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Dielectric properties of a thin film consisting of a few layers of molecules or particles
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An accurate model for the dielectric properties of a thin film consisting of a few layers of partizles
molecules is described. The depth dependence and the anisotropic behavior of the local permittivity due to the
surface environment are studied. The method is described in terms of a general multipole expansion, but the
detailed derivation is carried out mainly in the framework of dipole approximation for the field interactions of
particles. Both the static and harmonic cases are considered. Numerical results are presented.

[. INTRODUCTION Ref. 3 a slab of a few layers of dielectric ellipsoidal inclu-
sions is considered and the dipolar approximation is used for
The surface effect is very important for thin films with the interaction of ellipsoids. A surface averagiigstead of
molecular structures in optical engineering and thin composa volume averagingover each layer is used in Ref. 3 for
ite structures in microwave applications. It makes the dieleccalculating the average@nean field when the total number
tric properties for a thin film different from those for the Of layers is few(however, no explicit criteria for minimal
corresponding medium of infinite extent. number of layers is given there for treating the multilayered
For a composite medium of infinite extent, one can findcomposite as a bulk oheln the present paper, we will show
the effective dielectric properties feparseinclusions in the  that the local permittivitydefined through the volume aver-
static case through some mixing formulaee, e.g., Ref.)l  aging is physically sound even for very few number of lay-
or the Lorentz formula for the electromagnetic interactioners. The electromagnetic interactions of the inclusion par-
between the inclusion particldsee e.g., Refs. 238If the ticles are assumed to be electrostgtic in all these references.
interaction is not static or the inclusion density is not sparse, In the present paper, we describe an accurate model for
one needs to use some numerical methods to compute ti@e dielectric properties of a thin film consisting a few layers
effective properties of bulk medisee, e.g., Ref.)9 Much of particles(or molecules for both the static and harmonic
work has also been done in analyzing the effective conduccases. We study the depth dependefuaticularly in the
tivity (see, e.g., Refs. 10 and )land in obtaining bounds transition zone near the surfagesd the anisotropic behav-
between which the effective properties for a composite melor of the local permittivity of the thin film. We present two
dium of infinite extent must liésee, e.g., Refs. 12 and)13  different modelgboth taking into account the low-frequency
For a thin film consisting only a few layers of particies corrections to the static thegryor the computation of the
molecule$, the local permittivity becomes uniaxial near the local permittivity, namely, the discrete model and the con-
two surfaces of the thin film even if the particles are isotro-tinuous model. These models should be more appropriate for
pic. Since the local dielectric properties are different for dif-Use in studying structures of a few layers of inclusions than
ferent layers, the effective permittivity for the thin film as a the recent modelésee, e.g., Refs. 4 and #at correct the
whole may differ from the effective permittivity for the cor- static theory of unbounded composite media but have not
responding bulk composite medium. The depth dependend@dUded the surface variations of the effective parameters. In
and the anisotropic behavior of the local permittivity due tothe present paper, we describe the method in terms of a gen-
the surface environment are very important in thin-film tech-eral multipole expansiofvalid even when the array of par-
nology since they will influence, e.g., the reflection andticles are densgebut give the detailed derivation mainly in
transmission properties of the thin film. Although there is athe framework of the dipole approximatidgwhen the array
vast literature in the surface physics studying the phenomer@f particles are spargéor the field interactions of particles.
occurring on(or neaj surfaces, not much work has been
done in_ analyzing the s_urface effects on the local dielectric Il. THE STATIC CASE
properties of a composite medium near the surface. The ef-
fect of the orientation of the liquid molecules on the surface Consider a slab composed of a few layers of particles that
has been studied in Ref. 14, where it was shown that thare distributed periodically in the transversandy direc-
surface anisotropy of the liquid leads to a so-called pseuddions (see Fig. 1 These inclusion particles form a cubic
Brewster reflection. The surface effect on the dispersion ofattice of finite thickness. The particles are identical and with
the polarization has been considered in Ref. 15 through aidentical orientationsif they are not of spherical shap&he
analysis of the polariton modes. In Ref. 16, the permeabilityparticles have a smooth boundary so that the field produced
for a two-dimensional granular thin film has been studied buby them at an arbitrary point can be expressed through the
the surface-to-bulk transition was not considered there. Imultipole expansion. It is assumed that the conditin
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celldxdxd as the averaging volumé,, , and the averag-

K e ing of the true field(the microscopic fieldover the unit cell
0| o is called the averaged fielthe macroscopic fie)d
€ a The averaged field and polarization at an arbitrary point
- are defined by
ayers /O O o\eeo QOOODO
1
layer 2 O O O O O () O O OFO d <E>(R)EV j E(R+r’)d3r’, (4)
ayer 1t O O O O OO [ON®) N v Vay
layer 0 )O o000 O\O\O 8%, O\ 1
\ (PYR)= f P(R+r")d%, ()
— N, > \
R+7 R, d 2 Vay

The averaging volume

FIG. 1. Configuration for a thin film consisting of a few layers
of particles in a cubic lattice.

whereV,, is the volume of the unit lattice cell centered at
pointR, i.e.,V,,=d>. In some works on multiphase media
(when shapes and sizes of the inclusions are different; see,
e.g. Ref. 6, the averaged field is defined in terms of integra-

tion over several cell$in order to take in account the vari-
=2a is satisfied, wherea is the characteristic size of the eties of the particlgs For simplicity, we consider only the
particles andt is the lattice constant. This condition allows ¢@s€ Of identical inclusions in the present paper. _
one to make a dipole approximation for the field interaction !f the particles are not too close to each other, the contri-
of particles, i.e., contribution of higher multipoles can bePution of the higher-order multipole moments to the aver-
neglected at the distance This condition also allows one to 2ged field is quite small compared to the contribution of the
avoid solving the Laplace equation for the whole inhomogedipole momentsee, e.g., Refs. 9 and L(Bince the size of
neous structure, since one can then represent the responselt particle is small compared with the cell size<(d/2),
a particle to the local field through the particle’s electric W€ can assume that inside the particle the microscopic polar-

volume of the particle. Outside the particle we h&#0. At

the center of the particle we hay®)(R;)=p/d>.

