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Electromigration of single-layer clusters
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Single-layer atom or vacancy clusters in the presence of electromigration are studied theoretically assuming
an isotropic medium. A variety of distinctive behaviors distinguish the response in the three standard limiting
cases of periphery diffusion~PD!, terrace diffusion, and evaporation-condensation. A general model provides
power laws describing the size dependence of the drift velocity in these limits, consistent with established
results in the case of PD. The validity of the widely used quasistatic limit is calculated. Atom and vacancy
clusters drift in opposite directions in the PD limit but in the same direction otherwise. In absence of PD, linear
stability analysis reveals a different type of morphological instability, not leading to island breakdown. For
strong electromigration, Monte Carlo simulations show that clusters then destabilize into slits, in contrast to
splitting in the PD limit. Electromigration affects the diffusion coefficient of the cluster and morphological
fluctuations, the latter diverging at the instability threshold. An intrinsic attachment-detachment bias displays
the same scaling signature as PD in the drift velocity.
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I. INTRODUCTION

Recognized as a key source of size limitation in electri
devices, surface electromigration has important con
quences for surface morphology. Latyshevet al.1 discovered
that it can induce step bunching on Si~111! vicinal surfaces.
How electromigration affects more complex surface str
tures is still poorly understood. In this paper we explore
effect of electromigration of atoms or vacancies on sing
layer clusters. Responses of these clusters to electromigr
share similarities with void behavior in metallic electr
lines2 and with electromigration of oxygen disordered d
mains in YBaCuO thin films,3,4 and lies in the active area o
driven diffusive systems.5

In addition to the intrinsic interest in how island prope
ties are affected by the symmetry-breaking electromigra
force, we will point out further mesoscopic ways to addre
current controversies about the dominant mechanism of m
transport.6 Moreover, these properties are needed to mo
surfaces undergoing electromigration at larger scales. Fo
ample, electromigration-induced coalescence models sh
use nonequilibrium diffusion constants and steady-state
velocities.

In the presence of an electric current, the electromigra
force is usually described asF5z* eE, wheree is the mag-
nitude of the electron charge, andz* is an effective valence
generally a noninteger, which takes into account both
electrostatic interaction between the electric fieldE and the
charge distribution on the affected atoms~‘‘direct’’ force !
and the frictional force resulting from the transfer of mome
tum from the charge carriers to these atoms~‘‘wind’’ force !.
The long-standing controversies regarding bulk electro
gration highlight the complexity of microscopic calculation
and particularly how conduction electrons may screen
direct charge of the atoms.7 Nontrivial aspects of the flow o
the electron cloud about the diffusion path might also c
tribute to the direct effect on the surface.8 For metals, the
electromigration effect is primarily due to wind force; calc
PRB 620163-1829/2000/62~20!/13697~10!/$15.00
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lated values includez* '230 for Al on semi-infinite
jellium9 and z* '221 for Cu on Cu$111%.10 ~Near a step
edge, one can expect quantitative but not order-of-magnit
changes inz* ; e.g., for an atomin a close-packed step edg
on Al$001%, z* '243.11! For semiconductors, both force
are small, with a resultantuz* u'0.001–0.1.12 A characteris-
tic length can be associated with electromigration:j
[kBT/F. In typical experimental conditions,j;108 atomic
spacings for Si andj;105 for metals. We base our study o
the equilibrium behavior of these islands on the framew
of the continuum theory of Khareet al.13 We consider elec-
tromigration to be a perturbation inducing a macrosco
current, as done previously in Refs. 2 and 14. This appro
mation is justified becausej is much larger than the atomi
spacing. The adatom flux on terraces is then equal toc^v&.
The mean drift velocitŷ v& of an adatom due to electrom
gration is calculated from the Einstein relation

^v&5D
F

kBT
5

D

j
. ~1!

Single-vacancy motion may dominate over atom mot
in the mass transport on some surfaces.~There is evidence of
this on Cu$001%.15,16! In that case one must use an effecti
chargez* appropriate for vacancies, and reverse the sign
step curvatures in computing restoring forces due to line t
sion. The resulting modifications are relatively straightfo
ward, but tend to muddle the subsequent descriptions.
cordingly, we do not explicitly consider vacancy transpo
below.

In the notation of Ref. 13, there are three limiting ma
transport modes: periphery diffusion~PD!, terrace diffusion
~TD!, and~two-dimensional! evaporation-condensation~EC!
or attachment-detachment~see Fig. 1!. In particular, there is
a distinctive size dependence of the tracer diffusion cons
Dc

eq of a cluster at thermodynamic equilibrium, with chara
teristic exponentsa53, 2, and 1, respectively,
13 697 ©2000 The American Physical Society
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Dc
eq;R0

2a , ~2!

whereR0 is its average radius. Intermediate values can a
be obtained in restricted regions of parameter space as
crosses over from one limiting regime to another. As a fi
qualitative approach, the mean cluster drift velocity sho
be given by the Einstein relation in a way very similar to t
drift velocity of one adatom@Eq. ~1!#: it is equal to the clus-
ter mobility ~or equilibrium diffusion constantDc

eq) time the

force exerted on the whole clusterF̄5pR0
2F/a2, and divided

by kBT:

uV̄u'Dc
eq F̄

kBT
5Dc

eq
pR0

2

a2j
;R0

22a . ~3!

