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Apparent metal-insulator transition in disordered carbon fibers
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In a previous reporfPhys. Lett. A216, 178 (1996] we phenomenologically considered the conduction
mechanism of a highly disordered carbon system. In this article a metal-insulator transition is investigated
based on our theory for the disordered system. Our results for the temperature-dependent conductivity show an
apparent metal-insulator transition and are in good agreement with experimental results in disordered carbons.

In a previous repottwe proposed a mechanism, hopping these energy levels must be expressed in terms of the random
conductivity, for disordered systems using the result of quanmatrix>~* Since each electric property obeys the energy
tum chaog~* In this paper we extend it to show the metal- splitting law, the global properties may also be influenced by
insulator transition and reproduce the experimental results dhe local properties of each granules. Accordingly, we intro-
Kuriyama by adding another assumption. duced an assumption, and we demonstrated that the TDC can

Kuriyama and Dresse”’]a‘fjg have performed experi_ be expressed in terms of the integral of the Wigner distribu-
ments on the electrical and structural properties of activatefion. Our theoretical estimatepased on this TDC formula,
carbon fibers(ACF's). As it is knowr® that ACF's are closely agrees with the experimental resdits.
highly disordered carbon systenidDCS'’s), these experi- N order to eIl_Jcidate a metal-insulator transition observgd
mental results have shed new light on disordered system. i ACF’s, we will employ the same model as proposed in
Refs. 5 and 7, Kuriyama and Dresselhaus found that there i3€f. 1.

a metal-insulator transition depending upon the randomness (i) The ACF is arranged between two electrodes.
of the system. (i) In HDCS'’s, graphite granule¢clusters in ACF’$,

Even in the field of the disordered system, one sometime¥hose size is controlled by annealing and is characterized by
phenomenologically introduces a band diagram for the nontheir average radiuR (of the order of nm are disposed at
crystal systent! However, the band spectrum should be de-random in the ACF.
fined only for the electron in a crystal and the use of “band (iii) The local properties of each granukes a theoretical
spectrum in noncrystal systems” is somewhat nonsensicalode) resemble to those of pure graphite, that is, a semi-
even though such a standpoint has been given many physicaetal. _ _ .
interpretations and proper predictions. Kuriyama proposed (iv) The wave function of an electron in each granule is
an ingenious phenomenological model to explain the temnearly localized with each granule as a quantum box.
perature dependence of the conductiif{pC) in ACF’s> (v) Electrons in each quantum béar granulg are trans-

The present authors have also attempted to elucidate tHorted by thermal hopping.
conduction mechanism in the disordered system, along the (Vi) The coherent length of each granule is characterized
lines of quantum mechanics. In the previous repave pro- by &.
posed a mechanism for the hopping conductivity of the dis- Let us briefly review the conduction mechanism proposed
ordered system from more microscopic aspects. Our theoret? Ref. 1 based on the above model. An electron hops be-
ical estimatgbased on the modebf the TDC for the ACF’s  tween adjoining granules. The Fermi energy of itttegran-
partially agrees well with Kuriyama’s experimental resdlts. ule roughly agrees with that of the adjacent dftiee jth
However, since our TDC formula exhibits the property thatgranulg. Near zero temperature, the electron at the Fermi
the conductivity vanishes at zero temperature, we made nigvel of theith granule hops to the above vacant level of the
mention of the metal-insulator transition in Ref. 1. In this Fermi level in thejth granule, so that electric current flows
paper, we attempt to investigate the metal-insulator transitioRetween them. Let us denote the energy gafERy
seen in ACF's>"° based upon our proposed conduction . . :
mechanism. By modifying our TDC formula proposed in Eg':=|EL—E¢, (1)

Ref. 1, we can ShOV_V that our new_f_ormlle)q. (17)] exhibits whereEiC is the energy level just above the Fermi eneEgiy
an apparent metal-insulator transition and reproduces the eXs the jth granule.
penmgqtal results., ) . The local TDC of the electric connection between the

As it is well known that the ACF’s consist of small graph- : i, :

: . ) ranules andj is then given by

ite granules, we can regard each electric state in each granLﬁe

as be_ing independent, and that elet_:trons in granules can hop ;o exp(— EiG'j/kBT), )

to adjacent granules, so that electric current can flow in the ’

system. Since the quantum mechanical properties of elewherekg is the Boltzmann constant and is the absolute
trons in a small granule obey the law of quantum chaostemperature. Such adjacent granules compose electric net-
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works between the electrodes. The nature of the electric cur-
rent is that it flows along theasiestpaths of all possible
electric paths among the links between the electrodes. In all
percolation path§C,} from one electrode to another, there
exists a set of the most realizable pathg={C2}.