) . For the averaged field at the center of tiie particle one
Denote the total number of the layers of particles in thengg[cf. Eq. (3)]

thin film by N. The external sourcedree chargesare lo-
cated outside the slab. For example, the induced dipole mo-
ment for each particle is given by the following formutee,

A. Field interaction

(E)Ri)= 1] ES(Ri+r)dV
Vav

e.g., Ref. 7, Va
— ~ gloc
p_ a-E°F, (1) +V E f E]Pan(l’-i-Ri)dV
where the polarizabilityr for the particles is assumed to be av 71 JVy,
known andE'°¢ is the local field. Similarly, the higher-order 1
multipole polarizabilities are also assumed to be kndifn + f EPA(R;+r1)dV. (6)
Vav

one wishes to take them into accourthe local field for the Vay

ith particle(located at the positioR;) is given by

We assume that the external sources are located outside
and sufficiently far from the slab. In the static or low-
frequency case, the external field can be assumed to be ap-
proximately uniform inside the cell. This leads to the follow-
ing approximation:

E:OCIEQX[(Ri)-FZ Ejpart( R), )
7

where E?*'is the field at the center of thigh particle pro-

duced by the external sources dﬁﬁf‘” is the field produced

by the jth particle. The total field can be written in the fol-

lowing form, (E®H(R)=Eex(Ri)- (7
Subtracting Eq(2) from Eq. (6) and using Eq(7), one ob-

E(Ri+1)=E¥(Ri+1)+ > EP"(r+R)+EP"(Ri+1), tains
J#EI

)

wherer is the position vector in the local cell coordinate (E)(R;)—E!°°=>)
system, which has its origin at the center of the reference cell J#i
(cf. Fig. 1). As in the classical theory for dielectric properties

of a bulk medium (i.e., an infinite lattice of particles/

molecules,” we need to introduce the averaged field and theApplying the Taylor expansion fofEP®") around the point
averaged polarization. It is reasonable to use a unit lattice=0, one obtains

[(EPA)(R) — Ej(R)]+(EP*")(R)).
8
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art art order multipole field multiplied by a factor of 16. Thus we
EP =0t TaVaEl* =0 can assume that this sum is negligible. It then follows from
Eq. (8) that

1
gparty f
< ] > | r=0 Vav v,

1
+ 5T al VoV gEP o (E)R)—E*°=(EP*") (13

for the static case.
For VYV EPT The sum of the differences given in E4.2) is negligible
BlyYa¥YpYy=p Ir=0 if the slab thickness is much larger than the lattice constant
d. This is due to the fact that the Lorentz formula is quite
part accurate inside a lattice cell that is far away from the slab
67 oV aV ¥,V o] oo AV, surface[see, e.g., Ref. 10 and E(L6) below]. The contri-
9) bution from these terms in Eq12) is maximal (i.e., the
Lorentz formula has maximal ernoif the slab contains a

where the Greek letters denote the Cartesian coordinates aftngle layer.

the conventional contraction rule for summation over re-

peated indices is implied. Note that the second and fourth B. Averaging the field generated by the reference particle
term_s in the a_bove equation always giye Zero contribution. 0 The term(EP3")(R;) in Eq. (8) is the averagingover the
the m_tegral since they_ are odq functions o_f th_e Cartesiaf, cell of the field produced by thith particle, i.e.,
coordinates, and the third and fifth terms vanisk i 8 and

v

1
+_
6 e

L1
24"«

v# 6. Thus one obtains the following expression: 1 .
(EPA(R;) = v f EPPY(Ri+r)dV.
avJ Vg
1
(EP*)r=0— E}™"; 0= >V ViEjparth:ofv redv The field EP®"" can be expressed in terms of the potential.
av

av

Since the multipole expansion is implied in our theory, one
may express the field at an arbitrary point of the cefl by

2y 2ppart
+24Va VoVEE™ <o
v art 1 Pal o qaﬁr arﬁ
EPA(Ri+r1)=— V|i— =
5 o dre r 2r
X rorzdVv+ ... (10
av oa rar r
In the static case, the fieIE}’a”(r) satisfies the following
Laplace equation, wherep,,, 4,4, ando,g, are the components of the dipole,
quadrupole, and octopole moments of the reference patrticle,
3 respectively, and is the permittivity for the host medium,
AE]Pa”(R)E > ViEJPa”(R)zo- (11  which may differ frome, (the permittivity for vacuum for
a=1

the case when the slab is of a composite material with two

i ] components. For the case when the slab is a few layers of
In the static case the above Laplace equation holds at gRglecules, one has= €o (since the host medium is a free
arbitrary point outside the source of the fi&#*" (i.e.,jth  space in this case First we consider the dipole moment

particl9, and thus it holds inside thenumbered cell il contribution. Integrating along the axis for thea compo-
#]). For a time-harmonic case we show below that the erropent of EP2", one obtains

in such a Laplace equation approximation is of ordet)¢.

Thus, all the termgincluding the first two termsin Eq. part 1 1
(100 which have 2 times ope_zration V, where n (Eda >(Ri):_—4(d/2)3 Ame
=1,2,3 ..., become zero. Excluding all these zero terms
and keeping only the first nonzero term, one obtains the fol- Pglg  Pyy P2 dr.d
lowing approximation: X r + r3 + 3 rarg,
(EyPaY _,—EP2T, _, where r0=\/r2,/+rﬁz+(d/2)2 and S=dXxd. After a simple
R integration one obtains
~————V2V2V2E | _ f r2rar2dv. (12 1
720V, By 1|r 0 Vi, By <E8&m>(Ri)=_&_3- (14)
3ed
The integral in Eq(12_) equalsd_9/13 824 and the right side  sincep=P(R;)d?, it follows that
(normalized by the field amplitugleof Eq. (12) is of the
order of 10 /. The sixth-order spatial derivatives of the di- part (P)}(Ry)
pole field can be expressed in terms of the field generated by (Eg™)(R) =~ 3e (15
the electrostatic multipole of the same order. The sum of
these terms due to all the surrounding partidligsi; cf. Since the cell is symmetric, the contribution of the quad-

expressior(8)] can be expressed as a lattice sum of the sixthrupole moment to the averaged field vanishes. The octopole
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moment contribution t¢EJ?"™) can be evaluated in a similar D=¢€,(E), D=¢€(E)+(P),
way, and leads to the following equatifas a correction to
Eq. (15), for the same cubic cell cake

