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Dielectric properties of a thin film consisting of a few layers of molecules or particles
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An accurate model for the dielectric properties of a thin film consisting of a few layers of particles~or
molecules! is described. The depth dependence and the anisotropic behavior of the local permittivity due to the
surface environment are studied. The method is described in terms of a general multipole expansion, but the
detailed derivation is carried out mainly in the framework of dipole approximation for the field interactions of
particles. Both the static and harmonic cases are considered. Numerical results are presented.
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I. INTRODUCTION

The surface effect is very important for thin films wit
molecular structures in optical engineering and thin comp
ite structures in microwave applications. It makes the diel
tric properties for a thin film different from those for th
corresponding medium of infinite extent.

For a composite medium of infinite extent, one can fi
the effective dielectric properties forsparseinclusions in the
static case through some mixing formulas~see, e.g., Ref. 1!
or the Lorentz formula for the electromagnetic interacti
between the inclusion particles~see e.g., Refs. 2–8!. If the
interaction is not static or the inclusion density is not spar
one needs to use some numerical methods to compute
effective properties of bulk media~see, e.g., Ref. 9!. Much
work has also been done in analyzing the effective cond
tivity ~see, e.g., Refs. 10 and 11! and in obtaining bounds
between which the effective properties for a composite m
dium of infinite extent must lie~see, e.g., Refs. 12 and 13!.

For a thin film consisting only a few layers of particles~or
molecules!, the local permittivity becomes uniaxial near th
two surfaces of the thin film even if the particles are isot
pic. Since the local dielectric properties are different for d
ferent layers, the effective permittivity for the thin film as
whole may differ from the effective permittivity for the cor
responding bulk composite medium. The depth depende
and the anisotropic behavior of the local permittivity due
the surface environment are very important in thin-film tec
nology since they will influence, e.g., the reflection a
transmission properties of the thin film. Although there is
vast literature in the surface physics studying the phenom
occurring on~or near! surfaces, not much work has bee
done in analyzing the surface effects on the local dielec
properties of a composite medium near the surface. The
fect of the orientation of the liquid molecules on the surfa
has been studied in Ref. 14, where it was shown that
surface anisotropy of the liquid leads to a so-called pseu
Brewster reflection. The surface effect on the dispersion
the polarization has been considered in Ref. 15 through
analysis of the polariton modes. In Ref. 16, the permeab
for a two-dimensional granular thin film has been studied
the surface-to-bulk transition was not considered there
PRB 620163-1829/2000/62~20!/13718~13!/$15.00
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Ref. 3 a slab of a few layers of dielectric ellipsoidal incl
sions is considered and the dipolar approximation is used
the interaction of ellipsoids. A surface averaging~instead of
a volume averaging! over each layer is used in Ref. 3 fo
calculating the averaged~mean! field when the total numbe
of layers is few~however, no explicit criteria for minima
number of layers is given there for treating the multilayer
composite as a bulk one!. In the present paper, we will show
that the local permittivity~defined through the volume ave
aging! is physically sound even for very few number of la
ers. The electromagnetic interactions of the inclusion p
ticles are assumed to be electrostatic in all these referen

In the present paper, we describe an accurate mode
the dielectric properties of a thin film consisting a few laye
of particles~or molecules! for both the static and harmoni
cases. We study the depth dependence~particularly in the
transition zone near the surfaces! and the anisotropic behav
ior of the local permittivity of the thin film. We present tw
different models~both taking into account the low-frequenc
corrections to the static theory! for the computation of the
local permittivity, namely, the discrete model and the co
tinuous model. These models should be more appropriate
use in studying structures of a few layers of inclusions th
the recent models~see, e.g., Refs. 4 and 5! that correct the
static theory of unbounded composite media but have
included the surface variations of the effective parameters
the present paper, we describe the method in terms of a
eral multipole expansion~valid even when the array of par
ticles are dense! but give the detailed derivation mainly i
the framework of the dipole approximation~when the array
of particles are sparse! for the field interactions of particles

II. THE STATIC CASE

Consider a slab composed of a few layers of particles
are distributed periodically in the transversex and y direc-
tions ~see Fig. 1!. These inclusion particles form a cub
lattice of finite thickness. The particles are identical and w
identical orientations~if they are not of spherical shape!. The
particles have a smooth boundary so that the field produ
by them at an arbitrary point can be expressed through
multipole expansion. It is assumed that the conditiond
13 718 ©2000 The American Physical Society
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PRB 62 13 719DIELECTRIC PROPERTIES OF A THIN FILM . . .
>2a is satisfied, wherea is the characteristic size of th
particles andd is the lattice constant. This condition allow
one to make a dipole approximation for the field interact
of particles, i.e., contribution of higher multipoles can
neglected at the distanced. This condition also allows one to
avoid solving the Laplace equation for the whole inhomo
neous structure, since one can then represent the respon
a particle to the local field through the particle’s elect
polarizability ~which is assumed to be known!.

A. Field interaction

Denote the total number of the layers of particles in
thin film by N. The external sources~free charges! are lo-
cated outside the slab. For example, the induced dipole
ment for each particle is given by the following formula~see,
e.g., Ref. 7!,

p5a% •Eloc, ~1!

where the polarizabilitya% for the particles is assumed to b
known andEloc is the local field. Similarly, the higher-orde
multipole polarizabilities are also assumed to be known~if
one wishes to take them into account!. The local field for the
i th particle~located at the positionRi) is given by

Ei
loc5Eext~Ri !1(

j Þ i
Ej

part~Ri !, ~2!

whereEi
ext is the field at the center of thei th particle pro-

duced by the external sources andEj
part is the field produced

by the j th particle. The total field can be written in the fo
lowing form,

E~Ri1r !5Eext~Ri1r !1(
j Þ i

Ej
part~r1Ri !1Ei

part~Ri1r !,

~3!

where r is the position vector in the local cell coordina
system, which has its origin at the center of the reference
~cf. Fig. 1!. As in the classical theory for dielectric propertie
of a bulk medium ~i.e., an infinite lattice of particles
molecules!,7 we need to introduce the averaged field and
averaged polarization. It is reasonable to use a unit lat

FIG. 1. Configuration for a thin film consisting of a few laye
of particles in a cubic lattice.
-
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cell d3d3d as the averaging volumeVav , and the averag-
ing of the true field~the microscopic field! over the unit cell
is called the averaged field~the macroscopic field!.

