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Spin-flux phase in the Kondo lattice model with classical localized spins
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We provide numerical evidence that a spin-flux phase exists as a ground state of the Kondo lattice model
with classical local spins on a square lattice. This state manifests itself as a double-Q magnetic order in the
classical spins with spin density at both (0,p) and (p,0) and further exhibits fermionic spin currents around an
elementary plaquette of the square lattice. We examine the spin-wave spectrum of this phase. We further
discuss an extension to a face-centered-cubic~fcc! lattice where a spin-flux phase may also exist. On the fcc
lattice the spin-flux phase manifests itself as a triple-Q magnetically ordered state and may exist ing-Mn
alloys.
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The Kondo lattice model with classical local spins h
emerged as one of the simplest models that can accoun
some of the physics of the manganites1 and the cuprates.2

For the manganites the ferromagnetic Kondo lattice mo
gives rise to the double exchange model which has b
argued to be the relevant model to explain the physics
these materials.3 For the cuprates the assumption of classi
local spins is clearly unrealistic, however, the antiferrom
netic Kondo lattice model gives rise to many insights in
high-Tc materials. For example, it has been used to und
stand the appearance ofd-wave superconductivity4–6 and it
also gives rise to incommensurate magnetic7,8 and stripe7

structures that have been experimentally observed.9,10 One
aspect of this model that has recently gained interest is
appearance of a Berry phase in the fermion wave func
that arises when the fermion spin is strongly pinned to
local classical spin orientation11. This Berry phase has bee
argued to give rise to a flux phase ground state on a sq
lattice in the manganites,12 to an anomalous Hall effect in
ferromagnets,13 and to a quantized Hall conductance
Kagome lattices.14 In this paper we examine the condition
under which this Berry phase gives rise to interest
ground-state structures. In particular, we give numerical e
dence that a spin-flux phase appears as a ground-state
ture of this model on a square lattice. This phase is an
gous to but quite different from the flux phases that
usually discussed in the context of the cuprates.15,16 The dif-
ference arises because the latter flux phases exhibit a fi
current around each elementary plaquette of the square
tice, but in our case spin currents exist~for which the up and
down electrons have opposite currents around an elemen
plaquette!. On the square lattice the phase discussed here
a spin flux ofp through each elementary plaquette. In th
regard, it is of interest to note that ap spin-flux phase has
been argued to be central in explaining the normal-s
properties of the cuprates by John and co-workers.17

In this paper we will first demonstrate numerically tha
double-Q magnetic structure exists as a ground state of
Kondo lattice model. We then demonstrate that such a s
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is a spin-flux state with circulating spin currents and estim
the stability region of this phase. We also determine the sp
wave spectrum of the double-Q magnetic phase and demon
strate that a spin flux phase may exist for this model o
face-centered-cubic~fcc! lattice. The spin-flux phase on th
fcc lattice manifests itself as a triple-Q magnetically ordered
state and has a spin flux ofp/2 through each elementar
triangular plaquette that lies in the planes having Miller
dices (1,1,1)~and equivalent symmetry planes!.

The model we study here is

H52t (
^ ij &a

~cia
† cja1H.c.!2J(

i
si•Si1J8(̂

ij &
Si•Sj,

~1!

wherecia
† creates an electron at sitei5( i x ,i y) with spin pro-

jection a, si5(abcia
† sabcib is the spin of the mobile elec

tron, the Pauli matrices are denoted bys, Si is the localized
spin at sitei, ^ ij & denotes nearest-neighbor~NN! lattice sites,
t is the NN-hopping amplitude for the electrons,J is a cou-
pling between the spins of the mobile and localized degr
of freedom, andJ8.0 is a direct antiferromagnetic~AF!
coupling between the localized classical spins. Through
this paper the unit of energy will correspond tot51. The
parameterJ.0 defines the ferromagnetic Kondo lattic
model which has been argued to be relevant to the man
ites; whileJ,0 defines the antiferromagnetic Kondo lattic
model which has been argued to be relevant to the cupra
For the numerical studies a Monte Carlo technique was u
This involves no ‘‘sign problems’’ so that by this procedu
temperatures as low asT50.005 at any density can b
reached. The present study has been performed mostl
636 lattices with periodic boundary conditions~PBC!, but
occasional runs were made also using open and antiperi
BC as well as different lattice sizes~up to 12312 lattices!.
The specific numerical technique used here involves a s
dard Metropolis algorithm for the classical spins and an
act diagonalization for the itinerant electrons. The details
the method are described in Ref. 18.