This scaling law will be confirmed later. The intermedia
expressions are in fact exact for models in which atoms
proach and leave the island only from the lower edge~one-
sided step!, or in the PD regime.~In the more general case
some subtleties arise.!

We further investigate the shape changes associated
steady states. Circular steady states are found in the PD
TD regimes. But when attachment and detachment of at
to the steps is not instantaneous, the cluster elongates.
can be understood by analogy to the Bernoulli effect. Sta
ity of these steady states is studied. Besides the expe
splitting of clusters for PD, we find another morphologic
instability in the TD case. Monte Carlo simulations indica
that it leads to slit formation. Fluctuations and the noneq
librium diffusion constant are also calculated within t
framework of a Langevin model, and appear to be correc
by a bias term proportional to 1/j2 for weak electromigra-
tion.

FIG. 1. Three processes are involved in mass transport: d
sion along the step, diffusion across the terraces, and attachm
detachment of adatoms at the step. When one of these proces
slower than the others, we obtain the PD, TD, or EC regimes,
spectively. The electromigration forceF is taken to be along thex
axis in the text.R is the distance from the center of the island,u is
the polar angle with respect to thex axis, ands is the arclength
along the step.R0 is the mean radius.
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II. MODEL

Our formal approach is inspired by a previous examin
tion of nonequilibrium step meandering on vicinal surfaces17

For simplicity and to avoid distracting complications, w
take all step and terrace properties to be isotropic. We for
adsorption onto or desorption from the terrace. Evolution
the mobile-atom concentration on terraces is then given
the following conservation law:

] tc52“•J, ~4!

J[2D“c1
D

j
c x̂1q. ~5!

J is the mass flux on terraces, andD is likewise the adatom
diffusion constant on terraces. The correlations of the c
served noiseq are given below. In the widely used quas
static limit, one considers that the adatom concentrat
reaches a steady state on time scales much smaller than
of step motion. Then

“•J50 ~6!

has to be solved on terraces instead of Eq.~4!. Adatom elec-
tromigration is taken to be unaffected by the presence
steps; thusj is uniform. Atom exchange between the st
and the two-dimensional~2D! ‘‘gas’’ on the terrace is pro-
portional to the deviation from equilibrium, expressed in t
linear kinetic relation

n̂•J657n6~c2ceq2h6!. ~7!

In our notation,1 or 2 denote thelower or upper sides,
respectively, of the step forming the boundary of the isla
Thus, for atom islands,1 is the exterior, while for vacancy
islands it is the interior. The unit vectorn̂ normal to the step
points toward the1 side. The kinetic coefficientsn6 de-
scribe attachment and detachment at the two sides of the
edge, andh6 are nonconserved noises. Attachment leng
are defined byd6[D/n6 ; the largerd6 , the smaller the
chance that an atom will detach from or attach to the st
Whend6 are small, the dynamics are diffusion limited~TD!.
For large but finited6 , atoms attach only after a large num
ber of trials, and dynamics are thus limited by attachm
and detachment~EC!. In the limit that d2→`, the model
reduces to an exterior~or interior! model for atom~or va-
cancy! islands, because atom exchange occurs on only
~viz., the lower! side of the step. The equilibrium concentr
tion ceq must include corrections due to boundary curvatu
as given by the Gibbs-Thomson relation

ceq5ceq
0 exp~Gk!, ~8!

whereceq
0 is the equilibrium concentration in the vicinity o

a straight step,k is the step curvature@counted positive for a
convex step, cf. Eq.~22!#, andG is the capillary length:

G5a2b̃/kBT. ~9!

The step stiffnessb̃ is taken to be isotropic, as noted abov
a is the lattice constant, andT is the temperature. Finally, th
normal velocityVn ~i.e., alongn̂) of the step is given by
mass conservation

-
nt-
s is
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Vn5a2n̂•~Ju12Ju2!2]sJst , ~10!

where s is the arc length along the step. We consider
low-concentration limit, wherec!1/a2, i.e. the atom con-
centration is taken to be much lower than in the bulk. Hen
the second term, representing advection, inJu652D“c6

1n̂Vnc6 is neglected.Jst is the mass flux along the step. I
addition to the usual relaxation term related to chemical
tential gradient, electromigration induces a new te
DLFstny /kBT5DLny /jst , with jst[kBT/Fst . Fst is the
force exerted on mobile atoms at the step edge, andny is the
y component ofn̂. Thus we have

Jst5a
DL

jst
]s@R~u! cos~u!#2aDL]s~Gk!2qst , ~11!

whereqst is a Langevin force.R(u) is the distance from the
center of mass of the cluster, andu is the polar angle with
respect to thex axis ~see Fig. 1!. The macroscopic step dif
fusion constant could be defined asDL[a2cstDst , wherecst
is concentration of mobile edge-atoms, andDst is the diffu-
sion constant for motion of these atoms along the step
using the Kubo formula.18 In the following, we will takeDL
to be uniform along the step and constant in time.