P O ) ) )
_ <3:> _ <7zc::ja>_ E|Oc(r):K|oc(r)+e|_ (19)

From Egs.(19) and(18) one determines the local permittiv-
ity at the centers of the particles inside the thin film.

whereD is the electric displacement vector. It thus follows
from definition (17) that

(B =

If the particles are not too close to each ottfer example if

d>1.5a, wherea is the characteristic size of an inclusion ~\ye need to study the local susceptibility and permittivity
particlg, the contribution of the octopole moment to the av- at an arbitrary point. Relatiofi7) holds at an arbitrary point,
eraged field is quite small compared to the contribution ofyhereas Eq(18) holds only at the centers of the particles.
the dipole momentunless the particle shape is very complexrherefore, we should compute directly the averaged field and
and specig| and the multipole series converges rapidly. Iny,qo averaged polarization at an arbitrary péirging Eqs(4)
such a case one can neglect the contributions of the octopoghd (5)] in order to determine the local susceptibility and
and other higher-order multipoles of the reference particle tcbermittivity at an arbitrary point. This will be addressed in
the averaged fieldE§*") (this has been proved for the lat- gec. |11 B below for the general harmonic case. Such a com-
tices of spheres and rods in Refs. 9 andl T® simplify the  pytation becomes simpler if the particles are dielectric
analysis, we carry out the detailed derivation using the d'p0|%pheres, since for this special case we consider the micro-
approximation for the field interactions of particles in the restscopic field outside the particles as a field generated by a
of the paper with the assumption that the array of particlegattice of dipoles and the microscopic field inside the par-

are sparsefor exampled>1.5a). Note that the method can ticles to be uniform and related with the dipole moment by
be easily extended to include higher-order multipoles whefne following Rayleigh’s equatiorfs,

the array of particles are dense.

Equations(13) and (15) lead to the following Lorentz DoV €€ 0 v €p—€ Eloc (5
formula: p=2e eyrer p=—3e Dere, (20
oc 1 where E®) is the total field inside the particles, is the
ES(R)—(E)(R)) = §P(Ri)' (16) permittivity of the particleVo=47b%3, andb=a/2 is the

o ) radius of the spherical particle. Due to the symmetry and the
In Ref. 8 the above formula is given as an expression for thgface effects, the permittivity tensor becomes uniaxial and
difference between the local field and the averaged field fogepth dependent. The result of the Clausius-Mossotti relation

In Appendix A, we have estimated the error introduced by

neglecting the terms in the right side of E§2) for a single
layer of moleculegthis error is maximal for this cageOur
estimation gives 8% for this errgsee Appendix A If the The depth-dependent uniaxial permittivity in a thin slab
slab consists ofl=4 layers, this error turns out be negligible can be denoted by

for all inner layers and for an entire slahs the numerical _ -

modeling described below shows e=€'(2)l+€"(2)2p20,

wherel,=XyXg+YoYo- One can average the above permittiv-

ity profile to find the effective permittivity of the slab as a

whole (which will influence the reflection and transmission
The averaged volume polarizatigR) is related with the of the electromagnetic wavesThe effective permittivity

averaged field through the susceptibility tensgy., which  €; can be obtained by the following formulas:

is defined by

D. Effective permittivity for the whole slab

C. Discrete and continuous models for the local susceptibility
and permittivity

1 (D
= to_ t
(P)=xkioc (E). (17 Cetf™ Dfo €(2)dz, (21
For the general case of anisotropic particles, one can easily .
obtain the following Clausius-Mossotti relation from E¢b. n D dz
and(16), €eff™ 0 En(Z) ) (22

- - a \Tr L whereD is the thickness of the thin film. There is a simple
Kioc(Ri) = @( = m) &, (18) physical interpretation for the averaging formul@i) and
_ (22). The problem of calculating the effective permittivity
wherel is a unit dyadic. Note that the polarizabilifyfor the  along a direction normalor paralle) to the interface for a
particles is assumed to be known. The above expressiostack of dielectric layers by averaging is analogous to the
gives the values of the local susceptibility only at some disproblem of calculating the total capacitance of many capaci-
crete points, namely, at the centers of the particles inside thers in seriegor in paralle). It is well known that for the
thin film. total capacitance the elementary capacitances are additive if
The local permittivity €, is defined by the following they are in parallel, and for the case of capacitors in series
well-known relations, their inverses are additive.
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. THE HARMONIC CASE At each layer, we call the particle with coordinates

I,d andy=0 thel,-numbered particle. Due to the period-
icity in Eq. (23), at themth layer we may express the dipole
moment for thel ;-numbered particle in terms of the dipole
moment for the 0-numbered particle as follows:

In this section we generalize the electrostatic results
(given in the previous sectigrto the harmonic case with
time dependence expf).

A. Discrete model for the permittivity Pami = P(m o)e_“lkxd. (27)
y l y

Consider a plane wave obliquely incideifitom the top
on the thin film consisting o layers of particles. The layers To estimate thez dependence of the susceptibility and
are labeled am=0,1, ... N—1 from the bottom to the top, permittivity, it is sufficient to consider relatio(6) at the
and the origin of the Cartesian coordinate system is locatedenters of the 0-numbered particles of each layer. We may
at the center of a particle in the lay@r=0 (see Fig. L Each  express the field produced by each particle ofrtith layer
particle in the cubic lattice is isotropic and with a known in terms of the corresponding dipole momemny,q) . Thus,
dipole polarizability . In the harmonic case, we have to we have the following relation betwegn, o and the field
consider the phase-shift effects and we wish to calculate the(™™) at the point k&=y=0,z=Md) produced by themth
local susceptibility and permittivity at the centers of eachlayer,
layers in this subsection. The incident field at the origin
=y=z=0 is denoted byE®. For simplicity we assume that
the plane of incidence is thez plane. Thus, the incident field
has the following form at the plare=0,

E(mM) —

3 “Pmo)= P(m 0)s (29)