The averaged field and polarization at an arbitrary po
are defined by

^E&~R![
1

Vav
E

Vav

E~R1r 8!d3r 8, ~4!

^P&~R![
1

Vav
E

Vav

P~R1r 8!d3r 8, ~5!

whereVav is the volume of the unit lattice cell centered
point R, i.e., Vav5d3. In some works on multiphase med
~when shapes and sizes of the inclusions are different;
e.g. Ref. 6!, the averaged field is defined in terms of integr
tion over several cells~in order to take in account the var
eties of the particles!. For simplicity, we consider only the
case of identical inclusions in the present paper.

If the particles are not too close to each other, the con
bution of the higher-order multipole moments to the av
aged field is quite small compared to the contribution of
dipole moment~see, e.g., Refs. 9 and 10!. Since the size of
the particle is small compared with the cell size (a<d/2),
we can assume that inside the particle the microscopic po
ization P is uniform and equal top/Vp , where Vp is the
volume of the particle. Outside the particle we haveP50. At
the center of the particle we have^P&(Ri)5p/d3.

For the averaged field at the center of thei th particle one
has@cf. Eq. ~3!#

^E&~Ri !5
1

Vav
E

Vav

Eext~Ri1r !dV

1
1

Vav
(
j Þ i

E
Vav

Ej
part~r1Ri !dV

1
1

Vav
E

Vav

Ei
part~Ri1r !dV. ~6!

We assume that the external sources are located ou
and sufficiently far from the slab. In the static or low
frequency case, the external field can be assumed to be
proximately uniform inside the cell. This leads to the follow
ing approximation:

^Eext&~Ri !'Eext~Ri !. ~7!

Subtracting Eq.~2! from Eq. ~6! and using Eq.~7!, one ob-
tains

^E&~Ri !2Ei
loc5(

j Þ i
@^Ej

part&~Ri !2Ej~Ri !#1^Ei
part&~Ri !.

~8!

Applying the Taylor expansion for̂Ej
part& around the point

r50, one obtains
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13 720 PRB 62SIMOVSKI, POPOV, AND HE
^Ej
part&ur505

1

Vav
E

Vav
S Ej

partur501r a¹aEj
partur50

1
1

2
r ar b¹a¹bEj

partur50

1
1

6
r ar br g¹a¹b¹gEj

partur50

1
1

24
r ar br gr d¹a¹b¹g¹dEj

partur501••• DdV,

~9!

where the Greek letters denote the Cartesian coordinates
the conventional contraction rule for summation over
peated indices is implied. Note that the second and fou
terms in the above equation always give zero contribution
the integral since they are odd functions of the Cartes
coordinates, and the third and fifth terms vanish ifaÞb and
gÞd. Thus one obtains the following expression:

^Ej
part&ur502Ej

partur505
1

2Vav
¹a

2Ej
partur50E

Vav

r a
2dV

1
1

24Vav
¹a

2¹b
2Ej

part
r50

3E
Vav

r a
2r b

2dV1•••. ~10!

In the static case, the fieldEj
part(r ) satisfies the following

Laplace equation,

DEj
part~R![ (

a51

3

¹a
2Ej

part~R!50. ~11!

In the static case the above Laplace equation holds a
arbitrary point outside the source of the fieldEj

part ~i.e., j th
particle!, and thus it holds inside thei-numbered cell (i
Þ j ). For a time-harmonic case we show below that the e
in such a Laplace equation approximation is of order (kd)2.

Thus, all the terms~including the first two terms! in Eq.
~10! which have 2n times operation ¹, where n
51,2,3, . . . , become zero. Excluding all these zero term
and keeping only the first nonzero term, one obtains the
lowing approximation:

^E& j
partur502Ej

partur50

'
1

720Vav
¹a

2¹b
2¹g

2Ej ur50E
Vav

r a
2r b

2r g
2dV. ~12!

The integral in Eq.~12! equalsd9/13 824 and the right side
~normalized by the field amplitude! of Eq. ~12! is of the
order of 1027. The sixth-order spatial derivatives of the d
pole field can be expressed in terms of the field generate
the electrostatic multipole of the same order. The sum
these terms due to all the surrounding particles@ j Þ i ; cf.
expression~8!# can be expressed as a lattice sum of the six
nd
-
th
o
n
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r

s
l-

by
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-

order multipole field multiplied by a factor of 1027. Thus we
can assume that this sum is negligible. It then follows fro
Eq. ~8! that

^E&~Ri !2Ei
loc5^Ei

part& ~13!

for the static case.
The sum of the differences given in Eq.~12! is negligible

if the slab thickness is much larger than the lattice cons
d. This is due to the fact that the Lorentz formula is qu
accurate inside a lattice cell that is far away from the s
surface@see, e.g., Ref. 10 and Eq.~16! below#. The contri-
bution from these terms in Eq.~12! is maximal ~i.e., the
Lorentz formula has maximal error! if the slab contains a
single layer.

B. Averaging the field generated by the reference particle

The term^Epart&(Ri) in Eq. ~8! is the averaging~over the
i th cell! of the field produced by thei th particle, i.e.,

^Epart&~Ri !5
1

Vav
E

Vav

Ei
part~Ri1r !dV.

The field Ei
part can be expressed in terms of the potenti

Since the multipole expansion is implied in our theory, o
may express the field at an arbitrary point of the cell by8

Ei
part~Ri1r !52

1

4pe
“S par a

r 3 1
qabr ar b

2r 5

1
oabgr ar br g

6r 7 1••• D ,

wherepa , qab , andoabg are the components of the dipole
quadrupole, and octopole moments of the reference part
respectively, ande is the permittivity for the host medium
which may differ frome0 ~the permittivity for vacuum! for
the case when the slab is of a composite material with
components. For the case when the slab is a few layer
molecules, one hase5e0 ~since the host medium is a fre
space in this case!. First we consider the dipole momen
contribution. Integrating along thea axis for thea compo-
nent ofE0

part , one obtains

^E0a
part&~Ri !52

1

4~d/2!3

1

4pe

3E
S
S pbr b

r 0
3 1

pgr g

r 0
3 1

pad/2

r 0
3 Ddrgdrb ,

where r 05Ar g
21r b

21(d/2)2 and S5d3d. After a simple
integration one obtains

^E0a
part&~Ri !52

pa

3e

1

d3 . ~14!