The spin-flux phase was identified numerically by stud
ing the classical spin structure factor which is the Four
13 816 ©2000 The American Physical Society
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transform of the static spin-spin correlation functionS(q)
5(1/N)(n,meiq•(nÀm)^Sn•Sm&. In particular, it was found
that for variousJS andJ8S2 in the vicinity of electron den-
sity ^n&50.5 the structure factor was peaked atQ5(0,p)
(Qy) and Q5(p,0) (Qx) ~see Fig. 1!.19 To understand the
possible ground states for a spin density with this wave v
tor it is useful to look at a Ginzburg Landau free energy. T
order parameter is determined by the two vectorsM0,p and
Mp,0 . The free energy can be simply constructed by not
that the relevant space-group representation transforms
vector under spin rotations and as a scalar~that is, as anA1g

FIG. 1. ~a! Structure factorS(q), ~b! histogram of snapshots fo
the nearest-neighbor spin dot product,~c! and resulting classica
spin structure forJS52, J8S250, T51/200, and̂ n&50.5 on a 6
by 6 lattice with periodic boundary conditions.
ity
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representation! under the little co-groupD2H of the wave
vectorQ5(0,p). The most general dimensionless Ginzbu
Landau free energy is

F52~M0,p
2 1Mp,0

2 !1~M0,p
2 1Mp,0

2 !21bM0,p
2 Mp,0

2

1b2~M0,p•Mp,0!
2. ~2!

The minimization of this energy leads to three possi
ground states:~a! (M0,p ,Mp,0)5(M ,0), ~b! (M0,p ,Mp,0)
5(M1 ,M2) with M1•M250, ~c! (M0,p ,Mp,0)5(M ,M ).
The double-Q phase~b! we will argue below is the spin-flux
phase which in fact corresponds to a particular representa
of flux phase proposed by Yamanakaet al.12 @note that this
phase does not lead to a peak inS(q) at (p/2,p/2) as sug-
gested in Ref. 12#. The double-Q phase~c! corresponds to
ordering only one half of the local moments and is theref
not a likely ground state for this model~note, however, that
there exists numerical evidence for this phase in a perio
Anderson model on a square lattice20!. To distinguish nu-
merically which of these three phases corresponds to
phase found here the spin correlations were examined
evaluatingSi•Sj5S2 cosu^ij & ~the spin dot product of NN
spins! for each pair of NN spins and plotting the value
cosu^ij & in a histogram. The results are shown in Fig. 1 f
JS52 andJ8S250. From this figure it is clear that NN spin
are orthogonal which implies the double-Q order of phase
~b! above.

To understand the electronic properties of this doubleQ
magnetic phase we fix the classical spins and find the
mion eigenstates@for the double-Q state this is reasonabl
because the spin structure factor is very strongly peake
(0,p) and (p,0) with little weight at otherq values as can be
seen in Fig. 1#. The classical spin orientation is given bySi
5(S/2)@(21)i x1(21)i y,(21)i x2(21)i y,0#. Solving for
the eigenstates of the resulting electronic Hamiltonian res
in four bands with dispersions:
ek56A~JS!214~cos2kx1cos2ky!62A2~JS!2~cos2kx1cos2ky!116 cos2kxcos2ky, ~3!
ux
the
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2
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where (kx ,ky)P$ukx1kyu<p%ù$ukx2kyu<p% are re-
stricted to one-half the original Brillouin zone. The dens
of states~DOS! is linear inuku for ^n&50.5 which is charac-
teristic of the Dirac spectrum that appears forp-flux
phases.15,17 Also note that the dispersion relation is indepe
dent of the sign ofJ; consequently if this flux phase is th
ground state for positiveJ then it must also be the groun
state for negativeJ. In the limit J5` the dispersion reduce
to that found in Ref. 12. To identify this phase as a spin-fl
state the spin current from sitei to j was determined:

j i , j5 i t(
a,b

^ca,i
† sa,bcb, j2ca, j

† sa,bcb,i&. ~4!

