PHYSICAL REVIEW B VOLUME 62, NUMBER 20 15 NOVEMBER 2000-II

Fresnel coefficients at an interface with a lamellar composite material
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Different effective-medium theorig€EMT’s) are used to describe the high-frequency and optical properties
of composite materials. However, these theories reveal not only differences in the evaluation of the effective
permeability and permittivity, but also in their definitions. Rytov gave definitions of the effective permeability
and permittivity that are clearly incompatible with the extended Bruggeman definitions when the skin effect
occurs. An analysis of the exactly solvable case of a lamellar composite is performed using both approaches.
Since most experimental determinations of the permeability and permittivity of composites rely on reflection-
transmission measurements, it is of foremost importance to determine which definitions of the permeability and
permittivity should be used to express the Fresnel coefficients under the conventional form. For that purpose,
we derive the reflection and transmission coefficients at an interface between a composite material and the air,
without any effective-medium hypothesis for the composite. This derivation is performed on a periodic com-
posite containing conducting inclusions separated by a dielectric plane. We point out that in the interface
region, evanescent modes are present and cannot be described by an effective-medium approach. We infer the
proper definitions of the permeability and the permittivity of a composite from the expression of the Fresnel
coefficients and from the expression of the refractive index of the propagative mode. We show that the
extended Bruggeman definitions are basically correct, but that small correction terms due to the modes at the
interface should be taken into account in some cases. A numerical example is given to show these interface
effects. An experimental result is also presented. It illustrates that the permeability determined from reflection-
transmission measurement disagrees with the definitions given by Rytov but agrees with our definitions.

[. INTRODUCTION should be used to account for the Fresnel coefficients and the
refractive index of the effective medium, since most experi-
A large effort has been dedicated to the investigation oimental results are based on reflection and/or transmission
inhomogeneous materials, in particular in terms of optical omeasurements.81218 Fresnel coefficients have been de-
microwave properties. Effective-medium Theori@&MT’s) rived for rough surface¥ but not to our knowledge for
have been extensively used to describe composite materiademi-infinite composites with conducting inclusions.
with an effective permittivity and permeability” The defi- The paper is organized as follows. In Sec. Il, we describe
nitions of the effective quantities are generally given withouta particular topology in which the propagation of an electro-
justification and act as the starting point of the calculation ofmagnetic wave inside the infinite composite can be ex-
these quantities as a function of the permittivity and permepressed analytically. We recall the definitions proposed by
ability of the constituents, and of the composite topology.Rytov for the effective permeability and permittivity. We
However, different definitions of the effective permeability show that this topology can also be described in the frame of
and permittivity are found. In the case of metal-dielectricthe extended Bruggeman theory, which is equivalent to the
mixtures with characteristic dimensions of the inclusionsdynamic Maxwell-Garnett approatin this particular case.
smaller than the wavelength in the effective medium but withWe point out that this approach is based on different defini-
conductor characteristic dimensions that are not small contions of the effective properties. In Sec. Ill, we consider the
pared to the penetration depth in the conductor, it has beemore general case of a periodic composite. In addition, we
pointed out that the different sets of definitions could yieldintroduce an interface between the composite and the air. We
significantly different prediction$? In particular, the differ-  derive the expression of the Fresnel coefficients for a wave
ent definitions lead to an effective permeability for a com-incident on the interface as a function of the fields in the
posite with no magnetic constituent that may be either equatomposite far from the interface. This derivation takes into
to unity or significantly lower. Moreover, if much attention account the possible presence of evanescent surface modes
has been paid to the way of obtaining precise computationgery near the interface that cannot be described by an
of the effective permeability and permittivity of effective-medium approach. A formal identification with the
composite%$!°12and of deriving bound$*~*little atten-  conventional expressions of the Fresnel coefficients and of
tion has been paid to establish that these quantities woulthe refractive index leads to our definitions for the effective
yield the proper reflection and transmission coefficients. Irpermeability and permittivity. It is also shown that these
particular, to our view it has not been established that thesdefinitions can be used to calculate the Fresnel coefficients
effective quantities could be used to compute the Fresnain slabs of composites and multilayers. Numerical and ex-
coefficients® of a wave incoming on the composite material perimental results are presented in Sec. IV. Section V dis-
except in a particular case treated by Pdtf¢lowever, itis  cusses our results and compares our approach with previous
of the foremost importance to establish which quantitiesattempts to give precise definitions of the effective perme-
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& Once the equations are solved, the conditions of continu-
&1 Hi 2 M2 ity and periodicity at the boundaries are applied. As shown
> b by Rytov2® the dispersion relation is expressed by the fol-
e lowing transcendental equations:
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FIG. 1. Sketch of an infinite lamellar composite, consisting of a
periodic alternation along the axis of metallic(1) and insulating €4 aa €5 asb
(2) sheets of thicknessandb. The wave propagates in the medium a_l o == 01_2 a 5 (©)

along thex direction with theH field parallel to they axis.