In a local thermodynamical equilibrium approximatio
noise correlations are written

^qi~x,y,t !qj~x8,y8,t8!&52Dc~x,y,t !d,

^h6~s,t !h6~s8,t8!&5
2c~s,t !u6

n6
d~s2s8!d~ t2t8!,

~12!

^qst~s,t !qst~s8,t8!&5
a3DL

p
d~s2s8!d~ t2t8!,

where d[d(x2x8)d(y2y8)d(t2t8)d i j , and c(s,t)u6 is
the adatom concentration on the terraces in the vicinity of
island edge.

In describing the fluctuations of these islands, we cons
only the case in which overhangs can be ignored. Thus,
periphery can be described in polar coordinates byR(u). For
small fluctuations from the circular,R(u)5R01r(u). The
Fourier transform ofr is given by

rnv5E
0

2p du

2pE2`

1` dt

2p
r~u,t !e2 inu2 ivt. ~13!

The equilibrium properties of such clusters~for F50) were
calculated in detail by Khareet al.13 They were able to
evaluate the equilibrium diffusion constant under gene
conditions. Equipartition of energy provides the sta
spectrum19

^urnu2&eq5
kBTR0

2p~n221!b̃
. ~14!

The divergence of̂ur1u2&eq reflects the absence of an ener
cost to translate the whole island: this is a ‘‘Goldsto
mode.’’ The moden50 is forbidden due to area conserv
tion for PD dynamics. But generally in the presence of no
conserved dynamics, the system will tend to minimize s
e

,

-
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e
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e
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length, and clusters are unstable: they expand or shrink,
pending on the precise kinetics and environment. As an
ample, an assembly of clusters will coarsen due to Ostwa20

or coalescence~‘‘Smoluchowski’’!21 ripening.
Let rCM denote the position of the center of mass of t

cluster. We define the mean velocity

V5^] trCM& ~15!

and the nonequilibrium tracer diffusion constant

Dc5
^urCM2Vtu2&

4t
, ~16!

which reduces to the usual equilibrium cluster diffusion co
stantDc

eq whenV50. This quantity could also be defined a
half the diffusion constant describing the relative motion
two identical islands, whether they are drifting or not. Th
latter definition has been useful experimentally.22 Shape fluc-
tuations of the cluster are measured by the island rough

W2[^R2&2^R&2. ~17!

At equilibrium, using Eq.~14!, we find

Weq
2 5

3kBTR0

4b̃
. ~18!

As a static property,Weq
2 does not depend on the transpo

mechanism, just like the static spectrum in Eq.~14!.
A major goal of our analysis is to explore properties

driven clusters on the dominant mechanism of mass tra
port. A crude criterion for being in the PD regime follow
from checking whether the diffusion constant is domina
by line diffusion or diffusion across the terrace. Compari
expressions~25! and ~34! for Dc

eq given below, one finds
R0

2!(R01d) l c , whered5d1 or d2 and l c[DL /Daceq
0 .23

The opposite case,R0
2@(R01d) l c , will be denoted as the

2D transport regime. In this regime, TD and EC limits a
defined byR0@d1 or d2 , and R0!d1 and d2 , respec-
tively. Note that the cluster radiusR0 is involved in these
relations: it is a geometrical cut off for long-wavelength flu
tuations. A more general definition of these regimes invo
ing wavelength dependence can be found in Ref. 13.

III. PD LIMIT

A. Steady states and stability analysis

Some known results about 2D voids in metal electric li
can be transposed directly to the case of vacancy island
the PD limit. Best known is ‘‘Ho’s law,’’ which states tha
the drift velocity varies inversely with the radius.2,24 Behav-
ior consistent with this relationship was seen in recent Mo
Carlo simulations of electromigration on Cu$001% using
semiempirical energy barriers.25 In our formalism, the drift
velocity ~in thex direction! of a 2D cluster with mean radiu
R0 is

V̄5f
aDL

jstR0
. ~19!

f51(21) denotes atom~vacancy! islands. Thus atom is-
lands and vacancy clusters drift in opposite directions~cf.
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Fig. 2!. With current densities about 104–106 A cm22 at 600
K on metals, we findjst'105 Å. Assuming next an activa
tion barrier of;0.5 eV along the periphery and a conce
tration of mobile atoms per sitecst'0.1, we estimateDL

'109 Å2/s; thus for an island of radius 103 Å, V̄'10 Å/s.
Stability analysis for voids26,27 can also be applied to ou

case. Since we assumeisotropic step properties, the equilib-
rium shape of the island is circular. With increasing ele
tromigration, this steady-state shape persists so long as
island is stable. A hand-waving argument allows us to
trieve the instability threshold found in Refs. 26 and 27. W
simply have to compare fluxes along the step close to a
trusion of the step inside the cluster. The flux contributing
destabilization isJdestab;DL /j. Stabilizing effects related
to line tension effect result in a fluxJstab;DLG/R0

2, where
curvature changes are taken to be;1/R0 between points
separated by a distance;R0. The protrusion increases
Jdestab.Jstab. The instability criterion is thenuxu.xc ,
wherex[R0

2/Gj5(Fem/b̃)(R0 /a)2. According to a linear
stability analysis,xc510.65.26,27 With the preceding param
eters andb̃50.3 eV/a, we find that islands with radius
larger thanRc'53103 Å will be unstable. The instability
appears at a characteristic timet5xcGj2/(aDL)'102 s.
Thus this phenomenon should be observable experiment
The instability criterion is the same for atom and vacan
islands.