Sincep5P(Ri)d
3, it follows that

^E0
part&~Ri !52

^P&~Ri !

3e
. ~15!

Since the cell is symmetric, the contribution of the qua
rupole moment to the averaged field vanishes. The octop
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PRB 62 13 721DIELECTRIC PROPERTIES OF A THIN FILM . . .
moment contribution tôE0
part& can be evaluated in a simila

way, and leads to the following equation@as a correction to
Eq. ~15!, for the same cubic cell case#:

^E0a
part&52

^Pa&
3e

2
^Oaaa&
72ed2 .

If the particles are not too close to each other~for example if
d.1.5a, wherea is the characteristic size of an inclusio
particle!, the contribution of the octopole moment to the a
eraged field is quite small compared to the contribution
the dipole moment~unless the particle shape is very compl
and special!, and the multipole series converges rapidly.
such a case one can neglect the contributions of the octo
and other higher-order multipoles of the reference particle
the averaged field̂E0

part& ~this has been proved for the la
tices of spheres and rods in Refs. 9 and 10!. To simplify the
analysis, we carry out the detailed derivation using the dip
approximation for the field interactions of particles in the r
of the paper with the assumption that the array of partic
are sparse~for example,d.1.5a). Note that the method ca
be easily extended to include higher-order multipoles wh
the array of particles are dense.

Equations~13! and ~15! lead to the following Lorentz
formula:

Eloc~Ri !2^E&~Ri !5
1

3e
P~Ri !. ~16!

In Ref. 8 the above formula is given as an expression for
difference between the local field and the averaged field
an infinite dielectric structure.

In Appendix A, we have estimated the error introduced
neglecting the terms in the right side of Eq.~12! for a single
layer of molecules~this error is maximal for this case!. Our
estimation gives 8% for this error~see Appendix A!. If the
slab consists ofN>4 layers, this error turns out be negligib
for all inner layers and for an entire slab~as the numerica
modeling described below shows!.

C. Discrete and continuous models for the local susceptibility
and permittivity

The averaged volume polarization^P& is related with the
averaged field through the susceptibility tensork% loc , which
is defined by

^P&[k% loc•^E&. ~17!

For the general case of anisotropic particles, one can ea
obtain the following Clausius-Mossotti relation from Eqs.~1!
and ~16!,

k% loc~Ri !5
1

d3 S I%2
a%

3d3e D 21

•a% , ~18!

whereI% is a unit dyadic. Note that the polarizabilitya% for the
particles is assumed to be known. The above expres
gives the values of the local susceptibility only at some d
crete points, namely, at the centers of the particles inside
thin film.

The local permittivity e% loc is defined by the following
well-known relations,
-
f

le
o

le
t
s

n

e
r

y

ily

on
-
he

D5e% loc^E&, D5e^E&1^P&,

whereD is the electric displacement vector. It thus follow
from definition ~17! that

e% loc~r !5k% loc~r !1eI%. ~19!

From Eqs.~19! and~18! one determines the local permittiv
ity at the centers of the particles inside the thin film.

We need to study the local susceptibility and permittiv
at an arbitrary point. Relation~17! holds at an arbitrary point
whereas Eq.~18! holds only at the centers of the particle
Therefore, we should compute directly the averaged field
the averaged polarization at an arbitrary point@using Eqs.~4!
and ~5!# in order to determine the local susceptibility an
permittivity at an arbitrary point. This will be addressed
Sec. III B below for the general harmonic case. Such a co
putation becomes simpler if the particles are dielec
spheres, since for this special case we consider the mi
scopic field outside the particles as a field generated b
lattice of dipoles and the microscopic field inside the p
ticles to be uniform and related with the dipole moment
the following Rayleigh’s equations,8

p52eV0

ep2e

2ep1e
E(p), p523eV0

ep2e

2e1ep
Eloc, ~20!

where E(p) is the total field inside the particle,ep is the
permittivity of the particle,V054pb3/3, andb5a/2 is the
radius of the spherical particle. Due to the symmetry and
surface effects, the permittivity tensor becomes uniaxial a
depth dependent. The result of the Clausius-Mossotti rela
~18! can then be used as a check.

D. Effective permittivity for the whole slab

The depth-dependent uniaxial permittivity in a thin sl
can be denoted by

e% 5e t~z!I% t1en~z!z0z0 ,

whereI% t5x0x01y0y0. One can average the above permitti
ity profile to find the effective permittivity of the slab as
whole ~which will influence the reflection and transmissio
of the electromagnetic waves!. The effective permittivity
e% e f f can be obtained by the following formulas:17

ee f f
t 5

1

DE
0

D

e t~z!dz, ~21!

ee f f
n 5DS E

0

D dz

en~z! D 21

, ~22!

whereD is the thickness of the thin film. There is a simp
physical interpretation for the averaging formulas~21! and
~22!. The problem of calculating the effective permittivit
along a direction normal~or parallel! to the interface for a
stack of dielectric layers by averaging is analogous to
problem of calculating the total capacitance of many capa
tors in series~or in parallel!. It is well known that for the
total capacitance the elementary capacitances are additi
they are in parallel, and for the case of capacitors in se
their inverses are additive.
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III. THE HARMONIC CASE

In this section we generalize the electrostatic res
~given in the previous section! to the harmonic case with
time dependence exp(ivt).

A. Discrete model for the permittivity

Consider a plane wave obliquely incident~from the top!
on the thin film consisting ofN layers of particles. The layer
are labeled asm50,1, . . . ,N21 from the bottom to the top
and the origin of the Cartesian coordinate system is loca
at the center of a particle in the layerm50 ~see Fig. 1!. Each
particle in the cubic lattice is isotropic and with a know
dipole polarizabilitya. In the harmonic case, we have
consider the phase-shift effects and we wish to calculate
local susceptibility and permittivity at the centers of ea
layers in this subsection. The incident field at the originx
5y5z50 is denoted byE0. For simplicity we assume tha
the plane of incidence is thexz plane. Thus, the incident field
has the following form at the planez50,

Einc~x,y,0!5E0e2 ikxx, ~23!

where the transverse wave numberkx is related to the inci-
dent angle. We can consider separately theE-polarization
case whenEy5E0 and theH-polarization case whenEx

0

5E0kz /k0 , Ez
05E0kx /k0, where kz5Ak0

22kx
2 and k0

5vAm0e0 is the wave number in vacuum~note that the
medium outside the thin film is vacuum!. Including thez
dependence, Eq.~23! may be rewritten in the following form
for both theE- andH-polarization cases,

Einc~x,y,z!5E0e2 i ~kxx2kzz!.

