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Magnetic critical behavior of fractals in dimensions between 2 and 3
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We report the critical exponent values of the Ising moael}, /v, and 8/ v, and the critical temperatures
of three Siermski fractals with Hausdorff dimensiorts equal to 2.966, 2.904, and 2.631. The results are
calculated from finite-size scaling analysis by Monte Carlo simulations. They are precise enough to show that
the hyperscaling relatiod;=2p/v+ y/v is satisfied. Furthermore, the discrepancy between the values pro-
vided by e expansions and by Monte Carlo simulations shows that the critical behavior of fractals cannot be
fully understood in the framework of strong universality.

Fractal networks are natural candidates to interpolate bethe size of the network generated aftesteps isL=1¥. All
tween integer dimensions. Since they do not exhibit translainformation about the geometrical properties of a given frac-
tion symmetry, but scale invariance, the question which mustal is determinated by this cell SP(Nyce,k=1). Thel sec-
be considered in dealing with phase transitions in such sydions of the generating cells associated with the three differ-
tems is the following: How is the critical behavior affected ent fractals which we will study are shown in Fig. 1. The
by this replacement. The early works on phase transitions ifractal in the mathematical sense is obtained only wken
fractal structures were done by Gefenal'™ They studied tends towards infinity and we call it SIP(N,.). Here
these systems with the help of real space renormalizatioBP(3,26) and SP(318) will be explored up to the fifth
group methods; they found that the Hausdorff dimensioriteration step wheré =243 and SP(%56) to the fourth it-
should replace the space dimension in the description of theration step wherk =256. These fractals have infinite rami-
critical phenomena. Later, Bhanet al>® performed Monte
Carlo simulations with the Metropolis algorithm and sug-
gested that the average number of bonds per spin should be
used instead of the Hausdorff dimension. Recently, magnetic
phase transitions of the ferromagnetic Ising model on Sier-
pinski carpets have been studied by two groups, using pow-
erful Monte Carlo simulation methods, mainly the Wolff al-
gorithm able to reduce significantly the critical slowing
down’® They explored a range between the lower critical
dimension of the Ising modell=1 andd=2. They both
found that scaling corrections are strong, and interpreted this
result as a consequence of the slow convergence of the ther-
mal averages towards the infinite limit as the size of the
lattice increases. Nevertheless, they were able to study large
enough systems to show that the values of the critical expo-
nentsB/v and y/v for two different fractal dimensionsdg¢
=1.8927 andd;=1.7925) satisfy the hyperscaling lagk
=2pBlv+ylv; here,d; is the Hausdorff dimension of the (a)
fractal. We are now able to study numerically the critical
properties of the Ising model for fractal dimensions between
d=2 andd=3. No precise simulation results were available,
up to now, between two integer dimensions exhibiting a
phase transition at nonzero temperature.

We will call the fractals we deal with “Sierpski
sponges” and denote them by the symbol ISP,cc.K)
wherel is the size of the generating ceti=3 (the dimen-
sion of embedding spageN,. is the number of occupied (b)
sites in the generating cell, arkdis the number of iteration
steps. The spin§ are located in the center of the occupied FiG. 1. The generating cell of Siémmki sponges: (a)
sites. The “Siermski sponge” is generated as follows: At sp(2,26,1), (b) SP(4,56,1), and(c) SP(3,18,1). The pictures
thekth iteration step we enlarge thk 1)th iteration lattice  are shown section by section. Each shadowed square represents one
by replacing each occupied site by the whole generating celkpin-occupied site.

(c)
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TABLE I. The maximum values ofp, (T), x.(T), andC,(T) and the associated temperatule¥L),
TX(L), andTC(L) with respect to the different iteration stefpfor the Sierpnski sponges. The values of %,
vylv, andT, are listed in the last column.

