and S_{4-7} , plotted against $1 - (M/M_S)^2$.

The split of the exchange gap enables us to determine the electronic structure less ambiguously (Fig. 4). The two exchange gaps are assigned as follows: the 3.2-eV band, $e_g \uparrow \rightarrow t_{2g} \downarrow$; the 5-eV band, $e_g \uparrow \rightarrow e_g \downarrow$ and $t_{2g} \uparrow \rightarrow t_{2g} \downarrow$. Crystal-field splitting 10Dq and exchange splitting sJ_H (here, s = 2) are estimated to be ~1.8 eV and ~5 eV, respectively. The estimate of 10Dq is roughly coincident with the result of the soft-x-ray absorption study.²¹ Previously sJ_H was estimated to be ~3 eV, but this is because the 3.2-eV band was assigned as $e_g \uparrow \rightarrow e_g \downarrow$ there.^{11,12}

FIG. 4. Schematic band diagram for $La_{0.825}Sr_{0.175}MnO_3$. Solid area represents occupied states. Solid and dashed arrows represent "obvious" and "hidden" peaks in $\sigma(\omega)$, respectively.

FIG. 5. Result of Gaussian fit. Solid and open circles represent 10-K and 295-K data, respectively. The sum of Gaussians, $\sigma_{inter}(\omega)$, is represented by a solid line and each $G_i(\omega)$ term by dashed lines. Inset: The intraband conductivity $\sigma_{intra}(\omega,T) \equiv \sigma(\omega,T) - \sigma_{inter}(\omega)$. Optical phonons are subtracted.

The peak at ~4 eV is independent of *T*, and hence is considered to be a 2p-3d charge-transfer (CT) excitation. The pronounced peak at ~10.5 eV (Fig. 5) is also assigned as the CT excitation $2p \rightarrow \text{La/Sr } 5d$ by other spectroscopic studies.^{22,23} Therefore, the 4-eV peak is assigned as 2p $\rightarrow t_{2g}\downarrow$, which is the same as that ascribed by Arima and Tokura.²⁴ Other possible assignments, such as $2p \rightarrow e_g\uparrow$, cannot explain the whole of the spectrum because the La/Sr 5d band then becomes too close to E_F . The present spectrum indicates that the energy difference between 2p and $e_g\uparrow$ is about 0.8 eV, and hence the 2p band is closer to E_F than the $t_{2g}\uparrow$ band. This is consistent with the other optical study.²³

The above diagram predicts several excitations that are not recognized as peaks in the actual $\sigma(\omega)$ spectrum (dashed arrows in Fig. 4). These "hidden" peaks are clues to checking the validity of the proposed diagram. For this purpose, we make the following analyses on $\sigma(\omega)$ at 10 K (solid circles in Fig. 5) over a range 0-12 eV. [At 6.6-12 eV we use $\sigma(\omega)$ at 295 K (open circles in Fig. 5).] At 10 K, the contributions to $\sigma(\omega)$ from the exchange-gap excitations are considered to be negligibly small because M(T) almost reaches M_S [M was $\sim 4.0\mu_B/Mn$ and nearly T independent at 10 K (Ref. 25)]. Therefore, $\sigma(\omega)$ is formed by the sum of an intraband (Drude-like) term, $\sigma_{intra}(\omega)$, and an interband term, $\sigma_{inter}(\omega)$, consisting of the CT and d-d excitations without exchange gaps. We assume that $\sigma_{inter}(\omega)$ is the sum of seven Gaussians $\sum_{i=1}^{7} G_i(\omega)$,

$$G_i(\omega) = \frac{S_i}{\gamma_i \sqrt{2\pi}} \exp\left[-\frac{(\omega - \omega_i)^2}{2\gamma_i^2}\right].$$
 (2)

Here, S_i , γ_i , and ω_i correspond to spectral weight, damping rate, and peak energy of the *i*th Gaussian, respectively. The seven Gaussians are assigned as $2p \rightarrow e_g \uparrow (G_1, \sim 0.8 \text{ eV})$, $t_{2g} \uparrow \rightarrow e_g \uparrow (G_2, \sim 1.8 \text{ eV})$, $2p \rightarrow t_{2g} \downarrow (G_3, \sim 4 \text{ eV})$, $2p \rightarrow e_g \downarrow (G_4, \sim 5.8 \text{ eV})$, $e_g \uparrow \rightarrow \text{La/Sr} 5d (G_5, \sim 9.7 \text{ eV})$, $2p \rightarrow \text{La/Sr} 5d (G_6, \sim 10.5 \text{ eV})$, and $t_{2g} \uparrow \rightarrow \text{La/Sr} 5d (G_7,$

TABLE I. Gaussian fitting parameters for the interband excitation $\sigma_{inter}(\omega)$ of La_{0.825}Sr_{0.175}MnO₃.