Denote the wave number in the host medium ask, i.e., k
5vAem0. The center plane for the top layer isz5D5(N
21)d. We consider the case whenkD<1, i.e., the thickness
of the thin film is small compared to the wavelength.

In the harmonic case, the Laplace equation~11! for the
field in the i th cell produced by thej th particle should be
replaced by the following Helmholtz equation:

DEj
part~r !52k2Ej

part~r !. ~24!

Neglecting the terms of the order (kd)4, it follows from Eqs.
~10! and ~24! that

^Ej
part&~r50!2Ej

part~r50!52
~kd!2

6
Ej

part~r50!.

~25!

Here we have used the fact that

E
Vav

r a
2dV5d5/12.

Thus, the Lorentz formula~16! at the pointRM (x5y50,z
5Md) must be modified and replaced by the following fo
mula:

Eloc~RM !2^E&~RM !5
P~RM !

3e
2

~kd!2

24 (
j ÞM

Ej~Rj2RM !.

~26!
s

d

e

At each layer, we call the particle with coordinatesx
5 l 1d andy50 the l 1-numbered particle. Due to the period
icity in Eq. ~23!, at themth layer we may express the dipo
moment for thel 1-numbered particle in terms of the dipo
moment for the 0-numbered particle as follows:

p(m,l 1)5p(m,0)e
2 i l 1kxd. ~27!

To estimate thez dependence of the susceptibility an
permittivity, it is sufficient to consider relation~26! at the
centers of the 0-numbered particles of each layer. We m
express the field produced by each particle of themth layer
in terms of the corresponding dipole momentp(m,0) . Thus,
we have the following relation betweenp(m,0) and the field
E(mM) at the point (x5y50,z5Md) produced by themth
layer,

E(mM)5
F% mM

ed3 •p(m,0)5
F% mM

e
•P(m,0) , ~28!

whereF% mM is a certain dyadic to be found~we call it the
interaction dyadic!.

The dipole moment for the 0-numbered particle of t
mth layer is related to the dipole moment for the 0-numbe
particle of the 0th layer in the following form,

p(m,0)5 f% m•p(0,0) ,

wheref% m is called thedistribution dyadicand is to be deter-
mined. It then follows from Eq.~26! that ~replacingp(0,0)
with P(0,0)d

3)

Eloc~RM !2^E&~RM !5
1

3e F f% M1
~kd!2

8

3 (
m50

N21

F% mM• f% mG•P(0,0) . ~29!

ExpressingP(0,0) in the above equation in terms ofP(M ,0) ,
one obtains

Eloc~RM !2^E&~RM !5
L% M•P(M ,0)

3e
,

where the dyadic factorL% M is given by

L% M5S I%1
~kd!2

8
f% M

21 (
m50

N21

F% mM• f% mD . ~30!

Thus, the Clausius-Mossotti equation~18! is generalized to
the following one for the harmonic case:

k% ~z5Md!5
1

d3 S I%2
a

d3e
L% M D 21

a. ~31!

We callL% M the locality factor. Oncek% (z5Md) is found,
one knows the local permittivity tensore% (z5Md) from Eq.
~19!. If the locality factorL% M is real for a real-valueda and
its dependence on the incident angle is weak, the concep
the local permittivity is appropriate. A numerical scheme f
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computing the dyadicsF% mM has been described in Append
B. Below we only present the final results~see Appendix B
for the detailed derivation!.

If mÞM , the components for the interaction dyadicF% mM
can be computed by

FmM
xx 5 (

l 152`

1`

(
l 252`

1`
1

2kz
( l )d

e2uM2mudkz
( l )

3@~kz
( l )d!22~ky

( l )d!2#, ~32!

FmM
xy 5FmM

yx

5 (
l 152`

1`

(
l 252`

1`
1

2kz
( l )d

e2uM2mudkz
( l )

3@~kx
( l )d!~ky

( l )d!#, ~33!

where

kx
( l )5kx1

2p l 1

d
, ky

( l )5
2p l 2

d
, kz

( l )5Akx
( l )2

1ky
( l )2

2k2.

The expression forFmM
yy ~or FmM

zz ) is obtained by replac-
ing ky

( l ) ~or kz
( l )) with kx

( l ) ~or 2kx
( l )) in expression~32!. The

expression forFmM
xz andFmM

zx ~or FmM
yz andFmM

zy ) is obtained
by replacingky

( l ) ~or kx
( l )) by ikz

( l ) in expression~33!.
For the present case when the incident plane is in thexz

plane, one hasFmM
xy 5FmM

yx 50 andFmM
yz 5FmM

zy 50. The ex-
pressions for the other components ofF% mM can be rewritten
in the following more convenient form,

FmM
xz 5FmM

zx 5 (
l 152`

1`

(
l 252`

1`

e22pj( l )uM2muS kx1
2p l 1

d D ,

~34!

FmM
xx 5p (

l 152`

1`

(
l 252`

1`
~kxd/2p1 l 1!22~kd/2p!2

j ( l )

3e22pj( l )uM2mu, ~35!

FmM
yy 5p (

l 152`

1`

(
l 252`

1` l 2
22~kd/2p!2

j ( l ) e22pj( l )uM2mu,

~36!

FmM
zz 52p (

l 152`

1`

(
l 252`

1`
~kxd/2p1 l 1!21 l 2

2

j ( l )

3e22pj( l )uM2mu , ~37!

where

j ( l )5AS kxd

2p
1 l 1D 2

1 l 2
22S kd

2p D 2

. ~38!

It is easy to check that in the static limitk5kx50 the
above expressions reduce to Ewald’s results for the inte
tion dyadic,18 namely, the off-diagonal components are ze
and
c-
s

FmM
xx,yy5p (

l 152`

1`

(
l 252`

1` l 1
2

Al 1
21 l 2

2
e22puM2muAl 1

21 l 2
2,

~39!