Fractal SP k=1 k=2 k=3 k=4 k=5 v Ly, T,

(3%,26) max 8.873) 53.53) 297.41.9 159124 8293359 v '=1.503(53)
T(L) 4.8285) 4.2761) 4.22686) 4.21882)  4.21731) T.=4.2170(2)

XM 045135) 4.581)  40.8917) 350.32.5 296338 y/v=1.943(18)

TX(L)  4.2432) 4.227%5) 4.21932) 4.217498) 4.2171Q3) T.=4.21701(6)

cr' 09501 1.7886)  2.502) 3.164) 3.801) —
TO(L) 3.7682) 4.1082) 4.19479) 4.21273) 4.21631) T.=4.2171(2)
(4356) ™ 13.102) 108.05  800(14)  5646181) — »~1=1.410(36)
TP(L) 4.3943) 4.03§1) 4.00464)  3.99971) — T.=3.99889(23)
XM 0.8171)  13.434) 191.91.6 272925 — ylv=1.915(13)
TX(L) 4.0981) 4.01696) 4.00192) 3.9993%6) — T.=3.99893(10)
CM'™ 11412 1.9728) 251423  2.9710) — —
TC(L) 3.7542) 3.95889) 3.99364)  3.99834) — T.=3.9991(6)

(33,18) max  48576) 19.636)  76.34)  287.54.00 105816) v 1=1.185(27)
TP(L) 35793) 2.5782) 2.4091)  2.36674) 2.35532) T.=2.3510(4)

Y™ 053217) 5.532) 50.405) 451(1) 402021) y/v=1.991(7)
TX(L) 2.9151) 2.51936) 2.39763) 2.363799) 2.354404) T.=2.35090(9)
CcM™  0.8101) 1.4564)  1.853) 2.092) 2.212) —

TS(L) 2.5981) 2.4272) 2.3748)  2.35779)  2.35276) T.=2.35089(12)

fication order; it ensures that they exhibit a second-ordeaverage. We repeat the whole above processes at least ten
phase transition at nonzero temperatufeor a given tem- times to get a sufficient number of samples to perform sta-
peratureT and a given sizé, we call(E )y and(M_); the tistical analysis of our data. All the error bars which we will
canonical thermal averages of the total energy and of thgive below are statistical standard deviations. In Table I, we
absolute value of the total magnetization, respectively. Thegive the maximum values o (T), x.(T), andC,(T) at
specific heat per spin of the system reatigT)=((E?);  each iteration step of the fractal structures. The temperatures
_<EL>$)/(NOCCT2)_ The thermal average of the absolute Where these peaks occur are listed just below them. The
value of the magnetization per spinnig (T) and the zero- Maxima of ¢, (T) and x, (T) associated with the last three
field magnetic susceptibility per spin ig (T)=((M2); iteration steps as a functlon &f nearly line up in log-log
_<ML>$’)/(NOCCT)- The logarithmic derivative of the mag- plots. In order to estimate properly the exponenféL_ and
netization is defined ag, (T)=aIn(M,)/J8s where Bg is vlv, we measure the slopes from the last two iteration steps,

the inverse of temperature. According to Fisher's finite-size2Nd compare them with that extracted from the last three
scaling theory, the exponents™ %, y/v, and /v can be steps: The differences observed are always smaller than 3%.

extracted from the slopes of the fitting lines in log-log plots 1€ critical temperatures for the infigiltg systems can be then
of the sizeL versus the maximum values @f (T), x,(T), obtained from Eq(1) provided thatv™ " is known. The re-
andC, (T), respectively. The critical temperatufe for the sults are given in the last column of Table I. For each studied

b : .
infinite system can be hence estimated from the positions dfactal SP(*,Noco) the values off . obtained from the posi-
the peaksT"(L) (K=¢, X, or C) of ¢L(T)! XL(T)! and tions of the peaks OﬁaL(T), XL(T), andC,_(T) are consis-

C,(T) according to the relation tent, within the accuracy of the simulations. Nevertheless,
the maxima of the specific he@t (T) do not follow a power
T(L)=T.+g,L Y (1) law up to the iteration steps that we have done. It is the

reason why we cannot give the corresponding exponent val-
whereg,’s are physical quantity-dependent constants. Moreuesa/v in Table I.
over, we can also find the exponents by performing simula- We are now able to turn our attention to the critical be-
tions at the critical temperature because of the linear deperavior atT.. The most precise values df. are estimated
dence ofg, (T,) onLY”, C (T,) onL¥”, m/(T.) onL™#*,  from the positions of the peaks of (T) and lead to
and y,(T.) onL”". 4.21701, 3.99893, and 2.350 90 for SBEE), SP(4,56),