The conductivityo, along a patrcg of I'y can be thus
determined by the sum of the resistance in each connection
of a pair of granules, o ;. ;:

1 1 R<E
o= ( > ) : 3 @
|

Tii+1

o o ) FIG. 1. Average radius of granulé® and that of coherent
If the deviation of each conductivity; i, is large, we may  |engths¢ as characteristic lengths in the syste@:is the case for
approximate it as £>R and(b) is that foré<R. In the (a) case, the electron feels the
boundary of granule and the energy levels obey the Wigner distri-
4 bution. In the(b) case, the electron is localized around a defect, and
@ ) = :
in the conduction, it also hops among these localized states of gran-

1 -1
T~ ( max—) .
ules.

i ii+1
In general, the energy levels ith andjth granules are

not correlated. Therefore the difference of energy leves  Here,x andx, indicate, respectively, the position of electron
noted bym level at theith andn level at thejth granuleg and defect in a granule.

Eril,:=|E},—El|, obeys the Poisson distributibn On the other hand, there is another typical length in our
Poisso system, that is, the size of those granules from the viewpoint
Diever (0E)d(SE) =exp(— E/a)d(SE), () of a quantum mechanical study. We denote the average ra-

wherea is an appropriate parameter. Most parts of the endius Of the granules big, which need not be identified com-
ergy gapEg's obey this distribution. IfEg vanishes, most pletely with that estimated from structural studies. Then we
contributions to the local conductivity are finite even near@ve two case&) R<¢ and(b) R>¢ as seen in Fig. 1.

zero temperaturgsee Eq(2)]. However, thelifference of the When the average radiug of granules is smaller than a
Fermi levelsof theith andjth granuleg EL—EL| also obeys coherent lengtlf (i.e.,R<¢), the electron in a granule feels
the Poisson distributiofb). We could also find pairs whose the boundary of the granule. In the classical picture, its mo-
Fermi levels agree with each other from the probabilityo" N & box(granule with irregular-shape boundary is cha-

consideration. In such a case, we can approximat tic. Thus, in the quantum meche}nlcal picture, its energy
Y | i el evel should obey the random matrix theory. In other words,
Eg:=|EL—El~|EL—EH=E{', so that we have

for the £>R case,Djee(Eg) can be expressed in terms of
1 B the Wigner distributiorD |M9MeY(E ;) : 2~
max—— ~maxexp( — Eg¢'/kgT). (6)
i Jii+l i DWigner _ 2 27,2
level (EG)dEG_ Z(EG/CY )eX[i EG/CE )d EG . (9)
As the conductivity of each parallel paih, is indepen- ‘
dent, the summation over them simply gives the total conin such a case, from E¢7) the total conductivityr*"'9"*/(T)
ductivity. Accordingly the total conductivity of the HDCS is is given by
then given in terms of the distributide,e(Eg)dEg of Eg

as i '
Ungner(T) _ Ugo)f d EGDl\gl\'/ge?er( Eg)exp—Eg/kgT)

st )
-\ ex er .
Here ag‘” represents the number of conductive paths. Even 2kgT 2kgT 2kgT

though we regarded it as a constant in Ref. 1, we will later (10)
assume that it has a weak “temperature” dependence.

Next we consider the effect of the coherent lengtas  Here « is given by
illustrated in Fig. 1. The coherent length is defined at zero
temperature. As we will show lateg,is not so important in
our model, but in order to assert thats not important, let us ~Ec/N ~ Ee (11)
investigate it here. We consider the effect of the coherent P no(4mR%/3)’
length¢ in a three-dimensiondbulk) carbon system, which
is not completely graphite but has defects. A defect makes AhereEr is the Fermi energy and, is the number of elec-
electron localize in its vicinity. The wave function around it trons per unit volume. For typical valudR=3 nm, Ep

is asymptotically expressed in termséénd a certain length  _ 5 5953 eV andi.=3x 1074 m 3. we have
5(5< &) ad? ' ’ 0 ’

o(T)=of) f dEcDievel Ec)exp(—Eg/ksT).  (7)

= o-(()o)

y~Aexp —|x—xXo|/€) for |x—Xo|> 4. (8 a=181 K=15.6 meV. (12
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FIG. 2. The temperature dependence of normalized conductivity T{K)

for o™97" and oPO5°N Thin lines correspond to the curves for - -

oP95on3nd thick ones are those folS™ They are parametrized - FIG. 3. The te_mperature dependgnce of normalized conductiv
; : ity. The dotted points show the experimental results of the tempera-

by ¢ or R, respectively¢ andR are taken for 2nm, 4 nm, 6 nm, and e gependence on normalized conductivit§T)/o(250 K) for

10 nm. as-preparedAS) and heat-treated ACF'&ig. 1 in Ref. 5. Fits of

) i these points are given by curves, whose fitting param&ensd e
We have assumed that the granule is a filled ball for the sakg, Eq. (17) areR=2.45 nm, 4.00 nm, 5.40 nm, 30.0 nm, aad"

of simplicity. This result is in good agreement with the ex- —1 gx 103 K-1.
perimental results of Kuriyamas we showed in Ref. 1.

