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Critical point in the strong-field magnetoresistance of a normal conductorÕperfect
insulatorÕperfect conductor composite with a random columnar microstructure
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A recently developed self-consistent effective-medium approximation, for composites with a columnar mi-
crostructure, is applied to such a three-constituent mixture of isotropic normal conductor, perfect insulator, and
perfect conductor, where a strong magnetic fieldB is present in the plane perpendicular to the columnar axis.
When the insulating and perfectly conducting constituents do not percolate in that plane, the microstructure-
induced in-plane magnetoresistance is found to saturate for largeB, if the volume fraction of the perfect
conductorpS is greater than that of the perfect insulatorpI . By contrast, ifpS,pI , that magnetoresistance
keeps increasing asB2 without ever saturating. This abrupt change in the macroscopic response, which occurs
when pS5pI , is a critical point, with the associated critical exponents and scaling behavior that are charac-
teristic of such points. The physical reasons for the singular behavior of the macroscopic response are dis-
cussed. A different type of percolation process is apparently involved in this phenomenon.
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Theoretical and experimental studies, performed si
1993, have shown that the macroscopic electrical respons
three-dimensional~3D! composites with a two-dimensiona
~2D! or columnar microstructure can exhibit surprising form
of behavior when subject to a strong magnetic fieldB. For
example, when a periodic array of parallel cylindrical ho
is etched into an otherwise homogeneous free-elect
conductor host, the system exhibits a strong dependenc
the macroscopic or bulk effective resistivity on both t
magnitude and the direction ofB, whenB and the average
current densitŷ J& both lie in the plane perpendicular to th
columnar axis. This occurs whenever the Hall-to-Ohmic
sistivity ratio of the conducting host,H[rHall /rOhmic
5muBu5vct ~herem is the Hall mobility,vc is the cyclo-
tron frequency, andt is the conductivity relaxation time!, is
greater than 1, and appears even if the array has a high p
symmetry, e.g., square or triangular.1–3 A strongly aniso-
tropic magnetoresistance was also found in calculations
periodic columnar array of perfectly conducting inclusio
embedded in a similar host.3 More recently, composites with
a disordered columnar microstructure were considered, u
an appropriate modification of the Bruggeman self-consis
effective-medium-approximation.4 In such a system, if the
pure constituents have an isotropic transport behavior
the microstructure is isotropic in the plane perpendicular
the columnar axis, and ifB lies in that plane, then both th
longitudinal and the in-plane transverse components of
bulk effective resistivity tensorr̂e , denoted byr i

(e) ~i.e.,

^J&i^E&iB) and r̃'
(e) , ~i.e., ^J&i^E& and they both lie in that

plane but are perpendicular toB) respectively, are indepen
dent of the direction ofB or ^J& in that plane. In that study
it was found that for a two-constituent metal/insulator (M /I )
mixture of this kind, both of these resistivity componen
increase asH2 for uHu@1, without ever reaching saturation
This behavior is not confined to the case whereM represents
a free-electron conductor. All that is required is that its tra
port behavior be isotropic, and that the Hall-to-transver
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Ohmic resistivity ratioH have a magnitude that is muc
greater than 1. An experimental consequence of this non
urating behavior would be that the bulk effective magneto
sistivities of such anM /I mixture would continue to increas
asB2 whenB is large enough so that the Ohmic resistiviti
of the conducting constituent are saturated but its Hall re
tivity continues to increase asB. By contrast, in a norma
conductor/perfect conductor (M /S) mixture of this kind,
both of those resistivity components saturate at finite val
when uHu@1.4

Here we consider the macroscopic response of a th
constituent columnar composite of isotropic normal cond
tor, perfect insulator, and perfect conductor (M /I /S), where
the 2D microstructure in the plane perpendicular to the
lumnar axis is again random, and a strong magnetic fieldB is
applied in that plane.