Wherelém,\,I is a certain dyadic to be foun@ve call it the

EM%(x,y,0)=E% ", (23 interaction dyadig.
where the transverse wave numtkgris related to the inci- The dipole moment for the 0-numbered particle of the
dent angle. We can consider separately IEhpoIarization mth layer is related to the dipole moment for the 0-numbered
case whenE,=E° and theH-polarization case wheg) Particle of the Oth layer in the following form,
=E%, /Ky, EO E%,/ko, where k,=\k3—kZ and kg -
=wuo€y is the wave number in vacuurinote that the Pm0)=fm"Po0):

medium outside the thin film is vacuymincluding thez

heref,, is called thedistributi icand i ter-
dependence, E¢23) may be rewritten in the following form wherefy, is called thedistribution dyadicand is to be deter

mined. It then follows from Eq(26) that (replacingpg )

for both theE- andH-polarization cases, with Py O)d )
Einc X,V,Z :EOe*i(kXX*kZZ).
( y ) . . . Ioc 1 £ (kd)2
Denote the wave number in the host mediumkas.e., k E°Y(Rum) —(E)(Rw) = o/ tut—g

= w\/eno. The center plane for the top layer zs=D = (N

—1)d. We consider the case wh&b=<1, i.e., the thickness

of the thin film is small compared to the wavelength. X 2 Fm,\,I
In the harmonic case, the Laplace equatitf) for the

field in theith cell produced by thgth particle should be ExpressingP(o, in the above equation in terms & ),

Py (29

replaced by the following Helmholtz equation: one obtains
AEP(r)= —K?EP2"(r). (24) -
Eo%(Ry) —(E)(Ryy) = g (10
Neglecting the terms of the ordekd)?, it follows from Egs. M M 3¢ '

(10) and (24) that -
, where the dyadic factdr), is given by
(kd)

(BP*)(r=0-Ef*"(r=0=— ——E*(r=0).

- - kd
(25) L

WS ) @0

Thus, the Clausius-Mossotti equati¢h8) is generalized to
f the following one for the harmonic case:
ai

Here we have used the fact that

r2dv=d°/12.

-1
v = o =
Md - =L . 31
Thus, the Lorentz formul&l6) at the pointRy, (x=y=0,z K(z=Md)= d3 d e M) “ S
=Md) must be modified and replaced by the following for- _ .
mula: We callL, thelocality factor. Oncex(z=Md) is found,

) one knows the local permittivity tensefz=Md) from Eq.
E'°(Ry) —(E)(Ry) = P(Ru) _ (kd) (R —Ry). (19). If the locality factorL, is real for a real-valued and
3e 24 F Y its dependence on the incident angle is weak, the concept of
(26)  the local permittivity is appropriate. A numerical scheme for
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computing the dyadicEzmM has been described in Appendix

B. Below we only present the final resultsee Appendix B
for the detailed derivation B

If m# M, the components for the interaction dya#ig
can be computed by

+ o + o0

1 o
[M—m[dk,
—(Tre
|17E—Oc Iz—z—w k d
X [(k{d)?— (kPd)?], (32)
Fio=F i
+ o +
1 m
— —|M—m|dk
= e V4
(P |2:2—oo 2|(ZE jd
X[(kPd)(kPd)7, (33
where
ki"=kx+2%ll, kg)ﬁ%’{ k()= ~/k<'>2+k<')2 K2.

The expression foFY, (or F%,) is obtained by replac-
ing kg) (or kg)) with k(') (or k(')) in expreSS|or(32) The
expression foF 4, andF2, (or FY5, andF7),) is obtained
by replacingk{) (or k{’) by ik{’ in expression33).

For the present case when the incident plane is inxthe
plane, one ha&)),=F.\,=0 andF),,=F\,=0. The ex-
pressions for the other componentsFof,, can be rewritten
in the following more convenient form,

Xz __
FmM

LS 5 emowal

l1=—» lp=-=»

277'1)

(39

+ oo

(K d/2m+1,)%— (kd/2m)?
FXX =17 12:,; T §(|)

x g~ 2mtVIM—m| (35)
+ o + oo 2
— e 23 |M7m|,
Wllzz—oo Peppt &0
(36)
+ 2,12
(kyd/2m+14)+1
FanZM__W 2 E . (|)1 2
== lp=-= 3
Xe—zwg('>\|\/|—m| , (37)
where
k,d 2 kd\?
(l):\/ xZ 2_ | _Z
& (27r+|1 15 277) . (38

It is easy to check that in the static limit=k,=0 the
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2

Xny_WZ 2 N

=0 ly=—o

27T“V|*m| |%+|2,

(39

+ —+ oo
;ZM=—7T|E IE VIZ+15e 2mMoml 12412,
1:—00 2:—00
(40)

If m=M, the components for the interaction dyaéi,g,\,, are
given by (see Appendix B

X =F%,=0.359, FZ4,=—0.718, (41)

and the other components are identically zero.

After the interaction dyadi€ ., is calculated, the distri-
bution dyadicf,, is obtained by the following formula,

= Pm,oPo,0
f - 1\
(P0,0)" P(0,0))
where the distribution of the induced dipole momeq o)

along thez axis is determined by solving the following élge—
braic system:

(42

1 Nt

E%e'keMd arZ: mM'p(m,O) ,

Pm,o~ @
(43
M=0,1,... N—-1.
Since the distribution dyaditz,m does not depend 0By,
we can choose

EO:yO (44)
for the case oE-polarization incidence and
E%= (k,/Ko)Xo+ (K /Ko)Zo (45

for the case oH-polarization incidence. Equatio@3) can
then be written in the following form,

1 - |
mE:O | Sm— g5 @Fmu -P(moy= aE%eM,

(46)
M=0,1,2...

where 6, is Kronnecker’s delta symbol.

The results for thee-polarization case then give they
component of the locality factdr), for the Mth layer ac-
cording to Eq.(30). In the H-polarization case the dipole
moment cannot be directed along thexis, and all the dy-
adics €y, fm, andLy,) become 2 dyadics. Thus, in
this case one determines, zx, Xz, andzz components of
the locality factor, susceptibility, and permittivity according
to Egs.(30), (31), and(19). The xz and zx components in
these dyadics should vanish in the static case if the particles
are symmetric. They may be significant only when the fre-
quency is quite high. Thez andzx components of the dy-
adics Ly ,Kioc,€10c) Must be equal due to the reciprocity.

