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Critical point in the strong-field magnetoresistance of a normal conductofperfect
insulator/perfect conductor composite with a random columnar microstructure
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A recently developed self-consistent effective-medium approximation, for composites with a columnar mi-
crostructure, is applied to such a three-constituent mixture of isotropic normal conductor, perfect insulator, and
perfect conductor, where a strong magnetic figlés present in the plane perpendicular to the columnar axis.
When the insulating and perfectly conducting constituents do not percolate in that plane, the microstructure-
induced in-plane magnetoresistance is found to saturate for Bydethe volume fraction of the perfect
conductorpg is greater than that of the perfect insulafr. By contrast, ifps<p,, that magnetoresistance
keeps increasing & without ever saturating. This abrupt change in the macroscopic response, which occurs
whenpg=p,, is a critical point, with the associated critical exponents and scaling behavior that are charac-
teristic of such points. The physical reasons for the singular behavior of the macroscopic response are dis-
cussed. A different type of percolation process is apparently involved in this phenomenon.

Theoretical and experimental studies, performed sinc®hmic resistivity ratioH have a magnitude that is much
1993, have shown that the macroscopic electrical response gfeater than 1. An experimental consequence of this nonsat-
three-dimensiona{3D) composites with a two-dimensional urating behavior would be that the bulk effective magnetore-
(2D) or columnar microstructure can exhibit surprising formssistivities of such aM/I mixture would continue to increase
of behavior when subject to a strong magnetic fiBldFor asB? whenB is large enough so that the Ohmic resistivities
example, when a periodic array of parallel cylindrical holesOf the conducting constituent are saturated but its Hall resis-
is etched into an otherwise homogeneous free-electrorfiVity continues to increase &. By contrast, in a normal
conductor host, the system exhibits a strong dependence §pnductor/perfect conductorM/S) mixture of this kind,
the macroscopic or bulk effective resistivity on both the both of those4 resistivity components saturate at finite values
magnitude and the direction &, whenB and the average when[H|>1% _
current densityJ) both lie in the plane perpendicular to the ~ Here we consider the macroscopic response of a three-

columnar axis. This occurs whenever the Hall-to-Ohmic re_constituent columnar composite of isotropic normal conduc-
sistivity ratio of the conducting hoStH= pua/ Ponmic tor, perfect insulator, and perfect conductdt/(/S), where

— u|B|=w,r (herep is the Hall mobility, w, is the cyclo- the 2D microstructure in the plane perpendicular to the co-
tron frequency, and is the conductivity relaxation timeis ~ Umnar axis is again random, and a strong magnetic Bakd
greater than 1, and appears even if the array has a high poifiPPlied in that pIa?e. , ,
symmetry, e.g., square or triangufaf A strongly aniso- We use the “columnar unambiguous self-consistent
tropic magnetoresistance was also found in calculations on &ffective-medium approximatiofCUSEMA),” which was
periodic columnar array of perfectly conducting inclusionsd€veloped in Ref. 4. In this approximation, the self-
embedded in a similar hodMore recently, composites with CONsistency requirement is that the in-plane components of
a disordered columnar microstructure were considered, usinfy€® €xtra electric fieldE produced by isolated circular-
an appropriate modification of the Bruggeman self-consistertylindrical inclusions of the different constituents, embedded
effective-medium-approximatichin such a system, if the in the fictitious uniform effective medium, vanish on aver-
pure constituents have an isotropic transport behavior ang9€: A Similar requirement is not imposed upon the columnar
the microstructure is isotropic in the plane perpendicular tomponent ofe, which would be unmeasurable in a thin-
the columnar axis, and B lies in that plane, then both the film realization of such microstructures. Also, the columnar

longitudinal and the in-plane transverse components of theomponent of(J) is always assumed to vanish. These re-
bulk effective resistivity tensop,, denoted bypﬁe) e quirements lead to the following self-consistency equations
e oy

~ _ . (we takex to be the columnar axis
(DH(E)||IB) andp!?, (i.e., (J)|(E) and they both lie in that
plane but are perpendicular B) respectively, are indepen-
dent of the direction oB or (J) in that plane. In that study,
it was found t_hat for a two-constituent m_etgl/_insulatM/Q) 0=([(1 = pe/Pind)* Yinc Pinc:Pe) - ;,e]{yz}>, (1)
mixture of this kind, both of these resistivity components
increase a#l? for [H|>1, without ever reaching saturation.
This behavior is not confined to the case whigreepresents R
a free-electron conductor. All that is required is that its transwherel is the unit tensor{ ) indicates an average over the
port behavior be isotropic, and that the Hall-to-transversedifferent types of inclusions, while the subscrijtz} indi-
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cates that only the/,z components of the 83 tensor ap-
pearing in the square brackétg are included in this calcu-

lation, i.e., the Z 2 matrix in the lower right corner q[f(f

p=pl, pi=pu; ps=psl, ps<pm. 4

~ N ~ T AR These forms mean that a magnetic fi@ds applied along
= Pe!Pind) * Yine Pinc, Pe) - Pel. The 3X 3 1€nSOryin(pinc:Pe)  the z axis, which is perpendicular to the columnar axis
gives the uniform local electric fiel&;,;, which appears in- The form assumed fOﬁM means that thél constituent

