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Fresnel coefficients at an interface with a lamellar composite material

O. Acher, A. L. Adenot, and F. Duverger
CEA Le Ripault, B.P. 16, F-37260 Monts, France

~Received 4 August 1999; revised manuscript received 7 February 2000!

Different effective-medium theories~EMT’s! are used to describe the high-frequency and optical properties
of composite materials. However, these theories reveal not only differences in the evaluation of the effective
permeability and permittivity, but also in their definitions. Rytov gave definitions of the effective permeability
and permittivity that are clearly incompatible with the extended Bruggeman definitions when the skin effect
occurs. An analysis of the exactly solvable case of a lamellar composite is performed using both approaches.
Since most experimental determinations of the permeability and permittivity of composites rely on reflection-
transmission measurements, it is of foremost importance to determine which definitions of the permeability and
permittivity should be used to express the Fresnel coefficients under the conventional form. For that purpose,
we derive the reflection and transmission coefficients at an interface between a composite material and the air,
without any effective-medium hypothesis for the composite. This derivation is performed on a periodic com-
posite containing conducting inclusions separated by a dielectric plane. We point out that in the interface
region, evanescent modes are present and cannot be described by an effective-medium approach. We infer the
proper definitions of the permeability and the permittivity of a composite from the expression of the Fresnel
coefficients and from the expression of the refractive index of the propagative mode. We show that the
extended Bruggeman definitions are basically correct, but that small correction terms due to the modes at the
interface should be taken into account in some cases. A numerical example is given to show these interface
effects. An experimental result is also presented. It illustrates that the permeability determined from reflection-
transmission measurement disagrees with the definitions given by Rytov but agrees with our definitions.
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I. INTRODUCTION

A large effort has been dedicated to the investigation
inhomogeneous materials, in particular in terms of optica
microwave properties. Effective-medium Theories~EMT’s!
have been extensively used to describe composite mate
with an effective permittivity and permeability.1–7 The defi-
nitions of the effective quantities are generally given witho
justification and act as the starting point of the calculation
these quantities as a function of the permittivity and perm
ability of the constituents, and of the composite topolo
However, different definitions of the effective permeabili
and permittivity are found. In the case of metal-dielect
mixtures with characteristic dimensions of the inclusio
smaller than the wavelength in the effective medium but w
conductor characteristic dimensions that are not small c
pared to the penetration depth in the conductor, it has b
pointed out that the different sets of definitions could yie
significantly different predictions.8,9 In particular, the differ-
ent definitions lead to an effective permeability for a co
posite with no magnetic constituent that may be either eq
to unity or significantly lower. Moreover, if much attentio
has been paid to the way of obtaining precise computat
of the effective permeability and permittivity o
composites6,10–12 and of deriving bounds,3,13–15 little atten-
tion has been paid to establish that these quantities w
yield the proper reflection and transmission coefficients.
particular, to our view it has not been established that th
effective quantities could be used to compute the Fres
coefficients16 of a wave incoming on the composite mater
except in a particular case treated by Pottel.17 However, it is
of the foremost importance to establish which quantit
PRB 620163-1829/2000/62~20!/13748~9!/$15.00
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should be used to account for the Fresnel coefficients and
refractive index of the effective medium, since most expe
mental results are based on reflection and/or transmis
measurements.4–6,8,12,18 Fresnel coefficients have been d
rived for rough surfaces,19 but not to our knowledge for
semi-infinite composites with conducting inclusions.

The paper is organized as follows. In Sec. II, we descr
a particular topology in which the propagation of an elect
magnetic wave inside the infinite composite can be
pressed analytically. We recall the definitions proposed
Rytov for the effective permeability and permittivity. W
show that this topology can also be described in the fram
the extended Bruggeman theory, which is equivalent to
dynamic Maxwell-Garnett approach9 in this particular case.
We point out that this approach is based on different defi
tions of the effective properties. In Sec. III, we consider t
more general case of a periodic composite. In addition,
introduce an interface between the composite and the air.
derive the expression of the Fresnel coefficients for a w
incident on the interface as a function of the fields in t
composite far from the interface. This derivation takes in
account the possible presence of evanescent surface m
very near the interface that cannot be described by
effective-medium approach. A formal identification with th
conventional expressions of the Fresnel coefficients and
the refractive index leads to our definitions for the effecti
permeability and permittivity. It is also shown that the
definitions can be used to calculate the Fresnel coefficie
on slabs of composites and multilayers. Numerical and
perimental results are presented in Sec. IV. Section V
cusses our results and compares our approach with prev
attempts to give precise definitions of the effective perm
13 748 ©2000 The American Physical Society
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ability and permittivity, and Sec. VI concludes this paper

