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Apparent metal-insulator transition in disordered carbon fibers

S. Matsutani* and A. Suzuki
Center for Solid-State Physics & Department of Physics, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka

Shinjuku-ku, Tokyo 162-8601, Japan
~Received 19 June 2000!

In a previous report@Phys. Lett. A216, 178 ~1996!# we phenomenologically considered the conduction
mechanism of a highly disordered carbon system. In this article a metal-insulator transition is investigated
based on our theory for the disordered system. Our results for the temperature-dependent conductivity show an
apparent metal-insulator transition and are in good agreement with experimental results in disordered carbons.
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In a previous report1 we proposed a mechanism, hoppin
conductivity, for disordered systems using the result of qu
tum chaos.2–4 In this paper we extend it to show the meta
insulator transition and reproduce the experimental result
Kuriyama5 by adding another assumption.

Kuriyama and Dresselhaus6–9 have performed experi
ments on the electrical and structural properties of activa
carbon fibers~ACF’s!. As it is known10 that ACF’s are
highly disordered carbon systems~HDCS’s!, these experi-
mental results have shed new light on disordered system
Refs. 5 and 7, Kuriyama and Dresselhaus found that the
a metal-insulator transition depending upon the randomn
of the system.

Even in the field of the disordered system, one sometim
phenomenologically introduces a band diagram for the n
crystal system.11 However, the band spectrum should be d
fined only for the electron in a crystal and the use of ‘‘ba
spectrum in noncrystal systems’’ is somewhat nonsens
even though such a standpoint has been given many phy
interpretations and proper predictions. Kuriyama propo
an ingenious phenomenological model to explain the te
perature dependence of the conductivity~TDC! in ACF’s.5

The present authors have also attempted to elucidate
conduction mechanism in the disordered system, along
lines of quantum mechanics. In the previous report,1 we pro-
posed a mechanism for the hopping conductivity of the d
ordered system from more microscopic aspects. Our theo
ical estimate~based on the model! of the TDC for the ACF’s
partially agrees well with Kuriyama’s experimental result5

However, since our TDC formula exhibits the property th
the conductivity vanishes at zero temperature, we made
mention of the metal-insulator transition in Ref. 1. In th
paper, we attempt to investigate the metal-insulator transi
seen in ACF’s,5,7,9 based upon our proposed conducti
mechanism. By modifying our TDC formula proposed
Ref. 1, we can show that our new formula@Eq. ~17!# exhibits
an apparent metal-insulator transition and reproduces the
perimental results.

As it is well known that the ACF’s consist of small grap
ite granules, we can regard each electric state in each gra
as being independent, and that electrons in granules can
to adjacent granules, so that electric current can flow in
system. Since the quantum mechanical properties of e
trons in a small granule obey the law of quantum cha
PRB 620163-1829/2000/62~21!/13812~4!/$15.00
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these energy levels must be expressed in terms of the ran
matrix.2–4 Since each electric property obeys the ene
splitting law, the global properties may also be influenced
the local properties of each granules. Accordingly, we int
duced an assumption, and we demonstrated that the TDC
be expressed in terms of the integral of the Wigner distri
tion. Our theoretical estimate,1 based on this TDC formula
closely agrees with the experimental results.5

In order to elucidate a metal-insulator transition observ
in ACF’s, we will employ the same model as proposed
Ref. 1.

~i! The ACF is arranged between two electrodes.
~ii ! In HDCS’s, graphite granules~clusters in ACF’s!,

whose size is controlled by annealing and is characterized
their average radiusR ~of the order of nm!, are disposed a
random in the ACF.

~iii ! The local properties of each granule~as a theoretical
model! resemble to those of pure graphite, that is, a se
metal.

~iv! The wave function of an electron in each granule
nearly localized with each granule as a quantum box.

~v! Electrons in each quantum box~or granule! are trans-
ported by thermal hopping.

~vi! The coherent length of each granule is characteri
by j.

Let us briefly review the conduction mechanism propos
in Ref. 1 based on the above model. An electron hops
tween adjoining granules. The Fermi energy of thei th gran-
ule roughly agrees with that of the adjacent one~the j th
granule!. Near zero temperature, the electron at the Fe
level of thei th granule hops to the above vacant level of t
Fermi level in thej th granule, so that electric current flow
between them. Let us denote the energy gap byEG:

EG
i , j
ªuEC

j 2EF
i u, ~1!

whereEC
j is the energy level just above the Fermi energyEF

j

of the j th granule.
The local TDC of the electric connection between t

granulesi and j is then given by

s i , j}exp~2EG
i , j /kBT!, ~2!

where kB is the Boltzmann constant andT is the absolute
temperature. Such adjacent granules compose electric
13 812 ©2000 The American Physical Society
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works between the electrodes. The nature of the electric
rent is that it flows along theeasiestpaths of all possible
electric paths among the links between the electrodes. In
percolation paths$Ca% from one electrode to another, the
exists a set of the most realizable pathsG0ª$Ca

0%.
The conductivitysa along a pathCa

0 of G0 can be thus
determined by the sum of the resistance in each connec
of a pair of granules, 1/s i ,i 11:

sa5S (
i

1

s i ,i 11
D 21

. ~3!