side an isolated circular-cylindrical inclusion, with resistivity exhibits isotropic transport behavior even whBnis very
tensorpic, inside the otherwise uniform effective-medium strong, and does not rule out a dependence of its transverse
hostp., when a uniform electric field, is applied at large and longitudinal Ohmic resistivitiesy, and vpy,, and also
distances, of its Hall coefficientHpy /|B|, upon themagnitudeof B.
However, it does rule out the possibility of clean single-
crystal inclusions of a transition metal like copper, where the
Eint= Yinc- Eo- (2)  resistivities become very sensitive to the crystal orientation
with respect tdB andJ at strong fields and low temperatures
R R due to the existence of open orbits on its Fermi surface,
This tensor must be calculated fropy,. and p.—this was  although polycrystalline inclusions of such a metal might

done for the relevant types of inclusions in the Appendix ofstj| be allowed. By contrast, the form assumed fgmeans
Ref. 4. that we expect the bulk effective transport behavior to be at

It is important to note that the self-consistency require-jeast mildly anisotropic as a result of the columnar micro-

which are used to set up the conventional two-dimensional,
Bruggeman-type, self-consistent effective-medium approxi- N o
mation (SEMA) in they,z plane of this systenisee Ref. 5 PI=% andps=0. In fact, it is only for those extreme values

for a discussion of SEMA in the presence of a magnetidh@t @ mathematical singularity will actually be found to ap-
field, when the conductivity tensors are nonscalar tensorsP2r in the bulk effective macroscopic response, justifying

Consequently, it should come as no surprise if the results df'€ term “critical.p(.)iht.” _ . . .
those approximations are sometimes quite different, as The same resistivity scaje, is used in bottpy andpe,
shown in Ref. 4. The great advantage of using CUSEMA igvhose in-plane components will obviously have similar

that the exact relations Whiqbe must satisfy as a result of magnitudes when neither ttheonstituent nor th& constitu-

the duality symmetry are satisfied automatically, wherea€ht percola_tes in that plane, i.e., when their volume fractions

they can be seriously violated in the two-dimensionalPi: Ps Salisfy pi<1/2, ps<1/2. However, because there

SEMA4 are perfectly conducting inclusions that span the system from

For the resistivity tensors of the effective-medium host€nd t0 end alo.ng the columnar a»;(«,sthfarefore th.e compo-

and the three different types of inclusions we write nents of p. which involve that axis will all vanish. More
precisely, we will haver,=0O(ps/pm), Be=O0(ps/pm) as
long as the volume fractiopg of the S constituent is non-

The forms assumed fqr, and ps include the case where

ae _Be 0 1 _ H 0 ZeI'O . ~ . - .
- ol. = H 1 ol The yindpinc,pe) Matrices for the three types of inclu-
pe=pm| Be Ve » PMTPM ' sions which must be considered afee omit the subscripg

0 0 e 0O 0 w from a., Be, Ve, @and\ in these expressions, in order to

3 save space

1 0 0
H 1/2
—E+ Y 1+| 2
@ 1+H? \
0
( ')’) l/2+ y (Z) 1/2+ y
Yinc(PM »Pe) = A 1+H2 A 1+H?2 , ®)
1/2
Y
+| =
3
0 0 )\—y)l’?
1+ —|—
ZADN

where we omitted the tern8%/a, which isO(ps/py)<<1, when it appeared alongside which isO(1),
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1 0 0
:8 Y 1/2
- 1+ =
a N 0 F(Z) or G(Z)
Yodprp)=| (7|75 [\ . (8
A A
1/2
Y
0 0 -
1+(A

where we also discarded(py /p,)<<1 terms, and

1 0 0
1/2
B L[ | |
a A
0 -1 1 Z
M M
Yind Ps.Pe) = 4 Ps 4 Ps , (7) FIG. 1. Qualitative shape of the two scaling functidh(&) and
y 1/2 G(Z)—see Eqs(13) and(14).
1+ =
0 0 ———3——7 1-p\?
oM ('y 12 (p—l) fOI‘ ’ye>1,
—A| [
ps \A %; (11)
where we kept som®(ps/py)<<1 terms, because those € 1-ps\? for y.=0(1)
terms are subsequently multiplied by a&d(py/pg)>1 Ps Ye ’

term—see Eq(1). ) )
equations, resulting from thgy andzz components of Eq. tions,
(1) (theyz andzy components of that equation are satisfied
automatically due to the 2D isotropy of the microstruciure v v
Thus we get two coupled algebraic equations for the two Ye=——F(2), Ae=—-G(2), (12
s () _~(e) ) Pi—Ps Pi—Ps
unknown quant|t|eske—pﬁ Ipy and ye=p”/py:
where the scaling variable B=|H|(p,—ps)/\/», and the