II. PROPAGATION OF AN ELECTROMAGNETIC WAVE
IN THE INFINITE LAMELLAR

INSULATING ÕMETALLIC COMPOSITE
MEDIUM

We first investigate a very simple topology: the infini
periodic alternation of dielectric and metallic sheets. Wa
propagation in layered media has been studied extensive20

Let us consider an electromagnetic plane wave propaga
in a finely stratified medium composed of layers of a meta
material 1 of thicknessa alternated with layers of a dielectri
material 2 of thicknessb. The complex permittivity and per
meability are noted («1 ,m1) for material 1 and («2 ,m2) for
material 2. The microwave magnetic fieldH and the propa-
gation vector are parallel to the lamination plane, as sketc
on Fig. 1. In the following,E is the microwave electric field
n is the refractive index of the medium deduced from t
velocity of the wave in the medium, andk05v/c the wave
vector in vacuum at the wavelengthl0 . x is taken as the axis
of propagation andz as the normal to the metal and dielectr
planes. The metal volume fraction is notedq5a/(a1b).
The permittivity of the metal is given by«152 j s/(v«0).
For a conventional amorphous ferromagnetic layer withs
57.13105 S m21, this yields«152 j 31.33107 at 1 GHz.
The thicknessa is assumed to be small compared withl0 ,
but due to the high permittivity of the metallic material 1,
will not be taken necessarily as small compared to the p
etration depth in the metal, which is of the order
l0 /u(«1m1)u1/2. The dielectric material 2 has a thickness ob
small enough so thatb!l0 /u(«2m2)u1/2. The periodd5a
1b is supposed to be small compared to the wavelengt
the propagative mode, that isd!l0 /unu. For the other eigen-
polarization~E parallel to the layers! the material behaves a
a metallic reflector.

A. Description using the Rytov approach

With the convention for the fields in exp(2jk0 nx1jvt),
the Maxwell equations lead to

FIG. 1. Sketch of an infinite lamellar composite, consisting o
periodic alternation along thez axis of metallic~1! and insulating
~2! sheets of thicknessa andb. The wave propagates in the mediu
along thex direction with theH field parallel to they axis.
e
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]Hy

]z
52 j v«0«Ex ,

2 jk0nHy5 j v«0«Ez , ~1!

]Ex

]z
1 jk0nEz52 j vm0mHy .

Once the equations are solved, the conditions of conti
ity and periodicity at the boundaries are applied. As sho
by Rytov,10 the dispersion relation is expressed by the f
lowing transcendental equations:

a1

«1
tanS a1a

2 D52
a2

«2
tanS a2b

2 D , ~2!

or

«1

a1
tanS a1a

2 D52
«2

a2
tanS a2b

2 D ~3!

wherea15k0A«1m12n2 anda25k0A«2m22n2.
Equation~2! has a unique solution with a low modulu

labelednl 50 , given by

a15k0An1
22nl 50

2'k0n1 , tan~a2b/2!'a2b/2. ~4!

High-order modesnl .0 exist for unl u.(l0 /b). They are
given by

nl .0' j l
l0

b
. ~5!

A similar study of Eq.~3! shows that it has no solution
with a small modulus. It yields solutionsnm with unmu
.(l0 /a), and this set of modes is expressed by

nm' jm
l0

a
. ~6!

As a consequence, the only propagative solution has an
dex n5nl 50 . Evanescent modes are described by Eqs.~5!
and ~6! and their propagation length is of the order of t
periodd or shorter.

In his paper, Rytov mentioned the existence of the h
order modes, but he focused only on the propagative mo
He defined the effective properties«̄ andm̄ of the medium as
n5A«̄m̄ and ^E&/^H&5Am0m̄/Ae0ē, where the angular
brackets indicate the average of the field over the period
for the propagative mode.

It is easy to show that these definitions are equivalent

^B&5m0m̄^H&, ~7!

^D&5«0«̄^E&. ~8!

Since the thicknessb of the dielectric is small compare
to the wavelength, and usingu«1u@u«2u, one has

«̄5«2S q

12q
A11D , ~9!
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m̄5
qAm11~12q!m2

qA1~12q!
, ~10!

n25 «̄m̄5«2S qA

12q
m11m2D , ~11!

where

A5
tan~k0A«1m1a/2!

k0A«1m1a/2
~12!

describes the skin effect in the metal.
If the thicknessa of the metal is small enough so that n

skin effect occurs at the frequency under investigation, t
A'1. The expression form̄ reduces then tom̄5qm11(1
2q)m2 , and«̄5«2 /(12q), which corresponds to the Wie
ner relations. Now, let us examine the same topology us
the formalism of EMT’s extended to finite frequencies.

