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Magnetic critical behavior of fractals in dimensions between 2 and 3
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We report the critical exponent values of the Ising model,n21, g/n, andb/n, and the critical temperatures
of three Sierpı´nski fractals with Hausdorff dimensionsdf equal to 2.966, 2.904, and 2.631. The results are
calculated from finite-size scaling analysis by Monte Carlo simulations. They are precise enough to show that
the hyperscaling relationdf52b/n1g/n is satisfied. Furthermore, the discrepancy between the values pro-
vided bye expansions and by Monte Carlo simulations shows that the critical behavior of fractals cannot be
fully understood in the framework of strong universality.
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Fractal networks are natural candidates to interpolate
tween integer dimensions. Since they do not exhibit tran
tion symmetry, but scale invariance, the question which m
be considered in dealing with phase transitions in such
tems is the following: How is the critical behavior affecte
by this replacement. The early works on phase transition
fractal structures were done by Gefenet al.1–4 They studied
these systems with the help of real space renormaliza
group methods; they found that the Hausdorff dimens
should replace the space dimension in the description of
critical phenomena. Later, Bhanotet al.5,6 performed Monte
Carlo simulations with the Metropolis algorithm and su
gested that the average number of bonds per spin shou
used instead of the Hausdorff dimension. Recently, magn
phase transitions of the ferromagnetic Ising model on S
pinski carpets have been studied by two groups, using p
erful Monte Carlo simulation methods, mainly the Wolff a
gorithm able to reduce significantly the critical slowin
down.7,8 They explored a range between the lower critic
dimension of the Ising model,d51 and d52. They both
found that scaling corrections are strong, and interpreted
result as a consequence of the slow convergence of the
mal averages towards the infinite limit as the size of
lattice increases. Nevertheless, they were able to study l
enough systems to show that the values of the critical ex
nentsb/n and g/n for two different fractal dimensions (df
51.8927 anddf51.7925) satisfy the hyperscaling lawdf
52b/n1g/n; here, df is the Hausdorff dimension of th
fractal. We are now able to study numerically the critic
properties of the Ising model for fractal dimensions betwe
d52 andd53. No precise simulation results were availab
up to now, between two integer dimensions exhibiting
phase transition at nonzero temperature.

We will call the fractals we deal with ‘‘Sierpı´nski
sponges’’ and denote them by the symbol SP(l d,Nocc ,k)
where l is the size of the generating cell,d53 ~the dimen-
sion of embedding space!, Nocc is the number of occupied
sites in the generating cell, andk is the number of iteration
steps. The spins are located in the center of the occu
sites. The ‘‘Sierpı´nski sponge’’ is generated as follows: A
thekth iteration step we enlarge the (k21)th iteration lattice
by replacing each occupied site by the whole generating c
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the size of the network generated afterk steps isL5 l k. All
information about the geometrical properties of a given fr
tal is determinated by this cell SP(l d,Nocc ,k51). Thel sec-
tions of the generating cells associated with the three dif
ent fractals which we will study are shown in Fig. 1. Th
fractal in the mathematical sense is obtained only whek
tends towards infinity and we call it SP(l d,Nocc). Here
SP(33,26) and SP(33,18) will be explored up to the fifth
iteration step whereL5243 and SP(43,56) to the fourth it-
eration step whereL5256. These fractals have infinite ram

FIG. 1. The generating cell of Sierpı´nski sponges: ~a!
SP(33,26,1), ~b! SP(43,56,1), and~c! SP(33,18,1). The pictures
are shown section by section. Each shadowed square represen
spin-occupied site.
13 856 ©2000 The American Physical Society
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TABLE I. The maximum values offL(T), xL(T), andCL(T) and the associated temperaturesTf(L),
Tx(L), andTC(L) with respect to the different iteration stepsk for the Sierpı´nski sponges. The values ofn21,
g/n, andTc are listed in the last column.