1N_11

above expressions reduce to Ewald’s results for the interac- If the polarizability of a particle is frequency independent,
tion dyadic® namely, the off-diagonal components are zerosthe frequency dependence of the locality fadtq,u on the

and

wave numbek,= w+ egug reflects the spatial dispersion ef-
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fect of the thin film. If the locality factor strongly depends on The averaging volume
k,/k=cos#, it means that the spatial dispersion is so strong z

that the local permittivity loses the physical meaning. In the /
harmonic case the local permittivity is a dyadic even the

particles are isotropic. Using the above approach, we have
also validated the prediction of the macroscopic theory for

the Brewster angle in Appendix C.

O

B. Continuous model for the local permittivity

Like the static case, one can obtain a continuous profile
for the local permittivity through computing numerically the
averaged field and polarization. The true field can be written
in the following form:

O O O
N /\\\\\F\

O ORI
R
O O

N—-1
E(x,y,2)=E"(x,y,2)+ 2, EM(x,y,2)+E"(X,y,2)
m=0

EEinc(x y Z)+Edip(x y,2)+ Ein(x y,2) FIG. 2. Geometry for the averaging.
whereE(™ is the field produced by theath layer of dipoles, S = (k{d)2xyxo+ [ (k" d)2— (kK d)2]yayo— (k" d)2zyz,
Ed'p(x,y,z_) is the field produced by alN layers of dipoles 0 0

lie., EYP(x,y,z)==N"1EM(x,y,2)], and the term + (XoZot+ ZpXo) (ikz'd) (k5 ’d),

Ein()_('y’z) is the remaining term, which is identically zero 4, where the functiow!")(z) has the following expression
outside the particles but nonzero inside the particles.

We choose the case when the particles are dielectric o ok(lz=md-d2) _ o-Kk{d
spheregwith radiusb=a/2) as an example to illustrate the W\ (z)= O (52)
procedure. We average the fidk{x,y,z) over the volume kz’'d
dXxdxd. The sphere radius is assumed to be small comfor the casdz—md <d/2, and
pared to the wavelength and thus for the field inside the
particle we can apply the Rayleigh relati¢®0). We can n sinh(k{"d/2) e m
directly calculate the averaged polarizatio(x,y,z)) and Wi'(2)= Taz e (53

the averaged fieldE(x,y,z)) at an arbitrary point using defi-
nitions (5) and (4). The permittivity €,,.(2) is then obtained for the caselz—md|>d/2. Herek{"= (k. +27l/d)?—k?

from the following formula[cf. Egs.(17) and (19)]: and forl =0 one hak{9=ik,.

Consider a spherical particlgvith radiusb) at theMth

- B 1 = layer. Introduce the following notation:
(4 m_ _ Pmo
E 36V, (54
After the dipole moment(, o, m=0,1,... N—1, are

computed by solving the syste(6), one can find the con- 47b3
tinuous functiong P)(0,0z) and{E)(0,0z) as follows. Like Vo= 3 (59)
the true field, the averaged fie{&)(0,0z) can be separated o .
into the f0||owing three parts: DenoteAz=z—- Md If Az is in the |nterval[d/2,d/2+ b],

the volume of the sphere part inside the averaging voldine
(E)(0,02)=(E™)(0,02)+(EY?)(0,02)+(E"(0,02)). is (see Fig. 2
(4

8)
o
It is shown in Appendix D that Vlzg(b+d/2—AZ)[3b2+ 3(d/i2—-Az)?
. . )
(EMy0 Oz)z<sm(kxd/2))(S|n(kzd/2))eikzon 9 +(b+d/2—A2)?].
(ked/2) (kd/2) For d/2—b=Az=d/2, the volume of the sphere part inside
N1 - the averaging volumd? is
di Gm(z)
<E p>(010)z) = 2 ? . p(m,O) ’ (50) aw 2 2
m=o0| € Vi=Vo— g (b—di2+A2)[3b%+ 3(d/2-A2)
where )
+(b—d/2+A2)2].
+oo0 | ; ;
G (2)= 2 ) ( sin(kd/2) =(')W(')(z) (51) Averaging P and E'" at each point over its associated
" 1 2k0d \ (kyd/2+ 1) me averaging volume, one can easily obtain the following results
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(i) for (M—YHd+b=<z=(M+31)d—b, M=0,...N
-1,

(56)

(57
(i) for (M+3)d—b<z<(M+121)d+b, M=0, ... N—2,

(P)(0,02)=p(u,0/d,

(E")(0,02)=EMV,/d?

1 VO_Vl
<P>(010»Z):p(M,O)dT\/C)+p(M+1,O)dT\/O1 (58

. Vv, Vo—V,

in —_ M M+1 .
(E™(0,02)=E 6370+E Vg (59

(i) for (M+3)d—b=<z<(M+3)d+b with M=N-1, or
(M—1)d—b=z<(M—1%)d+b with M=0,

(P)(0,02) =pm.o)V1/Vod?, (60)
(E")(0,02)=EMvV, /d (61)

(iv) for z=—d/2—b or z=(N—-1/2)d+b,
(P)(0,0z)=(E'")(0,02)=0. (62)

The formulas presented in this subsection give a quite
explicit and accurate approach for computing the local per-
mittivity of the thin film as a continuous function of the
depthz

C. Numerical results

As a numerical example, we consider the dielectric
spheregwith radiusb) in vacuum, i.e..e=e€y. The permit-
tivity for the inclusion particles is chosen to keg=10e.
The polarizability of the dielectric spheres is given by the
following formula (see, e.g., Ref. 19

_ 3 ép— €

a—47T€b m

We choosé=d/4 in our numerical example. The total num-
ber of layers in the thin film isN=4. In the calculation of
the interaction tensdf ,,, the series in Eq$34)—(37) con-
verge very rapidly and thus we take=I1,=4. In the dis-
crete model, the relative permittivity tenser= €,/ €y for
each layer is computed by using E¢31) and(19). For the
E-polarization case, thgy component ok, for each layer is
computed and plotted in Fig(& as a function of the inci-
dent angled. Thexx andzz components of the tenser for
each layer are determined from thepolarization case and
are plotted in Figs. ®) and 3c) as functions of the incident
angle. Note that the tensdy, for the H-polarization case is
quite singular and we find the tenshg, from expression
(30) (which contains the inversion df,;) using the singular
value decomposition methddee, e.g., Ref. 20As one can
see from Figs. @—3(c), the permittivity is practically inde-
pendent of the incident angle féed=0.1 andkd=0.2 and
depends weakly on the incident angle fat=0.5. Our nu-
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The discrete model
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1.1550 T
— 2=0
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FIG. 3. Components of the relative permittivity tengobtained

from the discrete model for a four-layered thin fjlas functions of
the incident angle.