B. Description using the extended effective-medium theory

EMT’s have been extensively studied theoretically a
experimentally1–7 and extended for composites with metal
inclusions of various shapes.8,11,21,22We briefly remind the
reader below the derivation of the effective permeability a
permittivity for the particular case of a lamellar composite.
first step in a widespread approach of EMT’s is to expr
the polarizability of a particle in a surrounding medium,
order to describe the interactions in the effective mediu
Depending on the effective-medium theory, the nature of
surrounding medium changes: it can be the matrix, for
Maxwell-Garnett approach, or the effective medium, for t
Bruggeman approach. For the particular case of a lame
topology, it can be shown that the different effective-mediu
approaches lead to the same expressions of the effective
rameters. Following the Bruggeman approach for a bin
composite made of a material 1 and a material 2, a sim
way to compute the effective characteristics is to calcu
the polarizability of particles 1 and 2 in the effective m
dium, and then to write that the effective medium is hom
geneous. For an ellipsoid of materiali, of permeabilitym i
and of polarizabilitypi surrounded by the effective medium
of permeability m̃, polarized by an external fieldH0 , the
expression of the polarizability is given by

pi5
m i2m̃

m̃1L~m i2m̃ !
,

whereL is the geometric depolarizing coefficient:L50 for
an infinite plane polarized along its infinite directions a
L51 if the polarizing field is perpendicular to the plane.

According to the effective-medium approach,

qp11~12q!p250, ~13!

whereq is the volume fraction of material 1~metal!. Apply-
ing this method to the topology described previously~see
Fig. 1!, the particles are infinite sheets of metal 1 or diele
tric 2, and the first step is to evaluate the polarizability of
infinite sheet of metal. The expression of the magnetic
larizability in presence of eddy currents is required to exte
the Bruggeman EMT. For an infinite metallic plane polariz
n
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along its infinite direction byH0 , the polarizabilityp1 can be
related tô B1& the average of the magnetic induction with
the plane by

p15
^B1&2m0m̃H0

m0m̃H0
~14!

because of the continuity ofH0 . One may have^B1&
Þm0m1H0 because of the eddy currents. In the planar c
ducting particle of widtha52w, the internal fieldH1 is
described by

DH11k1
2H150, ~15!

wherek15vA«1m1/c. Using the continuity ofH ~parallel to
the y axis! at z52w andz51w, one gets

H1~z!5H0

cos~kz!

cos~kw!
. ~16!

Then, the averagêB1& of the magnetic induction within the
particle is

^B1&5
1

2w E
2w

1w

m0m1H1~z!dz5Am0m1H0 , ~17!

where the coefficientA is given by Eq.~12! and accounts for
the eddy-current effects. The magnetic polarizability of t
planar conducting particle in the effective medium of perm
ability m̃ for a polarizing field parallel to its plane is

p15~Am12m̃ !/m̃ ~18a!

for the dielectric sheet,A51, and

p25~m22m̃ !/m̃. ~18b!

Then, the application of Eq.~13! leads to

m̃5qAm11~12q!m2 . ~19!

The average ofB over particles 1 and 2 is related to th
external fieldH0 by

^B&5@qAm11~12q!m2#m0H0 . ~20!

As a conclusion, the effective-medium permeability defin
by the extended Bruggeman theory is consistent with

^B&5m0m̃H0 . ~21!

The same method has to be applied to determine the
fective permittivity in presence of eddy currents with th
polarizing fieldE0 perpendicular to the plane. Using the co
tinuity of D instead ofH and computing the average ofE
instead ofB in the metallic particle, the electric polarizabilit
of the metallic planar particle 1 perpendicular to the polar
ing field in the effective medium of permittivity«̃ is

g15
«1 /A2 «̃

«1 /A
. ~22a!

For a planar dielectric particle

g25
«22 «̃

«2
. ~22b!
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The expression for«̃ can be derived from the above equ
tions, and shown to be consistent with

D05«0«̃^E&, ~23!

whereD0 is the electric displacement field~along z! in the
dielectric plane. Using the assumptionu«1u@u«2u, the effec-
tive permittivity can be expressed as

«̃5
«2

12q
. ~24!

The following expression of the effective index given b
ñ5A«̃m̃ follows from Eqs.~19! and ~24!:

ñ25«2S qA

12q
m11m2D . ~25!

An asymmetry between the expressions of«̃ andm̃ can be
noted in Eqs.~21! and ~23!. This is associated with the po
larization of the wave. The magnetic field is parallel to t
conducting planes, whereas the incoming electric field is n
mal to the conducting planes.

C. Comparison between the two models

It is clear that for the topology under investigation, t
Bruggeman approach leads to a set of definitions for
permittivity and the permeability@Eqs.~21! and~23!# that is
different from the set of definitions@Eqs. ~7! and ~8!# asso-
ciated with the Rytov approach. The corresponding value
the permeability and the permittivity, given by Eqs.~19! and
~24! in the former case, and by Eqs.~9! and~10! in the latter
case, are different if the skin effect is not negligible, that
if A differs from unity. Since these values have been deri
using an exact approach for the lamellar composite un
investigation, the differences should not be attributed
some difficulties in carrying on precise evaluations. It
clear that at least one approach will yield incorrect Fres
coefficients if the effective quantities are used to compute
reflection and transmission coefficients. However, both
proaches yield the same value for the refractive index. I
straightforward from Eqs.~11! and ~25! that ñ5n.