Since electromigration of single-layer clusters is un
fected by their shape, our voids can be characterized ascon-
ducting. In contrast, voids in electric lines are essentia
insulating. The resulting current-crowding effects qualit
tively change the nature of the instability: the void is linea
stable, but becomes unstable under finite perturbations
late stages of this instability, the void splits.28

B. Diffusion constant and fluctuations

Keeping only the line diffusion term in Eq.~10!, in the
frame moving with the mean velocityV̄ of the island one
obtains

Vn2V̄nx52]s@Jst#

52]sF a

jst
DL]s@R~u!cos~u!#2aDL]s~Gk!2qstG ,

~20!

wherenx is thex component of the unit vectorn normal to
the step. The normal step velocity is written as

Vn5f
] tR

@11~]uR/R!2#1/2
, ~21!

and the step curvature is defined with the sign conventio

k5f
R211]uuR21

@11~]uR/R!2#3/2
. ~22!

We then linearize Eq.~20! for small deformation of the is-
land r(u). With the Fourier transform ofr(u,t) as defined
by Eq. ~13!, Eq. ~20! takes the form
-

-
the
-

o-
o

ly.
y

-

At

@ ivt1n2~n221!#rnv

2n@~n12!rn11,v1~n22!rn21,v#fx5
int

R0
fqnv ,

~23!

wheret5aDLG/R0
4. This equation implies thatr0 is a con-

stant, but this constant must vanish (r050) sincer is de-
fined as the departure from the mean radiusR0. In Eq. ~23!
the eigenvaluesiv do not depend on the sign ofx ~as ex-
pected physically!. Thus these eigenvalues also do not d
pend onf. Hence, as stated above, atom and vacancy
lands have the same instability criterionuxu.xc .

We first consider the casex!1. We then expand step
fluctuations in the formrn5rn

(0)1xrn
(1)1x2rn

(2)1•••. To
zeroth order, we simply obtain Eq.~23! without the term
proportional tox. The diffusion constant is calculated usin
the Fourier space relation

Dc5^ur1u2&/t. ~24!

The equilibrium diffusion constant reads

Dc
eq5

a3DL

pR0
3

. ~25!

To higher orders inx, Eq. ~23! shows that the Langevin
force q does not explicitly intervene, ultimately becauseDL
is supposed to be independent of electromigration; henc

@ ivt1n2~n221!#rnv
(m11)

5n@~n12!rn11,v
(m) 1~n22!rn21,v

(m) #fx. ~26!

Using this relation, we calculate the first correction to t
cluster diffusion constant:

Dc5Dc
eqS 11

x2

4
1O~x4! D . ~27!

The nonequilibrium cluster roughness can be calculated
similar way. We find

W25Weq
2 @11bx21O~x4!#, ~28!

whereb.0.23 is a numerical constant resulting from infini
summations. Sincex is of order unity, this correction can b
non-negligible. Note that the first correction to these qua
ties is proportional to the electromigration force squar
Correspondingly,W andDc are invariant under the inversio
symmetryF→2F.

Fluctuations increase withF. In a linear theory, they
should diverge at the instability threshold. If we definee
[xc2x, then close to the threshold Eq.~23! can be written
in terms of the vectorrW 5$rn :unu>2%,

I ivrW 5MrW 1bW , ~29!

where bW is a noise term,I is the identity matrix, and the
matrix M is expanded asM5Mc1eM1, whereMc has one
null eigenvalue~as can be seen, for example, in Ref. 2
Table II!. It is then easily shown that the squared roughn
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W25^rW TrW &5E dv

2p
^bW T~ ivI1M !21T~2 ivI1M !21bW &

~30!

diverges likee21 whene→0. Hence, approaching the inst
bility threshold,

W;e21/2. ~31!

Note thatDc does not diverge: the instability concerns t
morphology of the island, not its motion. The divergence
W is analogous to the case of an isolated step subject
morphological instability during growth,29 where the same
exponent was found. Close to threshold, fluctuations bec
large, and nonlinear effects should be addressed, as show
Ref. 30 during growth.

C. Monte Carlo simulations

We here use kinetic Monte Carlo simulations to show t
the morphological instability of an island under periphe
diffusion leads to splitting. We perform a 2D Monte Car
simulation on a square lattice.~Equivalently, the simulation
can be described as a solid-on-solid~SOS! model in which
the height of the surface is either 0 or 1.! The energy barrier
for a move is taken to be proportional to the number
in-plane nearest~n! and next-nearest (n8) neighbors of the
atom before hopping. Next-nearest neighbors are include
reduce the anisotropy of the steps. Moves leading to an
tom ~i.e., an atom with no occupied nearest or next-nea
neighbor sites! are forbidden. Atoms are allowed to hop on
to nearest-neighbor sites. Electromigration is taken into
count as a direction-dependent bias in the hopping barr
The total barrier energy is then written

Ei jk5«d~ni j 1ni j8 !1«emcos~@k21#p/22u0!, ~32!

wherei andj are position coordinates along thex andy axis,
respectively;ni j andni j8 are the number of nearest and ne
nearest neighbors, respectively;k51,2, 3, and 4 is the direc
tion of the move~to one of the nearest neighbors!; and «d
and«em are the energies associated with diffusion and e
tromigration, respectively. Explicitly,«em5Fsta/2, andu0 is
the angle between of electromigration force and the@10# axis
of the lattice. Atoms and moves are picked randomly, an
move is performed with probability proportional t
exp(2Eijk /kBT).

