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Modeling self-assembled quantum dots by the effective bond-orbital method
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Systematic studies of the electronic and optical properties of InAs/GaAs self-assembled quantum dots are
performed via the effective bond-orbital model employed with an efficient algorithm. Four different sizes of
pyramid and one truncated pyramid with$110% sidewall quantum dots~QD’s! are studied. Microscopic strain
distributions have been taken into account via valence-force-field model. We find that charge density distri-
bution and optical properties are quite different with and without including the piezoelectric effect. Without the
piezoelectric effect, variation in dot size can lead to a substantial change in the strain distribution and hence the
charge distribution, which gives rise to qualitatively different optical properties. Including the piezoelectric

effect, hole-state wave functions are stretched along the@11̄0# axis and hence interband optical transitions

become polarized along@11̄0# and the polarization ratio increases with dot size. Our results of the energy
levels and optical polarization are in good agreement with experimental and other theoretical results. Our
calculations of truncated pyramid QD’s indicate that the truncation of the pyramid tip has a negligible effect on
the photoluminescence properties of QD’s.
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I. INTRODUCTION

Defect-free coherent nanoscale islands fabricated by
Stranski-Krastanow method, known as self-assembled q
tum dots~SAQD’s!, have attracted scientific interest recen
due to their potential applications in optoelectronic devic
such as low-threshold lasers and novel infrared detector1–4

In the last decade, a tremendous attraction has been sho
studies of SAQD’s both from a basic physical interest a
for practical applications. Most of these work focus on t
formation and characterization and electronic and opt
properties of SAQD’s.5–27 The size fluctuation of SAQD’s
hampers the experimental investigations of the excited-s
spectrum and brings difficulties in the comparison betwe
experimental and theoretical results. Recently much ef
has been devoted to this issue and new experimental t
niques with high spatial resolution and sensitivity such
near-field scanning optical microscopy~NSOM! and Cath-
ode luminescence18 ~CL! have been developed, which mak
the study of the electronic properties of isolated quant
dots possible.28,29

In order to obtain high-performance QD devices, it is im
portant to have a detailed understanding of the optical pr
erties of QD’s and their dependence on the dot morphol
and growth condition. A recent low-temperature spectrum
isolated SAQD’s exhibits rich fine structure and an una
biguous assignment of these transitions has not been a
able. Therefore further extensive studies on the electro
and optical properties of SAQD’s with different shapes a
sizes are still needed.

Current theoretical methods applied to SAQD’s inclu
the single-band or multiband effective mass method,19–21

k•p23–27 and empirical pseudopotential methods.22 All these
methods have their advantages and disadvantages.
effective-mass andk•p methods are most convenient to us
but they quickly become cumbersome when the full bou
ary conditions needed to take into account the difference
PRB 620163-1829/2000/62~20!/13631~10!/$15.00
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band parameters between different materials across the i
faces for a complicated geometry~e.g., pyramidal QD! are
included. The empirical pseudopotential methods can t
into account the boundary conditions automatically by us
atomic pseudopotentials appropriate for different atomic s
cies at the designated positions in the QD structure an
takes into account the full band structure effects. Howev
the basis set needed to obtain a convergent solution to
electronic states is very large, which makes the computa
of a large QD extremely time consuming. Furthermore, it
difficult to find the appropriate atomic pseudopotentials t
produce the correct overall band structures for the constitu
bulk materials and at the same time give effective masses
all bands near the zone center with the desired precision.
example, the psuedopotentials used in existing calculatio22

give an effective mass of 0.092m0 for GaAs and 0.032m0 for
InAs, which are off from the experimental values by mo
than 30%.

In this paper we present a theoretical study of the el
tronic structure and optical properties of SAQD’s with a hi
accuracy and efficiency via the effective bond-orbital mo
~EBOM!.30 The bond-orbital model is basically a tigh
binding model which uses bonding and antibonding orbit
as the basis. It is capable of taking into account the full ba
structure effect when a full set of bonding and antibond
orbitals ~typically four for conduction bands and four fo
valence bands for III-V semiconductors! is used and a suffi-
cient range of interactions between bond orbitals is con
ered. However, to achieve a high efficiency we adopt
effective bond-orbital model which uses a minimum basis
that includes ones-like antibonding orbital for the conduc
tion band and threep-like bonding orbitals for the valence
band and only nearest-neighbor interactions are includ
The interactions between the four bond orbitals are de
mined by requiring the band structures of constituent b
materials near the zone center to be identical to those
tained by thek•p theory. Thus, the model is equivalent
the real-space version of thek•p model. In addition, it offers
13 631 ©2000 The American Physical Society
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the flexibility to include the full band structure if needed b
expanding the range of interactions between bond orb
and it can take into account the change of the bonding na
at the interfaces between constituent materials by using
propriate interaction parameters. This model has been
cessfully applied to quantum wells31 ~QW’s! and quantum
wires ~QWR’s! either grown by chemical etching32 or by the
strain-induced lateral-layer ordering~SILO! process.33