Oscillator	$S_i \; ({\rm eV}/\Omega \; {\rm cm})$	γ_i (eV)	$\omega_i \; (eV)$
G_1	396	0.44	1.05
G_2	676	0.69	1.79
G_3	1744	0.48	4.10
G_4	4532	1.27	5.50
G_5	884	1.05	9.65
G_6	24457	2.29	10.39
G_7	4512	2.14	11.42

~11.5 eV). The energies are peak positions predicted from this diagram. The last three terms form the 10.5-eV peak, which originates mainly from the $2p \rightarrow \text{La/Sr} 5d$ CT excitation (G_6). The present diagram predicts two additional minor (hidden) peaks with initial states $e_g \uparrow$ and $t_{2g} \uparrow$ at frequency about 1 eV lower (G_5) and higher (G_7), respectively.

The most difficult task in this analysis is to estimate $\sigma_{intra}(\omega)$. We attempted to fit this term with a simple Drude formula $\sigma_0 \gamma^2/(\omega^2 + \gamma^2)$ or a simple Drude term plus an additional Gaussian (or Lorentzian), but the fitting is not good in each case. During our attempts, we found one formula, $\sigma_0 \gamma^{\alpha}/(\omega^{\alpha} + \gamma^{\alpha})$ ($\alpha \sim 0.68$, $\gamma \sim 0.029$ eV), which can reproduce the low-energy part of $\sigma(\omega)$ accurately. This suggests that the Drude-like term is suitable for one-component analysis with a slowly decaying function. (Later, we discuss the possibility of *bad metallic nature* as an origin of this slowly decaying Drude-like term.) However, a $\omega^{-\alpha}$ function ($\alpha < 1$) decays so slowly that it has large spectral weight in the higher-energy region.

Next, we made the assumption that $\sigma_{intra}(\omega)$ has no weight above the reflectivity edge ($\sim 1.6 \text{ eV}$) and attempted to fit the higher-energy part of $\sigma(\omega)$ at 10 K with the seven Gaussians. As shown in Fig. 5, $\sigma(\omega)$ above 1.6 eV can be well represented by these seven Gaussians. Each term is represented by a dashed line. The fitting parameters are listed in Table I.²⁶ The following arguments/facts substantiate that the present diagram is, at least, not incompatible with the experiment: (i) The peak positions are, roughly speaking, coincident with the predictions. (ii) The hidden peaks G_1 , G_2 , and G_4 are indispensable for reproducing $\sigma(\omega)$. (iii) The lowest peak G_1 depends on the estimation of the Drude-like term to some extent, but the higher-lying five peaks (i=3-7) are not affected by variations in the estimate of the Drude-like term, and the position of the second peak is almost unchanged, though S_2 and γ_2 are slightly affected. This is reasonable because σ_{intra} and G_1 have no spectral weight in the higher-energy region. (iv) The present diagram also predicts that the additional exchange gap assigned as $t_{2g} \uparrow \rightarrow e_g \downarrow$ exists around 7 eV. However, even if this highest exchange gap exists, it has only small spectral weight compared with the total $N_{\rm eff}^*$, as already mentioned.

In the present diagram, the charge carriers are (1-x) *electrons/*Mn. This is consistent with the facts that the physical quantities reflecting the carrier density, such as the spectral weight of the Drude-like term¹⁴ and the critical resistivity value for the Al-induced itinerancy-localization transition,²⁵ do not show remarkable *x* dependence. The Hall effect study²⁷ indicates that the carriers are about one *hole/*Mn and are nearly independent of *x*, which is consistent

with the present diagram except for the sign of the carrier. The difference of the sign is probably related to the electronic properties of this correlated-electron system, in which the simple free-carrier picture is not applicable. Otherwise, as is often argued, it is due to the carrier compensation effect, which is suggested by the band calculation.²⁸

The present analysis enables us to extract a net contribution to $\sigma(\omega)$ from the conducting carriers, $\sigma_{intra}(\omega) \equiv \sigma(\omega)$ $-\sigma_{inter}(\omega)$ (inset of Fig. 5). It can also refine the estimation of Drude weight, which is estimated to be 0.23/Mn at 10 K, by integrating σ_{intra} . This is consistent with the recent precise optical absorption experiment.²⁹ The intraband charge dynamics is, on the other hand, characterized by the "coherent-incoherent" crossover.^{16,17} In the higher-*T* region below $T_{\rm C}$, a Drude-like term is absent and, instead, a broad peak at finite frequency is dominant in $\sigma(\omega)$, although the dc resistivity $\rho(T)$ is metallic in character $(d\rho/dT>0)$. A Drude-like term is present only at sufficiently low *T* (or low ρ). These features may be interpreted as the optical response of a *bad metal.*^{30,31} The recent resistivity study suggests that LSMO can be classified as a bad metal.²⁵ The crossover in