merical results indicate that féed< 103 the variation in the
dipole moments from one layer to another does not exceed
0.2%, which is consistent with the results obtained by Ewald
in Ref. 21 and Sivukhin in Ref. 14 for the static case. In the
quasistatic caskd=<0.1, the difference between the relative
permittivity obtained by the Lorentz formuléwhich gives
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€,=1.15487) and the one obtained by our discrete formulas The continuous model
does not exceed 18 (see Fig. 3. 118 ' ' ' ' '
For the continuous model, they component(for the 1.16f
E-polarization caseand xx and zz components(for the 114
H-polarization caseof the relative permittivity tensog, are -y
calculated and presented as functions of the vertical coordi- 21.12f
natez in Figs. 4a)—4(c), respectively, folkd=10"2 and ¢ 2’51_10_
=45° (the dependence & on the incident anglé is very g
weak forkd=1). As one can see from Fig. 4, the compo- o983
nents of the relative permittivity tensor have a transition zone % 1.06}
around each surface of the thin film and the thickness of the &
transition zone is approximately equal to the particle size 1.04r
=2b=d/2. As a validation of our models, the local permit- 1.02f
tivity obtained by the discrete model and the continuous ] ) , ) , ) ,
model are in a very good agreement for relatively low fre- -2 -1 ] 1 2 3 4 5
quencieskd=0.5. @ Position /d
For these frequencies we have also compared the
coordinate-independent effective permittivity obtained by The continuous model
Eq. (16) with that obtained from Eq(47) for an N-layered 1.18 ' ' ' ' '
slab. This way we find numerically the distance from the 1.18}
surface of the slab where the permittivity is getting almost
coincident with that predicted by Lorenz-Lorentz theory. If ;st‘14'
N=4 for two inner layers the error in the effective permit- 21120
tivity associated with the use of the Lorentz formula does not §1 10
exceed 103, whereas for the surface layers this error has the § ’
order of several percent. Thus, the Lorentz formula can be  &1.08f
used for a quite thin slab. We characterize the anisotropicity §1‘06_
(due to the surface effegt®f the thin film through a so- &
called anisotropic coefficient, which is defined by 1.04r
1.02}
_|err—eerr YA 0 1 2 38 4 s
Ya© | T Position z/d
eff (b)
The effective dielectric constanés; and ep;, are calculated The continuous model
from expressiong21) and (22). The local permittivity ten- 1.15 ' ' ' ; ;
sors are calculated from Eq4.9) and(31). At low frequen-
cies (for kd<0.2), €. ~eX =€, for all the incident
angles(as can be seen from Fig).3This result is expected N~
and can be considered as a check. In the quasistatic case 21.10f
(kd<0.01) the normal and transverse components of the ef- £
fective permittivity (for the present four-layered thin film g
are approximately equal to 1.1211 and 1.1451, respectively, g
which correspond toy,=0.0209 for the anisotropic coeffi- %1.05.
cient. The anisotropic coefficient, is in the interval 2
0.0206-0.0209 fokd=<0.2. The Brewster angle, calculated
from formula (C3) in Appendix C, is equal to 47.35° and
does not depend on the frequen@gr kd<1). This Brew- } , , , , , ,
ster angle is quite close to 47.28°, which is the prediction of 2 -1 0 1 2 3 4 5
the macroscopic theory according to form(@4) [in which © Position z/d
we takeeq = (et €ntq)/2].
Finally, we present the normal electric fiel, (for the FIG. 4. Components of the relative permittivity tengobtained

H-polarization caseas a function of the depthin Fig. 5. As  from the continuous model for a four-layered thin filas functions
one can see from this figure, the normal electric field has &f the vertical positiore.
similar transition zone as the local permittivity.

layers of particlegor molecules for both the static and har-
V. CONCLUSION monic cases. Even for the case of isotropic particles, the
local permittivity becomes uniaxial near the two surfaces of
In the present paper, we have presented an accurate modkeé thin film. The depth dependence and the anisotropic be-
for the dielectric properties of a thin film consisting a few havior of the local permittivity due to the surface environ-
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The continuous model consists only one layer of particles. In this appendix, we
0.715 ' ' ' ' ' estimate this maximal error. We apply the theorem of Kon-
o0.710- ] torovich et al?? in which the averaged field of discrete
sources equals the true field of the averaged sources if the
w™ 0-705 rule of averaging is the same.
§ 0.700+ Consider first the case when the induced dipoles are hori-
g zontally oriented at the plane of the particle array. Subtract-
g 0.695 ing the external field from the local field, one obtains the
T 0.600- interaction fieldE' defined as the contribution of the polar-
E ized structure to the local field. The relation between this
Z o685} field and the dipole moment is?®
0.680 EN_Cple,
0.675

2 1 o0 1 2 : , ,
Position z/d whereC is a constant. For a square array of horizontal di-
poles,C has the following valug¢see Eq(12.27 of Ref. 23,
FIG. 5. The distribution of the normal component of the electric
field obtained from the continuous model for thepolarization c 1.2-8mKo(2)

case. g ~0.35943, (A1)

whereK, is MacDonald’s function. On the other hand, the

ment are studied both analytically and numerically. The colorentz formula(16) 9'V¢5C20-33ﬂ3 for this case. Thus,
efficient of the anisotropy is of the order of several percentthe relative error for using the Lorentz formulz6) for this

The thin film can be described accurately as a slab of concase is about (0.3590.33)/0.358-8%. _

tinuous medium if the frequency is low enougkd& 0.5, I\_Iext We_cons@er the_case when the induced dlpol_es are
whered is the distance between two neighboring particles vertically prlented|.e.,z-d|rected at the_plane pf the part!cle

In the harmonic case, the nonuniform distribution of the field@ray. Using the theorem of Kontorovia al. it can easily

and polarization has been taken into account not only nedt® shown that the field averaged over the cubic delld
the surfaces, but also inside the thin film. We have developedf d centered at the plane of the particle array equals the field
two different models for the computation of the local permit-inside the slab of continuous volume polarizatier p/d°.
tivity, namely, the discrete model and the continuous modelThus, one has