Ye| 2 ) scaling functions have the following limiting forms
0={3-| [(1=2pg)(1+HY)=(1=P)Yet Pikel
e
(1-p, Z?
Ye 2 5 — for z>1,
= o Ps(1HHA) (2D = 1) ye+ (1= ps) (14 H?), P 1-2p
e
1_
® F1={ - P20 for z<-1 (3
S
( ')’e) 1/2_ VPs™ YeP) )
2 = —. 1—
Ne v(1=ps) —Ae(1—py) P for |z|]<1,
These equations can be transformed into a single polynomial \ P
equation for, say\.. That would be an eighth order equa-
tion, which is quite complicated and which | have not been [ p zZ?
able to factorize algebraically. On the other hand, if we are H 1-2p for 2>1,
interested only in the asymptotic behaviongfandy, when ' !
|[H|>1, then an explicit solution can be obtained using D
asymptotic analysis. The results are G(Z)={ — 1 S (1-2pg) for Z<-1, (19
—Ps
f szﬂ for p;>ps, |(p;—pgH|>1
1-2p, p s RS ! T&Ez for |z|<1.
\ - M

1-2pg1- - itati -
. Ps 1—Ps for pi<ps, |(pi—poH|>1, Bpth of these functions have the qualitative form shown in
Ps—Pi  Ps Fig. 1. _ _ N _
Clearly,|H|=«, pg=p, defines a line of critical points
1-p ; _ Hl<1 of the macroscopic magnetotransport of such systems: For
\ VlH] D, or pi=ps. [(Pi—pgHI<L, ps>p;, both p{® andp(® saturate whedH|— o, whereas
(100  for ps<p, they both keep increasing & for |[H|>1. As

Ye= <
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ps— P, from below, the coefficients of thie? terms tend to  direction, therefore the macroscopic conductivity will now
zero asp,—Pps, while if ps—p, from above the saturated be determined primarily by, = 1/(pyH?). Therefore the

values of bothpﬁe) and p!® diverge as 1f¢s—p;). When  macroscopic resistivity will not saturate, but keep increasing

R . . 2
ps=p, , then these resistivity components keep increasing adsH* forever. - _ _ .
|H| for [H|>1. In the vicinity of the critical line, where both ~ AS the relative proportion of theé and S constituents is
1/H| and |ps—p,| are very small, it is easy to see that varied, there will be a transition from saturating to nonsat-

F(Z)=G(Z) and ye=\o. urating «H? behavior, which will have to be abrupt, i.e., it

Because these results were obtained within the frameworWill be a singular or critical point of the macroscopic re-
of CUSEMA, some of these behaviors are not expected to b&Ponse. This will be reflected by a similarly abrupt change in
correct in detail. We do expect that even a more accuratthe detailed local current distribution, which will have only
calculation of asymptotic behaviice., |H|>1) will exhibit ~ zParallel flow lines in theM constituent for values op,
saturated behavior fgp,<ps, nonsaturating<H? behavior below the transition point value, but will also have nonzero
for p,>ps, and nonsaturating:|H| behavior forp,=ps. values ofJ, in that constituent whep, is above that value.
However, we expect that more accurate calculations wilSuch a transition constitutes a different type of percolation
show that the critical behavior @& p, is not characterized Phenomenon, which we believe deserves further study, both
by the simple forms 1fts—p;) or p,— ps which were ob- theoretical and experimental.

tained here, but rather by some noninteger values of the criti- EXPerimental study of the critical point we have discov-
cal exponents. Such calculations are now in progress. ered could be done using a doped semiconductor film as the

The behavior found in these calculations can be underM constituent, with a random collection of etched perpen-
stood qualitatively by recalling that the in-plagiez compo- dicular holes as th&éconstituent, and a random collection of
nents ofo., are perpendicular columnar inclusions, made of a high conduc-

M

tivity normal metal, playing the role of th& constituent. We
would like to note that extremely low temperatures or very
1 clean single crystals would not be required in order to ob-
1| 14H2 serve this critical point. What would be necessary is a large

— . (15)  contrast at each stage of the following chain of inequalities:
Pm 1
v

0
ps<pm<H%pu<p. (16)

For|H|>1, this represents a very anisotropic 2D conductornf Si-doped GaAs is used as tHd host, with a negative
in the y,z plane, withpyoy ,,=1/v=0(1) andpyomyy  charge carrier density of 1610 cm™3 and a mobility
=1/H2<1. In order to get from end to end of the sample, the= 2500 cn?/Vs at a temperature of 90 K, as in the experi-
in-plane electric current must make its way between differeninent described in Ref. 2, then a magnetic field of 40 T
Sinclusions by flowing through th#l host. If there are many  \ould result inH=—10. Such a material would have an
more Sinclusions thar inclusions, then straight lin&t0-S  ohmic resistivity of 1.6< 10”3 Q ¢cm, about 1000 times more
trajectories can easily be found that are parallel &llowing  than copper. Thus, using copper for tBeinclusions and

the current to flow through th®! constituentonly in the z  etched holes for theinclusions, there should be no difficulty
direction. Therefore the macroscopic conductivity will de-jn satisfying all the above inequalities.

pend only onoy, ,,, and the macroscopic resistivity will
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