FmM
zz 52p (

l 152`

1`

(
l 252`

1`

Al 1
21 l 2

2 e22puM2muAl 1
21 l 2

2.

~40!

If m5M , the components for the interaction dyadicF% mM are
given by ~see Appendix B!

FMM
xx 5FMM

yy 50.359, FMM
zz 520.718, ~41!

and the other components are identically zero.
After the interaction dyadicF% mM is calculated, the distri-

bution dyadicf% m is obtained by the following formula,

f% m5
p(m,0)p(0,0)

~p(0,0)•p(0,0)!
, ~42!

where the distribution of the induced dipole momentp(m,0)
along thez axis is determined by solving the following alge
braic system:

p(M ,0)5aS E0eikzMd1
1

d3e (
m50

N21

F% mM•p(m,0)D ,

~43!
M50,1, . . . ,N21.

Since the distribution dyadicf% m does not depend onE0,
we can choose

E05y0 ~44!

for the case ofE-polarization incidence and

E05~kz /k0!x01~kx /k0!z0 ~45!

for the case ofH-polarization incidence. Equation~43! can
then be written in the following form,

(
m50

N21 F I%dmM2
1

d3e
aF% mMG•p(m,0)5aE0eikzMd,

~46!
M50,1,2, . . . ,N21,

wheredmM is Kronnecker’s delta symbol.
The results for theE-polarization case then give theyy

component of the locality factorL% M for the M th layer ac-
cording to Eq.~30!. In the H-polarization case the dipole
moment cannot be directed along they axis, and all the dy-
adics (F% mM , f% m , and L% M) become 232 dyadics. Thus, in
this case one determinesxx, zx, xz, andzz components of
the locality factor, susceptibility, and permittivity accordin
to Eqs.~30!, ~31!, and ~19!. The xz and zx components in
these dyadics should vanish in the static case if the parti
are symmetric. They may be significant only when the f
quency is quite high. Thexz andzx components of the dy-
adics (L% M ,k% loc ,e% loc) must be equal due to the reciprocity

If the polarizability of a particle is frequency independen
the frequency dependence of the locality factorL% M on the
wave numberk05vAe0m0 reflects the spatial dispersion e
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13 724 PRB 62SIMOVSKI, POPOV, AND HE
fect of the thin film. If the locality factor strongly depends o
kx /k5cosu, it means that the spatial dispersion is so stro
that the local permittivity loses the physical meaning. In t
harmonic case the local permittivity is a dyadic even
particles are isotropic. Using the above approach, we h
also validated the prediction of the macroscopic theory
the Brewster angle in Appendix C.

B. Continuous model for the local permittivity

Like the static case, one can obtain a continuous pro
for the local permittivity through computing numerically th
averaged field and polarization. The true field can be writ
in the following form:

E~x,y,z!5Einc~x,y,z!1 (
m50

N21

E(m)~x,y,z!1Ein~x,y,z!

[Einc~x,y,z!1Edip~x,y,z!1Ein~x,y,z!,

whereE(m) is the field produced by themth layer of dipoles,
Edip(x,y,z) is the field produced by allN layers of dipoles
@i.e., Edip(x,y,z)5(m50

N21E(m)(x,y,z)#, and the term
Ein(x,y,z) is the remaining term, which is identically zer
outside the particles but nonzero inside the particles.

We choose the case when the particles are dielec
spheres~with radiusb5a/2) as an example to illustrate th
procedure. We average the fieldE(x,y,z) over the volume
d3d3d. The sphere radius is assumed to be small co
pared to the wavelength and thus for the field inside
particle we can apply the Rayleigh relation~20!. We can
directly calculate the averaged polarization^P(x,y,z)& and
the averaged field̂E(x,y,z)& at an arbitrary point using defi
nitions ~5! and~4!. The permittivitye% loc(z) is then obtained
from the following formula@cf. Eqs.~17! and ~19!#:

e% loc~z!5
1

^E&~0,0,z!•^E&~0,0,z!
^P&~0,0,z!^E&~0,0,z!1eI%.

~47!

After the dipole momentsp(m,0) , m50,1, . . . ,N21, are
computed by solving the system~46!, one can find the con
tinuous functionŝ P&(0,0,z) and^E&(0,0,z) as follows. Like
the true field, the averaged field^E&(0,0,z) can be separate
into the following three parts:

^E&~0,0,z!5^Einc&~0,0,z!1^Edip&~0,0,z!1^Ein~0,0,z!&.
~48!

It is shown in Appendix D that

^Einc&~0,0,z!5S sin~kxd/2!

~kxd/2! D S sin~kzd/2!

~kzd/2! DeikzzE0, ~49!

^Edip&~0,0,z!5 (
m50

N21 FG% m~z!

ed3 •p(m,0)G , ~50!

where

G% m~z!5 (
l 52`

1`
~21! l

2kz
( l )d S sin~kxd/2!

~kxd/21 lp! DS% ( l )Wm
( l )~z!, ~51!
g
e
e
ve
r

le

n

ic

-
e

S% ( l )5~kz
( l )d!2x0x01@~kz

( l )d!22~kx
( l )d!2#y0y02~kx

( l )d!2z0z0

1~x0z01z0x0!~ ikz
( l )d!~kx

( l )d!,

and where the functionWm
( l )(z) has the following expression

Wm
( l )~z!5

22ekz
( l )(uz2mdu2d/2)2e2kz

( l )d

kz
( l )d

~52!

for the caseuz2mdu,d/2, and

Wm
( l )~z!5S sinh~kz

( l )d/2!

kz
( l )d/2 D e2kz

( l )uz2mdu ~53!

for the caseuz2mdu.d/2. Herekz
( l )5A(kx12p l /d)22k2

and for l 50 one haskz
(0)5 ikz .

Consider a spherical particle~with radiusb) at theM th
layer. Introduce the following notation:

EM52
p(M ,0)

3eV0
, ~54!

V05
4pb3

3
. ~55!

DenoteDz[z2Md. If Dz is in the interval@d/2,d/21b#,
the volume of the sphere part inside the averaging volumed3

is ~see Fig. 2!