For the local permittivity at low frequencie&@<0.5), both

models give consistent results, which are very close to those Fav— _ E+ gext

obtained in the framework of the Lorentz-Clausius-Mossotti €

approximation. Numerical results have shown that the deptl

for the transition zongin which the permittivity varies sig- n follows from Collin's notation that

nificantly) near a surface is about the particle size. Numerical 3
P Cd°P

results have also shown that the Brewster angle for such a Eloc_pav—_ 4

thin film coincides with the prediction of the macroscopic € €

theory. The detailed derivation has been carried out using the,, 5 square array of vertical dipoleg, has the following
dipole approximation for the field interactions of partidesvalue[see Eq(12.30 of Ref. 23 '

with the assumption that the array of particles are sparse. The
method can be easily extended to include higher-order mul- — 2.4+ 167K o(27)

tipoles when the array of particles are dense. C= 3 ~—0.718703. (A2)

On the other hand, the Lorentz formu(d6) gives C=
ACKNOWLEDGMENTS —0.6640° for this case. Thus, Fhe relativg error for using the
Lorentz formula (16) for this case is about (0.7187
The partial support of the Royal Swedish Academy of —0.6666)/0.718% 8%. Therefore, the maximal error of our
Sciences, the Swedish Institute, and the State Key Laboranethod for the static case is about 8%, which takes place in
tory of Modern Optical InstrumentatiofZhejiang Univer-  the limiting case when the slab consists only of a single layer
sity, China; under an open projedor this project is grate- of particles.
fully acknowledged.

APPENDIX B: THE INTERACTION DYADIC

In this Appendix, we derive the explicit expression for the
interaction dyadicF,,,. Consider first the case whem
#M. Then the point X=y=0, z=Md) where the field is
calculated does not belong to the layer, which produces

As an approximation, the Lorentz formuld6) for the the field. The vector potential at the point,{,z) produced
static case has the maximal error when the composite slaby all the particles of thenth layer can be written as follows,

APPENDIX A: ERROR ESTIMATE FOR THE LORENTZ
FORMULA FOR A THIN FILM CONSISTING OF A
SINGLE LAYER OF PARTICLES
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+

k exd —i(kR+k,dl;)]
AM—__
477\/5M0p(m'0)ll,|2§=:—oc R,
. 27l 2,
. +o exp —il|z=mdQ,+| ket ——|x+| ——|y
3 —ik E d d
2d2\/6M0p(m'O)|l,|2:_°° Q| ’
I
where where

R =(dl;—x)2+(dl,—y)?+ 72,

2 2
o= o[ S (55
The corresponding electric field can be found from the fol-
This representation of vector potential is the well-knownlowing Lorentz gauge,
Floquet's expansion for the field produced by a regular di-
polar array in terms of spatial harmonfsit can be written i
in a more convenient way as follows, E(m)z?Vx(VxA(m)),

2l 2l
kO =k, + Tl, k<y'>:T2, k= kP2 + kP71,

. DO
+ e(*‘Z*md‘kg)flki)X7lk§,)y)

P(m,o0) E

AlM =

, where n=+/ug/e. The above formula can be written in the

2d% l1lp==2 kY following explicit matrix form,
|
| | | | RO
o el lz=mdk - ikOx-ik{y) (kg))z_(kg'))z ki)k§) ikkd)
L ( [ [ IROM(
E(m):2d26 2 0 kK (k)2 = (k)2 ik{ k(" Pmoy- (BL)
: ik (k) KOKD = (k)2 (k)2
Thus, one obtains the following expression for this field at the poirty{=0, z=Md),
AT (K= (kP2 kK d? ik 'k d? .
: ( [ [ IROM( =
E(Mm):2d36| > o kPk{Dd? (k)2 - (k{d)? ik{k(d? Pm0r= 73 Fre Pimoy-
v : ik(Ok{d? ik{k{d2 — (k{d)2— (k{d)?
(B2)
|
The dyadicF ,y (for m#M) defined above leads to Egs. Fuvm’=0.359, Fify=—0.718.

(32) and (33). Note that all the series in the expression for
Fmm (M#M) converge well and the high-order terms de-
crease exponentially dg andl, increase.

Next we want to derive the field at the poink=y
=0, z=Md) produced by the particles in thelth layer
except the 0-numbered particle of this layee., the particle
which contains the field pointThis is the so-calleihterac-
tion field of a 2D regular square array. This interaction field  The field reradiated in the reflection directiGmaking an
has been studied for horizontal dipoles in Ref. 23, for verti-angle ¢ with the vertical axis; see Fig.)by a layer of di-
cal dipoles in Ref. 25, and for the general case of arbitrarilypoles is proportional to the transveréeith respect to this
oriented dipoles in Ref. 26. In particular, if the grating periodreflection direction component of the dipole moment, since
is so small thakd=<0.2 the interaction field produced by the the longitudinal component of the dipole moment does not
planar array of dipoleghorizontal or verticalcan be consid-  contribute to this field. Therefore, the complex amplitude of
ered as approximately static for incident angles less thathe field reradiated by th#ith layer can be written in the
80°. We will only consider these incident angles and thus théollowing form,
dyadicFyy is diagonal. The components of the interaction
dyadic for the static case &fe Ev=A(0)(puy COSO+ Py, SING),

If the incidence is very obliguémore than 80°), one has to
consider the high-frequency corrections even for a skl
and use very complicated formulas given in Refs. 26, 25, and
23. This case is not interesting for our purposes.