Next we consider the case f&>¢. In this case, the aphpears an apparenmetal-insulator transitionin  both
electroncgnnotfeel the whole boundary of the granule; nei- mechanisms. For large or &, the conductivity is finiteeven
ther can it know the global shape of the granule. Hence itg; very low temperatures, although the conductivity in both
kinematic behavior isot chaotic. Accordingly the energy cases vanishes at zero temperature. We call this region “me-
interval of the granule is expressed in terms of the Poissogyjjic region.”

. . . _4 .
distributior? As we will compare our model with the experimental re-
1 sults of Kuriyama, we will further add an assumption that the
D,Fé?,igﬁo? Eg)dEg=——exd —Eg/y(&)]dEg, (13 number of paths weakly depends upon temperaitiien we

(£) can writeoo(T) as
and does not obey the Wigner distribution at all in this case. ©)
Here, y is given by oo(T)=0y”(1+€T), (16)
E, whereo”) and e are constants. . '
V(&) ~Ep/Nj~ ————. (14 Since there iso difference betweerrVi9"" and o"0isson
No(4mE°/3) for large R and & we will consider onlys*V'9"®" with the

Using Eq.(13) along with Eq.(14), the total conductivity7) ~ above new assumption. In other words, we will consider
is then given by

O_\E/Vigner(T) _ O'O(T) f d EGDYg\i/%?er( EG) exF( — EG/kBT)-

oPOISSONT) = Ugo)f d EGDE‘\)IEISO'C Eg)exp —Eg/kgT) (17)

_ (0 kgT 15 It should be noted thady(T) is given by Eq.(16).
Y keT+ ¥(&) (15) Corresponding to Figs. 1 and 4 in Ref. 5, we can trace the
TDC parametrized by the size of the granule shown in Fig. 3.
The plots foraV9"¢(T) ando°'°I T) are shown in Fig. For the experimental results of Kuriyafan the TDC of the
2, which are parametrized bR and &, respectively. Both non-heat-treate(AS) ACF’s, we substitut&k=2.45 nm. For
behave in a similar manner. Especially, wherand ¢ are  that of Tu;=850 °C, R corresponds to 4.00 nm, for that of
greater than 10 nm, both cases coincide with each othéFyr=1000°C, R corresponds to 5.4 nm, and for that of
even quantitatively. However, for a smdf and &, their  Ty7=1200°C, R corresponds to 30.0 nm. Further we have
shape is different. As we showed in Ref. 1, the experimentahdoptede=1/1500 as it produces the best fit. We can then
results agree well with the case for the use of the Wignesee from Fig. 2 that the behavior of the curves plotted for
distribution, i.e., V19" for a small radiusR(<10 nm). appropriately normalized(T) vs T is also in good agree-
Thus for a small radius case, we assert that the conductioment with all the experimental results of Kuriyama of
mechanism there is based upon the chaotic process. o(T)/o(250 K) (cf. Figs. 1 and 4 in Ref. )5
On the other hand, foR,£>10 nm, we cannot distin- As we have shown above, our theoretical model repro-
guish between them; nor can we decide their conductiomluces the experimental results of the TDC for disordered
mechanism. We cannot discriminate between the conductiocarbons very well, including the “metal-insulator transi-
mechanisms. It should, however, be emphasized that thet®n.”
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From the viewpoint of quantum chaos theory, it is impor-(i.e., small granule radiysto the “metallic” regime (the
tant that we determine which distributigiVigner or Pois- large radius cas&>10 nm). Accordingly we believe that
son governs the system, i.e., whether the system is chaotithis finding is very important from the viewpoint of further
or not?? In the case of small granules, our theory indicatesstudies of disordered system.
that the system should obey the chaotic law: when the acti- Finally we should comment on the metal-insulator transi-
vation energy associated with the conductivity is governedion: although in our theory the conductivity vanishes at zero
by the Wigner distribution, the conductivity formula can re- temperature, the conductivity for a certain case sucR as
produce the experimental results of the small granites ¢~30 nm is finite even at very low temperatures. This im-
<10 nm. We could not discriminate whether the system inplies that at nonzero temperature we are in the “metallic
the “metallic” region is chaotic or not. regime.” Our results mean that there exists a certain class of

Even though we could not identify the conduction mecha-the phenomena resembling “metal-insulator transitions,”
nism of the “metallic” regime within the meaning of chaos which arenot actually metal-insulator transitions but are ap-
theory, we showed that the apparent metal-insulator transparent ones as in our model. It is not easy to determine their
tion occurs and the proposed formula reproduces the expenitature by means of experiments because we cannot reach
mental results not only qualitatively but also quantitatively zero temperature. It is hoped that our theory will enhance the
within our theoretical framework proposed in Ref. 1. In otherfurther study of the disordered system and metal-insulator
words, our model is consistent from the “insulator” regime transition and facilitate future experiments.
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