V15
p

6
~b1d/22Dz!@3b213~d/22Dz!2

1~b1d/22Dz!2#.

For d/22b<Dz<d/2, the volume of the sphere part insid
the averaging volumed3 is

V15V02
p

6
~b2d/21Dz!@3b213~d/22Dz!2

1~b2d/21Dz!2#.

Averaging P and Ein at each point over its associate
averaging volume, one can easily obtain the following resu

FIG. 2. Geometry for the averaging.
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~i! for (M2 1
2 )d1b<z<(M1 1

2 )d2b, M50, . . . ,N
21,

^P&~0,0,z!5p(M ,0) /d
3, ~56!

^Ein&~0,0,z!5EMV0 /d3; ~57!

~ii ! for (M1 1
2 )d2b<z<(M1 1

2 )d1b, M50, . . . ,N22,

^P&~0,0,z!5p(M ,0)

V1

d3V0
1p(M11,0)

V02V1

d3V0
, ~58!

^Ein&~0,0,z!5EM
V1

d3V0
1EM11

V02V1

d3V0
; ~59!

~iii ! for (M1 1
2 )d2b<z<(M1 1

2 )d1b with M5N21, or
(M2 1

2 )d2b<z<(M2 1
2 )d1b with M50,

^P&~0,0,z!5p(M ,0)V1 /V0d3, ~60!

^Ein&~0,0,z!5EMV1 /d3; ~61!

~iv! for z<2d/22b or z>(N21/2)d1b,

^P&~0,0,z!5^Ein&~0,0,z!50. ~62!

The formulas presented in this subsection give a q
explicit and accurate approach for computing the local p
mittivity of the thin film as a continuous function of th
depthz.

C. Numerical results

As a numerical example, we consider the dielect
spheres~with radiusb) in vacuum, i.e.,e5e0. The permit-
tivity for the inclusion particles is chosen to beep510e0.
The polarizability of the dielectric spheres is given by t
following formula ~see, e.g., Ref. 19!,

a54peb3
ep2e

ep12e
.

We chooseb5d/4 in our numerical example. The total num
ber of layers in the thin film isN54. In the calculation of
the interaction tensorF% mM , the series in Eqs.~34!–~37! con-
verge very rapidly and thus we takel 15 l 254. In the dis-
crete model, the relative permittivity tensore% r5e% loc /e0 for
each layer is computed by using Eqs.~31! and ~19!. For the
E-polarization case, theyy component ofe% r for each layer is
computed and plotted in Fig. 3~a! as a function of the inci-
dent angleu. Thexx andzz components of the tensore% r for
each layer are determined from theH-polarization case and
are plotted in Figs. 3~b! and 3~c! as functions of the inciden
angle. Note that the tensorf% M for the H-polarization case is
quite singular and we find the tensorL% M from expression
~30! ~which contains the inversion off% M) using the singular
value decomposition method~see, e.g., Ref. 20!. As one can
see from Figs. 3~a!–3~c!, the permittivity is practically inde-
pendent of the incident angle forkd50.1 andkd50.2 and
depends weakly on the incident angle forkd50.5. Our nu-
e
r-

c

merical results indicate that forkd<1023 the variation in the
dipole moments from one layer to another does not exc
0.2%, which is consistent with the results obtained by Ew
in Ref. 21 and Sivukhin in Ref. 14 for the static case. In t
quasistatic casekd<0.1, the difference between the relativ
permittivity obtained by the Lorentz formula~which gives

FIG. 3. Components of the relative permittivity tensor~obtained
from the discrete model for a four-layered thin film! as functions of
the incident angle.
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e r51.154 87) and the one obtained by our discrete formu
does not exceed 1023 ~see Fig. 3!.

For the continuous model, theyy component~for the
E-polarization case! and xx and zz components~for the
H-polarization case! of the relative permittivity tensore% r are
calculated and presented as functions of the vertical coo
natez in Figs. 4~a!–4~c!, respectively, forkd51023 and u
545° ~the dependence ofe% r on the incident angleu is very
weak for kd<1). As one can see from Fig. 4, the comp
nents of the relative permittivity tensor have a transition zo
around each surface of the thin film and the thickness of
transition zone is approximately equal to the particle siza
52b5d/2. As a validation of our models, the local perm
tivity obtained by the discrete model and the continuo
model are in a very good agreement for relatively low f
quencieskd<0.5.

For these frequencies we have also compared
coordinate-independent effective permittivity obtained
Eq. ~16! with that obtained from Eq.~47! for an N-layered
slab. This way we find numerically the distance from t
surface of the slab where the permittivity is getting alm
coincident with that predicted by Lorenz-Lorentz theory.
N54 for two inner layers the error in the effective perm
tivity associated with the use of the Lorentz formula does
exceed 1023, whereas for the surface layers this error has
order of several percent. Thus, the Lorentz formula can
used for a quite thin slab. We characterize the anisotropi
~due to the surface effects! of the thin film through a so-
called anisotropic coefficient, which is defined by

ga5Uee f f
t 2ee f f

n

ee f f
t U .

The effective dielectric constantsee f f
t andee f f

n are calculated
from expressions~21! and ~22!. The local permittivity ten-
sors are calculated from Eqs.~19! and~31!. At low frequen-
cies ~for kd<0.2), e loc

yy 'e loc
xx [e loc

t for all the incident
angles~as can be seen from Fig. 3!. This result is expected
and can be considered as a check. In the quasistatic
(kd<0.01) the normal and transverse components of the
fective permittivity ~for the present four-layered thin film!
are approximately equal to 1.1211 and 1.1451, respectiv
which correspond toga50.0209 for the anisotropic coeffi
cient. The anisotropic coefficientga is in the interval
0.0206–0.0209 forkd<0.2. The Brewster angle, calculate
from formula ~C3! in Appendix C, is equal to 47.35° an
does not depend on the frequency~for kd<1). This Brew-
ster angle is quite close to 47.28°, which is the prediction
the macroscopic theory according to formula~C4! @in which
we takeee f f5(ee f f

t 1ee f f
n )/2#.

Finally, we present the normal electric fieldEz ~for the
H-polarization case! as a function of the depthz in Fig. 5. As
one can see from this figure, the normal electric field ha
similar transition zone as the local permittivity.