We use the ‘‘columnar unambiguous self-consiste
effective-medium approximation~CUSEMA!,’’ which was
developed in Ref. 4. In this approximation, the se
consistency requirement is that the in-plane component
the extra electric fieldE produced by isolated circular
cylindrical inclusions of the different constituents, embedd
in the fictitious uniform effective medium, vanish on ave
age. A similar requirement is not imposed upon the colum
component ofE, which would be unmeasurable in a thin
film realization of such microstructures. Also, the column
component of̂ J& is always assumed to vanish. These
quirements lead to the following self-consistency equatio
~we takex to be the columnar axis!:

05^@~ Î 2 r̂e / r̂ inc!•ĝ inc~ r̂ inc ,r̂e!• r̂e#$yz%&, ~1!

where Î is the unit tensor,̂ & indicates an average over th
different types of inclusions, while the subscript$yz% indi-
13 820 ©2000 The American Physical Society
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PRB 62 13 821BRIEF REPORTS
cates that only they,z components of the 333 tensor ap-
pearing in the square brackets@ # are included in this calcu
lation, i.e., the 232 matrix in the lower right corner of@( Î
2 r̂e / r̂ inc)•ĝ inc( r̂ inc ,r̂e)• r̂e#. The 333 tensorĝ inc( r̂ inc ,r̂e)
gives the uniform local electric fieldEint , which appears in-
side an isolated circular-cylindrical inclusion, with resistivi
tensorr̂ inc , inside the otherwise uniform effective-mediu
host r̂e , when a uniform electric fieldE0 is applied at large
distances,

Eint5ĝ inc•E0 . ~2!

This tensor must be calculated fromr̂ inc and r̂e—this was
done for the relevant types of inclusions in the Appendix
Ref. 4.

It is important to note that the self-consistency requi
ments used to derive CUSEMA differ from the requireme
which are used to set up the conventional two-dimensio
Bruggeman-type, self-consistent effective-medium appro
mation ~SEMA! in the y,z plane of this system~see Ref. 5
for a discussion of SEMA in the presence of a magne
field, when the conductivity tensors are nonscalar tenso!.
Consequently, it should come as no surprise if the result
those approximations are sometimes quite different,
shown in Ref. 4. The great advantage of using CUSEMA
that the exact relations whichr̂e must satisfy as a result o
the duality symmetry are satisfied automatically, wher
they can be seriously violated in the two-dimension
SEMA.4

For the resistivity tensors of the effective-medium ho
and the three different types of inclusions we write

r̂e5rMS ae 2be 0

be ge 0

0 0 le

D ; r̂M5rMS 1 2H 0

H 1 0

0 0 n
D ;

~3!
f

-
s
l,
i-

c

of
s

s

s
l

t

r̂ I5r I Î , r I@rM ; r̂S5rSÎ , rS!rM . ~4!

These forms mean that a magnetic fieldB is applied along
the z axis, which is perpendicular to the columnar axisx.

The form assumed forr̂M means that theM constituent
exhibits isotropic transport behavior even whenB is very
strong, and does not rule out a dependence of its transv
and longitudinal Ohmic resistivitiesrM and nrM , and also
of its Hall coefficientHrM /uBu, upon themagnitudeof B.
However, it does rule out the possibility of clean singl
crystal inclusions of a transition metal like copper, where
resistivities become very sensitive to the crystal orientat
with respect toB andJ at strong fields and low temperature
due to the existence of open orbits on its Fermi surfa
although polycrystalline inclusions of such a metal mig
still be allowed. By contrast, the form assumed forr̂e means
that we expect the bulk effective transport behavior to be
least mildly anisotropic as a result of the columnar mic
structure, i.e., in general we expect to haveaeÞge .

The forms assumed forr̂ I and r̂S include the case where
r̂ I5` andr̂S50. In fact, it is only for those extreme value
that a mathematical singularity will actually be found to a
pear in the bulk effective macroscopic response, justify
the term ‘‘critical point.’’