wherea;=Kkg\e u,—n? and a,=Kkoe o — N,

ability and permittivity, and Sec. VI concludes this paper. Equation(2) has a unique solution with a low modulus,

Il. PROPAGATION OF AN ELECTROMAGNETIC WAVE labeledn,—,, given by
IN THE INFINITE LAMELLAR
2
INSULATING /METALLIC COMPOSITE a;=koyni—n_og°~kony, tanayb/2)~a,bl2. (4)
MEDIUM

o _ _ o High-order modes,- o exist for [n;|>(\q/b). They are
We first investigate a very simple topology: the infinite given by

periodic alternation of dielectric and metallic sheets. Wave

propagation in layered media has been studied extensivVely. \o

Let us consider an electromagnetic plane wave propagating Ni=o~jl - 5
in a finely stratified medium composed of layers of a metallic
material 1 of thicknesa alternated with layers of a dielectric
material 2 of thicknesb. The complex permittivity and per-
meability are notedd;,u,) for material 1 and £, ,u,) for
material 2. The microwave magnetic fieltland the propa-
gation vector are parallel to the lamination plane, as sketched \o

on Fig. 1. In the followingE is the microwave electric field, Np~jm-—. (6)

n is the refractive index of the medium deduced from the a

velocity of the wave in the medium, ad=w/c the wave  As a consequence, the only propagative solution has an in-
vector in vacuum at the wavelengtly. x is taken as the axis dex n= n-o. Evanescent modes are described by Egks.

of propagation and as the normal to the metal and dielectric and (6) and their propagation length is of the order of the
planes. The metal volume fraction is notgeka/(a+Db). periodd or shorter.

The permittivity of the metal is given by,=—jo/(we). In his paper, Rytov mentioned the existence of the high
For a conventional amorphous ferromagnetic layer with order modes, but he focused only on the propagative mode.
=7.1X10°Sm*, this yieldse;=—]x1.3x10" at 1 GHz.  He defined the effective propertiesand of the medium as
The thickness is assumed to be small compared wit, n=\er and (E)/(H)=uou/\ese, where the angular
but due to the high permittivity of the metallic material 1, it brackets indicate the average of the field over the petiod
will not be taken necessarily as small compared to the perfor the propagative mode.

etration depth in the metal, which is of the order of |tis easy to show that these definitions are equivalent to
No/|(g111) |2 The dielectric material 2 has a thicknessof

A similar study of Eq.(3) shows that it has no solution
with a small modulus. It yields solutions,, with |ng|
>(N\g/a), and this set of modes is expressed by

small enough so thab<\o/|(e,u,)|Y% The periodd=a (B)=mou(H), (7)
+b is supposed to be small compared to the wavelength of

the propagative mode, thatds<\,/|n|. For the other eigen- (D)=¢gqe(E). (8)
polarization(E parallel to the layepsthe material behaves as

a metallic reflector. Since the thicknesb of the dielectric is small compared

to the wavelength, and usirig,|>|e,|, one has
A. Description using the Rytov approach

With the convention for the fields in exp(kynx+jwt),
the Maxwell equations lead to

8_282( A+ 1), (9

1-¢q
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_ gAut(1—q) sy along its infinite direction by, the polarizabilityp, can be
n= A+ (1—q) (10) related to(B,) the average of the magnetic induction within
the plane by
A ~
n2:m:82(1q__q#1+,u2), (11 pl:—<Bl>_’“°’“H° (14)
HoftHo
where because of the continuity oH,. One may have(B,)
# uomHo because of the eddy currents. In the planar con-
A tankoeyu18/2) (12) ducting particle of widtha=2w, the internal fieldH, is
KoVeiu,a/2 described by
describes the skin effect in the metal. AH,;+k?H,=0, (15

If the thicknessa of the metal is small enough so that no B . .
skin effect occurs at the frequency under investigation, thef/Neréki=w e u,/c. Using the continuity off (parallel to

A~1. The expression fofr reduces then tqr=qu,+(1 ey axi§ atz=—w andz=+w, one gets
—q)u2, ande=e,/(1—q), which corresponds to the Wie- cogkz)
ner relations. Now, let us examine the same topology using Hy(z)= HOW'

the formalism of EMT’s extended to finite frequencies.
Then, the averagéB,) of the magnetic induction within the
B. Description using the extended effective-medium theory particle is