IV. CONCLUSION

In the present paper, we have presented an accurate m
for the dielectric properties of a thin film consisting a fe
s

i-

e
e

s
-

e

t

t
e
e

ty

se
f-

ly,

f

a

del

layers of particles~or molecules! for both the static and har
monic cases. Even for the case of isotropic particles,
local permittivity becomes uniaxial near the two surfaces
the thin film. The depth dependence and the anisotropic
havior of the local permittivity due to the surface enviro

FIG. 4. Components of the relative permittivity tensor~obtained
from the continuous model for a four-layered thin film! as functions
of the vertical positionz.
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ment are studied both analytically and numerically. The
efficient of the anisotropy is of the order of several perce
The thin film can be described accurately as a slab of c
tinuous medium if the frequency is low enough (kd,0.5,
whered is the distance between two neighboring particle!.
In the harmonic case, the nonuniform distribution of the fie
and polarization has been taken into account not only n
the surfaces, but also inside the thin film. We have develo
two different models for the computation of the local perm
tivity, namely, the discrete model and the continuous mod
For the local permittivity at low frequencies (kd,0.5), both
models give consistent results, which are very close to th
obtained in the framework of the Lorentz-Clausius-Moss
approximation. Numerical results have shown that the de
for the transition zone~in which the permittivity varies sig-
nificantly! near a surface is about the particle size. Numer
results have also shown that the Brewster angle for suc
thin film coincides with the prediction of the macroscop
theory. The detailed derivation has been carried out using
dipole approximation for the field interactions of particl
with the assumption that the array of particles are sparse.
method can be easily extended to include higher-order m
tipoles when the array of particles are dense.
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APPENDIX A: ERROR ESTIMATE FOR THE LORENTZ
FORMULA FOR A THIN FILM CONSISTING OF A

SINGLE LAYER OF PARTICLES

As an approximation, the Lorentz formula~16! for the
static case has the maximal error when the composite

FIG. 5. The distribution of the normal component of the elect
field obtained from the continuous model for theH-polarization
case.
-
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ab

consists only one layer of particles. In this appendix,
estimate this maximal error. We apply the theorem of Ko
torovich et al.22 in which the averaged field of discret
sources equals the true field of the averaged sources if
rule of averaging is the same.

Consider first the case when the induced dipoles are h
zontally oriented at the plane of the particle array. Subtra
ing the external field from the local field, one obtains t
interaction fieldEint defined as the contribution of the pola
ized structure to the local field. The relation between t
field and the dipole momentp is23

Eint5Cp/e,

whereC is a constant. For a square array of horizontal
poles,C has the following value@see Eq.~12.27! of Ref. 23#,

C5
1.228p2K0~2p!

pd3 '0.359/d3, ~A1!

whereK0 is MacDonald’s function. On the other hand, th
Lorentz formula~16! gives C50.33/d3 for this case. Thus,
the relative error for using the Lorentz formula~16! for this
case is about (0.35920.33)/0.35958%.

Next we consider the case when the induced dipoles
vertically oriented~i.e.,z-directed! at the plane of the particle
array. Using the theorem of Kontorovichet al. it can easily
be shown that the field averaged over the cubic celld3d
3d centered at the plane of the particle array equals the fi
inside the slab of continuous volume polarizationP5p/d3.
Thus, one has

Eav52
P

e
1Eext.

It follows from Collin’s notation that

Eloc2Eav5
P

e
1

Cd3P

e
.

For a square array of vertical dipoles,C has the following
value @see Eq.~12.30! of Ref. 23#,

C5
22.4116p2K0~2p!

pd3 '20.7187/d3. ~A2!

On the other hand, the Lorentz formula~16! gives C5
20.66/d3 for this case. Thus, the relative error for using t
Lorentz formula ~16! for this case is about (0.718
20.6666)/0.718758%. Therefore, the maximal error of ou
method for the static case is about 8%, which takes plac
the limiting case when the slab consists only of a single la
of particles.

APPENDIX B: THE INTERACTION DYADIC

In this Appendix, we derive the explicit expression for th
interaction dyadicF% mM . Consider first the case whenm
ÞM . Then the point (x5y50, z5Md) where the field is
calculated does not belong to them layer, which produces
the field. The vector potential at the point (x,y,z) produced
by all the particles of themth layer can be written as follows



13 728 PRB 62SIMOVSKI, POPOV, AND HE
A(m)5
k

4pAem0

p(m,0) (
l 1 ,l 252`

1`
exp@2 i ~kRl1kxdl1!#

Rl

5
2 ik

2d2Aem0

p(m,0) (
l 1 ,l 252`

1` expH 2 i F uz2mduQl1S kx1
2p l 1

d D x1S 2p l 2

d D yG J
Ql

,

n
d

ol-

e

where

Rl5A~dl12x!21~dl22y!21z2,

Ql5Ak22S kx1
2p l 1

d D 2

2S 2p l 2

d D 2

.

This representation of vector potential is the well-know
Floquet’s expansion for the field produced by a regular
polar array in terms of spatial harmonics.24 It can be written
in a more convenient way as follows,

A(m)5
k

2d2e
p(m,0) (

l 1 ,l 252`

1`
e(2uz2mdukz

( l )
2 ikx

( l )x2 iky
( l )y)

kz
( l )

,

s.
o
e-

ld
rti
ril
od
e

ha
th
on
i-

where

kx
( l )5kx1

2p l 1

d
, ky

( l )5
2p l 2

d
, kz

( l )5Akx
( l )21ky

( l )22k2.

The corresponding electric field can be found from the f
lowing Lorentz gauge,

E(m)5
ih

k
“3~“3A(m)!,

whereh5Am0 /e. The above formula can be written in th
following explicit matrix form,
E(m)5
1

2d2e
(

l 1 ,l 252`

1`
e(2uz2mdukz

( l )
2 ikx

( l )x2 iky
( l )y)

kz
( l ) S ~kz

( l )!22~ky
( l )!2 kx

( l )ky
( l ) ikx

( l )kz
( l )

kx
( l )ky

( l ) ~kz
( l )!22~kx

( l )!2 iky
( l )kz

( l )

ikx
( l )kz

( l ) iky
( l )kz

( l ) 2~kx
( l )!22~ky

( l )!2
D p(m,0) . ~B1!