Fractal SP k51 k52 k53 k54 k55 n21,g/n,Tc

(33,26) fL
max 8.87~3! 53.5~3! 297.4~1.9! 1591~24! 8293~359! n2151.503(53)

Tf(L) 4.826~5! 4.276~1! 4.2268~6! 4.2188~2! 4.2173~1! Tc54.2170(2)
xL

max 0.4513~5! 4.58~1! 40.89~17! 350.3~2.5! 2963~38! g/n51.943(18)
Tx(L) 4.243~2! 4.2275~5! 4.2193~2! 4.21749~8! 4.21710~3! Tc54.21701(6)
CL

max 0.950~1! 1.788~6! 2.50~2! 3.16~4! 3.8~1! —
TC(L) 3.768~2! 4.108~2! 4.1947~9! 4.2127~3! 4.2163~1! Tc54.2171(2)

(43,56) fL
max 13.10~2! 108.0~5! 800~14! 5646~181! — n2151.410(36)

Tf(L) 4.394~3! 4.038~1! 4.0046~4! 3.9997~1! — Tc53.99889(23)
xL

max 0.817~1! 13.43~4! 191.9~1.6! 2729~25! — g/n51.915(13)
Tx(L) 4.098~1! 4.0169~6! 4.0019~2! 3.99935~6! — Tc53.99893(10)
CL

max 1.141~2! 1.972~8! 2.514~23! 2.97~10! — —
TC(L) 3.754~2! 3.9588~9! 3.9936~4! 3.9983~4! — Tc53.9991(6)

(33,18) fL
max 4.857~6! 19.63~6! 76.3~4! 287.5~4.0! 1058~16! n2151.185(27)

Tf(L) 3.579~3! 2.578~2! 2.409~1! 2.3667~4! 2.3553~2! Tc52.3510(4)
xL

max 0.5321~7! 5.53~2! 50.4~5! 451~1! 4020~21! g/n51.991(7)
Tx(L) 2.915~1! 2.5193~6! 2.3976~3! 2.36379~9! 2.35440~4! Tc52.35090(9)
CL

max 0.810~1! 1.456~4! 1.85~3! 2.08~2! 2.21~2! —
TC(L) 2.595~1! 2.427~2! 2.371~8! 2.3577~9! 2.3527~6! Tc52.35089(12)
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fication order; it ensures that they exhibit a second-or
phase transition at nonzero temperature.4 For a given tem-
peratureT and a given sizeL, we call ^EL&T and^ML&T the
canonical thermal averages of the total energy and of
absolute value of the total magnetization, respectively. T
specific heat per spin of the system readsCL(T)5(^EL

2&T

2^EL&T
2)/(NoccT

2). The thermal average of the absolu
value of the magnetization per spin ismL(T) and the zero-
field magnetic susceptibility per spin isxL(T)5(^ML

2&T

2^ML&T
2)/(NoccT). The logarithmic derivative of the mag

netization is defined asfL(T)5] ln^ML&T /]bB wherebB is
the inverse of temperature. According to Fisher’s finite-s
scaling theory,9 the exponentsn21, g/n, and a/n can be
extracted from the slopes of the fitting lines in log-log plo
of the sizeL versus the maximum values offL(T), xL(T),
andCL(T), respectively. The critical temperatureTc for the
infinite system can be hence estimated from the position
the peaksTk(L) (k5f, x, or C) of fL(T), xL(T), and
CL(T) according to the relation

Tk~L !5Tc1gkL21/n, ~1!

wheregk’s are physical quantity-dependent constants. Mo
over, we can also find the exponents by performing simu
tions at the critical temperature because of the linear dep
dence offL(Tc) on L1/n, CL(Tc) on La/n, mL(Tc) on L2b/n,
andxL(Tc) on Lg/n.