The same resistivity scalerM is used in bothr̂M and r̂e ,
whose in-plane components will obviously have simi
magnitudes when neither theI constituent nor theSconstitu-
ent percolates in that plane, i.e., when their volume fracti
pI , pS satisfy pI,1/2, pS,1/2. However, because ther
are perfectly conducting inclusions that span the system f
end to end along the columnar axisx, therefore the compo-
nents of r̂e which involve that axis will all vanish. More
precisely, we will haveae5O(rS /rM), be5O(rS /rM) as
long as the volume fractionpS of the S constituent is non-
zero.

The ĝ inc( r̂ inc ,r̂e) matrices for the three types of inclu
sions which must be considered are4 ~we omit the subscripte
from ae , be , ge , andle in these expressions, in order t
save space!
ĝ inc~ r̂M ,r̂e!51
1 0 0

2
b

a
1

gH

11H2

S g

l D 1/2

1
g

11H2

11S g

l D 1/2

S g

l D 1/2

1
g

11H2

0

0 0
11S g

l D 1/2

11
l

n S g

l D 1/2
2 , ~5!

where we omitted the termb2/a, which isO(rS /rM)!1, when it appeared alongsideg, which isO(1),
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ĝ inc~ r̂ I ,r̂e!5S 1 0 0

2
b

a

S g

l D 1/2

11S g

l D 1/2

S g

l D 1/2 0

0 0 11S g

l D 1/2
D , ~6!

where we also discardedO(rM /r I)!1 terms, and

ĝ inc~ r̂S ,r̂e!51
1 0 0

2
b

a

g
rM

rS

11S g

l D 1/2

g
rM

rS

0

0 0
11S g

l D 1/2

rM

rS
lS g

l D 1/2
2 , ~7!

where we kept someO(rS /rM)!1 terms, because thos
terms are subsequently multiplied by anO(rM /rS)@1
term—see Eq.~1!.

There will be two coupled nontrivial self-consistenc
equations, resulting from theyy and zz components of Eq.
~1! ~the yz andzy components of that equation are satisfi
automatically due to the 2D isotropy of the microstructur!.
Thus we get two coupled algebraic equations for the t
unknown quantitiesle[r i

(e)/rM andge[r̃'
(e)/rM :

05S ge

le
D 1/2

@~122pS!~11H2!2~12pI !ge1pIle#

2
ge

le
pS~11H2!1~2pI21!ge1~12pS!~11H2!,

~8!

S ge

le
D 1/2

5
npS2gepI

n~12pS!2le~12pI !
. ~9!

These equations can be transformed into a single polyno
equation for, say,le . That would be an eighth order equ
tion, which is quite complicated and which I have not be
able to factorize algebraically. On the other hand, if we
interested only in the asymptotic behavior ofle andge when
uHu@1, then an explicit solution can be obtained usi
asymptotic analysis. The results are

ge>5
H2

pI2pS

122pI

12pI

pI
for pI.pS , u~pI2pS!Hu@1,

n
122pS

pS2pI

12pS

pS
for pI,pS , u~pI2pS!Hu@1,

AnuHu
12pI

pI
for pI:pS , u~pI2pS!Hu!1,

~10!
o

ial

n
e

ge

le
>5 S 12pI

pI
D 2

for ge@1,

S 12pS

pS
D 2

for ge5O~1!.

~11!

These results can be recast with the help of two scaling fu
tions,

ge>
n

pI2pS
F~Z!, le>

n

pI2pS
G~Z!, ~12!

where the scaling variable isZ[uHu(pI2pS)/An, and the
scaling functions have the following limiting forms

F~Z!>5
12pI

pI

Z2

122pI
for Z@1,

2
12pS

pS
~122pS! for Z!21,

12pI

pI
Z for uZu!1,

~13!

G~Z!>5
pI

12pI

Z2

122pI
for Z@1,

2
pS

12pS
~122pS! for Z!21,

pI

12pI
Z for uZu!1.

~14!

Both of these functions have the qualitative form shown
Fig. 1.