(16)

EMT’s have been extensively studied theoretically and 1 W
experimentally”’ and extended for composites with metallic (By)= —J mor1H1(2)dz=ApouiHo,  (17)
inclusions of various shap&s2:??\We briefly remind the 2W J —w
reader below the derivation of the effective permeability andyhere the coefficien is given by Eq(12) and accounts for
permittivit_y for th_e particular case of a lamellar c.omposite. Athe eddy-current effects. The magnetic polarizability of the
first step in a widespread approach of EMT’s is to expresgjanar conducting particle in the effective medium of perme-

the polarizability of a particle in a surrounding medium, in apjlity % for a polarizing field parallel to its plane is
order to describe the interactions in the effective medium.

Depending on the effective-medium theory, the nature of the p1=(Aui—1)/ 1 (183
surrounding medium changes: it can be the matrix, for th(? . . _

Maxwell-Garnett approach, or the effective medium, for the or the dielectric sheety=1, and

Bruggeman approach. For the particular case of a lamellar I AT

topology, it can be shown that the different effective-medium Po= (ko= IR (18
approaches lead to the same expressions of the effective pahen, the application of Eq13) leads to

rameters. Following the Bruggeman approach for a binary ~

composite made of a material 1 and a material 2, a simple a=0Au;+(1=q)us. (19
way to compute the effective characteristics is to calculate
the polarizability of particles 1 and 2 in the effective me-
dium, and then to write that the effective medium is homo-
geneous. For an ellipsoid of materialof permeability w; (BY=[qAw1+ (1—q) ma] moHo. (20)

and of polarizabilityp; surrounded by the effective medium
of permeabilityZ, polarized by an external fielt,, the = As a conclusion, the effective-medium permeability defined

+

The average oB over particles 1 and 2 is related to the
external fieldH, by

expression of the polarizability is given by by the extended Bruggeman theory is consistent with
wi— (B)=uomHo. (21)
p. :f,
bR+ L(mi—R) The same method has to be applied to determine the ef-

wherelL is the geometric depolarizing coefficient=0 for ~ fective permittivity in presence of eddy currents with the
an infinite plane polarized along its infinite directions andPlarizing fieldE, perpendicular to the plane. Using the con-

L=1 if the polarizing field is perpendicular to the plane. ~ tnuity of D instead ofH and computing the average &f
According to the effective-medium approach, instead ofB in the metallic particle, the electric polarizability

of the metallic planar particle 1 perpendicular to the polariz-

qp.+(1—q)p,=0, (13) ing field in the effective medium of permittivity is
whereq is the volume fraction of material meta). Apply- e1/A=%
ing this method to the topology described previougge 91= e /A (223

Fig. 1), the particles are infinite sheets of metal 1 or dielec- ) _ )
tric 2, and the first step is to evaluate the polarizability of anFor & planar dielectric particle
infinite sheet of metal. The expression of the magnetic po-

larizability in presence of eddy currents is required to extend =
the Bruggeman EMT. For an infinite metallic plane polarized €2

82_?)

(22b
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The expression féé can be derived from the above equa-

. i : y air
tions, and shown to be consistent with z } Lir
DO:805<E>, (23)
X 4 D

whereDy, is the electric displacement fiel@dlong z) in the
dielectric plane. Using the assumptipn |>|e,|, the effec-
tive permittivity can be expressed as

€2
1-q°

(24

T=

The following expression of the effective index given by
T=enu follows from Eqgs.(19) and(24):

~ qA
fﬁ:sz(m#ﬁ‘ M2

. 25 e

FIG. 2. Sketch of a semi-infinite periodic composite. The inte-
An asymmetry between the expression® @ndu can be  gration contours in the vicinity of the interface are represented. The
noted in Eqs(21) and (23). This is associated with the po- plane labeled contains no metallic element.
larization of the wave. The magnetic field is parallel to the

conducting planes, whereas the incoming electric field is noryjl| be to relate the reflected and transmitted waves to the

mal to the conducting planes. fields far enough from the interface, so that the high-order
modes have vanished and only the fundamental mode re-
C. Comparison between the two models mains. This will be done under some assumptions, and there

It is clear that for the topology under investigation, the may be cases where the reflection and transmission proper-

Bruggeman approach leads to a set of definitions for thdies should be expressed as a funcuon of the evanescent
permittivity and the permeabilitjEgs.(21) and(23)] that is modes as well as of the propagative mode..