This clearly shows the need to find a correct definition
the permeability and permittivity of composites that yield n
only the proper refractive index, but also the proper Fres
coefficients. This approach is presented below.

III. FRESNEL COEFFICIENTS AT THE INTERFACE
BETWEEN A PERIODIC COMPOSITE TOPOLOGY

AND AIR

Now, we will derive the expressions of the reflection a
transmission coefficients at the interface between a com
ite medium and air as a function of the fields inside t
composite. The difficulty is that there are generally ma
modes at the vicinity of the interface.17 These modes are
essential to ensure the continuity of the fields through
interface. For example, it can be easily shown in the ab
example of a finely stratified medium that the propagat
mode does not meet the continuity requirements at an in
face between such a composite and air. It means that
high-order modes are excited. The key idea in the follow
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will be to relate the reflected and transmitted waves to
fields far enough from the interface, so that the high-or
modes have vanished and only the fundamental mode
mains. This will be done under some assumptions, and th
may be cases where the reflection and transmission pro
ties should be expressed as a function of the evanes
modes as well as of the propagative mode.

The expression of the refractive index will also be esta
lished. Then, we will postulate that the effective permeabi
and permittivity are defined as the quantities that yield
proper values of the Fresnel coefficients and of the refrac
index, using the conventional form of their expressions
an homogeneous medium. This is relevant, to our view,
cause it is mainly the reflection and transmission coefficie
that are available through experimentation.

Some assumptions should be made, though we are ab
deal with a far more general case than the topology inve
gated by Rytov. The topology under investigation is sketch
on Fig. 2.

~i! The composite is periodic, with a perioddx alongx, dy
alongy, anddz alongz. These periods are much smaller th
the wavelengthl0 in the vacuum. One of its constituents is
dielectric material. The permittivity and the permeability
the dielectric material are noted«2 andm2 , anddzuA«2m2u
!l0 . It may contain metallic elements with possibly e
tremely high permittivity, and with thickness larger than t
skin depth.

~ii ! The incident plane wave is linearly polarized, with th
E field along z, and H field along y. Only one wavelike
mode alongx propagates deep inside the composite for
incident wave vector alongx. In particular, this means tha
the incident polarization is an eigenpolarization. This mo
can be writtenE(x,y,z,t)5E(x,y,z)exp(jvt2jk0 nx), and
H(x,y,z,t)5H(x,y,z)exp(jvt2jk0 nx), with E(x,y,z) and
H(x,y,z) having the same periodicity as the composite.k0 is
the wave vector in the air, andn is the refractive index of the
propagative mode.

~iii ! High-order modes may be present at the interface,
they vanish at distancesl x from the interface much smalle
than l0 /unu. It means that they are evanescent modes.
sides, the permeability of all constituents is sufficien

FIG. 2. Sketch of a semi-infinite periodic composite. The in
gration contours in the vicinity of the interface are represented.
plane labeledD contains no metallic element.
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small, so thatum i( l x1dx)u!l0 ( i 51,2). The permittivity of
the dielectric material 2 is also sufficiently small, so th
u«2( l x1dx)u!l0 .

~iv! The composite contains a planeD parallel to thexy
plane, enclosing only dielectric material with limited perm
tivity, and in particular no conducting element. This does
mean that the case is restricted to the lamellar compos
described in Sec. II, as can be shown on Fig. 2.

The incident field is labeledEie
j (vt2k0x). Because of the

periodicity ~i! along they and z axes, the amplitude of the
reflected wave can be expressed as a series of Fourier m
by

Er5 (
l 52`

1`

(
m52`

1`

Er
l ,me2 j ~2p l /dy!ye2 j ~2pm/dz!zējkl ,mx

~26!

associated with the wave vector

kl ,m
2 5k0

22S l
2p

dy
D 2

2S m
2p

dz
D 2

. ~27!

According to assumption~i!, there is no diffracted ray
Sufficiently far from the interface, the reflected wave is
plane wave of amplitudê̂ Er

z&&, where^^ && indicates an av-
erage alongy and z over a periodic cell at the interface (x
50). The reflection coefficient is then

R5
^^Er

z&&
Ei

. ~28!

It is convenient to introduce the total fieldsE0 andH0 at
the interface. The continuity of the tangential component
written

Ei1Er
z5E0

z , Hi2Hr
y5H0

y .