APPENDIX C: THE BREWSTER FUNCTION
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wherepy, is the dipole moment for the O-numbered dipole of When integrating along thg axis over the intervaly
this layer[other dipoles at this layer are expressed in terms-d/2,y+d/2], all the terms Wlthk(l) [cf. Eg. (B1)] vanish
of the 0-numbered dipole by Eq27)]. Consequently, the except the term witth,=0 (and thusk(')—O) Then one can

complex amplitude of the field reflected by the thin film canrenumerate the series in E@®1) with Il—l [,=0. Integra-
be written as follows: tion of exp(—ik{’x) along thex axis gives the following fac-
N-1 tor,
E'=A(6) >, e Mkicosdp,. cosh+py, sind). (CD) sin(k,d/2)
M=0 - - -
. o . (kxd/2+ l7)’
One can rewrite the above equation in the following form, ) . ) o
and the integration of exp(ik,y) along they axis gives the
E'=A(6)(S, cosf+S, sing), (C2)  factor
where (sin(kyd/2)>
N-1 N-1 k,d/2
_ Mkd cos6 _ —iMkd cos6
Se= MZO T P SZ_ME:O e Py The integration of exptk|z—md) along thez axis can

) ) o be made separately for the cdge-md|<d/2 and the case
AveragingE" over the temporal period2 w and dividing |z—md/=d/2. In the first case,
expressionC2) by a factor|A(6)S, cosd|, one obtains the

following normalized angular dependence of the reflection 1 [zrae

exp— k|2’ —md)dz =W{)(2),

coefficient, dJo—ar
Er s whereW{)(z) is given by Eq.(52). In the second case, the
fg ()= ————=|7=1Cc0q dy— ¢b,) —tand|, above integration equal®/))(z) given by Eq.(53). Finally,
|A(6)S,cosd| |SZ| we obtain expressio(b0) for the averaged dipolar field. In a

(€3 similar way, one can obtain expressi@®) for the averaged
where the caret denotes temporal averaging, apdnd ¢, incident field. Note that the series in express{Bd) for the
are the phases of the complex val&sndS,, respectively. dipolar field is divergent where=md and therefore we
Function fg,(6) is called theBrewster functionsince the should remove an infinitesimal region around the point with
reflected filedE"=0 whenfg,(6)=0. The zero of the Brew- Z=md in the averaging integratiofi.e., the volume averag-
ster functionfg,(6) is Brewster's angle. Note that in the ing integral is understood as its pr|nC|paI value
macroscopic theory the condition for Brewster's angle is To average the fieldE™ over the volume of the

(see, e.g., Ref. 27 0-numbered particle at thielth layer, we notice that
- i _
tanfg, = Veorr. (C4) En=EP-EM-ELP-E",
whereE(™ is the total field inside the particl&€SP is the
APPENDIX D: THE AVERAGED FIELD field produced by the reference parti¢ie., the 0O-numbered

particle at theMth laye, the interaction field&"" is the field

_Consider expressio(B1), which gives the field at an ar- produced by all the particles except the reference particle,
bitrary point produced by thenth layer of particles. Adding 54 Einc—E e kMd is the incident field. SincéEy)=0

these fields for all layers and taking the average in accorgj e the prlnC|paI value of the volume integration over a
dance W|thd|Eq(4) one obtains the following averaged dipo- sphere of the field produced by a dipole located at the center
lar field (E'"), of the sphere is zejand EM'=E'°°—E"°  one obtains
in\ _ loc
x+d/2fy+d/2fz+d/2E(m)d3r’- (E )—E(p)—<E ).
di2 Using the Rayleigh relatio(R0) and the above equation, one
(D1) obtains the expressior{s7) and (54).

<Ed"’><r)— > Of

dr2 dr2

IA. Sihvola and J.A. Kong, IEEE Trans. Geosci. Remote S26s.  W. Lamb, D.M. Wood, and N.W. Ashkroft, Phys. Rev. &,
420-429(1988. 2248(1980.
2C.A. Grimes and D.M. Grimes, Phys. Rev.48, 10 780(1991). 7J.D. JacksongClassical Electrodynami¢s2nd ed.(Wiley, New
SA.P. Vinogradov, Yu.N. Dmitriev, and V.E. Romanenko, Electro- York, 1975.
magneticsl?7, 563 (1997). 8L.D. Landau and E. M. LifshitzElectrodynamics of Continuous
4R.C. McPhedran, G.G. Poulton, N.A. Nicorovici, and A.B. Media (Oxford University Press, Oxford, 1980
Movchan, Proc. R. Soc. London, Ser.482 2231(1996. 9L. Greengard and M. Mourat, Acta Numeri68, 379 (1994).
SA.A. Asatrayn, P.A. Robinson, L.C. Botten, R.C. McPhedran, 1°R.C. McPhedran and D.R. McKenzie, Proc. R. Soc. London, Ser.
N.A. Nicorovici, and C. Martijn-de-Sterke, Phys. Rev. @b, A 359 45(1978.
6118(1999. 11C. Simovski and S. He, J. Appl. Phy&6, 3773(1999.



13730 SIMOVSKI, POPOV, AND HE PRB 62

2G.W. Milton, J. Appl. Phys52, 5287(1981). 2lp p. Ewald Z. Kristallen 54, 129 (1921).

13G.W. Milton and N. Phan-Thien, Proc. R. Soc. London, Ser. A?>M.I. Kontorovich et al, Electrodynamics of Grid Structuren
380, 305(1982. Russian (Radio i Sviaz Moscow, 1987

1D.V. Sivukhin, zZh. Eksp. Teor. Fizl8, 976(1948. 23R.E. Collin, Field Theory of Guided Wave$EEE Press, New

15G.D. Mahan and G. Obermair, Phys. R&&3 834 (1962). York, 1997).

16C.A. Grimes and D.M. Grimes, IEEE Trans. Mageo, 4092 24R.C. HansenMicrowave Scanning Antenng#cademic Press,
(1993. New York, 1967 Vol. 2.

S.A. Tretyakov and A.J. Sihvola, Electromagnetitd, 159  2°C.R. Simovski, P.A. Belov, and M.S. Kondratiev, J. Electromagn.
(1999. Waves Appl.19, 159 (1999.

18D .V. Sivukhin, Zh. Eksp. Teor. Fi21, 981 (1951). 26p A, Belov and C.R. Simovski, in Proceedings of Bianisotro-

193.R. Wait,Radiation and Scattering of Wavédarpers and Row, pics’98, 7th International Workshop on Chiral, Biisotropic and
New York, 1985. Bianisotropic Media, Braunschweig, June 1998, edited by A.

20W H. Press, S.A. Teukovsky, W.T. Vetterling, and B.P. Flannery, Jacob, pp. 439—44@inpublisheal
Numerical Recipes in Fortrari2nd ed.(Cambridge University 27J.A. Kong, Electromagnetic Wave Theorwiley, New York,
Press, New York, 1992 1986.