different from the set of definitiongEgs. (7) and (8)] asso- The expression _of the refractive index W|I_I also be est_a_lb-
ciated with the Rytov approach. The corresponding values dished. Then, we will postulate that the effective permeability

the permeability and the permittivity, given by Eq&9) and and permittivity are defined as the quantities that yield the
(24) in the former case, and by EqS) and(10) in the latter proper values of the Fresnel coefficients and of the refractive

case, are different if the skin effect is not negligible, that is,'ndix' using the convgnUonarITform olf their expressions for
if A differs from unity. Since these values have been derive@” Nomogeneous medium. This is relevant, to our view, be-
using an exact approach for the lamellar composite undef2use it is mainly the reflection and transmission coefficients
investigation, the differences should not be attributed tdnat aré available .throu%h elgpt;arlmer&tatlcr)]n. H o
some difficulties in carrying on precise evaluations. It is . S0Me assumptions should be made, though we are able to

clear that at least one approach will yield incorrect Fresnefjeal with a far mc;]re gen?ral case tI'_1an thg tqpolpgyl(invisti-
coefficients if the effective quantities are used to compute thgated by Rytov. The topology under investigation is sketched

reflection and transmission coefficients. However, both ap®" Fi9- 2-

proaches yield the same value for the refractive index. It is (1) The composite is periodic, with a peria alongx, d,
straightforward from Eqs(11) and (25) thatA=n. alongy, andd, alongz. These periods are much smaller than

This clearly shows the need to find a correct definition forthe wavelengtio in the vacuum. One of its constituents is a
the permeability and permittivity of composites that yield notdi€lectric material. The permittivity and the permeability of
only the proper refractive index, but also the proper Fresnein€ dielectric material are notegy and w,, andd,|eau,|

coefficients. This approach is presented below. <\o. It may contain metallic elements with possibly ex-
tremely high permittivity, and with thickness larger than the

skin depth.

(ii) The incident plane wave is linearly polarized, with the
E field alongz, andH field alongy. Only one wavelike
mode alongx propagates deep inside the composite for an

Now, we will derive the expressions of the reflection andincident wave vector along. In particular, this means that
transmission coefficients at the interface between a compoghe incident polarization is an eigenpolarization. This mode
ite medium and air as a function of the fields inside thecan be writtenE(X,y,z,t)=E(X,y,z)exp(ot—jkynx), and
composite. The difficulty is that there are generally manyH(X,y,z,t)=H(X,y,z)exp(owt—jkonx), with E(x,y,z) and
modes at the vicinity of the interfadé.These modes are H(x,y,z) having the same periodicity as the compositgis
essential to ensure the continuity of the fields through théhe wave vector in the air, antlis the refractive index of the
interface. For example, it can be easily shown in the abovgropagative mode.
example of a finely stratified medium that the propagative (i) High-order modes may be present at the interface, but
mode does not meet the continuity requirements at an intethey vanish at distancdg from the interface much smaller
face between such a composite and air. It means that titban\y/|n|. It means that they are evanescent modes. Be-
high-order modes are excited. The key idea in the followingsides, the permeability of all constituents is sufficiently

Ill. FRESNEL COEFFICIENTS AT THE INTERFACE
BETWEEN A PERIODIC COMPOSITE TOPOLOGY
AND AIR
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small, so thatu;(l+d,)| <\ (i=1,2). The permittivity of <

! ; . ) - 27
the dielectric material 2 is also sufficiently small, so that T= . (32)
|82(|x+dx)|<)\0- Z-I-ZO

(iv) The composite contains a plameparallel to thexy
plane, enclosing only dielectric material with limited permit-  For an homogeneous medium, the quanBf/HY is its
tivity, and in particular no conducting element. This does notimpedance = Z,\/u/s. Equationg29) and(32) are then the
mean that the case is restricted to the lamellar compositasonventional Fresnel relations at an interface. In contrast, in
described in Sec. Il, as can be shown on Fig. 2. the case of a composite with metallic particles the evanescent

The incident field is labele&;e!(“'"%®. Because of the modes contribute to the fields at the interface. Therefore, we
periodicity (i) along they andz axes, the amplitude of the have to find the expressions f(E§))/((H})) and for the
reflected wave can be expressed as a series of Fourier modegractive indexn in the medium to define the effective per-

by mittivity € and permeabilityz consistent with
+ + oo
- - — . ((E)) )3
E = EI,mefj(ZwI/dy)yefj(2wm/dz)zejk|ymx 7= =7 — 33
-2 2 & CHREAE %
(26) and
associated with the wave vector
2 2 2 2 n= /*LS' (34)
a v
KF m=K? (' d_) - md_) : (27) The choice of taking Eq$33) and (34) as the definitions
y z

of the effective permeability and permittivity ensures that the
According to assumptioiti), there is no diffracted ray. reflection and transmission coefficients at normal incidence
Sufficiently far from the interface, the reflected wave is acan be computed from these quantities, using the conven-
plane wave of amplitudé&(EZ)), where(()) indicates an av- _tional Fresnel relations. This holds not only for the reflection
erage along/ andz over a periodic cell at the interface (  @nd transmission at an interface, but also for a multilayer