Combining the EBOM with an efficient algorithm allow
us to study the electronic properties of large-size SAQ
reliably. Numerical solutions of energy eigenvalues with
accuracy better than 1026 eV for a system of 106 atoms can
be achieved on a 500 MHz DEC alphastation and the C
time for obtaining the wave function of a given conductio
band~CB! or valence-band~VB! state is less than 5 or 8
with our method. Widely varying shapes of SAQD’s ha
been reported including pyramid, truncated pyramid, co
or lens. Since pyramidal dots with$110% sidewall are mostly
studied, we apply our method to this kind of dot so that
can make a meaningful comparison with previous calcu
tions. Four different sizes of pyramidal QD’s with ba
lengths equal to 125, 158, 204, and 250 Å are stud
Furthermore, we also present calculations on a QD wit
truncated pyramidal shape.

The organization of this paper is as follows. In Sec. II, w
briefly introduce our theoretical method. In Sec. III w
present our results and discussions. In Sec. IV a brief s
mary is given.

II. THEORETICAL METHODS

A. Valence-force-field model for strain distribution

The electronic states of SAQD depend strongly on
strain distribution. There are two methods to solve the str
distribution in QD’s: the continuum mechanical~CM! model
and valence-force-field~VFF! model. Pryoret al.34 and Stier
et al.26 compared the results obtained by these two mod
They found that the differences at the interfaces are lar
while in the interior of QD’s the differences are insignifican
Since the VFF model can give a strain tensor on the atom
tic level, avoid potential failure at the interface, and reta
the correct point symmetry of the system, we chose to
the VFF model in favor of the CM model. Furthermor
since both the VFF model and the effective bond-orb
model deal with the interactions between chemical bon
the combination of the two models represents a perfect m
riage of the lattice property and electronic property.

In the VFF model of Keating35 and Martin,36 the lattice
energy of the system is described by the sum of bond stre
ing and bond bending terms, which takes the form

V5
1

4 (
i j

3

4
a i j ~Ri j

2 2R0,i j
2 !2/R0,i j

2 1
1

4 (
i

(
j Þk

3

4
b i jk~Ri j •Rik

1R0,i j R0,ik/3!2/R0,i j R0,ik , ~1!

wherei runs over all the atom positionsj andk run over the
nearest-neighbor sites ofi, Ri j is the vector joining the sites
i and j, Ri j is the length of the bond,R0,i j is the correspond-
ing equilibrium length in the binary constituents, anda i j and
b i jk are the bond-stretching and bond-bending constants
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spectively.a andb of the binary constituent component a
from Martin’s calculations.36 For the bond-bending param
eter b of In-Ga-As, we takeb i jk5Ab i j b ik following Ref.
25.

To calculate the strain tensor, we used an efficient met
to minimize the potential energy given above. Since the s
tems contain more than 105 atoms, it is impractical to di-
rectly solve the equation]V/]R50. We first place the atoms
on the ideal lattice of bulk GaAs; then we allow atoms to
displaced from these ideal positions and in each itera
only one atom is displaced while others are fixed. The d
placement of atomi is determined according to the forcef i
52]V/]xi with periodic boundary conditions in the plan
perpendicular to the growth direction. We repeat this proc
until the force acting on each atom becomes zero.

Once the equilibrium is reached, the strain tensor is c
culated according to the method described in Ref.
namely,

«5RS R0,12x R0,23x R0,34x

R0,12y R0,23y R0,34y

R0,12z R0,23z R0,34z

D 21

2I , ~2!

where I is the unity matrix,R0,i j 5R0,j2R0,i , i , j 51,4, and
R0,i ( i 51,4) denotes the positions of the four As atoms s
rounding a cation. Here we choseR0,125(1,21,0)a/2,
R0,235(21,0,1)a/2, and R0,345(1,1,0)a/2, wherea is the
lattice constant of GaAs or InAs, depending on the site.

B. EBOM for electronic states

The energy levels and wave functions of the capped
ramidal self-assemble quantum dots are calculated in the
fective bond-orbital model. A detailed description of th
method can be found in Refs. 30, 37 and 38. The EBO
used here is a tight-binding-like model in which ones-like
conduction band and threep-like valence bands~before in-
cluding the spin-orbit interaction! are coupled. After includ-
ing the spin-orbital interaction, we have two conducti
bands and six valence bands. Thus, the present model sh
be compared with the eight-bandk•p model as used in Ref
26. To estimate the effects of the piezoelectric charge
duced by the shear strain, we also included the piezoele
potential. The piezoelectric potential at siteR in the EBOM
is given by

Vp~R!52(
R8

erp~R8!

e0uR2R8u
,

wheree is the electron charge,e0 is the static dielectric con-
stant, andrp(R8) is the piezoelectric charge at siteR8. Due
to the singularity of the Coulomb interaction at the orig
~whenR85R), we approximate the denominatoruR2R8u by
an effective interaction lengthr 0, which is taken to be half of
the bond length. Sincerp(R8) is a smooth function ofR8,
the result is insensitive to the value ofr 0.