If the deviation of each conductivitys i ,i 11 is large, we may
approximate it as

sa'S max
i

1

s i ,i 11
D 21

. ~4!

In general, the energy levels ini th and j th granules are
not correlated. Therefore the difference of energy levels~de-
noted bym level at thei th andn level at thej th granules!,
Em,n

i , j
ªuEm

i 2En
j u, obeys the Poisson distribution1

D level
Poisson~dE!d~dE!5exp~2dE/a!d~dE!, ~5!

wherea is an appropriate parameter. Most parts of the
ergy gapEG’s obey this distribution. IfEG vanishes, most
contributions to the local conductivity are finite even ne
zero temperature@see Eq.~2!#. However, thedifference of the
Fermi levelsof the i th and j th granulesuEF

i 2EF
j u also obeys

the Poisson distribution~5!. We could also find pairs whos
Fermi levels agree with each other from the probabi
consideration. In such a case, we can approxim
EG

i , j
ªuEC

j 2EF
i u'uEC

j 2EF
j u5..EG

j , j , so that we have

max
i

1

s i ,i 11
'max

i
exp~2EG

i ,i /kBT!. ~6!

As the conductivity of each parallel pathG0 is indepen-
dent, the summation over them simply gives the total c
ductivity. Accordingly the total conductivity of the HDCS i
then given in terms of the distributionD level(EG)dEG of EG

i ,i

as

s~T!5s0
(0)E dEGD level~EG!exp~2EG/kBT!. ~7!

Here s0
(0) represents the number of conductive paths. E

though we regarded it as a constant in Ref. 1, we will la
assume that it has a weak ‘‘temperature’’ dependence.

Next we consider the effect of the coherent lengthj as
illustrated in Fig. 1. The coherent length is defined at z
temperature. As we will show later,j is not so important in
our model, but in order to assert thatj is not important, let us
investigate it here. We consider the effect of the coher
lengthj in a three-dimensional~bulk! carbon system, which
is not completely graphite but has defects. A defect make
electron localize in its vicinity. The wave function around
is asymptotically expressed in terms ofj and a certain length
d(d,j) as12

c;A exp~2ux2x0u/j! for ux2x0u.d. ~8!
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Here,x andx0 indicate, respectively, the position of electro
and defect in a granule.

On the other hand, there is another typical length in o
system, that is, the size of those granules from the viewp
of a quantum mechanical study. We denote the average
dius of the granules byR, which need not be identified com
pletely with that estimated from structural studies. Then
have two cases~a! R,j and ~b! R.j as seen in Fig. 1.

When the average radiusR of granules is smaller than
coherent lengthj ~i.e., R,j), the electron in a granule feel
the boundary of the granule. In the classical picture, its m
tion in a box~granule! with irregular-shape boundary is cha
otic. Thus, in the quantum mechanical picture, its ene
level should obey the random matrix theory. In other wor
for the j.R case,D level(EG) can be expressed in terms o
the Wigner distributionD level

Wigner(EG):2–4

D level
Wigner~EG!dEG52~EG/a2!exp~2EG

2 /a2!dEG. ~9!

In such a case, from Eq.~7! the total conductivitysWigner(T)
is given by

sWigner~T!5s0
(0)E dEGD level

Wigner~EG!exp~2EG/kBT!

5s0
(0)F12Ap

a

2kBT
expS a

2kBTD 2

erfcS a

2kBTD G .
~10!

Herea is given by

a;EF /Ni;
EF

n0~4pR3/3!
, ~11!

whereEF is the Fermi energy andn0 is the number of elec-
trons per unit volume. For typical values,9 R53 nm, EF
50.0053 eV, andn05331024 m23, we have

a5181 K515.6 meV. ~12!

FIG. 1. Average radius of granulesR and that of coherent
lengthsj as characteristic lengths in the system:~a! is the case for
j.R and~b! is that forj,R. In the~a! case, the electron feels th
boundary of granule and the energy levels obey the Wigner di
bution. In the~b! case, the electron is localized around a defect, a
in the conduction, it also hops among these localized states of g
ules.
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We have assumed that the granule is a filled ball for the s
of simplicity. This result is in good agreement with the e
perimental results of Kuriyama5 as we showed in Ref. 1.

Next we consider the case forR.j. In this case, the
electroncannotfeel the whole boundary of the granule; ne
ther can it know the global shape of the granule. Hence
kinematic behavior isnot chaotic. Accordingly the energy
interval of the granule is expressed in terms of the Pois
distribution2–4

D level
Poisson~EG!dEG5

1

g~j!
exp@2EG/g~j!#dEG, ~13!

and does not obey the Wigner distribution at all in this ca
Here,g is given by

g~j!;EF /Ni;
EF

n0~4pj3/3!
. ~14!

Using Eq.~13! along with Eq.~14!, the total conductivity~7!
is then given by

sPoisson~T!5s0
(0)E dEGD level

Poisson~EG!exp~2EG/kBT!