*Electronic address: k46291a@nucc.cc.nagoya-u.ac.jp

- ¹For a review, see T. A. Kaplan and S. D. Mahanti, *Physics of Manganites* (Plenum, New York, 1999).
- ²N. Furukawa, J. Phys. Soc. Jpn. **64**, 3164 (1995); see also Ref. 1.
- ³A. J. Millis, R. Mueller, and Boris I. Shraiman, Phys. Rev. B 54, 5405 (1996).
- ⁴S. Ishihara, M. Yamanaka, and N. Nagaosa, Phys. Rev. B 56, 686 (1997).
- ⁵P. E. de Brito and H. Shiba, Phys. Rev. B **57**, 1539 (1998).
- ⁶S. Yunoki, A. Moreo, and E. Dagotto, Phys. Rev. Lett. **81**, 5612 (1998).
- ⁷ A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. Lett. **82**, 141 (1999).
- ⁸P. Horsch, J. Jaklič, and F. Mack, Phys. Rev. B **59**, 6217 (1999).
- ⁹H. Nakano, Y. Motome, and M. Imada, J. Phys. Soc. Jpn. 69, 1282 (2000).
- ¹⁰K. Held and D. Vollhardt, Phys. Rev. Lett. 84, 5168 (2000).
- ¹¹Y. Okimoto et al., Phys. Rev. B 55, 4206 (1997).
- ¹²Y. Moritomo et al., Phys. Rev. B 56, 5088 (1997).
- ¹³M. Quijada *et al.*, Phys. Rev. B **58**, 16 093 (1998).
- ¹⁴K. Takenaka et al., J. Phys. Soc. Jpn. 68, 1828 (1999).
- ¹⁵H. J. Lee *et al.*, Phys. Rev. B **60**, 5251 (1999).
- ¹⁶E. Saitoh et al., Phys. Rev. B 60, 10 362 (1999).
- ¹⁷K. Takenaka, Y. Sawaki, and S. Sugai, Phys. Rev. B 60, 13 011 (1999).
- ¹⁸A. Urushibara et al., Phys. Rev. B **51**, 14 103 (1995).

 $\sigma(\omega)$ mentioned above occurs when the mean free path of the conducting carrier reaches the Fermi wavelength. A similar crossover is also observed for the typical bad metal SrRuO₃.³² In this scenario, the slowly decaying Drude-like term in the "low-*T* coherent" region is a possible indication (or reminiscent) of diffusive conduction, which yields the broad peak of $\sigma(\omega)$ in the "high-*T* incoherent" region.

In summary, the split of the exchange-gap excitation in $\sigma(\omega)$ indicates that the t_{2g} orbitals participate in the reconstruction of the optical excitation caused by spin polarization in LSMO. Based on the present result, we propose a band diagram for this compound, which is helpful for improving our understanding of its electronic structure as well as the charge dynamics of the conducting carriers in the doped ferromagnetic-metallic phase. The dynamics of the carriers is discussed in terms of being a bad metal.

We are grateful to Y. Moritomo and N. Furukawa for fruitful discussions. This work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan and by CREST of JST.

- ¹⁹For nickelates, see, T. Katsufuji *et al.*, Phys. Rev. B **54**, R14 230 (1996).
- ²⁰The spectral weight of the 3.2-eV band depends on the lower cutoff energy in the integration to some extent, but the relation between the weight and M(T) does not.
- ²¹M. Abbate et al., Phys. Rev. B 46, 4511 (1992).
- ²²S. Tajima et al., J. Opt. Soc. Am. B 6, 475 (1989).
- ²³J. H. Jung et al., Phys. Rev. B 55, 15 489 (1997).
- ²⁴T. Arima and Y. Tokura, J. Phys. Soc. Jpn. **64**, 2488 (1995).
- ²⁵Y. Sawaki, K. Takenaka, A. Osuka, R. Shiozaki, and S. Sugai, Phys. Rev. B **61**, 11 588 (2000).
- ²⁶The optical excitations depend on the d-p hybridization. Therefore, the d-d excitations become active and S_i does not necessarily reflect the carrier number (capacity).
- ²⁷A. Asamitsu and Y. Tokura, Phys. Rev. B 58, 47 (1998).
- ²⁸Warren E. Pickett and David J. Singh, Phys. Rev. B 53, 1146 (1996).
- ²⁹J. R. Simpson *et al.*, Phys. Rev. B **60**, R16 263 (1999).
- ³⁰V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. **74**, 3253 (1995);
 P. B. Allen *et al.*, Phys. Rev. B **53**, 4393 (1996).
- ³¹The present argument is one of the possible interpretations, and hence does not exclude other possibilities, for example, the twocomponent picture, in which the slowly decaying Drude-like term consists of a simple Drude term and an incoherent broad peak.
- ³²P. Kostic *et al.*, Phys. Rev. Lett. **81**, 2498 (1998).