—0). The reflection coefficient is then containing composite materials, since it is clear that the
Fresnel coefficients of a multilayer can be expressed as a
((E®) function of the Fresnel coefficients at the interfaces and of

(28)  the refractive index®

The first task is to expresi as a function of the fields
It is convenient to introduce the total fielfiy andH, at  inside the composite, sufficiently far from the interface so
the interface. The continuity of the tangential components ighat only the propagative mode remains. For this purpose, we

E, -

written apply the Maxwell laws written in the integral formalism on
integration contours.
Ei+Ef=E}, H;—H/=HY. A closed integration contoulC; in the xz plane is

) - ) sketched on Fig. 2. It starts on the interface between air and

Since the _qgantmeEZ, 0. HY, andHg vary spatially over e composite. It extends ovey alongz, and along a small

a period, it is useful to average these relations over a tWogjstancel , alongx, far enough from the interface so that all

dimensional periodic cell in the plane of the interface. Thenne evanescent modes have damped. According to assump-
. tion (iii ), only the fundamental mode propagates belQw
VAYA The relation between the averageEobn contourC, and the

R= 5.7 ' (29 average ofB on the surface5, defined byC; is found by
0 using the Maxwell-Faraday law
where
J E-dI=¢ ﬁ ds (35
5_ ((E&)) (30 c S1 ot -
y
((Ho)) Since this can be written at anyy it follows that
and |
E m (E— (B = _iZW)\_);Zo«MHy»lx- (36)
7 ——— |20
o H, €g EZ is the z component of the electric field & inside the
is the impedance of the air composite, where the wave is considered as single mode.
In the same way, we can define the transmission coeffi>Nc€lx is very small in comparison with,, and the per-
cient meability of all constituents is limited according to assump-
tion (iii), it is clear that the right-hand side of the equation is
((EZ)) small compared t@y((H¥)), and that a good approximation
=T E (3D of the average along and z of the z component of the
|

electric field at the interface I§E§))~((EZ)). Since this is
and express it by true at anyx betweenl, andl,+d, sincel,+d((\g, One
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also hag(E§))~(EZ%)\, where(Ef)y is the volume average Where<DZ)D is the average of the component along the

of the z component of the electric field over a period in the axis of the displacement field in the plabefilled with di-

composite, far enough from the interface so that only theelectric material.

propagation mode is present. This quantity can be computed Similarly, the Maxwell-Faraday equation is written in the

from the propagation properties in the infinite composite,composite medium for the propagative mode at a large dis-

without taking into account any interface effect. In the ex-tance from the interface. Integrating over the volume of a

pression ofZ [Eq. (30)] the numerator can be approximated three-dimensional unit cell and using the fields given in as-

as(E%)y. sumption(ii) yield
A second integration conto@, is defined in théD plane, n(EZ)y= - c(BY) 41)

containing only dielectric material. It starts at a distahge /v /v

above the surface much smaller than the wavelength butombining Eqs(39)—(41), one has

large enough so that the evanescent modes have vanished,

andH=((Hy)). It has a lengthd, alongy, and drops at a , (D Ap(BY)v
distance |, under the surface. Then, by applying the gopmon —<E Y(HY) (42)
Maxwell-Ampeae law Vi /b
and
(H")p(D%)p’
we get
It is then straightforward to deduce the expression of the
( ) effective permeability and permittivity:
(H)a,~((Ho))=j2m XZ )\alr e2((Ea 1,0 (38)
(BOv
where( >dy corresponds to an average in tBeplane over a Hop= (HYYp” (44)
period alongy at x=1,. Assumptions(i) and (iii ) indicate
thatl,+1,; is very small in comparison with, and thate, . (D%p
is not large. As a consequence, the second term is small and €08 = (EZ)y (45
can be neglected. The(rh-ly)dy~<<Ho>>. This holds also at oV
any x betweenl, andl,+d,. As a consequenc&HY)p As a result, it should be emphasized that the definitions
~((Hg)), where(HY)y is the average off¥ in the D plane  for the effective permeability and permittivity given by the
over a two-dimensional periodic cell of dimensioa, (d,). Rytov model in Eqgs(7) and (8) do not yield the Fresnel