The Hamiltonian forp-like valence band states~before
including the spin-orbit interaction! has the form
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Ha,a85~Ep1Vp!da,a81(
t

expikW•tW$Exytata8

1@~Exx2Exy!ta
21Ezz~12ta

2 !#da,a8%1Hst ,

~3!

where ta5(2/a)R0,a ; a5x,y,z are dimensionless compo
nents of the four lattice vectors defined above. The inter
tion parametersEp , Exx , Exy , and Ezz can be directly re-
lated to thek•p band parameters and the analytical relatio
can be found in Ref. 30.Vp is the piezoelectric potential, an
Hst is the strain Hamiltonian. BecauseH only couples sites
separated by a nearest-neighbor distance, the number of
zero matrix elements ofH needed to be stored is linear
proportional to the number of atoms in the system (N). Thus,
our algorithm scales like orderN.

With the strain tensor« i j calculated according to the VF
model as described above, the strain Hamiltonian is rela
to « i j according to Bir-Pikus theory.39 For the VB states we
have

Hst5S 2DVH1D1 A3dexy A3dexz

A3dexy 2DVH1D2 A3deyz

A3dexz A3deyz 2DVH1D3

D ,

~4!

where ei j 5(« i j 1« j i )/2, DVH5(a11a2)(«xx1«yy1«zz),
D15b(2«xx2«yy2«zz), D25b(2«yy2«xx2«zz), and D3
5d(2«zz2«xx2«yy). Herea1 , a2 , b, andd are deformation
potentials listed in Table I.

The Hamiltonian for thes-like conduction band isHs
5Es1Vp1c1(«xx1«yy1«zz), where Es is the on-site or-
bital energy for thes-like orbital, Vp is the piezoelectric po-
tential, andc1 is the CB deformation potential. The couplin
between s-like and p-like bond orbitals is given by
^suHua,R0&5Espta .

In order to solve the single electron Schro¨dinger equation
of the system containing more than 105 atoms efficiently, we
adopt a three-step procedure. In the first step, we deco
the CB and VB states and use a conjugate gradient metho
find the low-lying eigenstates ofHs for the CB and high-
lying eigenstates ofHp for the VB for a given symmetry
type. Here we utilize theC2v symmetry of SAQD’s and re-
quire the eigenstates to transform according to theA1 , A2 ,
B1, or B2 representation. Here and henceforth, we adopt

TABLE I. Parameters used in the present work~in units of eV!.

Parameters GaAs InAs

CB minimuma 1.495 0.662
VB maximumb 0.0 0.26
Spin-orbital couplinga 0.34 0.38
Deformation potentialsb

ac 27.17 25.08
av 21.16 21.00
b 21.6 21.8
d 24.23 23.1

aReference 44.
bReference 43.
c-

s

on-

d

le
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group theory notation of Ref. 40. The four elements of t
C2v group areE ~identity!, sv ~mirror plane normal to the

@11̄0# direction or thex8 axis!, sv8 ~mirror plane normal to
the @110# direction or they8 axis!, andC2 ~twofold rotation
about the@001# axis!. For example, to find the highest-lyin
VB state withA1 symmetry, we first make an initial guess o
the wave function denotedCa(R) for R in a quadrant of the
QD unit cell. We then require the wave function forR in the
three other quadrants to be related toCa(R) by applying the
three symmetry operationssv , sv8 , andC2. The wave func-
tion is updated each iteration along the gradient of the
tential defined asf 522(H2^E&)C, where ^E&5C†HC.
Since all matrix elements are real at this stage, we haveC†

equal to the transpose ofC. To find the excited states of th
same symmetry type, we repeat the above procedure,
with the added constraint that requires the state to be
thogonal to the states previously solved.

In the second step we find the eigenstate of the CB-
coupled Hamiltonian using the eigenstates of the decoup
Hamiltonian obtained in step 1 as the initial guess. At t
step the energy of interest falls in the middle of the spectr
for the coupled Hamiltonian, and we can no longer use
conjugate gradient method here. Since our initial gues
already a good approximation to the final answer, we c
find the accurate eigenstate by simply inverting the Sch¨-
dinger equation. We shall refer to this method as the inve
Schrödinger equation~ISE! method. Our ISE method goes a
follows. We write the Schro¨dinger equation in the form

(
n8Þn

^nuHun8&Cn81^nuHun&Cn5ECn , ~5!

where n ~or n8) is a composite label for site and orbita
(R,a). Inverting the above equation, we have

Cn5 (
n8Þn

^nuHun8&Cn8 /~E2^nuHun&!, ~6!

with E5C†HC.
The above recursion relation is solved by iteration un

the self-consistency is reached. It turns out that the I
method converges very fast as long as the initial gues
good enough. For electron ground states of all cases con
ered here, within 1000 iterations a convergence in the ene
eigenvalue better than 1026 eV can be achieved.