It was found that only@ j i j #z is nonzero and it is nonzero onl
for NN sites. The resulting spin currents circulate neighb
ing plaquettes in opposite directions. The charge current
-

x

-
as

found to be zero. This spin current pattern implies a spin fl
of p exists in each elementary plaquette. Note that in
limit J5` this result is intuitively clear; in this limit the spin
of the electron is tied to the local moment so that when
fermion travels around a plaquette the spin changes byp
which implies that the wave function changes sign.

The phase diagram for̂n&50.5 as a function of 1/(JS)
and J8S2 is shown in Fig. 2. The solid phase boundari
were found by comparing the energy of the flux phase to t
of the canted magnetic and spin-density wave~SDW! phases
~the energies of the helical SDW phases agree with th
found in Ref. 8!. At largerJ8S2 the flux phase is found to be
unstable to a SDW phase characterized bySi5SA2
(21)i ycos(ixp/22p/4) ~note that this is not a helical SDW
state!. This agrees with the structure found numerically.

It is of interest to determine the spin-wave spectrum a
ing from the spin-flux phase since this can be observed
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inelastic neutron scattering. This can be done by using
spin-wave approximation that was introduced by Kubo a
Ohata21 and later used by Furukawa for the double excha
model.22 The local spins are described by a local co-ordin
system in which each classical spin is aligned along thẑ
direction and the spin-wave operatorsSi

1.A2Sai , Si
2

.A2Sai
† , and Si

z5S2ai
†ai are introduced. The spin-wav

spectrum is found by keeping all 1/S corrections to the mag
non self-energy. Here we consider the limitJ5`. This re-
sults in the following effective boson Hamiltonian for th
spin waves:

(
k

@P~k!ak
†ak1A~k!ak

†a2k1H.c.# ~5!

with k summed over the whole Brillouin zone of the squa
lattice,

P~k!5
1

2SN (
q

H Eq2cos~uq2uk1q!Ek1q2
Ek1q

2

Eq1Ek1q

3@12cos~5uk1q2uq!#J 1J8S~coskx1cosky!,

~6!

A~k!5
1

2SN (
q

Ek1qEq

Eq1Ek1q
@cos~2uq12uk1q!

2cos~uq2uk1q!#1J8S~coskx1cosky!, ~7!

cosuk5@coskx1cosky#/Ek , sinuk5@coskx2cosky#/Ek , and

Ek5A2Acos2kx1cos2ky. The spin-wave dispersion is give

by vk
25AP(k)22uA(k)u2. The eigenstate of this mode

given by dSq(r )5eiq"r$eiQx"r@P(q)1A(q)#@( x̂1 ŷ)/2#

1 ivqẑ1eiQy"r@P(q)1A(q)#@( ŷ2 x̂)/2#% ~recall the ordered
moment isS0(r )5eiQx"r@( x̂1 ŷ)/2#1eiQy"r@( x̂2 ŷ)/2#). The
resulting spin-wave spectrum~see Fig. 3! agrees with the
general form required by phenomenological argume
~found by using the method of Zhu and Walker23!.

Given that the spin-flux phase was found to be stable o
square lattice it is natural to ask whether such states ca
realized on other lattice structures. We argue that a spin-

FIG. 2. Phase diagram for^n&50.5. The filled squares represe
the numerical results on a 636 lattice with T51/200 and with
periodic boundary conditions.
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phase is likely to be stable on a fcc lattice. For an fcc latt
two degenerate ground states of the NN classical Heisen
model are S3Q(R)5@(21)l 11 l 2,(21)l 21 l 3,(21)l 21 l 3#/A3
and S1Q(R)5@(21)l 11 l 2,0,0# where the fcc lattice is
spanned by R5@ l 1a( x̂1 ŷ)/2,l 2a( x̂1 ẑ)/2,l 3a( ŷ1 ẑ)/2#
~note that there exists a continuous degeneracy in the gro
state, but in the presence of the Kondo coupling only t
states are relevant!. In the limit J5` the structureS3Q gives
rise to a spin-flux phase with the spectrum

ek56
4

A3
Acos2

kx

2
cos2

ky

2
1sin2

kz

2
cos2

ky

2
1sin2

kz

2
cos2

kx

2
,

~8!