Since the quantitiesEr
z , E0

z , Hr
y , andH0

y vary spatially over
a period, it is useful to average these relations over a t
dimensional periodic cell in the plane of the interface. Th

R5
Z̆2Z0

Z̆1Z0

, ~29!

where

Z̆5
^^E0

z&&

^^H0
y&&

~30!

and

Z05
Ei

Hi
5Am0

«0

is the impedance of the air.
In the same way, we can define the transmission coe

cient

T5
^^E0

z&&
Ei

~31!

and express it by
t

t
es

des

is

o-
n

fi-

T5
2Z̆

Z̆1Z0

. ~32!

For an homogeneous medium, the quantityE0
z/H0

y is its
impedanceZ5Z0Am/«. Equations~29! and~32! are then the
conventional Fresnel relations at an interface. In contras
the case of a composite with metallic particles the evanes
modes contribute to the fields at the interface. Therefore,
have to find the expressions for^^E0

z&&/^^H0
y&& and for the

refractive indexn in the medium to define the effective pe
mittivity «̆ and permeabilitym̆ consistent with

Z̆5
^^E0

z&&

^^H0
y&&

5Z0Am̆

«̆
~33!

and

n5Am̆«̆. ~34!

The choice of taking Eqs.~33! and~34! as the definitions
of the effective permeability and permittivity ensures that t
reflection and transmission coefficients at normal incide
can be computed from these quantities, using the conv
tional Fresnel relations. This holds not only for the reflecti
and transmission at an interface, but also for a multila
containing composite materials, since it is clear that
Fresnel coefficients of a multilayer can be expressed a
function of the Fresnel coefficients at the interfaces and
the refractive index.23

The first task is to expressZ̆ as a function of the fields
inside the composite, sufficiently far from the interface
that only the propagative mode remains. For this purpose
apply the Maxwell laws written in the integral formalism o
integration contours.

A closed integration contourC1 in the xz plane is
sketched on Fig. 2. It starts on the interface between air
the composite. It extends overdz alongz, and along a small
distancel x alongx, far enough from the interface so that a
the evanescent modes have damped. According to assu
tion ~iii !, only the fundamental mode propagates belowl x .
The relation between the average ofE on contourC1 and the
average ofB on the surfaceS1 defined byC1 is found by
using the Maxwell-Faraday law

E
C1

E•dl5tS1

dB

]t
•dS. ~35!

Since this can be written at anyy, it follows that

^^Ec
z&&2^^E0

z&&52 j 2p
l x

l0
Z0^^mHy&& l x

. ~36!

Ec
z is the z component of the electric field atl x inside the

composite, where the wave is considered as single m
Since l x is very small in comparison withl0 , and the per-
meability of all constituents is limited according to assum
tion ~iii !, it is clear that the right-hand side of the equation
small compared toZ0^^H0

y&&, and that a good approximatio
of the average alongy and z of the z component of the
electric field at the interface iŝ̂ E0

z&&'^^Ec
z&&. Since this is

true at anyx betweenl x and l x1dx since l x1dx^^l0 , one
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also haŝ ^E0
z&&'^Ec

z&V , where^Ec
z&V is the volume average

of the z component of the electric field over a period in t
composite, far enough from the interface so that only
propagation mode is present. This quantity can be comp
from the propagation properties in the infinite compos
without taking into account any interface effect. In the e
pression ofZ̆ @Eq. ~30!# the numerator can be approximate
as ^Ec

z&V .
A second integration contourC2 is defined in theD plane,

containing only dielectric material. It starts at a distancel air
above the surface much smaller than the wavelength
large enough so that the evanescent modes have vani
and H5^^H0&&. It has a lengthdy along y, and drops at a
distance l x under the surface. Then, by applying th
Maxwell-Ampère law

E
C2

H•dl5tS2

]«E

]t
•dS, ~37!

we get

^Hy&dy
2^^H0&&5 j 2p

~ l x1 l air!

Z0l0
«2^^E

z&dy
& l x1 l air

, ~38!

where^ &dy
corresponds to an average in theD plane over a

period alongy at x5 l x . Assumptions~i! and ~iii ! indicate
that l x1 l air is very small in comparison withl0 and that«2
is not large. As a consequence, the second term is small
can be neglected. Then̂Hy&dy

'^^H0&&. This holds also at

any x between l x and l x1dx . As a consequence,̂Hy&D
'^^H0&&, where^Hy&D is the average ofHy in the D plane
over a two-dimensional periodic cell of dimension (dx ,dy).
This average is made in a region far enough from the in
face so that it can be evaluated from the fields correspon
to the single propagating mode in the composite. It should
mentioned that this does not hold if the contourC2 encloses
metallic elements. Since the tangential component of
electric field is continuous, the electric field at the interfa
between a metallic element of the composite and the air m
yield very large«1Ez products, and the right-hand side
Eq. ~38! may no longer be negligible. It should be remem
bered that for metals«1 can be of the order of 107 or more in
the microwave range, and the screening by surface curr
can develop over a thickness much smaller than the
depth.24

Neglecting the right-hand side of Eqs.~36! and~38! leads
to the following expression of the impedance:

Z̆'
^Ec

z&V

^Hy&D
. ~39!

