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Spin-flux phase in the Kondo lattice model with classical localized spins
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We provide numerical evidence that a spin-flux phase exists as a ground state of the Kondo lattice model
with classical local spins on a square lattice. This state manifests itself as a dpubégnetic order in the
classical spins with spin density at both4{),and (,0) and further exhibits fermionic spin currents around an
elementary plaquette of the square lattice. We examine the spin-wave spectrum of this phase. We further
discuss an extension to a face-centered-c(fioir lattice where a spin-flux phase may also exist. On the fcc
lattice the spin-flux phase manifests itself as a triQlenagnetically ordered state and may existyifMn
alloys.

The Kondo lattice model with classical local spins hasis a spin-flux state with circulating spin currents and estimate
emerged as one of the simplest models that can account fdne stability region of this phase. We also determine the spin-
some of the physics of the manganitesxd the cuprates. wave spectrum of the doubl@-magnetic phase and demon-
For the manganites the ferromagnetic Kondo lattice modeptrate that a spin flux phase may exist for this model on a
gives rise to the double exchange model which has beefce-centered-cubidcc) lattice. The spin-flux phase on the
argued to be the relevant model to explain the physics incC lattice manifests itself as a tripl@-magnetically ordered

these materialdFor the cuprates the assumption of classicaState and has a spin flux af/2 through each elementary

local spins is clearly unrealistic, however, the antiferromag-t”"’mgu“"lr plaguette that lies in the planes having Miller in-

netic Kondo lattice model gives rise to many insights intodlc_?ﬁ (1,1,;)(|and eqlgvarllent symmetry planes

high-T. materials. For example, it has been used to under- € model we study here Is

stand the appearance dfwave superconductivify® and it +

also gives rise to incommensurate magrétiand stripé H=—t> (cloatHe)—IX §-S+I' > S-S,
structures that have been experimentally obsetV&dne e ' w (1)
aspect of this model that has recently gained interest is the T o ) )
appearance of a Berry phase in the fermion wave functio§'nereci, creates an electron at site (i, iy) with spin pro-
that arises when the fermion spin is strongly pinned to thdection a, §=X,,C;,0,4Cig is the spin of the mobile elec-
local classical spin orientatidh This Berry phase has been tron, the Pauli matrices are denoted dayS is the localized
argued to give rise to a flux phase ground state on a squaf®in at sitd, (ij) denotes nearest-neighbi®¢N) lattice sites,
lattice in the manganité?, to an anomalous Hall effect in ! IS the NN-hopping amplitude for the electrorksis a cou-
ferromagnetd® and to a quantized Hall conductance in pling between the spins of the mobile and localized degrees

 SPINS : . .
Kagome latticed? In this paper we examine the conditions ©f freedom, andl’>0 is a direct antiferromagneticAF)
coupling between the localized classical spins. Throughout

under which this Berry phase gives rise to interesting . : .
ground-state structures. In particular, we give numerical evgilIhIS paper the unit of energy will correspondtts 1. The

dence that a spin-flux phase appears as a ground-state S’trparameter\]>0 defines the ferromagnetic Kondo lattice

ture of this model on a sauare lattice. This bhase is analoll{ﬁbdel which has been argued to be relevant to the mangan-
u : . : qu ice. 1his p : ites; whileJ<0 defines the antiferromagnetic Kondo lattice
gous to but quite different from the flux phases that ar

. . ; &nodel which has been argued to be relevant to the cuprates.
usually discussed in the context of the cuprafeéSThe dif- £ he numerical studies a Monte Carlo technique was used.
ference arises because the latter flux phases exhibit a finitghis involves no “sign problems” so that by this procedure

current around each elementary plaquette of the square I3fsmperatures as low a§=0.005 at any density can be
tice, but in our case spin currents exiiir which the up and  reached. The present study has been performed mostly on
down electrons have opposite currents around an elementagy 6 |attices with periodic boundary conditioBBC), but
plaquettg. On the square lattice the phase discussed here hagcasional runs were made also using open and antiperiodic
a spin flux of 7 through each elementary plaquette. In thisBC as well as different lattice sizésp to 12<12 lattices.
regard, it is of interest to note that7a spin-flux phase has The specific numerical technique used here involves a stan-
been argued to be central in explaining the normal-statelard Metropolis algorithm for the classical spins and an ex-
properties of the cuprates by John and co-workérs. act diagonalization for the itinerant electrons. The details of
In this paper we will first demonstrate numerically that athe method are described in Ref. 18.
doubleQ magnetic structure exists as a ground state of the The spin-flux phase was identified numerically by study-
Kondo lattice model. We then demonstrate that such a staieg the classical spin structure factor which is the Fourier
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s() e representationunder the little co-grou,y of the wave
(@) ,F\ vectorQ=(0,7). The most general dimensionless Ginzburg