Thus, one obtains the following expression for this field at the point (x5y50, z5Md),

E(Mm)5
1

2d3e
(

l 1,252`

1`
e2uM2mudkz

( l )

kz
( l )d S ~kz

( l )d!22~ky
( l )d!2 kx

( l )ky
( l )d2 ikx

( l )kz
( l )d2

kx
( l )ky

( l )d2 ~kz
( l )d!22~kx

( l )d!2 iky
( l )kz

( l )d2

ikx
( l )kz

( l )d2 iky
( l )kz

( l )d2 2~kx
( l )d!22~ky

( l )d!2
D p(m,0)[

1

d3e
F% mM•p(m,0) .

~B2!
o

and

e
not
of
The dyadicF% mM ~for mÞM ) defined above leads to Eq
~32! and ~33!. Note that all the series in the expression f
F% mM (mÞM ) converge well and the high-order terms d
crease exponentially asl 1 and l 2 increase.

Next we want to derive the field at the point (x5y
50, z5Md) produced by the particles in theM th layer
except the 0-numbered particle of this layer~i.e., the particle
which contains the field point!. This is the so-calledinterac-
tion field of a 2D regular square array. This interaction fie
has been studied for horizontal dipoles in Ref. 23, for ve
cal dipoles in Ref. 25, and for the general case of arbitra
oriented dipoles in Ref. 26. In particular, if the grating peri
is so small thatkd<0.2 the interaction field produced by th
planar array of dipoles~horizontal or vertical! can be consid-
ered as approximately static for incident angles less t
80°. We will only consider these incident angles and thus
dyadicF% MM is diagonal. The components of the interacti
dyadic for the static case are23
r

-
y

n
e

FMM
xx,yy50.359, FMM

zz 520.718.

If the incidence is very oblique~more than 80°), one has t
consider the high-frequency corrections even for a smallkd,
and use very complicated formulas given in Refs. 26, 25,
23. This case is not interesting for our purposes.

APPENDIX C: THE BREWSTER FUNCTION

The field reradiated in the reflection direction~making an
angleu with the vertical axis; see Fig. 1! by a layer of di-
poles is proportional to the transverse~with respect to this
reflection direction! component of the dipole moment, sinc
the longitudinal component of the dipole moment does
contribute to this field. Therefore, the complex amplitude
the field reradiated by theM th layer can be written in the
following form,

EM5A~u!~pMx cosu1pMz sinu!,
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wherepM is the dipole moment for the 0-numbered dipole
this layer@other dipoles at this layer are expressed in ter
of the 0-numbered dipole by Eq.~27!#. Consequently, the
complex amplitude of the field reflected by the thin film c
be written as follows:

Er5A~u! (
M50

N21

e2 iMkd cosu~pMx cosu1pMz sinu!. ~C1!

One can rewrite the above equation in the following form

Er5A~u!~Sx cosu1Sz sinu!, ~C2!

where

Sx5 (
M50

N21

e2 iMkd cosupMx , Sz5 (
M50

N21

e2 iMkd cosupMz .

AveragingEr over the temporal period 2p/v and dividing
expression~C2! by a factoruA(u)Ŝz cosuu, one obtains the
following normalized angular dependence of the reflect
coefficient,

f Br~u![
Êr

uA~u!Ŝzcosuu
5UuSxu

uSzu
cos~fx2fz!2tanuU,

~C3!

where the caret denotes temporal averaging, andfx andfz
are the phases of the complex valuesSx andSz , respectively.
Function f Br(u) is called theBrewster function, since the
reflected filedEr50 whenf Br(u)50. The zero of the Brew-
ster function f Br(u) is Brewster’s angle. Note that in th
macroscopic theory the condition for Brewster’s angle
~see, e.g., Ref. 27!

tanuBr5Aee f f. ~C4!

APPENDIX D: THE AVERAGED FIELD

Consider expression~B1!, which gives the field at an ar
bitrary point produced by themth layer of particles. Adding
these fields for all layers and taking the average in acc
dance with Eq.~4!, one obtains the following averaged dip
lar field ^Edip&,

^Edip&~r !5
1

d3 (
m50

N21 E
x2d/2

x1d/2E
y2d/2

y1d/2E
z2d/2

z1d/2

E(m)d3r 8.

~D1!
o-

.

n

f
s

n

s

r-

When integrating along they axis over the interval@y
2d/2,y1d/2#, all the terms withky

( l ) @cf. Eq. ~B1!# vanish
except the term withl 250 ~and thusky

( l )50). Then one can
renumerate the series in Eq.~B1! with l 15 l , l 250. Integra-
tion of exp(2ikx

(l)x) along thex axis gives the following fac-
tor,

S sin~kxd/2!

kxd/21 lp D ,

and the integration of exp(2ikyy) along they axis gives the
factor

S sin~kyd/2!

kyd/2 D .

The integration of exp(2kz
(l)uz2mdu) along thez axis can

be made separately for the caseuz2mdu<d/2 and the case
uz2mdu>d/2. In the first case,

1

dEz2d/2

z1d/2

exp~2kz
( l )uz82mdu!dz85Wm

( l )~z!,

whereWm
( l )(z) is given by Eq.~52!. In the second case, th

above integration equalsWm
( l )(z) given by Eq.~53!. Finally,

we obtain expression~50! for the averaged dipolar field. In a
similar way, one can obtain expression~49! for the averaged
incident field. Note that the series in expression~B1! for the
dipolar field is divergent whenz5md and therefore we
should remove an infinitesimal region around the point w
z5md in the averaging integration~i.e., the volume averag
ing integral is understood as its principal value!.

To average the fieldEin over the volume of the
0-numbered particle at theM th layer, we notice that

Ein5E(p)2Eint2EM
dip2Einc,

whereE(p) is the total field inside the particle,EM
dip is the

field produced by the reference particle~i.e., the 0-numbered
particle at theM th layer!, the interaction fieldEint is the field
produced by all the particles except the reference parti
and Einc5E0e2 ikzMd is the incident field. SincêEM&50
~i.e., the principal value of the volume integration over
sphere of the field produced by a dipole located at the ce
of the sphere is zero! andEint5Eloc2Einc, one obtains

^Ein&5E(p)2^Eloc&.

Using the Rayleigh relation~20! and the above equation, on
obtains the expressions~57! and ~54!.
s
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