In the third step, we include the spin-orbital interactio
The total Hamiltonian including the spin-orbit interactio
takes the form

H5S Hu1Uso Vso

Vso
† Hd2Uso

D , ~7!

where Hu and Hd are Hamiltonians for spin-up and spin
down components, each being identical to the one use
step 2. HereUso andVso describe the spin-orbital interactio
between states of the same spin and opposite spin. The
zero matrix elements are41 ^xuUsouy&52^yuUsoux&5
2 iD/3, ^xuVsouz&52^zuVsoux&5D/3, and ^yuVsouz&5
2^zuVsouy&52 iD/3, whereD is the spin-orbit splitting for
valence band states. All spin-orbit coupled states transf
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according to the double group representation ofC2v . The
spin-up and spin-down states have the form42

c1/25~ uA1&2 i uA2&)x1/21~2uB1&1 i uB2&)x21/2, ~8!

c21/25~ uB1&1 i uB2&)x1/21~ uA1&1 i uA2&)x21/2, ~9!

whereA1 , A2 , B1 , B2 label the symmetry type of the spati
part, andx1/2 and x21/2 denote the up and down electro
spinor.

The eigenstates of the spin-orbit coupled Hamiltonian
again solved via the ISE method as described in step 2. E
state is twofold due to the Kramer’s degeneracy and the
degenerate states are related by applying the time-rev
operator. In this step, the wave functions become comp
However, the CPU time required to get convergent result
comparable to that in step 2, since the spin-orbit interac
only mixes different spin states on the same orbital site
the multiplication ofU or V by the eigenvectorC can be
performed efficiently. The material parameters used in
present calculation are listed in Table I.

III. RESULTS AND DISCUSSIONS

A. Strain distributions

Strain distributions in four SAQD’s with base lengthb
5125, 158, 204, and 250 Å plus a truncated pyramidal
are calculated via VFF model as described in Sec. II. Fig
1 shows a schematic plot of a pyramidal QD on a wett
layer. The GaAs capping layer is not shown. We use a la
supercell to model an isolated QD. The supercell size for
four dots considered here is 36a336a321a, 42a342a
324a, 50a350a328a, and 58a358a332a, wherea is the
lattice constant of bulk GaAs (a55.6533 Å!. In all our cal-
culations the wetting layer is set to be one monolayer~ML !
of InAs.

Considering that strain is much stronger near the in
faces, we shall investigate the strain distribution in these d
along a tangential line parallel to one of the dot borders i
plane normal to z~line B in Fig. 1!. For comparison, we also
investigate the strain distribution along a primary a
through the center in the same plane~line A in Fig. 1!. The
confinement induced by the strain is determined by the st
Hamiltonian Hst plus the piezoelectric potentialVp , since
the presence of shear strain can induce a piezoelectric ch
in zinc-blende semiconductors. The off-diagonal element
the strain Hamiltonian are relatively small and less sign
cant and the confinement effect on the wave function prim

FIG. 1. Schematic plot of the pyramidal dot and wetting lay
geometry.z is the growth direction,x is @100#, andy is @010#.
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rily comes from the diagonal elements. Figures 2 and 3 sh
the diagonal elements of the strain Hamiltonian (Hst) for
dots 1 and 5 along lines A and B. HereVss5c1(exx1eyy
1ezz),Vxx52DVH1D1 ,Vyy52DVH1D2, and Vzz5
2DVH1D3. Also, DVH ,D1 ,D2, andD3 are defined in Sec
II B. The strain distribution at the interface and along p
mary axes is similar for dots of different sizes, but the str
distribution in the interior of dot is quite different. From
these figures, we see that the hydrostatic strain is appr
mately uniform throughout the dot. The primary effect of t
biaxial strain distribution is that in the large dot~dot 5! the

r

FIG. 2. Diagonal elements of the strain potential of dot 1 in t
plane of 17 Å from dot base~a! along thex direction withy50
~A line as shown in Fig. 1! and ~b! along they direction withb/2
217 Å ~B line as shown in Fig. 1!. The solid line is forVss,
dashed line forVxx , dotted line forVyy , and dot-dashed line for
Vzz.

FIG. 3. Diagonal elements of the strain potential of dot 5 in t
plane of 17 Å from dot base~a! along thex direction withy50
~A line as shown in Fig. 1! and ~b! along they direction withb/2
217 Å ~B line as shown in Fig. 1!. The solid line is forVss,
dashed line forVxx , dotted line forVyy , and dot-dashed line for
Vzz.
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strain potentialVxx near the interface has a maximum at t
center of line B~with x517 Å from the dot border!, while in
the small dot it has maxima at the corners of the dot. T
qualitative difference in the strain distribution can cause
dramatic change in the hole charge density distribution in
5 in comparison to dots 1–4 as will be discussed in S
III B.