where the momenta are restricted to the region of the B
louin zone where22p,kz,0. Note that for^n&50.5 the
DOS is again linear in energy. For the structureS1Q the
dispersion isek524t cos(kx/2)cos(ky/2). Assuming that one
of these ground states is stable~that is takingJ8 to be suffi-
ciently large! then it is found that at̂n&51 theS1Q state is
stable while at̂ n&50.5 theS3Q state is stable. There is
transition between these two states at^n&50.7. As in the
case of the square lattice theS3Q phase has no net curren
flowing about any closed loops on the lattice but it has s
currents flowing around the elemental triangular plaque
that exist in planes with Miller indices (1,1,1)~and equiva-
lent symmetry planes!. The spin currents that flow corre
spond to a spin flux ofp/2 per triangular elemental plaquet
~not p per plaquette as was the case in the square lattice!. It
is intriguing to note that Hasegawaet al. have pointed out
that for a triangular lattice the optimal flux per plaquette in
U(1) flux phase isp/2 at ^n&50.5.16 Both theS1Q and the
S3Q states have been observed ing-Mn alloys produced by
doping with Fe, Ni, or Cu,24,25 and it would be of interest to
see if an electronic pseudogap or spin currents can be
tected in theS3Q phase of these materials.

In conclusion, we have given numerical evidence tha
spin-flux phase exists as a ground state of the Kondo lat
model with classical localized spins on a square lattice. T
phase gives rise to a spin flux ofp for electrons circulating

FIG. 3. Magnon dispersion relation for the double-Q magnetic
phase (J8S250.1).
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an elementary plaquette of the square lattice and manif
itself as a double-Q magnetic order in the classical spins. W
have also proposed that a spin-flux phase may be stable
fcc lattice. This phase manifests itself as a triple-Q magnetic
order and gives rise to a spin flux ofp/2 for electrons circu-
lating the elementary triangular plaquettes that lie in
h
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sts
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e

planes with Miller indices (1,1,1)~and equivalent symmetry
planes!.
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11E. Müeller-Hartmann and E. Dagotto, Phys. Rev. B54, R6819
~1996!.
,

,
.

.

12M. Yamanaka, W. Koshibae, and S. Maekawa, Phys. Rev. L
81, 5604~1998!.

13J. Ye, Y. B. Kim, A. J. Millis, P. Majumdar, and Z. Tesanovic
Phys. Rev. Lett.83, 3737~1999!.

14K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B62,
R6065~2000!.

15I. Affleck and J. B. Marston, Phys. Rev. B37, 3774~1988!.
16Y. Hasegawa, P. Lederer, T. M. Rice, and P. B. Wiegmann, Ph

Rev. Lett.63, 907 ~1989!.
17S. John and A. Golubenstev, Phys. Rev. Lett.71, 3343~1993!; S.

John and A. Golubenstev, Phys. Rev. B51, 381~1995!; S. John,
M. Berciu, and A. Golubenstev, Europhys. Lett.41, 31 ~1998!.

18S. Yunoki, J. Hu, A. L. Malvezzi, A. Moreo, N. Furukawa, and E
Dagotto, Phys. Rev. Lett.80, 845~1998!; E. Dagotto, S. Yunoki,
A. L. Malvezzi, A. Moreo, J. Hu, S. Capponi, D. Poilblanc, an
N. Furukawa, Phys. Rev. B58, 6414~1998!.

19This phase was called an incommensurate phase in the p
diagram discussed previously in Ref. 18.

20J. Bonca and J. E. Gubernatis, Phys. Rev. B58, 6992~1998!.
21K. Kubo and N. Ohata, J. Phys. Soc. Jpn.33, 21 ~1972!.
22N. Furukawa, J. Phys. Soc. Jpn.65, 1174~1996!.
23X. Zhu and M. B. Walker, Phys. Rev. B34, 8064~1986!.
24S. Kawarazaki, K. Fujita, K. Yasuda, Y. Sasaki, T. Mizusaki, a

A. Hirai, Phys. Rev. Lett.61, 471 ~1988!.
25P. Biatti, G. Mazzone, and F. Sacchetti, J. Phys. F:17, 1425

~1987!.