I Landau free energy is
100 + 4

F=—(M§,+MZ2)+(M§ +M2 )2+ BM§ M2,

+BZ(MO,7T'M77,O)2' (2)

The minimization of this energy leads to three possible
ground states(a) (Mg, ,M;0)=(M,0), (b) (Mo, ,M~0)
=(M,M3) with M;-M;=0, () (Mq,,M,0=(M,M).
The double® phaseb) we will argue below is the spin-flux
phase which in fact corresponds to a particular representation
of flux phase proposed by Yamanagnall? [note that this
phase does not lead to a peakSfq) at (7/2,7/2) as sug-
gested in Ref. 1R The doubleQ phase(c) corresponds to
ordering only one half of the local moments and is therefore
not a likely ground state for this modéiote, however, that
40 -05 00 05 1.0 there exists numerical evidence for this phase in a periodic
cose,, Anderson model on a square latfibe To distinguish nu-
merically which of these three phases corresponds to the
FIG. 1. (3 Structure facto§(q), (b) histogram of snapshots for phase found here the spin correlations were examined by
thg nearest-neighbor spin SOt produ@t) and resulting classical evaluatingS,~S,=Sz cosﬁm (the spin dot product of NN
spin structure fodS=2, J'S$°=0, T=1/200, andn)=0.50na6  sping for each pair of NN spins and plotting the value of
by 6 lattice with periodic boundary conditions. coséy;, in a histogram. The results are shown in Fig. 1 for
JS=2 andJ’S?=0. From this figure it is clear that NN spins
transform of the static spin-spin correlation functigfq) are orthogonal which implies the doubz-order of phase
=(IN)Z, €9 ("M(S .S ). In particular, it was found (b) above.
that for variousJS andJ’S? in the vicinity of electron den- To understand the electronic properties of this doule-
sity (n)=0.5 the structure factor was peakedQ# (0,m) magnetic phase we fix the classical spins and find the fer-
(Qy) andQ=(m,0) (Qy) (see Fig. 1'° To understand the mion eigenstateffor the double@ state this is reasonable
possible ground states for a spin density with this wave vecbecause the spin structure factor is very strongly peaked at
tor it is useful to look at a Ginzburg Landau free energy. The(0,7r) and (,0) with little weight at other values as can be
order parameter is determined by the two vectdis, and  seen in Fig. 1 The classical spin orientation is given By
M, . The free energy can be simply constructed by noting=(S/2)[ (—1)'x+ (—1)"v,(—1)'*x—(—1)"v,0]. Solving for
that the relevant space-group representation transforms asttee eigenstates of the resulting electronic Hamiltonian results
vector under spin rotations and as a scdlaat is, as am\;4  in four bands with dispersions:

€=1= \/(J S)?+4(cosk,+cosk,) + 2 V2(39)2(coZk, + cos’ky) + 16 cogk,cosk,, 3

where k) e {|kt+ky|<mtN{|kc—kj|<m} are re- found to be zero. This spin current pattern implies a spin flux
stricted to one-half the original Brillouin zone. The density of 7 exists in each elementary plaquette. Note that in the
of stategDOS) is linear in|k| for (n)=0.5 which is charac- limit J= this result is intuitively clear; in this limit the spin
teristic of the Dirac spectrum that appears farflux  of the electron is tied to the local moment so that when the
phases>*’ Also note that the dispersion relation is indepen-fermion travels around a plaguette the spin changes by 2
dent of the sign of); consequently if this flux phase is the which implies that the wave function changes sign.

ground state for positivd then it must also be the ground  The phase diagram fan)=0.5 as a function of 14S)
state for negativd. In the limit J=o the dispersion reduces gnd 3’2 is shown in Fig. 2. The solid phase boundaries
to that found in Ref. 12. To identify this phase as a spin-fluxyere found by comparing the energy of the flux phase to that
state the spin current from sitgo j was determined: of the canted magnetic and spin-density wéSBW) phases
(the energies of the helical SDW phases agree with those
found in Ref. 8. At largerJ’S? the flux phase is found to be
unstable to a SDW phase characterized By=Sy2
(—1)'vcosf,m/2— m/4) (note that this is not a helical SDW

It was found that onlyj;; ], is nonzero and it is nonzero only statg. This agrees with the structure found numerically.

for NN sites. The resulting spin currents circulate neighbor- It is of interest to determine the spin-wave spectrum aris-
ing plaquettes in opposite directions. The charge current waisig from the spin-flux phase since this can be observed by

ji,j:itzﬁ <C:ry,i0a,[3c,8,j_czy,j «.BCB.I)- (4)
a,
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FIG. 2. Phase diagram f¢n)=0.5. The filled squares represent 00 ©12) (01 ©ON (21H) O.H 1) (.92 00
the numerical results on a>66 lattice with T=1/200 and with gr

periodic boundary conditions. FIG. 3. Magnon dispersion relation for the doulfemagnetic