We perform the high-efficient Wolff algorithtito gen- and SP(8,18), respectively. These values are consistent,
erate our spin configurations. Periodic boundary conditiongvithin the error bars, with Binder's cumulant crossing points
are chosen in order to eliminate the surface free energgt the last two iteration steps for the three different fractal
contribution!! For each iteration stek, at each simulation structures: 4.217 0281), 3.998 94835), and 2.350 91(B9).
temperatureT, we execute 1DMonte Carlo steps. The his- The values ofg (T.), x.(Tc), m.(T¢), C (T.), and Bind-
togram method is then applied to extract all possible inforer’s cumulantU, (T¢)=1—(M{)/3(M?)3 are reported in
mation near this simulation temperature. The reliable temTable 1l. Once more, the exponenis?!, y/v, andB/v are
perature range is carefully estimated for each thermabbtained by measuring the slopes in log-log plots. The agree-
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TABLE II. The values of ¢ (Tc), x.(Tc), m(Tc), CL(Tc), andU (T,) for the Sierpnski sponges
SP(3,26), SP(4,56), and SP(318). The values of; are 4.217 01, 3.998 93, and 2.350 90, respectively.
The values ofv ™%, y/v, andB/v are listed in the last column.

Fractal SP k=1 k=2 k=3 k=4 k=5 v Y vlv,Blv

(3%26) ¢,  7.851) 51.32)  286.11.7)  152624) 7973262 v 1=1.505(44)
. 0.452a4) 4562)  40.8211) 348.22.5 29439  y/v=1.943(19)
m, 0.62114) 0.38737) 0.22816) 0.13188) 0.07565) A/v=0.506(12)

C. 082216) 1.5279) 2.162) 2.775) 3.4(1) —

U_ 052093) 0.51099) 0510711 0.513222) 0.514931) —
(4356) ¢ 11.352) 98.4261) 721.29.5 5167161 — »~1=1.420(32)

y. 08062  13.0715) 184.51.3 262228 — ylv=1.914(13)

m_ 0.59095 0.32716) 0.16994)  0.08584) — Blv=0.493(5)

C. 10452  1.8189) 2.383) 2.839) — —

U_ 0.53664) 0.53778) 0.545611) 0.546419) — —
(3318) ¢ 1.9754)  8.853)  33.6922 122.8465 451.25.6) » 1=1.185(16)

y. 0.358%9) 2.871)  22.6316) 187(2) 167418)  y/v=1.995(15)

m, 0.85384) 0.68432) 0.50193) 0.35772)  0.251G3) f/v=0.3224(14)

C. 075020 1.3554)  1.7417) 1.9806) 2.122) —

U_ 0.62192) 0.62871) 0.634%2)  0.63741)  0.63753) —

ment of the values of ! and y/v with the values in Table Scaling corrections are observed to be weaker in our case
| confirms the estimated critical temperature. Moreover, thehan betweeml=1 andd=2."® It can be related to the con-
consistency of the whole set of results shows that the finitevergence speed of the deviation rapii®,N,c,k) which is

size scaling analysis works. The effective dimensio@$:12  defined as the percentage of the difference between the mean
+ ylv, calculated from the results summarized in Table Il,number of bonds per spin at stkpcalledZ(1%,No¢.k), and

for the three fractals SPE26), SP(4,56), and SP(318), that at infinite step. One can show that

are 2.95%43), 2.90023), and 2.64018), respectively; the as-
sociated Hausdorff fractal dimensioms=InNy./Inl are N, [1—(Ng/Ngco¥ Ng
2.966, 2.904, and 2.631. No discrepancies between the effec-  Z(19 N, ..,k) = { s } (

tive dimensions and the Hausdorff ones can be brought out Nocel 1= (Ns/Noco) | | Noce
of our studies. It has been shown to work in fractal dimen-

sions between 1 and’® This is a natural and direct conse- @nd hence

guence of the homogeneity hypothesis which states that near

T., the free energy per spin of a finite system under the (Ngee— Ng)d Ng
change of length scale from 1 to with b equal to some p(lvaocmk):[ N —1MN
power of | behaves asf(t,h,L)=b~%f(th¥,hbn L/b) ! oce
wheret=(T—T.)/T. and h is the external magnetic field.
The Hausdorff dimensionl; appears in the above relation b

K
)d (2

k
e

because, due to the self-similar character of fractal lattices, § —x— ¥ from £ expansions ]
the total number of spins decreases by a fabtounder this 51 —— Vv from € expansions |
change. This was pointed out by Gefenal?in 1982 in a ; . ]
study of percolation clusters. Furthermore, we can estimate , | o } v from Monte Carlo |
the exponents/v from the scaling lawd;=2/v—al/v. The i .