Figure 4 shows the strain distribution along thez axis for
dots 1 and 2. For dot 2~truncated pyramid!, the strain distri-
bution is different from that in dot 1 only near the truncat
top of the pyramid as shown in Fig. 4. Since the wave fu
tion of the ground state for an electron or hole are predo
nantly localized near the base area of the dot, we expec
photoluminescence property of the truncated pyramid to
very similar to that in the pyramidal dot of the same ba
length. This will be reflected in the interband optical mat
elements shown in Sec. III B.

As indicated earlier by Grundmannet al.23 the piezoelec-
tric potentialVp is significant at dot borders along@110# and

@11̄0# and the signs ofVp along these two directions ar
opposite. Thus the envelope functions with and without
piezoelectric effect are quite different as will be shown in t
next section, even though their energy levels are fairly clo
The maximum values ofuVpu for dots 1, 3, 4, and 5 are 50.4
60.7, 73.1, and 85.0 meV, respectively.

B. Electronic structures

The strain HamiltonianHst and piezoelectric potentialVp
plus band offsets determine the quantum confinemen
wave functions. In order to investigate the effects ofHst and
Vp , we first study the electronic structures by leaving o
Vp ; we then study the effect of the piezoelctric potential
addingVp . The energies of the four low-lying conduction
band states and four high-lying valence-band states vs
size are shown in Fig. 5.

Without the strain effects, the confinement of electron
hole is determined by the corresponding band offset~see
Table I!. Namely, in the InAs region, the electron sees
potential well with depth 0.833 eV while the hole sees
potential well with depth 0.26 eV.43 Including the diagonal
elements ofHst , the net potential profile seen by an electr
or hole is described by the curves shown in Figs. 2 an

FIG. 4. Strain distribution along@001# of dot 1 and dot 2. The
solid line and dot line are for the hydrostatic strain of dot 1 and
2, dashed line and dot-dashed line for the biaxial strain of dot 1
dot 2.
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plus the effects of the corresponding band offsets. Due to
presence of biaxial strain, different components of the h
states experience different potential profiles. For example
the center of line B in dot 5 thex component of hole states i
subject to a confining potential of a height around 0.36
~0.1 eV due toVxx plus 0.26 eV due to the VB offset! and the
z component of hole states is not confined, sinceVzz5
20.4 eV, which overcomes the 0.26 eV VB offset. Thu
based on the information provided in Figs. 2 and 3, we c
conclude that the confined hole states in SAQD’s are p
dominantly linear combinations ofx-like andy-like bond or-
bitals.

Since the hydrostatic strain distribution is approximate
uniform in all dots, the ground-state wave functions a
charge density distributions for electrons in these dots
qualitatively similar and they are all peaked near the cen
of the dot. The piezoelectric effect on wave functions
low-lying electron states are very small since the piezoe
tric potential is much smaller than the confinement poten
determined by the strain potential and band offset. Moreo
the effect of the spin-orbit interaction is weak, and each el
tron state has a predominant component which transfo
according the irreducible representations of theC2v point
group. Figure 6 shows contour plots of charge density dis
butions for the first four conduction-band states~CB1–4! of
dot 1 in the plane withz517 Å from the base. Our result
of electronic levels and charge density distributions ag
well with the k•p calculations of Stieret al.26

For valence-band states, without the piezoelectric eff
the hole wave functions and charge density distributions
sensitive to the dot size due to a different biaxial strain d
tribution. In particular, the hole charge density distribution
dot 5 is quite different from that of dots 1–4. Figure 7 sho
the contour plots of charge density distributions for the h
ground states~VB1! of dots 1 and 5 in the plane withz
517 Å from the dot base. We can see that the VB1 cha
density of dot 1 is concentrated along the@110# diagonal line

t
d

FIG. 5. Energy levels of the four lowest-lying conduction ban
and the highest-lying valence bands vs dot size.
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of the dot and it has an appreciable amplitude near the ce
For dot 5 the charge density is peaked at the center of
gential lines near the dot borders~line B and the equivalen
lines due to point-group symmetry! and it has very smal
amplitude near the center of the dot. Due to the strong s
orbit coupling, no predominant symmetry type of hole env
lope functions can be identified.

Next, we consider the effects of the piezoelectric poten
(Vp). We found that the inclusion ofVp can distort the hole
wave functions substantially as shown in Fig. 8 for the t
four valence-band states~VB1–4! of dots 1 and 5. The

FIG. 6. Contour plots of the charge density distributions
states CB1–4~with piezoelectric effect! for dot 1 in a plane atz
517 Å from the dot base.