. . ) ) . phase ’'S?=0.1).
inelastic neutron scattering. This can be done by using the

spin-wave approximation that was introduced by Kubo and

Ohat&" and later used by Furukawa for the double exchang hase is likely to be stable on a fcc lattice. For an fcc lattice
model?? The local spins are described by a local co-ordinate"© degenerate ground states of the NN classical Heisenberg

. . . AR ~,  model are S;o(R)=[(—1)'1"'2,(—1)"2*13 (—1)'2*1s]/ /3
T et S 197409 and SR~ 1)2"-00] wnere e e Iace s
=\/2Sa, and S’=S—a/a; are introduced. The spin-wave spanned = by R=[l;a(x+y)/2],a(x+2)/2]5a(y +2)/2]
spectrum is found by keeping all9.£orrections to the mag- (note that there exists a continuous degeneracy in the ground
non self-energy. Here we consider the lirait oo, This re- state, but in the presence of the Kondo coupling only two

) ) . o states are relevantin the limit J=co the structureS;q, gives
sults in the following effective boson Hamiltonian for the ;.0 spin-flux phase with the spectrum

spin waves:
1(k)aja,+A(k)aja_+H.c. 5 4 ke ky .k, .k, .k, .k
2|<:[ (Kadt+Alk)aa- ] ® ex=*—=1/ oS ~Cc0F = +sir? —cos = + sinf —cos—,
J3 2 2 2 2 2 2
with k summed over the whole Brillouin zone of the square (8)
lattice,
Eﬁ where the momenta are restricted to the region of the Bril-
+q

louin zone where-27<k,<0. Note that for(n)=0.5 the
DOS is again linear in energy. For the structi8g, the
dispersion ise,= — 4t cosk,/2) cosk,/2). Assuming that one
+J"S(cosk,+ cosk,), of these ground states is stalftbat is takingd’ to be suffi-
ciently large then it is found that afn)=1 the S, state is
(6)  stable while atn)=0.5 theS;, state is stable. There is a
transition between these two states(a}=0.7. As in the
1 k+qEq case of the square lattice t!8, phase has no net current
>SN > E ;g Lco920q+20k+q) flowing about any closed loops on the lattice but it has spin
4 Ta Tkia currents flowing around the elemental triangular plaquettes
—c0g fq— 9k+q)]+3'5(005kx+ cosk,), (7) that exist in planes with Miller_indices (1,1,Xand equiva-
) lent symmetry plangs The spin currents that flow corre-
costh=[cosk,+cosk, J/Ey, sin6j=[cosk,—cosk/E,, and  spond to a spin flux ofr/2 per triangular elemental plaquette
E= \/5\/c0§kx+coszky. The spin-wave dispersion is given (not o per plaquette as was the case in the square latlice

2_ M0 2= IA(K)2. The ei f thi . Is intriguing to note that Hasegawet al. have pointed out
by wi (k)™= |ACK)] e eigenstate of this mode is that for a triangular lattice the optimal flux per plaquette in a

given by 5Sq(r):elq'r{el?x'r[}](q)+A(Q)][(X+y)/z] U(1) flux phase is7/2 at(n)=0.5!° Both theS,, and the
+iwgz+e' WI(q) +A(Q)][(y—x)/2]} (recall the ordered s, states have been observedyisMn alloys produced by
moment isSy(r) =e X[ (x+Yy)/2]+e X[ (x—y)/2]). The doping with Fe, Ni, or C#*?*and it would be of interest to
resulting spin-wave spectrurfsee Fig. 3 agrees with the see if an electronic pseudogap or spin currents can be de-
general form required by phenomenological argumentsected in theS;o phase of these materials.
(found by using the method of Zhu and Walker In conclusion, we have given numerical evidence that a
Given that the spin-flux phase was found to be stable on apin-flux phase exists as a ground state of the Kondo lattice
square lattice it is natural to ask whether such states can bwodel with classical localized spins on a square lattice. This
realized on other lattice structures. We argue that a spin-fluphase gives rise to a spin flux af for electrons circulating

1
H(k)= E\l = {Eq—COS 0q_ 0k+q)Ek+q_ m

X[1—cog56q— 0]

AK) =




PRB 62 BRIEF REPORTS 13819

an elementary plaquette of the square lattice and manifesfdanes with Miller indices (1,1,1)and equivalent symmetry
itself as a doubl&® magnetic order in the classical spins. We planes.
have also proposed that a spin-flux phase may be stable on @ the aythors wish to thank J. R. Schrieffer, C. Buhler, A.

fc lattice. This phase manifests itself as a triQflenagnetic  \oreo, E. Dagotto, and T. Hotta for useful discussions. This
order and gives rise to a spin flux ef2 for electrons circu-  work was supported by NSF Grant No. DMR 9527035 and
lating the elementary triangular plaquettes that lie in thethe State of Florida.
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