This average is made in a region far enough from the intereoefficients. In contrast, Eq$21) and (23) derived for a
face so that it can be evaluated from the fields correspondingarticular composite topology from the extended Bruggeman
to the single propagating mode in the composite. It should benodel can be identified with Eqg44) and (45) that are
mentioned that this does not hold if the cont@jy encloses obtained in a more general case. They are consistent with the
metallic elements. Since the tangential component of thé&resnel coefficients. It is straightforward to establish that the
electric field is continuous, the electric field at the interfaceexpression of the reflection or transmission coefficients for a
between a metallic element of the composite and the air magnultilayer system comprising composite materials can be
yield very largee;E* products, and the right-hand side of computed from the conventional Fresnel formulas for multi-
Eg. (38) may no longer be negligible. It should be remem-layers, using definition$33) and (34) for the permittivity
bered that for metals,; can be of the order of Y@r more in  and permeability of the composite. This is because these
the microwave range, and the screening by surface currenggfinitions yield both the reflection and transmission coeffi-
can develop over a thickness much smaller than the skinients at the interface and the refractive index.

depth?* The effective permeability should be therefore defined as
Neglecting the right-hand side of Eq86) and(38) leads  the ratio of the average & over the volume of the compos-
to the following expression of the impedance: ite to the averagél field in the dielectric plan® (and not to
the average of thél field in the whole composite as Rytov
. (E W did). The effective permittivity should be defined as the ratio
<Hy>D B9 of the component of the averade field alongz in the di-

electric plane to the average &f alongz over the whole

Now, it is necessary to express the refractive index as @omposite. These results have been obtained taking into ac-
function of the fields inside the composite, in the regioncount the presence of high-order modes at the interface of the
where only the fundamental mode propagates. semi-infinite composite, and it is remarkable that the expres-

The Maxwell-Ampere equation is written in tli& plane  sions depend only on the fields for the fundamental mode
at a sufficiently large distance from the interface so that onlypropagating in the composite.
the propagative mode remains, with fields of the form given
in assumption(ii). Integration in theD plane on a two- IV. NUMERICAL AND EXPERIMENTAL RESULTS

dimensional unit cell along andy yields
Our theoretical approach has been compared with both

n(HY)p=—c(D?%p, (40)  numerical and experimental results.
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. Numerical simulation ~
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FIG. 4. Modulus of the reflection coefficient on a slab of lami-
nated metal/dielectric composite expressed in decibels vs the loga-
rithm of the ratio of the thicknessto the periodd. Continuous line,
prediction using the Bruggeman approach; dashed line, prediction
using the Rytov definitions; squares, numerical simulation.

»
|

7 §

d air
B. Experimental results

FIG. 3. Sketch of the periodic cell for numerical simulation. ) . . .
The effective permeability of a laminated composite was

measured using an APC7 coaxial |i#fe35-um-thick copper
_ o o ~ ribbons have been glued with epoxy resin on r&-thick

A slab of lamellar material sketched in Fig. 3 is investi- holymer ribbons and wound into a torus with inner diameter
gated by a finite-element method. It consists of alternating o4 mm, outer diameter 7 mm, and height 3 mm. When
metallic sheets of conductivity 1410’ Sm * and thickness jlluminated in a coaxial line by the fundamental transverse
a=20um and dielectric sheets of permittivity,=3 and  electric and magnetic mode, this material topology is repre-
thicknessb=10um. At Fo=10GHz, the ratio of the thick- sentative of the lamellar topology of Figs. 1 and 3. The vol-
nessa of the metal sheet to the skin dep#is a/6=13.3,  ume fractionq of metal is 0.4, and the conductivity of copper
and the skin effect is large. In contrast, the pededa+bis s 5.8<10’ Sm L. The effective permeability of the sample
smaller than the wavelength in air by a factor of 10 was deduced from the measured complex reflection and

The reflection coefficient at 10 GHz was computed usingransmission coefficients using the same procedures as for
the Maxwell equations on finite elements with mode matchhomogeneous materials. The experimental values are shown
ing and a periodicity condition on the boundarf@dt was  in Fig. 5, along with the effective permeability obtained from
also evaluated from the expressions of the permeability anthe Bruggeman and the Rytov definitions. Experimental val-
the permittivity given by RytoyEgs. (9) and (10)] and by  yes agree with the Bruggeman definition, whereas the per-
the extended Bruggeman approd&ys.(19) and(24)]. The  meability according to Rytov should remain unity over the
reflection coefficienR of a wave under normal incidence at whole frequency range, which is clearly not the case.
frequencyf on a slab of material of thicknesspermittivity
g, and permeabilityu in air is given by

A. Numerical results

V. DISCUSSION

Z,—1 We first discuss the validity of our results and possible
R= 711 (46)  extensions. Then, we discuss other definitions that have been
' proposed for the permeability and the permittivity of com-
with posites. We emphasize that the form of our definitions is

particularly appropriate for the evaluation of the effective

Z,= \/%tam‘{arctam& \/% +] %@t Y 1'?