FIG. 7. Contour plots of the charge density distributions for
ground hole state~without the piezoelectric effect! in a plane atz
517 Å from the dot base for~a! dot 1 and~b! dot 5.
er.
n-

n-
-

l

p

charge densities for all four hole levels are stretched al

the @11̄0# axis, which can be seen by comparing Fig. 7 w
Fig. 8 for ground holes. This change in the hole charge d
sity distribution leads to substantially different interband o
tical properties with and without the piezoelectric effe
Comparing our results and those of Steiret al., good coinci-
dence can be seen. However, the energy difference betw
the corresponding electron and hole states is smaller
that of Stieret al. This is mainly due to the different defor
mation potentials in our paper, which are taken from Ref.

Investigating the various components of wave functio
it can be seen that electron wave functions contain predo
nantly ans component~around 90%!, while hole wave func-
tions for the top four VB states contain primarilyx and y
components~or bond characters!, indicating that they are
mainly derived from the heavy-hole band. As pointed out
others, the envelope function for the ground state~CB1! is
s-like, while the envelope functions for excited states~CB2-
CB4! arep-like.

r

FIG. 8. Contour plots of the charge density distributions
states VB1-4~with the piezoelectric effect! in a plane atz517 Å
from the dot base for~a! dot 1 and~b! dot 5.
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TABLE II. Interband transition energies~in eV! and the corresponding overlap integrals between ths
component of the electron state and thex8, y8, and z components of hole states with and without t
piezoelectric effect. Values in parentheses are results with the piezoelectric effect.

Dot No. Hole state DE ~eV! Overlap
index ^sux8&2 ^suy8&2 ^suz&2

Dot 1 VB1 1.0355~1.0322! 0.314~0.329! 0.333~0.299! 0.0 ~0.0!
b5125 Å VB2 1.0508~1.0480! 0.0 ~0.0! 0.001~0.002! 0.0 ~0.0!
h50.5 b VB3 1.0606~1.0612! 0.027~0.015! 0.024~0.039! 0.049~0.045!

VB4 1.0649~1.0643! 0.004~0.001! 0.005~0.023! 0.0 ~0.0!

Dot 2 VB1 1.0341~1.0328! 0.317~0.331! 0.335~0.303! 0.0 ~0.0!
b5125 Å VB2 1.0514~1.0489! 0.0 ~0.0! 0.0 ~0.003! 0.0 ~0.0!
h50.4 b VB3 1.0624~1.0627! 0.025~0.014! 0.023~0.042! 0.044~0.040!

VB4 1.0656~1.0652! 0.005~0.002! 0.006~0.017! 0.0 ~0.0!

Dot 3 VB1 0.9574~0.9550! 0.298~0.302! 0.312~0.249! 0.0 ~0.0!
b5158 Å VB2 0.9679~0.9636! 0.0 ~0.0! 0.0 ~0.003! 0.0 ~0.003!
h50.5 b VB3 0.9790~0.9786! 0.0 ~0.016! 0.0 ~0.030! 0.008~0.0!

VB4 0.9791~0.9798! 0.19 ~0.003! 0.021~0.043! 0.030~0.032!

Dot 4 VB1 0.8856~0.8810! 0.252~0.228! 0.261~0.167! 0.0 ~0.0!
b5204 Å VB2 0.8905~0.8844! 0.002~0.0! 0.002~0.003! 0.0 ~0.003!
h50.5 b VB3 0.8981~0.8977! 0.001~0.037! 0.003~0.059! 0.0 ~0.0!

VB4 0.9010~0.9012! 0.009~0.004! 0.010~0.012! 0.025~0.019!

Dot 4 VB1 0.8352~0.8274! 0.192~0.148! 0.197~0.100! 0.0 ~0.0!
b5250 Å VB2 0.8369~0.8284! 0.004~0.0! 0.005~0.004! 0.0 ~0.002!
h50.5 b VB3 0.8417~0.8326! 0.0 ~0.054! 0.002~0.054! 0.0 ~0.0!

VB4 0.8452~0.8431! 0.004~0.001! 0.004~0.004! 0.013~0.009!
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We also calculated the electron and hole states of tr
cated pyramidal dot~dot 2!. We found that the energy shift
in low-lying levels in comparison with untruncated pyram
dal dots are insignificant. This is because the wave functi
of these electron or hole states are primarily localized n
the base of the dot, where the truncation of the pyramid
has little effect.

The exciton states of SAQD’s can be calculated via
self-consistent method~Hartree approximation! as adopted in
Ref. 26. The exciton state is written as a product of elect
and hole statesCX5fefh and each one-particle state sat
fies the self-consistent Schro¨dinger equation

~He1^fhuvehufh&!ce5Eece ,

~Hh1^feuvehufe&!ch5Ehch ,

where He(Hh) is the electron~hole! one-particle Hamil-
tonian andveh is the electron-hole Coulomb interaction. T
solve the above self-consistent equations, we use the gro
state wave function~in the bond-orbital basis! for the elec-
tron or hole as the initial guess. We then obtain the elect
charge density via the relation~and similarly for the hole!