Now, it is necessary to express the refractive index a
function of the fields inside the composite, in the regi
where only the fundamental mode propagates.

The Maxwell-Ampere equation is written in theD plane
at a sufficiently large distance from the interface so that o
the propagative mode remains, with fields of the form giv
in assumption~ii !. Integration in theD plane on a two-
dimensional unit cell alongx andy yields

n^Hy&D52c^Dz&D , ~40!
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where ^Dz&D is the average of the component along thez
axis of the displacement field in the planeD filled with di-
electric material.

Similarly, the Maxwell-Faraday equation is written in th
composite medium for the propagative mode at a large
tance from the interface. Integrating over the volume o
three-dimensional unit cell and using the fields given in
sumption~ii ! yield

n^Ec
z&V52c^Bc

y&V . ~41!

Combining Eqs.~39!–~41!, one has

«0m0n25
^Dz&D^Bc

y&V

^Ec
z&V^Hy&D

~42!

and

Z̆25
^Bc

y&V^Ec
z&V

^Hy&D^Dz&D
. ~43!

It is then straightforward to deduce the expression of
effective permeability and permittivity:

m0m̆5
^Bc

y&V

^Hy&D
, ~44!

«0«̆5
^Dz&D

^Ec
z&V

. ~45!

As a result, it should be emphasized that the definitio
for the effective permeability and permittivity given by th
Rytov model in Eqs.~7! and ~8! do not yield the Fresne
coefficients. In contrast, Eqs.~21! and ~23! derived for a
particular composite topology from the extended Bruggem
model can be identified with Eqs.~44! and ~45! that are
obtained in a more general case. They are consistent with
Fresnel coefficients. It is straightforward to establish that
expression of the reflection or transmission coefficients fo
multilayer system comprising composite materials can
computed from the conventional Fresnel formulas for mu
layers, using definitions~33! and ~34! for the permittivity
and permeability of the composite. This is because th
definitions yield both the reflection and transmission coe
cients at the interface and the refractive index.

The effective permeability should be therefore defined
the ratio of the average ofB over the volume of the compos
ite to the averageH field in the dielectric planeD ~and not to
the average of theH field in the whole composite as Ryto
did!. The effective permittivity should be defined as the ra
of the component of the averageD field alongz in the di-
electric plane to the average ofE along z over the whole
composite. These results have been obtained taking into
count the presence of high-order modes at the interface o
semi-infinite composite, and it is remarkable that the expr
sions depend only on the fields for the fundamental mo
propagating in the composite.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

Our theoretical approach has been compared with b
numerical and experimental results.



ti-
in

in
ch

an

at

ffi
a

d
on
b-
es
es

la
v
a

as

ter
en

rse
re-
ol-
r

e
and

for
own
m
al-
per-
he

le
een
-
is

ve

i-
oga-

tion

er
ured

ded
the

13 754 PRB 62O. ACHER, A. L. ADENOT, AND F. DUVERGER
A. Numerical results

A slab of lamellar material sketched in Fig. 3 is inves
gated by a finite-element method. It consists of alternat
metallic sheets of conductivity 1.13107 S m21 and thickness
a520mm and dielectric sheets of permittivity«253 and
thicknessb510mm. At F0510 GHz, the ratio of the thick-
nessa of the metal sheet to the skin depthd is a/d513.3,
and the skin effect is large. In contrast, the periodd5a1b is
smaller than the wavelength in air by a factor of 103.

The reflection coefficient at 10 GHz was computed us
the Maxwell equations on finite elements with mode mat
ing and a periodicity condition on the boundaries.25 It was
also evaluated from the expressions of the permeability
the permittivity given by Rytov@Eqs. ~9! and ~10!# and by
the extended Bruggeman approach@Eqs.~19! and~24!#. The
reflection coefficientR of a wave under normal incidence
frequencyf on a slab of material of thicknesst, permittivity
«, and permeabilitym in air is given by

R5
Zr21

Zr11
~46!

with

Zr5Am

«
tanhFarctanhSA«

m D 1 j
v

c
A«mtG . ~47!

Figure 4 compares the modulus of the reflection coe
cient expressed in decibels obtained using the different
proaches as a function of the ratiot/d of the slab. Fort
greater than 50mm, the numerical approach is in very goo
agreement with the reflection calculated using our definiti
of the effective permeability and permittivity. The result o
tained using Rytov definitions of the effective quantiti
clearly departs from the numerical approach at any thickn
When t decreases and is of the order ofd or smaller, the
reflection coefficient derived from the Bruggeman formu
differs from the numerical estimates. This is because the e
nescent modes are no longer negligible, and the right-h
side of Eqs.~36! and ~38! should no longer be neglected.