0.8

Figure 4 compares the modulus of the reflection coeffi- 06

cient expressed in decibels obtained using the different ap- 04
proaches as a function of the ratitd of the slab. Fort 0.2 4

greater than 5(um, the numerical approach is in very good 0

agreement with the reflection calculated using our definitions
of the effective permeability and permittivity. The result ob-
tained using Rytov definitions of the effective quantities
clearly departs from the numerical approach at any thickness.
Whent decreases and is of the order afor smaller, the FIG. 5. Real and imaginary permeability of a copper/polymer
reflection coefficient derived from the Bruggeman formulasjaminated composite. Squares and dots with errors bars, measured
differs from the numerical estimates. This is because the evazalues; thin and thick continuous lines, predicted by the extended
nescent modes are no longer negligible, and the right-hanBruggeman model; thin and thick dashed lines, predicted by the
side of Eqs(36) and(38) should no longer be neglected.  Rytov model.

Frequency (GHg)
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properties of a material using numerical calculations. holds for a volume average over a period, and its product
In contrast with previous approaches of EMT, we definedwith Eq. (41) proves that the square of the index is the prod-
the effective permeability and permittivity not as a startinguct of the permeability and the permittivity as defined by
point of further calculations, but as convenient parameters t®ytov.
compute the reflection, transmission, and propagation prop- We have shown that the extended Bruggeman approach
erties for a composite. The definitions we have derived arg¢eads to the proper definitions in the case of a lamellar com-
confirmed by numerical and experimental results for a parposite. In a related approach, it has been pointefl iouhe
ticular composite topology. Since the detailed structure otase of spherical conductive particles dispersed in a dielec-
the surface layer plays no role in the proof, it is clear thatyic matrix that the Rytov definitions do not hold. Other at-
adding a thin cap layer with metallic elements at the veryiempts have been made to give rigorous definitions of the
surface does not affect our approach, prov?ded th_at the SUpermeability and permittivity in the presence of eddy
face elements do not intersect tBeplane, filled with the  ¢yrrent It has been proposed to renormalize in the Rytov
dielectric. In this way, it is possible to extend our definitions yefinitions the fieldH) as(H)—4m(M3), where(M,) is the
to lamellar materials with cond.ucting_ bridges between SOM@yverage contribution of the eddy currents to the magnetic
planes’® The presence of the dielectric plabeparallel toH  yoment. This approach has been justified by considering the
is clearly a key hypothesis in our approach, though it may bgyerage of Maxwell equations. It leads to the same expres-
possible to exte_nd our demonsf[ration o a more wavy SUfgjon as the extended Bruggeman approach for the permeabil-
face. In Ref. 9, in which the optical and microwave proper-jty of spherical conducting particles dispersed in an insulat-
ties of a wire array are studied, this plane does not exist ifhg matrix® However, we did not investigate in a general

the composite but an insulating surface can be defined bgs,se whether this approach leads to definitions equivalent to
tween the metallic inclusions, and the effective permeabilityg ;s

including the skin effect derived using an extended Maxwell- | another work® the lack of clearly established defini-

Garnett approach yields the correct Fresnel coefficients. Notgons for the effective quantities in the case of composites
that if this assumption is invalid, for example, due to thecontaining conductive constituents is emphasized. If the per-
presence of a continuous strip of a few angsisoof metal  meapility should be defined as the ratio of some average of
along theE field at_ the surface, the magmtude of_ the re-ig some average ¢, a key question is, how do the averages
flected and transmitted waves are related prlmarll_y to thgjiffer to yield a permeability that may differ from unity for
properties of_the4 surface layer and not to the properties of thﬁonmagnetic composites? A proposition is made, based on
bulk composité. o the observation of the Maxwell-Ampe and the Maxwell-