re~R!5(
a

uCa
CB1~R!u2,
n-

s
ar
p

a

n

d-

n

whereCa
CB1(R) is the expansion coefficient of the CB1 sta

in terms of a bond orbital of typea at siteR. The electron-
hole interaction seen by the hole at siteR2 is then given by

^feuvehufe&52(
R1

re~R1!
e2

e0uR12R2u
for R1ÞR2 ,

wheree is the electron charge ande0 is the static dielectric
constant. Here, we have used the fact that the bond orb
are orthogonal to each other and the Coulomb poten
e2/e0r 12 is a smooth function ofr 1, so we can replace it a
the discrete siteR1. Due the singularity of the Coulomb in
teraction at the origin~when R15R2), we approximate the
denominatorr 12 by the average electron-hole distance with
a bond orbital,r 0, which is taken to be half of the bon
length. We found that since the on-site Coulomb matrix e
ment is only a small fraction~less than 1%! of the sum, the
exact value ofr 0 is of little importance. Adding the electron
hole interaction to the one-particle HamiltonianHh , we can
then find the new hole wave functionfh for the exciton
following the same procedure as described in Sec. II B. T
procedure is then repeated for the electron to find the n
wave functionfe . After just a couple iterations, the excito
binding energy defined asEe1Eh2(ECB12EVB1) can be
obtained with an accuracy better than 0.1 meV. For the f
pyramidal dots the calculated exciton binding energies
26.1 meV, 20.5 meV, 15.8 meV, 11.8 meV. These values
consistent in magnitude with those reported in Ref. 26.
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C. Optical properties

The optical properties of interest include the interba
transitions ~between conduction-band and valence-ba
states! and intraband transitions~between QD states derive
from the conduction band!. InAs SAQD’s on GaAs~001!
have been studied by a number of authors12–18 via photolu-
minescence~PL! and cathode luminescence~CL! spectros-
copy. Due to size fluctuation, the excited-state spectrum
difficult to assign unambiguously. Recently, photolumine
cence excitation~PLE! spectroscopy was used to study th
issue.17 Here we present the results of our calculations
ideal homogeneous SAQD’s, although a quantitative co
parison between theory and experiment is difficult due
size fluctuations.

For interband transitions, the linear absorption coeffici
within the dipole approximation is proportional to the ove
lap between electron and hole states. The overlap integ
are defined as

u^sua&u25U(
R

Cs
i * ~R!Ca

f ~R!U2

, a5x8,y8,z,

where the superscriptsi andf label the initial and final states
x8 is along@11̄0#, y8 along@110#, andz long @001#. In Table
II we list the energy differences between ground elect
state ~CB1! and top four valence states~VB1–4! and the
corresponding electron-hole overlap integrals. The res
which take into account the piezoeletric effect are listed
paretheses. Without the piezoelectric effect the optical tr
sition from the ground electron to ground hole state is po
ized along they8 direction, and the degree of polarizatio
reduces with increasing dot size. With the piezoelectric
tential included the interband optical transitions for all do
become polarized along thex8 direction, and the degree o
polarization increases with increasing dot size. This is cau
by the fact that the piezoelectric potential tends to stretch
hole wave functions along thex8 direction as seen in Fig. 8
Tang et al.18 studied the polarization anisotropy of InA
GaAs~001! SAQD’s by CL and their results indicate that th
ratio of x8 to y8 polarization is around 1.17 for the funda
mental~P1! transition in QD’s with an average base leng
of 15 nm. This result is very close to our result of dot
~around 1.2!. It should be noted that for all dots considere
the z-component optical transition is negligible. We can s
that the electron-hole overlap integrals of dot 5 are more t
a factor 2 smaller than those of dot 1. This is due to the f
that in dot 5 the hole wave function is distributed away fro
the center of the dot~see Fig. 8!, while the electron ground
state~CB1! wave function is concentrated at the center of
dot. Consistent with the above discussions on the trunca
of the pyramid, the overlap integrals of dot 1 and dot 2
approximately the same.

For intraband transitions, the optical matrix element
proportional to the dipole matrix element, since

^ i u@r ,H#u f &5~Ei2Ef !^ i ur u f &5
i\

m
^ i upu f &,

where the superscriptsi andf label the initial and final states
Within the bond-orbital basis, the dipole matrix elements c
be approximated by
d
d
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^ i ur u f &5(
R,a

Ca
i * ~R!Ca

f ~R!R.

In Table III, the dipole matrix elements squared forx, y, and
z polarizations are listed for intraband transitions from t
ground electron state~CB1! to upper electron states~CB2–
4!. The intraband transition energies are also listed. It can
seen that the dipole matrix elements forx andy polarizations
for CB1-CB2 and CB1-CB3 transitions are significant. Th
means that light with normal incidence~alongz) can be di-
rectly absorbed via the CB1-CB2 and CB1-CB3 intraba
transitions. In comparison, then-type quantum well infrared
photodetectors~QWIP’s! usually require special processin
~e.g., surface grating! to allow normal incident light to
couple with electronic intersubband transitions.45 In this as-
pect, the SAQD’s have an advantage over quantum wells
infrared detector applications.