5s0
(0) kBT

kBT1g~j!
. ~15!

The plots forsWigner(T) andsPoisson(T) are shown in Fig.
2, which are parametrized byR and j, respectively. Both
behave in a similar manner. Especially, whenR and j are
greater than 10 nm, both cases coincide with each o
even quantitatively. However, for a smallR and j, their
shape is different. As we showed in Ref. 1, the experime
results agree well with the case for the use of the Wig
distribution, i.e.,sWigner for a small radiusR(,10 nm).
Thus for a small radius case, we assert that the conduc
mechanism there is based upon the chaotic process.

On the other hand, forR,j.10 nm, we cannot distin-
guish between them; nor can we decide their conduc
mechanism. We cannot discriminate between the conduc
mechanisms. It should, however, be emphasized that t

FIG. 2. The temperature dependence of normalized conduct
for sWigner and sPoisson. Thin lines correspond to the curves fo
sPoissonand thick ones are those forsWigner. They are parametrized
by j or R, respectively.j andR are taken for 2 nm, 4 nm, 6 nm, an
10 nm.
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appears an apparentmetal-insulator transition in both
mechanisms. For largeR or j, the conductivity is finiteeven
at very low temperatures, although the conductivity in bo
cases vanishes at zero temperature. We call this region ‘‘
tallic region.’’

As we will compare our model with the experimental r
sults of Kuriyama, we will further add an assumption that t
number of paths weakly depends upon temperature. Then we
can writes0(T) as

s0~T!5s0
(0)~11eT!, ~16!

wheres0
(0) ande are constants.

Since there isno difference betweensWigner and sPoisson

for large R and j, we will consider onlysWigner with the
above new assumption. In other words, we will consider

se
Wigner~T!5s0~T!E dEGD level

Wigner~EG!exp~2EG/kBT!.

~17!

It should be noted thats0(T) is given by Eq.~16!.
Corresponding to Figs. 1 and 4 in Ref. 5, we can trace

TDC parametrized by the size of the granule shown in Fig
For the experimental results of Kuriyama5 on the TDC of the
non-heat-treated~AS! ACF’s, we substituteR52.45 nm. For
that of THT5850 °C, R corresponds to 4.00 nm, for that o
THT51000 °C, R corresponds to 5.4 nm, and for that
THT51200 °C, R corresponds to 30.0 nm. Further we ha
adoptede51/1500 as it produces the best fit. We can th
see from Fig. 2 that the behavior of the curves plotted
appropriately normalizeds(T) vs T is also in good agree
ment with all the experimental results of Kuriyama
s(T)/s(250 K) ~cf. Figs. 1 and 4 in Ref. 5!.

As we have shown above, our theoretical model rep
duces the experimental results of the TDC for disorde
carbons very well, including the ‘‘metal-insulator trans
tion.’’

ty

FIG. 3. The temperature dependence of normalized conduc
ity. The dotted points show the experimental results of the temp
ture dependence on normalized conductivitys(T)/s(250 K) for
as-prepared~AS! and heat-treated ACF’s~Fig. 1 in Ref. 5!. Fits of
these points are given by curves, whose fitting parametersR ande
in Eq. ~17! areR52.45 nm, 4.00 nm, 5.40 nm, 30.0 nm, ande21

51.53103 K21.
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From the viewpoint of quantum chaos theory, it is impo
tant that we determine which distribution~Wigner or Pois-
son! governs the system, i.e., whether the system is cha
or not.2,3 In the case of small granules, our theory indicat
that the system should obey the chaotic law: when the a
vation energy associated with the conductivity is govern
by the Wigner distribution, the conductivity formula can r
produce the experimental results of the small granulesR
,10 nm. We could not discriminate whether the system
the ‘‘metallic’’ region is chaotic or not.

Even though we could not identify the conduction mech
nism of the ‘‘metallic’’ regime within the meaning of chao
theory, we showed that the apparent metal-insulator tra
tion occurs and the proposed formula reproduces the exp
mental results not only qualitatively but also quantitative
within our theoretical framework proposed in Ref. 1. In oth
words, our model is consistent from the ‘‘insulator’’ regim
pa
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~i.e., small granule radius! to the ‘‘metallic’’ regime ~the
large radius caseR.10 nm). Accordingly we believe tha
this finding is very important from the viewpoint of furth
studies of disordered system.

Finally we should comment on the metal-insulator tran
tion: although in our theory the conductivity vanishes at z
temperature, the conductivity for a certain case such asR or
j;30 nm is finite even at very low temperatures. This
plies that at nonzero temperature we are in the ‘‘meta
regime.’’ Our results mean that there exists a certain clas
the phenomena resembling ‘‘metal-insulator transition
which arenot actually metal-insulator transitions but are a
parent ones as in our model. It is not easy to determine
nature by means of experiments because we cannot
zero temperature. It is hoped that our theory will enhance
further study of the disordered system and metal-insul
transition and facilitate future experiments.
d
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