FIG. 3. Sketch of the periodic cell for numerical simulation.
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B. Experimental results

The effective permeability of a laminated composite w
measured using an APC7 coaxial line.26 35-mm-thick copper
ribbons have been glued with epoxy resin on 15-mm-thick
polymer ribbons and wound into a torus with inner diame
3.04 mm, outer diameter 7 mm, and height 3 mm. Wh
illuminated in a coaxial line by the fundamental transve
electric and magnetic mode, this material topology is rep
sentative of the lamellar topology of Figs. 1 and 3. The v
ume fractionq of metal is 0.4, and the conductivity of coppe
is 5.83107 S m21. The effective permeability of the sampl
was deduced from the measured complex reflection
transmission coefficients using the same procedures as
homogeneous materials. The experimental values are sh
in Fig. 5, along with the effective permeability obtained fro
the Bruggeman and the Rytov definitions. Experimental v
ues agree with the Bruggeman definition, whereas the
meability according to Rytov should remain unity over t
whole frequency range, which is clearly not the case.

V. DISCUSSION

We first discuss the validity of our results and possib
extensions. Then, we discuss other definitions that have b
proposed for the permeability and the permittivity of com
posites. We emphasize that the form of our definitions
particularly appropriate for the evaluation of the effecti

FIG. 4. Modulus of the reflection coefficient on a slab of lam
nated metal/dielectric composite expressed in decibels vs the l
rithm of the ratio of the thicknesst to the periodd. Continuous line,
prediction using the Bruggeman approach; dashed line, predic
using the Rytov definitions; squares, numerical simulation.

FIG. 5. Real and imaginary permeability of a copper/polym
laminated composite. Squares and dots with errors bars, meas
values; thin and thick continuous lines, predicted by the exten
Bruggeman model; thin and thick dashed lines, predicted by
Rytov model.
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properties of a material using numerical calculations.
In contrast with previous approaches of EMT, we defin

the effective permeability and permittivity not as a starti
point of further calculations, but as convenient parameter
compute the reflection, transmission, and propagation p
erties for a composite. The definitions we have derived
confirmed by numerical and experimental results for a p
ticular composite topology. Since the detailed structure
the surface layer plays no role in the proof, it is clear th
adding a thin cap layer with metallic elements at the v
surface does not affect our approach, provided that the
face elements do not intersect theD plane, filled with the
dielectric. In this way, it is possible to extend our definitio
to lamellar materials with conducting bridges between so
planes.22 The presence of the dielectric planeD parallel toH
is clearly a key hypothesis in our approach, though it may
possible to extend our demonstration to a more wavy s
face. In Ref. 9, in which the optical and microwave prop
ties of a wire array are studied, this plane does not exis
the composite but an insulating surface can be defined
tween the metallic inclusions, and the effective permeabi
including the skin effect derived using an extended Maxw
Garnett approach yields the correct Fresnel coefficients. N
that if this assumption is invalid, for example, due to t
presence of a continuous strip of a few angstro¨ms of metal
along theE field at the surface, the magnitude of the r
flected and transmitted waves are related primarily to
properties of the surface layer and not to the properties of
bulk composite.24

In the absence of eddy-current effects, our definitions
equivalent to the Rytov definitions. In this case, the conti
ity of the component of the magnetic field parallel to t
incoming field H0 in the whole composite leads toH0
5^H&V5^H&D . With the same hypothesis, the Maxwe
Gauss equation leads to^D&V5^D&D . It is therefore incon-
sequential whether the volume average of the fields or
average in the dielectric constituent is computed, and all
definitions for the effective quantities are equivalent. A
though the absence of eddy current is not always explic
stated, in Ref. 21, for example, the use of the Rytov defi
tions is valid. The proof that they can be used to compute
Fresnel coefficients has been given by Pottel17 in the specific
case of a lamellar composite, and the present work exte
this proof to a more general case.

In the presence of a skin effect, it has long be
recognized8,27,28 that the application of the Rytov definitio
for the permeability would lead tom51 for a composite
made of nonmagnetic inclusions. Since this is clearly
supported by experimental evidence~mainly obtained from
reflection-transmission measurements!, very few papers use
the raw Rytov definitions, with some exceptions. In Ref. 1
the authors make the choice to define the effective permi
ity from the propagation constant of a wave in the mater
taking the effective permeability of the composite as un
From the definitionk̄(v)52pA«̄(v)/l0 , they find an effec-
tive permittivity that is suitable to derive the index of th
composite. It yields the velocity and the attenuation length
a wave in the composite material, but it should not be use
compute the reflection and transmission coefficients at
interfaces. It should also be pointed out that the Rytov d
nitions yield the proper refractive index. Equation~40! also
d
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holds for a volume average over a period, and its prod
with Eq. ~41! proves that the square of the index is the pro
uct of the permeability and the permittivity as defined
Rytov.