results calculated from Table Il are 0.044(88)].064(64), i 3 o } v from Monte Carlo
and —0.261(32), respectively. Numerical results show that 3t ° ]

the behavior ofC, (T.) does not follow a power law as a » .
function ofL, as previously noticed in the case of the maxi- 2 | 5
mum values of the specific heat. Nevertheless, the successful | ]
prediction of the critical temperature from the positions of
the specific heat peaks tells us tlaf(T) is dominated in the
critical region by a scaling function under the foi@ (T) ]
=A(T)+LY"TC(tLY") where A(T) is a slow variation s 2 a5 s s
hump function. The deviation from power laws observed in ’ ’ '
the finite-size behavior of the specific heat is obviously due
to a nonzero value oA(T). We are thus not able to calculate  FiG. 2. Exponentsy andv as a function of the dimension. The
directly a/v in a reliable way from a three-parameter fit of values of thee expansion are taken from Table IIl of Ref. 13. The
C.(T.) since only four or five different sizes can be inves- open symbols represent the values obtained by Carmbab(Ref.
tigated and the first iteration step should be disregarded. 8), and the solid ones the values calculated in the present work.

|

(=]

dimension



PRB 62 BRIEF REPORTS 13859

whereNs is the number of occupied sites on each surface ofeinforce the suggestion of Carmoeaal® in the case of
the generating cell ani, the number of its internal bonds. fractal dimensions below 2. These results give us enough
As k increasesp(19,N,..,k) tends to zero faster than in the evidence to answer the question asked by Holovatch and
case of fractals embedded in a two-dimensionnal space. Yavors'kii,"* and already pointed out by Gefest al® in

We are now able to compare the exponent values obtainet?80 and by Wu and Htin 1987: Does strong universality
by Monte Carlo simulations with the values calculatedeby hold in _the case of_self-3|m|Iar structures? In other words, are
expansion for the Ising model on hypercubic lattitéghe ~ the critical properties only dependent upon the symmetry of
obtained values of andy increase as the fractal dimension th_e ord_er parameter, th? interaction range, and the frz_ictal
decreases. This behavior is qualitatively in agreement with dIMeNSion? The answer is no and, in fact, it should take into
expansions but is not quantitatively consistent with ti{ee® account the detailed topology of the fractal lattice.
Fig. 2). The difference is due to the lack of translation sym-  p.y H. thanks the ICSC World Laboratory in Switzerland
metry of fractals. Similar situations are observed for the exfor financial support. A part of numerical simulations has
ponentg for eithery/v and B/v. Furthemore, it can be eas- been carried out in the national center of computational re-
ily seen from Fig. 2 that the discrepancies between theources IDRIS, supported by the CNR®roject No.
exponents provided by the two methods are more importar@91186. We acknowledge the scientific committee and the
when the fractal dimensions are smaller than 2. Our resultstaff of the center.

1v. Gefen, B.B. Mandelbrot, and A. Aharony, Phys. Rev. L4§,. "P. Monceau and M. Perreau, Phys. Re\6® 6386 (1998.

855(1980. 8J.M. Carmona, U.M.B. Marconi, J.J. Ruiz-Lorenzo, and A.
2y, Gefen, A. Aharony, and B.B. Mandelbrot, J. Phys18, 1267 Tarancon, Phys. Rev. B8, 14 387(1998.

(1983. 9M.E. Fisher and M.N. Barber, Phys. Rev. Le28, 1516(1972.
3Y. Gefen, A. Aharony, Y. Shapir, and B.B. Mandelbrot, J. Phys.°U. Wolff, Phys. Rev. Lett60, 1461(1988.

A 17, 435(1984. 1IM.N. Barber,Phase Transitions and Critical Phenomefaca-
4Y. Gefen, A. Aharony, and B.B. Mandelbrot, J. Phys1A 1277 demic, New York, 1988 Vol. 8, p. 143.

(1984). 12y Gefen, A. Aharony, Y. Shapir, and A.N. Berker, J. Physl%>
5G. Bhanot, H. Neuberger, and J.A. Shapiro, Phys. Rev. Pét. L801 (1982.

2277(1984. 133.C. Le Guillou and J. Zinn-Justin, J. PhyBarig 48, 19 (1987).

6G. Bhanot, D. Duke, and R. Salvador, Phys. La&5B 355 %Y. Holovatch and T. Yavors'kii, J. Stat. Phy82, 785(1998.
(1985. 15y K. Wu and B. Hu, Phys. Rev. &5, 1404(1987.