We perform the high-efficient Wolff algorithm10 to gen-
erate our spin configurations. Periodic boundary conditi
are chosen in order to eliminate the surface free ene
contribution.11 For each iteration stepk, at each simulation
temperatureT, we execute 106 Monte Carlo steps. The his
togram method is then applied to extract all possible inf
mation near this simulation temperature. The reliable te
perature range is carefully estimated for each ther
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average. We repeat the whole above processes at leas
times to get a sufficient number of samples to perform s
tistical analysis of our data. All the error bars which we w
give below are statistical standard deviations. In Table I,
give the maximum values offL(T), xL(T), and CL(T) at
each iteration step of the fractal structures. The temperat
where these peaks occur are listed just below them.
maxima offL(T) and xL(T) associated with the last thre
iteration steps as a function ofL nearly line up in log-log
plots. In order to estimate properly the exponentsn21 and
g/n, we measure the slopes from the last two iteration ste
and compare them with that extracted from the last th
steps: The differences observed are always smaller than
The critical temperatures for the infinite systems can be t
obtained from Eq.~1! provided thatn21 is known. The re-
sults are given in the last column of Table I. For each stud
fractal SP(l d,Nocc) the values ofTc obtained from the posi-
tions of the peaks offL(T), xL(T), andCL(T) are consis-
tent, within the accuracy of the simulations. Neverthele
the maxima of the specific heatCL(T) do not follow a power
law up to the iteration steps that we have done. It is
reason why we cannot give the corresponding exponent
uesa/n in Table I.

We are now able to turn our attention to the critical b
havior atTc . The most precise values ofTc are estimated
from the positions of the peaks ofxL(T) and lead to
4.217 01, 3.998 93, and 2.350 90 for SP(33,26), SP(43,56),
and SP(33,18), respectively. These values are consiste
within the error bars, with Binder’s cumulant crossing poin
at the last two iteration steps for the three different frac
structures: 4.217 029~41!, 3.998 943~35!, and 2.350 911~39!.
The values offL(Tc), xL(Tc), mL(Tc), CL(Tc), and Bind-
er’s cumulantUL(Tc)512^ML

4&T/3^ML
2&T

2 are reported in
Table II. Once more, the exponentsn21, g/n, andb/n are
obtained by measuring the slopes in log-log plots. The ag
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TABLE II. The values offL(Tc), xL(Tc), mL(Tc), CL(Tc), and UL(Tc) for the Sierpı´nski sponges
SP(33,26), SP(43,56), and SP(33,18). The values ofTc are 4.217 01, 3.998 93, and 2.350 90, respective
The values ofn21, g/n, andb/n are listed in the last column.

Fractal SP k51 k52 k53 k54 k55 n21,g/n,b/n

(33,26) fL 7.85~1! 51.3~2! 286.7~1.7! 1526~24! 7973~262! n2151.505(44)
xL 0.4520~4! 4.56~2! 40.82~11! 348.2~2.5! 2942~39! g/n51.943(19)
mL 0.6211~4! 0.3873~7! 0.2281~6! 0.1318~8! 0.0756~5! b/n50.506(12)
CL 0.8221~6! 1.527~9! 2.16~2! 2.77~5! 3.4~1! —
UL 0.5209~3! 0.5109~9! 0.5107~11! 0.5132~22! 0.5149~31! —

(43,56) fL 11.35~2! 98.42~61! 721.2~9.5! 5167~161! — n2151.420(32)
xL 0.806~2! 13.07~5! 184.5~1.3! 2622~28! — g/n51.914(13)
mL 0.5909~5! 0.3271~6! 0.1699~4! 0.0858~4! — b/n50.493(5)
CL 1.045~2! 1.818~9! 2.38~3! 2.83~9! — —
UL 0.5366~4! 0.5377~8! 0.5456~11! 0.5464~19! — —