We have shown that the extended Bruggeman appro
leads to the proper definitions in the case of a lamellar co
posite. In a related approach, it has been pointed out8 in the
case of spherical conductive particles dispersed in a die
tric matrix that the Rytov definitions do not hold. Other a
tempts have been made to give rigorous definitions of
permeability and permittivity in the presence of ed
currents.27 It has been proposed to renormalize in the Ryt
definitions the field̂H& as^H&24p^MJ&, where^MJ& is the
average contribution of the eddy currents to the magn
moment. This approach has been justified by considering
average of Maxwell equations. It leads to the same exp
sion as the extended Bruggeman approach for the perme
ity of spherical conducting particles dispersed in an insu
ing matrix.8 However, we did not investigate in a gener
case whether this approach leads to definitions equivalen
ours.

In another work,28 the lack of clearly established defin
tions for the effective quantities in the case of composi
containing conductive constituents is emphasized. If the p
meability should be defined as the ratio of some average oB
to some average ofH, a key question is, how do the averag
differ to yield a permeability that may differ from unity fo
nonmagnetic composites? A proposition is made, based
the observation of the Maxwell-Ampe`re and the Maxwell-
Faraday laws under the integral form. The authors sugg
that B should be averaged over a surface, andH over its
contour. However, no clue is given where the contour sho
be drawn. No indication can be obtained of the use o
permeability defined on such aesthetic criteria. Indeed, w
dealing with composite materials with known inclusion t
pologies, the capabilities of the software used for solv
Maxwell equations in complex structures25 make the issue of
the definition of the effective quantities the main questio
The computation can be performed numerically, provid
that one knows what has to be computed. The form of
definitions is very convenient for this purpose, since the
sult can be evaluated from the solution of Maxwell equatio
in the structure. In contrast, the form given by Ref. 27 do
not allow a direct evaluation once the fields are known in
material.

A possibly puzzling aspect of our definitions is the asy
metry between the expressions of the permeability and
mittivity revealed by Eqs.~44! and ~45!. One might have
expected that the permittivity should be a ratio of a volum
average ofD to a surface average ofE, instead of Eq.~45!.
When one considers a lamellar composite such as the c
posite of Fig. 1, this asymmetry can be related to the fact
at the interfaces, the continuity of the tangential compon
of H and the normal component ofD play a similar role in
the determination of the effective quantities. In the case o
isotropic composite, the asymmetry between the magn
and electric quantities may be attributed to the fact that
medium may have a very large conductivity, whereas
permeability is limited, according to assumption~iii !. The
right-hand side of Eq.~38! can be neglected only if the con
tour C2 encloses only dielectric material, whereas the rig
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hand side of Eq.~36! can be neglected even though the co
tour C1 encloses both a dielectric and a magnetic conduc

VI. CONCLUSION

We pointed out that several definitions have been gi
for the effective permeability and permittivity of a compos
material. We mentioned two that are widely used in the
erature. We investigated the case of a laminated compo
and showed that the two sets of definitions yield differe
results for the reflection and transmission coefficients in
case where the skin effect occurs. We showed that this
not be attributed to an imperfect homogenization proced
as propagation in this particular composite topology is
actly solvable.

We derived the expression of the Fresnel coefficients fo
wave incident on a semi-infinite composite. Among seve
assumptions concerning the composite and the incom
wave, we made the hypothesis that evanescent modes
be present at the surface, but that only one mode wo
propagate deep inside the composite. Moreover, we s
posed that there was a plane of dielectric material in
pl

. G

v.
-
r.

n

-
ite
t
e
n-
e,
-

a
l
g
ay
ld
p-
e

composite, parallel to theH field and to the propagation
vector. Then, we showed that the reflection and transmis
coefficients could be written in conventional forms usi
proper definitions of the effective permeability and perm
tivity of the composite@Eqs.~44! and ~45!#. Our definitions
agree with the extended Bruggeman model definitions fo
lamellar composite and not with those proposed by Ryt
The validity of the description using an effective permeab
ity and permittivity has been outlined. In particular, for ve
thin plates of the composite, however, the effective perm
ability and permittivity according to our definitions may n
longer be used to compute the Fresnel coefficients. Thi
because evanescent modes propagate over distances th
not negligible compared to the plate thickness. It has b
checked experimentally and by numerical analysis that
thicker plates of composites, the Fresnel relations based
our definitions are correct. Since most experimental data
the permeability and permittivity of composite materials a
obtained from reflection and/or transmission measureme
we find it an important result to give definitions that a
consistent with the experimental data.
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