A circular vacancy is chosen as the initial state. The l
stage of the instability has been the subject of a rec
controversy.26,28As for insulating voids in Ref. 28, our atom
and vacancy islands~equivalent to conducting voids! split
when they are unstable, as illustrated in Fig. 3~b!. For weaker
electromigration~i.e. smallerx), the cluster is stable, a
shown in Fig. 3~a!. In this figure, the steady state of th
cluster at long time is slightly elongated along the electro
gration axis. This elongation is probably a consequence
the anisotropy ofDL or b̃, which is not completely avoided
in the simulations.

Quantitatively the instability appears for radii larger th
Rc'13a at kBT50.6«, where the characteristic energy« is
the energy of a single bond. We note that an elementary k
costs energy« in our model. In the ‘‘restricted’’ approxima
f
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e
in

t

f

to
a-
st

c-
rs.
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k

tion, in which only elementary kinks~i.e., those reposition-
ing the step by a single row! are allowed, the step stiffnes
becomes

b̃5~21e«/kBT!
kBT

2a
. ~33!

Using this relation, we findb̃52.2«/a. Now from the crite-
rion uxu.xc , we obtainR0.Rc'10.8a, in good agreemen
with our simulations. Note that the instability can also
used to determineb̃ or F when the other parameters a
known. From our simulation, withRc513a, we find b̃
53.3«/a. As expected from the model, the same instabil
is found for atom islands.

IV. 2D TRANSPORT REGIME

A. Steady states

In the opposite limit of 2D transport, the equilibrium be
havior of these islands is well known.13 The cluster diffusion
constant is

Dc
eq5

a4Dceq
0

pR0
S 1

R01d1
1

1

R01d2
D . ~34!

The corresponding scaling expectation of Eq.~3! is con-
firmed readily for weak electromigration, where we can wo
to first order inj21. The islands remain circular and dri
with velocity

V̄52
a2Dceq

0

j S R0

R01d1
2

R0

R01d2
D . ~35!

The first conclusion is that asymmetric kinetics (dÞd1)
is needed for nonzero drift. We note in particular the rema
able prediction that for EC, the drift velocity actuallyin-
creaseswith increasing island size. This behavior has be
seen in Monte Carlo simulations by Wickham and Sethn4

and leads to an exponential coarsening of an assembl
clusters when coalescence is induced by drift-velocity diff
ences. Equation~35! allows us to evaluated1 inside the
voids of Ref 4. Their findings lead to the expected result t
the length d1 increases as temperatures decreas

FIG. 2. Drift direction of the island as a function of mass tran
port mechanism. We have assumed a typical Ehrlich-Schwo
effect.
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13 702 PRB 62O. PIERRE-LOUIS AND T. L. EINSTEIN
Moreover, their phenomenological fitting expression for
ymptotically large islands~cf. the caption of their Fig. 6!,
uV̄u5v02v1(a/R0), can be retrieved from an expansion
Eq. ~35! for R0@d1 ~and d2→`). Thus we can identify
their coefficientsv05a2Dceq

0 /j andv15v0d1 /a.
Since Eq.~35! does not depend onf, both atom and

vacancy islands drift in thesamedirection in the 2D trans-
port regime. Thus we obtain a very simple way to ident
the dominant mass transport mechanism, since atom and
cancy islands drift inoppositedirections in the PD limit@cf.
Eq. ~19!#. Note also that whend2.d1—expected for the
typical Ehrlich-Schwoebel effect—the direction of motion
the ~adatom or vacancy! cluster in the 2D transport regime
opposite to the electromigration force~cf. Fig. 2!.

For a vacancy or an atom cluster in the TD limit, th
circular steady state is an exact solution of the equation
motion ~even in the nonquasistatic limit!. As soon as the
attachment is not instantaneous (d1Þ0), this is no longer
true. To second order inj21, a noncircular shape is found i
steady state for the ‘‘interior’’ model~e.g., appropriate to a
vacancy island with an infinite Ehrlich-Schwoebel barrie!
when d1Þ0. This shape is elongated perpendicular to
electromigration force for vacancy islands~along the elec-
tromigration force for atom islands!, as can be understoo
from an intuitive argument: For small sticking probabilit
atoms detaching from the sides of the vacancy island
drift along the electromigration axis, but will also have
residual drift toward the center of the vacancy if they atta
only after several attempts.