(33,18) fL 1.975~4! 8.85~3! 33.69~22! 122.80~65! 451.2~5.6! n2151.185(16)
xL 0.3585~9! 2.87~1! 22.63~16! 187~1! 1674~18! g/n51.995(15)
mL 0.8538~4! 0.6843~2! 0.5019~3! 0.3577~2! 0.2510~3! b/n50.3224(14)
CL 0.750~2! 1.355~4! 1.741~7! 1.980~6! 2.12~2! —
UL 0.6219~2! 0.6287~1! 0.6345~2! 0.6374~1! 0.6375~3! —
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ment of the values ofn21 andg/n with the values in Table
I confirms the estimated critical temperature. Moreover,
consistency of the whole set of results shows that the fin
size scaling analysis works. The effective dimensions 2b/n
1g/n, calculated from the results summarized in Table
for the three fractals SP(33,26), SP(43,56), and SP(33,18),
are 2.955~43!, 2.900~23!, and 2.640~18!, respectively; the as
sociated Hausdorff fractal dimensionsdf5 ln Nocc/ln l are
2.966, 2.904, and 2.631. No discrepancies between the e
tive dimensions and the Hausdorff ones can be brought
of our studies. It has been shown to work in fractal dime
sions between 1 and 2.7,8 This is a natural and direct conse
quence of the homogeneity hypothesis which states that
Tc , the free energy per spin of a finite system under
change of length scale from 1 tob with b equal to some
power of l behaves asf (t,h,L)5b2df f (tbyt,hbyh,L/b)
where t5(T2Tc)/Tc and h is the external magnetic field
The Hausdorff dimensiondf appears in the above relatio
because, due to the self-similar character of fractal lattic
the total number of spins decreases by a factorbdf under this
change. This was pointed out by Gefenet al.12 in 1982 in a
study of percolation clusters. Furthermore, we can estim
the exponentsa/n from the scaling lawdf52/n2a/n. The
results calculated from Table II are 0.044(88),20.064(64),
and 20.261(32), respectively. Numerical results show th
the behavior ofCL(Tc) does not follow a power law as
function of L, as previously noticed in the case of the ma
mum values of the specific heat. Nevertheless, the succe
prediction of the critical temperature from the positions
the specific heat peaks tells us thatCL(T) is dominated in the
critical region by a scaling function under the formCL(T)
5A(T)1La/nTC(tL1/n) where A(T) is a slow variation
hump function. The deviation from power laws observed
the finite-size behavior of the specific heat is obviously d
to a nonzero value ofA(T). We are thus not able to calcula
directly a/n in a reliable way from a three-parameter fit
CL(Tc) since only four or five different sizes can be inve
tigated and the first iteration step should be disregarded
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Scaling corrections are observed to be weaker in our c
than betweend51 andd52.7,8 It can be related to the con
vergence speed of the deviation ratior( l d,Nocc ,k) which is
defined as the percentage of the difference between the m
number of bonds per spin at stepk, calledZ( l d,Nocc ,k), and
that at infinite step. One can show that

Z~ l d,Nocc ,k!5
NI

Nocc
F12~NS /Nocc!

k

12~NS /Nocc!
G1S NS

Nocc
D k

d ~2!

and hence

r~ l d,Nocc ,k!5F ~Nocc2NS!d

NI
21G S NS

Nocc
D k

, ~3!

FIG. 2. Exponentsg andn as a function of the dimension. Th
values of thee expansion are taken from Table III of Ref. 13. Th
open symbols represent the values obtained by Carmonaet al. ~Ref.
8!, and the solid ones the values calculated in the present wor
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whereNS is the number of occupied sites on each surface
the generating cell andNI the number of its internal bonds
As k increases,r( l d,Nocc ,k) tends to zero faster than in th
case of fractals embedded in a two-dimensionnal space.

We are now able to compare the exponent values obta
by Monte Carlo simulations with the values calculated bye
expansion for the Ising model on hypercubic lattices.13 The
obtained values ofn andg increase as the fractal dimensio
decreases. This behavior is qualitatively in agreement wie
expansions but is not quantitatively consistent with them~see
Fig. 2!. The difference is due to the lack of translation sy
metry of fractals. Similar situations are observed for the
ponentb for eitherg/n andb/n. Furthemore, it can be eas
ily seen from Fig. 2 that the discrepancies between
exponents provided by the two methods are more impor
when the fractal dimensions are smaller than 2. Our res
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reinforce the suggestion of Carmonaet al.8 in the case of
fractal dimensions below 2. These results give us eno
evidence to answer the question asked by Holovatch
Yavors’kii,14 and already pointed out by Gefenet al.1 in
1980 and by Wu and Hu15 in 1987: Does strong universalit
hold in the case of self-similar structures? In other words,
the critical properties only dependent upon the symmetry
the order parameter, the interaction range, and the fra
dimension? The answer is no and, in fact, it should take i
account the detailed topology of the fractal lattice.
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