In the absence of eddy-current effects, our definitions ar¢araday laws under the integral form. The authors suggest
equivalent to the Rytov definitions. In this case, the continuthat B should be averaged over a surface, ahdver its
ity of the component of the magnetic field parallel to the contour. However, no clue is given where the contour should
incoming field Ho in the whole composite leads #ly  pe drawn. No indication can be obtained of the use of a
=(H)y=(H)p. With the same hypothesis, the Maxwell- hermeability defined on such aesthetic criteria. Indeed, when
Gauss equation leads {®)y=(D)p . It is therefore incon-  gealing with composite materials with known inclusion to-
sequential whether the volume average of the fields or thgo|ogies, the capabilities of the software used for solving
average in the dielectric constituent is computed, and all thgjaxwell equations in complex structufésnake the issue of
definitions for the effective quantities are equivalent. Al-the definition of the effective quantities the main question.
though the absence of eddy current is not always explicitlyrhe computation can be performed numerically, provided
stated, in Ref. 21, for example, the use of the Rytov definithat one knows what has to be computed. The form of our
tions is valid. The proof that they can be used to compute th@efinitions is very convenient for this purpose, since the re-
Fresnel coefficients has been given by Pbttiel the specific syt can be evaluated from the solution of Maxwell equations
case of a lamellar composite, and the present work extendg the structure. In contrast, the form given by Ref. 27 does
this proof to a more general case. not allow a direct evaluation once the fields are known in the

In the presence of a skin effect, it has long beenmaterial.
recognizet*"**that the application of the Rytov definition A possibly puzzling aspect of our definitions is the asym-
for the permeability would lead tgu=1 for a composite metry between the expressions of the permeability and per-
made of nonmagnetic inclusions. Since this is clearly NOittivity revealed by Egs(44) and (45). One might have
supported by experimental evidengeainly obtained from  expected that the permittivity should be a ratio of a volume
reflection-transmission measurementeery few papers use average oD to a surface average &, instead of Eq(45).
the raw RytOV definitions, W|th some exceptions. In Ref 11,When one Considers a |ame”ar Composite SUCh as the com-
the authors make the choice to define the effective permittivposite of Fig. 1, this asymmetry can be related to the fact that
ity from the propagation constant of a wave in the material at the interfaces, the continuity of the tangential component
taking the effectivgpermeability of the composite as unity.of H and the normal component &f play a similar role in
From the definitiork(w) =2 e(w)/\g, they find an effec- the determination of the effective quantities. In the case of an
tive permittivity that is suitable to derive the index of the isotropic composite, the asymmetry between the magnetic
composite. It yields the velocity and the attenuation length ofind electric quantities may be attributed to the fact that one
a wave in the composite material, but it should not be used tsmedium may have a very large conductivity, whereas the
compute the reflection and transmission coefficients at theermeability is limited, according to assumptidiii). The
interfaces. It should also be pointed out that the Rytov defiright-hand side of Eq(38) can be neglected only if the con-
nitions yield the proper refractive index. EquatiotD) also  tour C, encloses only dielectric material, whereas the right-
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hand side of Eq(36) can be neglected even though the con-composite, parallel to thél field and to the propagation
tour C, encloses both a dielectric and a magnetic conductovector. Then, we showed that the reflection and transmission
coefficients could be written in conventional forms using
VI. CONCLUSION proper definitions of the effective permeability and permit-
tivity of the compositg Egs. (44) and (45)]. Our definitions
i - o . —agree with the extended Bruggeman model definitions for a
for the effective permeability and permittivity of a composite lamellar composite and not with those proposed by Rytov.

material. We mentioned two that are widely used in the lit- he validity of the description using an effectiv rmeabil-
erature. We investigated the case of a laminated composit-(E: € validity of the description using an etiective permea

and showed that the two sets of definitions yield differenty, @nd permittivity has been outlined. In particular, for very
results for the reflection and transmission coefficients in thdNin plates of the composite, however, the effective perme-
case where the skin effect occurs. We showed that this car@Pility and permittivity according to our definitions may no
not be attributed to an imperfect homogenization procedurdonger be used to compute the Fresnel coefficients. This is
as propagation in this particular composite topology is exbecause evanescent modes propagate over distances that are
actly solvable. not negligible compared to the plate thickness. It has been

We derived the expression of the Fresnel coefficients for ghecked experimentally and by numerical analysis that for
wave incident on a semi-infinite composite. Among severathicker plates of composites, the Fresnel relations based on
assumptions concerning the composite and the incomingur definitions are correct. Since most experimental data on
wave, we made the hypothesis that evanescent modes m#ye permeability and permittivity of composite materials are
be present at the surface, but that only one mode wouldbtained from reflection and/or transmission measurements,
propagate deep inside the composite. Moreover, we supe find it an important result to give definitions that are
posed that there was a plane of dielectric material in theonsistent with the experimental data.

We pointed out that several definitions have been give
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