A macroscopic description, analogous to the Bernoulli
fect, provides an intuitive understanding of this phenomen
According to this effect, the pressure variation perpendi
larly to a flow is proportional to the kinetic energy involve
in this flow. Considering the flow of adatoms inside the
land, this relation takes the form

Jatt3mVatt}
1

2
mceqVadat

2 , ~36!

where the left-hand side is the pressure variation and
right-hand side is the kinetic energy of the flow. The adat
mass divides out, it is irrelevant here because the dynami
overdamped. The first factor on the left-hand side,

Jatt5n1~c2ceq!, ~37!

is the flux of atoms attaching to the steps. The second fa
mVatt is the momentum associated with atoms attaching
the step, i.e., the product of the adatom massm and the
macroscopic velocity

Vatt5D/~R01d1! ~38!

associated with motion of an adatom across the island du
its lifetime. On the right-handside of Eq.~36!, we useVadat ,
defined as the adatom drift velocity needed to move the
at velocity V̄. Hence

Vadatceq5V̄/a2, ~39!

where the cluster velocityV̄ is given by Eq.~35!. As a mac-
roscopic property,Vadat is different from the drift velocity
-

va-
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ll
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-

-

e

is

or
o

g

p

^v& of one adatom as defined in Eq.~1!. Using Eqs.~37!–
~39! in the Bernoulli relation@Eq. ~36!#, we obtain the effec-
tive concentration change induced by the electromigrat
force:

FIG. 3. Monte Carlo simulations of a vacancy island in the P
limit, with F50.1«/a and kBT50.6«. ~a! Stable island, atR0

510a. ~b! Splitting, atR0515a.
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c2ceq}ceq

R0
2

j2

d1

R01d1
. ~40!

Moreover, the concentration variation associated with
change of local radius is known from Gibbs-Thomson re
tion

c2ceq}ceqGdR/R0
2 . ~41!

Balancing the destabilizing effect in Eq.~40! with the stabi-
lizing one in Eq.~41!, we obtain a condition for a stead
state:

dR

R0
}

1

G

R0
2

j2

d1R0

d11R0
. ~42!

Expanding our interior model to second order in 1/j, the
island deformation involves only then52 mode. Defining

D[
1

2R0
@r~p/2!1r~2p/2!2r~0!2r~p!#, ~43!

we find, quantitatively,

D5
1

G

R0
2

6j2

d1R0

d11R0
, ~44!

in agreement with the evaluation in Eq.~42! based on the
Bernoulli effect. In the EC limit, withR0;103a and j
;105a, one finds thatD;1022. Thus the deformation is
small for an electromigrating island with interior dynamic

When mass exchange with the exterior is allowed, ther
no steady state. To investigate further, we study the cas
an ~atom! island exchanging matter only with the exterio
but with desorption allowed. A termFeq2c/ts is added to
Eq. ~6!. Although the island is not stable in this case, w
further consider its behavior in order to analyze the tende
to deviate from circularity as it shrinks. To first order in 1/j,
we find a circular steady state with velocity

V̄52
1

j
VDceq

2xsK1

2xsK11d1~K21K0!
, ~45!

whereKn[Kn(R0 /xs) is the modified BesselK function and
xs5(Dts)

1/2. Then50 mode is unstable, and the island h
a characteristic decay time

tdecay5
4pR0

2

VDceq

xsK01d1K1

K1
. ~46!

To second order inj21 the island shape is not circular an
more, and the resulting deformation reads

D52
d1

3G

R0xs

8j2

2xs

K11K3

R0~K22K1K3!2xsK2K1

xsK11d1~K01K2!/2
.

~47!

SinceD is negative, the elongation of an atom island is n
along the electromigration axis.

This can also be qualitatively understood from the B
noulli effect, and the origin of elongation along the ele
tromigration axis can be traced back to a change of sign
the curvature in the Gibbs-Thomson relation~41!. To adapt
a
-

is
of

y

-
-
of

the local equilibrium at the step to the lowering of the pre
sure on the sides of the island, the curvature has to be loc
decreased, so that the island elongates along the electr
gration axis. In the limit of small desorption, we obtain

D52
1

2G

R0
2

j2

xsd1

R01d1
. ~48!

Note thatD diverges whenxs→`, in agreement with the
previous claim that there is no steady state in this limit. W
notice that this formula is similar to Eq.~44!, with a factor of
R0 replaced by the new cutoff lengthxs . Taking G;a, d1

;104a, R0;103a, xs;106a, and j;108a, we obtainD
;0.5. Hence a large deformation of the island can be fou
in the exterior model.

B. Validity of the quasistatic limit

In this section, we consider a vacancy island in the
sence of electromigration and in the nonquasistatic regi
We use polar coordinatesr andu. Thenth component of the
Fourier transform of the concentration with respect tou is
expanded as

cn~r ,t !5 (
m50

`

anm~ t !r m. ~49!

Using this expression in the interior model, we look for s
lutions of the formanm(t)5exp(ivt)anm. By symmetryanm
5a2nm , and from analyticity ofc at r 50, anm50 when
n2m is odd. Using the recursion equations resulting fro
Eqs. ~4! and ~5!, it is possible to show thatanm50 when
m<unu, and that allanm can be calculated from the fre
parametersanunu . We thus calculate theanm as a function of
the anunu , and plug this result into boundary conditions~7!–
~10!—with Jst50. We find the nonquasistatic dispersion r
lation from the requirement that the prefactors of theanunu’s
should cancel,

l52a2c̃eq

G

R0
~n221!