Clearly, uHu5`, pS5pI defines a line of critical points
of the macroscopic magnetotransport of such systems:
pS.pI , both r i

(e) and r̃'
(e) saturate whenuHu→`, whereas

for pS,pI they both keep increasing asH2 for uHu@1. As

FIG. 1. Qualitative shape of the two scaling functionsF(Z) and
G(Z)—see Eqs.~13! and ~14!.
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pS→pI from below, the coefficients of theH2 terms tend to
zero aspI2pS , while if pS→pI from above the saturate
values of bothr i

(e) and r̃'
(e) diverge as 1/(pS2pI). When

pS5pI , then these resistivity components keep increasing
uHu for uHu@1. In the vicinity of the critical line, where both
1/uHu and upS2pI u are very small, it is easy to see th
F(Z)>G(Z) andge>le .

Because these results were obtained within the framew
of CUSEMA, some of these behaviors are not expected to
correct in detail. We do expect that even a more accu
calculation of asymptotic behavior~i.e., uHu@1) will exhibit
saturated behavior forpI,pS , nonsaturating}H2 behavior
for pI.pS , and nonsaturating}uHu behavior forpI5pS .
However, we expect that more accurate calculations
show that the critical behavior aspS→pI is not characterized
by the simple forms 1/(pS2pI) or pI2pS which were ob-
tained here, but rather by some noninteger values of the c
cal exponents. Such calculations are now in progress.

The behavior found in these calculations can be und
stood qualitatively by recalling that the in-planey,z compo-
nents ofŝM are

1

rM S 1

11H2
0

0
1

n

D . ~15!

For uHu@1, this represents a very anisotropic 2D conduc
in the y,z plane, with rMsM zz51/n5O(1) and rMsM yy
>1/H2!1. In order to get from end to end of the sample, t
in-plane electric current must make its way between differ
S inclusions by flowing through theM host. If there are many
moreS inclusions thanI inclusions, then straight lineS-to-S
trajectories can easily be found that are parallel toz, allowing
the current to flow through theM constituentonly in the z
direction. Therefore the macroscopic conductivity will d
pend only onsM zz, and the macroscopic resistivity wi
saturate whenuHu@1. In the opposite case, when there a
many moreI inclusions thanS inclusions, the current will
often not be able to flow even between neighboringS inclu-
sions only alongz, but will have to have a nonzeroy com-
ponent in theM constituent. This is the low conductivit
,

as

rk
e

te
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r-

r

t

direction, therefore the macroscopic conductivity will no
be determined primarily bysM yy>1/(rMH2). Therefore the
macroscopic resistivity will not saturate, but keep increas
asH2 forever.

As the relative proportion of theI and S constituents is
varied, there will be a transition from saturating to nons
urating}H2 behavior, which will have to be abrupt, i.e.,
will be a singular or critical point of the macroscopic r
sponse. This will be reflected by a similarly abrupt change
the detailed local current distribution, which will have on
z-parallel flow lines in theM constituent for values ofpI
below the transition point value, but will also have nonze
values ofJy in that constituent whenpI is above that value.
Such a transition constitutes a different type of percolat
phenomenon, which we believe deserves further study, b
theoretical and experimental.

Experimental study of the critical point we have disco
ered could be done using a doped semiconductor film as
M constituent, with a random collection of etched perpe
dicular holes as theI constituent, and a random collection o
perpendicular columnar inclusions, made of a high cond
tivity normal metal, playing the role of theSconstituent. We
would like to note that extremely low temperatures or ve
clean single crystals would not be required in order to o
serve this critical point. What would be necessary is a la
contrast at each stage of the following chain of inequaliti

rS!rM!H2rM!r I . ~16!

If Si-doped GaAs is used as theM host, with a negative
charge carrier density of 1.631018 cm23 and a mobilitym
52500 cm2/V s at a temperature of 90 K, as in the expe
ment described in Ref. 2, then a magnetic field of 40
would result inH5210. Such a material would have a
Ohmic resistivity of 1.631023 V cm, about 1000 times more
than copper. Thus, using copper for theS inclusions and
etched holes for theI inclusions, there should be no difficult
in satisfying all the above inequalities.
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