Finally, we calculate the dipole moment induced by t
intraband optical absorption. Because the charge distr
tions in the excited states are very different from the elect
ground state~CB1!, we expect a large optical-induced dipo
moment for SAQD’s. This feature may be utilized for app
cations in photovoltaic devices. We define the optic
induced dipole moment for the intraband transitions from
CB1 state the CBi excited state (i 52, . . . ,4) by

pi5( @rCBi~R!2rCB1~R!#R,

whererCBi(R)5(auCa
CBi(R)u2. As shown in Table IV, the

dipole moments of the three intraband transitions incre
with dot size.

IV. SUMMARY

We have presented a systematic study of the electro
and optical properties of self-assembled quantum dots of
ferent sizes via an efficient order-N numerical method base

TABLE III. Dipole matrix elements for transitions from the
electron ground state ~CB1! to excited states ~CB2-4!,

u^f1,curWuf i ,c&u2. Polarization direction is eitherx (5y) or z. Values
in parentheses are results with the piezoelectric effect.

Dot No. Electron statei DE ~eV! x z

Dot 1 CB2 0.1053 300.8~308.5! 0.0 ~0.0!
CB3 0.1060 297.7~292.5! 0.0 ~0.0!
CB4 0.1563 0.0~0.0! 18.3~18.9!

Dot 3 CB2 0.0885 383.9~400.1! 0.0 ~0.0!
CB3 0.0890 379.6~367.8! 0.0 ~0.0!
CB4 0.1565 0.0~0.0! 1.6 ~29.9!

Dot 4 CB2 0.0698 536.5~573.8! 0.0 ~0.0!
CB3 0.0702 531.0~501.4! 0.0 ~0.0!
CB4 0.1257 0.0~0.0! 1.1 ~32.4!

Dot 5 CB2 0.0558 725.3~798.7! 0.0 ~0.0!
CB3 0.0562 717.2~660.4! 0.0 ~0.0!
CB4 0.1020 0.0~0.0! 0.2 ~36.7!
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TABLE IV. Optical-induced dipole momentpi5(@rCBi(R)2rCB1(R)#R in units of e Å . Only the pz

component is listed. Thepx andpy components are negligibly small. Values in parentheses are results
the piezoelectric effect.

Dot 1 Dot 3 Dot 4 Dot 5

CB1-CB2 24.34 ~24.92! 24.93 ~25.36! 25.50 ~25.99! 25.90 ~26.31!
CB1-CB3 24.33 ~23.63! 24.92 ~24.26! 25.47 ~24.92! 25.90 ~25.40!
CB1-CB4 24.74 ~24.89! 27.40 ~26.35! 28.41 ~26.96! 29.24 ~27.49!
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on the effective bond-orbital model. Microscopic strain d
tributions have been taken into account within the valen
force-field model and the piezoelectric effect induced
shear strain has also been studied. We first studied the e
of quantum confinement and strain without including the
ezoelectric effect. We found that the strain distribution
sensitive to the size of SAQD’s, and it can lead to differe
electronic and optical properties. For all dots considered,
hydrostatic strain is approximately uniform within the dot
a plane normal to the growth~z! axis and it has a nearly
constant slope along thez axis. When the dot size increase
to a certain value~with base length around 250 Å!, the
maxima of thex or y component of the biaxial strain poten
tial move from the corners of the dot to the centers of the
borders. Due to this change in the strain distribution,
ground-hole-state charge density distribution is quite diff
ent in the large dot compared with those in smaller dots
leads to a much weaker polarization in the interband opt
transition for large dots. Furthermore, in the large dot,
hole charge density is distributed away from the center of
dot, causing a substantial reduction in the electron-hole o
lap and hence a much weaker interband transition ma
element. By including the piezoelectric effect we found th
the energy levels only shift slightly but the valence-ba
charge density distribution and interband optical transitio
are modified substantially. All the hole wave functions a
stretched along the@11̄0#(x8) axis and hence the interban
V
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optical transitions become polarized along the@11̄0# direc-
tion and the polarization ratio increases with dot size. T
finding is consistent with the experiment.18

We have also calculated the intraband transitions for
conduction-band states and we found that the CB1-CB2
CB1-CB3 transitions in all dots considered here have str
dipole transition strengths for the transverse polarizationsx
andy) of the normal-incidence light and the transition ene
gies are in the range of 0.05–0.1 eV. Thus, the SAQD
considered are suitable for far-infrared detector applicatio
We also found that the SAQD’s considered here can hav
strong z-component optical-induced dipole moment, whi
may find applications in photovoltaic devices.

The exciton states have also been studied within the H
tree approximation. For smaller dots~with base length less
than 200 Å!, our EBOM results on energy levels, charg
distributions, and exciton binding energies are in good agr
ment with previousk•p calculations.26
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