3Fd1

R0
1S unu1l1/2

I unu11~l1/2!

I unu~l1/2!
D 21G21

, ~50!

where I n is the modified BesselI function, and c̃eq

5ceq
0 exp(2G/R0). Sincel[ ivR0

2/D, Re@l# is proportional
to the growth rate of the perturbations. In the quasista
limit, Eq. ~6! is solved on the interior terrace instead of E
~4!. We then find the following dipersion relation:

l52a2c̃eq

G

R0
~n221!Fd1

R0
1unu21G21

. ~51!

Note that in the quasistatic limit, then50 mode is frozen
~i.e., l50 whenn50). Moreover, we obtain here the sta
dard TD ~or EC! limit by letting d1→0 ~or d1→`), lead-
ing to iv;R0

22 ~or ;R0
23). From Eq.~50!, the quasistatic

limit @Eq. ~51!# is recovered whenulu!n2. Using the quasi-
static expression forl, this condition can be rewritten

Ga2c̃eqn1!
R0n1

unu
1D, ~52!
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where unu.1. For the approximation to be valid for a
modes, it is sufficient to satisfy the stronger condition

Ga2c̃eqn1!D. ~53!

This inequality should be interpreted as follows: the effect
diffusion constant of the step~left-hand side! must be much
smaller than that of the adatoms on the terrace~right-hand
side!.

The mode-dependent term on the right-hand side of
~52!, related to attachment-detachment, indicates that
quasistatic limit is more difficult to achieve at largeunu, i.e.,
small wavelengths, because these modes have shorter r
ation times. Using a small-wavelength cutoffunu* ;R0 /a on
the right-hand side of Eq.~52!, we see that Eq.~53! is valid
in the limit of slow kinetics,n1!D/a. Conversely, when
n1@D/a, we find

aG c̃eq!1, ~54!

which is the criterion for the quasistatic limit to be valid
the fast kinetics~i.e., TD! regime.

As an example, let us consider the case of Si~111! at T
;1000 K. From Ref. 31, we havea2ceq,0.1 and d1

5D/n1;104a, and from Ref. 32,G;10 Å. Equation~53!
is then easily checked to be valid: the quasistatic approxi
tion can be used.

C. Stability analysis

We now go back to the electromigration problem, a
perform a linear stability analysis of the nonquasista
model equations. We consider the TD limit (d150) of the
interior model. We perform a stability analysis of perturb
tions with respect to the steady state with constant conc
trationc5 c̃eq and circular shapeR5R0. To do so, we again
expand the concentration using Eq.~49!, now in Eqs.~4! and
~5!, and seek solutions of the formanm(t)5exp(ivt)anm.
Matching coefficients for for eachr m leads to a set of recur
sion equations foranm’s for m>2 ,

iv

D
an,m2252anm~n22m2!2

1

2j

3@~n1m!an11,m112~n2m!an21,m21#,

~55!

supplemented by the relations

an050 for nÞ0,

an150 for unuÞ1. ~56!

Boundary conditions~7!–~10! then provide two sets of rela
tions for theanm’s andrn’s. When thern’s are eliminated, a
set of relations among theanm’s is found:

05 (
m50

` F2
ivR0

2

D
anm2

a2c̃eq

R0
~n221!G

3H manm2
R0

2j
~an11,m1an21,m!J G . ~57!
e

q.
e

lax-

a-

c

-
n-

Numerical solution of this set of equations reveals an ins
bility for R0 /j.0.1 related to the existence of a positiv
eigenvalueiv in this range of parameters. It is interesting
note that the instability threshold is independent ofG. To
investigate the nature of the instabilities of these islands,
again perform Monte Carlo simulations. Rather than
splitting seen in the PD limit, we find another type of inst
bility.

D. Monte Carlo simulations

The code used here is similar to that used for a vaca
island in the PD limit, but with adatoms now allowed insid
Moreover, in order to tune attachment-detachment kinet
the hopping probability is decreased by a factorp, 0,p
<1, when the number of neighbors changes during
hop.33

At high temperaturekBT>0.7«, microvacancies escap
noticeably from the steps. This might heal possible instab
ties by producing a microvacancy where a cusp is pres
We therefore chose to perform our simulations atkBT
50.6«. Even though a few microvacancies still escape fro
the clusters at this temperature, they are rare enough so
their effect on the dynamics can be considered negligible

No drastic change in the island shape is seen at the thr
old given by the linear stability analysis. Let us define t
front and back sides of the island with respect to clus
motion as the first and last parts passing at a given valu
x. When electromigration is increased, the front side is s
bilized. The back side is destabilized and exhibits chao
behavior, but its roughness remains finite, as shown in F
4~a!. We conjecture that this is the instability that we foun
from linear analysis. Although some instability is seen in th
regime, we classify the island as stable because its sha
not affected drastically.

Increasing the electromigration force, we see that unsta
slitlike shapes appear, as depicted in Fig. 4~b!. Since these
shapes are seen for all orientations of the electromigra
force, they are not due to lattice anisotropy. This instabi
contrasts qualitatively with the splitting found in the PD r
gime @see Fig. 2~b!#.

Changing the value ofp does not seem to change th
scenario, but we have not performed simulations in the li
wherep is small (p,0.1), due to the large computation tim
needed there. Numerical solution of the model equati
would be needed to understand these different regime
greater detail.

V. ELECTROMIGRATION BIAS IN
ATTACHMENT-DETACHMENT

Finally, we introduce a possible electrobias between
tachment and detachment. Extracting one atom fr
the step, not counting any bond breaking, requires w
aFem•n̂ along the normal to the step.34 From a linearized
Gibbs-Thomson relation, we find that the effective equil
rium concentration becomes

ceq5ceq
0 ~11aFem"n̂/kBT!. ~58!
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Defining j6
215Fem"n̂/kBT on the lower or upper side of th

boundary step edge, respectively, we find that the electro
contributes to the velocity of Eq.~35! an extra term

dV̄5a3Dceq
0 S j1,1

21

R01d1
2

j1,2
21

R01d2
D , ~59!

where the subscript indicates then51 component of the
Fourier transform of 1/j6(u). When there is no Ehrlich-
Schwoebel effect (d15d2), V̄ from Eq. ~35! vanishes, and
the drift velocity is only due to this added contribution com
bined with PD effects. In the EC limit,dV̄ does not depend
on the size of the cluster, while in the TD limitdV̄;1/R0.
This is the same size dependence as that associated wit

FIG. 4. Monte Carlo simulations of a vacancy island in the T
limit, with F50.1«/a, kBT50.6«. ~a! ‘‘Stable’’ island above the
linear-instability threshold, atR0510a. ~b! Slit formation, forR0

530a.
as

the

PD limit. SincedV̄ decreases with increasing island size, w
expect this contribution to be small for large islands.

The deformation of the cluster is proportional to 1/j,
rather than 1/j2, as seen in the other regimes. Thus elect
bias might induce larger deformations of the clusters. Ho
ever, since we do not know the angular dependence of th
forces, we cannot go further in the analysis.

VI. SUMMARY AND PERSPECTIVES

We have studied the response of single-layer cluster
electromigration in different regimes associated with diffe
ent mass-transport mechanisms. Some of the main result
collected in Table I. The drift velocity and shape chang
agree with those found in earlier published calculations,2 and
give a theoretical explanation and explicit expressions
those found with Monte Carlo simulations.

The instability is found to depend qualititatively on th
mass transport mechanism. PD is associated with splitt
and 2D transport with slit formation. Although the instabili
threshold of the latter may be beyond the experimental ra
for 2D islands, it could well be important in the case
disordered oxygen domains in YBaCuO,3,4 and for void
dynamics,2,26–28 where higher current densities are used.
the latter case, 2D transport might occur on the subst
across the void.

Fluctuations are found to be affected by electromigrati
The nonequilibrium cluster diffusion constant and roughn
were studied. The island roughness is found to diverge as
instability threshold is approached.

Nonlinear analysis is needed for a better understandin
these instabilities. Moreover, crossover regimes should
studied in order to catalogue completely the behavior

TABLE I. Summary of results. In general the entries apply
both atom and vacancy islands. The criteria for the three regime
terms of the characteristic lengths are given in the first row. T
inequality for PD is dominant; when it holds, one has PD even if
inequality of TD or EC is satisfied. The characteristic lengthl c is
DL /aDceq

0 , with equilibrium values for the parameters. For th
third row, the relative direction of the drift velocity of atom an
vacancy islands is tabulated. In the fourth and fifth rows, the up
~lower! entry is for atom/exterior~vacancy/interior! islands. PD,
TD, and EC indicate the mode of mass transport: periphery di
sion, terrace diffusion, and evaporation-condensation, respectiv
Reidentifying the letterD, the last is often called AD~attachment-
detachment! to indicate that the process involves just a 2D ‘‘gas
on the terraces.

PD TD EC ~AD!

Length
criterion R0

2! l c(R01d) R0@d1 or d2 R0!d1 andd2

^V(R0)& 1/R0 1 R0

Atom/vacancy
direction

Opposite Same

Steady state
shape

Circular
None

Non-circ.
Instability

morphology
‘‘Slit’’ i F

Splitting Slit' F
Dc Dc

eq(11x2/4) Anisotropic
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these islands. For a more realistic description of the islan
especially at low temperature, anisotropy should also
included.4,28,35 Indeed, it was already shown experimenta
that extremely anisotropic properties~such as diffusion!
could lead to very different behavior.36

This study is a step toward the understanding of the e
lution of more complex surface geometries in the presenc
a diffusion drift, such as 3D islands or grooves or assemb
of clusters. To complete this exploration, the fluctuations
the 2D transport regime should be studied. It would also
useful to check with Monte Carlo simulations the predictio
about the diffusion constant and the divergence of morp
logical fluctuations.
,
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We note in closing that, as the surface is affected by e
tromigration, so electromigration itself is affected by th
morphology of the surface. Step shadowing, adatom cro
ing, or surface roughness induce changes in the local e
tromigration force.37 A quantitative description of experi
ments should take these feedback mechanisms into acc
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