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Modeling self-assembled quantum dots by the effective bond-orbital method
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Systematic studies of the electronic and optical properties of InAs/GaAs self-assembled quantum dots are
performed via the effective bond-orbital model employed with an efficient algorithm. Four different sizes of
pyramid and one truncated pyramid with1G sidewall quantum dot&QD’s) are studied. Microscopic strain
distributions have been taken into account via valence-force-field model. We find that charge density distri-
bution and optical properties are quite different with and without including the piezoelectric effect. Without the
piezoelectric effect, variation in dot size can lead to a substantial change in the strain distribution and hence the
charge distribution, which gives rise to qualitatively different optical properties. Including the piezoelectric
effect, hole-state wave functions are stretched along[]h_é)] axis and hence interband optical transitions
become polarized ann@lTO] and the polarization ratio increases with dot size. Our results of the energy
levels and optical polarization are in good agreement with experimental and other theoretical results. Our
calculations of truncated pyramid QD'’s indicate that the truncation of the pyramid tip has a negligible effect on
the photoluminescence properties of QD'’s.

[. INTRODUCTION band parameters between different materials across the inter-
faces for a complicated geomet(g.g., pyramidal QIp are
Defect-free coherent nanoscale islands fabricated by thiacluded. The empirical pseudopotential methods can take
Stranski-Krastanow method, known as self-assembled quaiito account the boundary conditions automatically by using
tum dots(SAQD’s), have attracted scientific interest recently atomic pseudopotentials appropriate for different atomic spe-
due to their potential applications in optoelectronic devicesCies at the designated positions in the QD structure and it
such as low-threshold lasers and novel infrared detetidrs. takes into account the full band structure effects. However,
In the last decade, a tremendous attraction has been shown!ft Pasis set needed to obtain a convergent solution to the
studies of SAQD’s both from a basic physical interest ancelectronic states is very large, which makes the computation

for practical applications. Most of these work focus on theo.f a large QD extremely time consuming. Furthermqre, Itis
formation and characterization and electronic and optical ifficult to find the appropriate atomic pseudopotentials that

properties of SAQD'S?’ The size fluctuation of SAQD's produce the correct overall band structures for the constituent

. . N . bulk materials and at the same time give effective masses for
hampers the experimental investigations of the excﬂed-statg” bands near the zone center with the desired precision. For
spectrum and brings difficulties in the comparison betwee X

rzexample, the psuedopotentials used in existing calcul&tions

experimental and theoretical results. Recently much efforf,. :
han) been devoted to this issue and new exp?a/rimental tece_l‘\'&e an effective mass of 0.08% for GaAs and 0.032, for
_ : _ ; _ = s, which are off from the experimental values by more
niques with high spatial resolution and sensitivity such aspan 309%.
near-field scanning optical microscogSOM) and Cath- In this paper we present a theoretical study of the elec-
ode luminescencd (CL) have been developed, which make tronic structure and optical properties of SAQD’s with a high
the study of the electronic properties of isolated quantunccuracy and efficiency via the effective bond-orbital model
dots possiblé®*? (EBOM).2° The bond-orbital model is basically a tight-
In order to obtain high-performance QD devices, it is im-binding model which uses bonding and antibonding orbitals
portant to have a detailed understanding of the optical propas the basis. It is capable of taking into account the full band
erties of QD’s and their dependence on the dot morphologgtructure effect when a full set of bonding and antibonding
and growth condition. A recent low-temperature spectrum obrbitals (typically four for conduction bands and four for
isolated SAQD’s exhibits rich fine structure and an unam-valence bands for 1lI-V semiconductoris used and a suffi-
biguous assignment of these transitions has not been avatient range of interactions between bond orbitals is consid-
able. Therefore further extensive studies on the electroniered. However, to achieve a high efficiency we adopt an
and optical properties of SAQD’s with different shapes andeffective bond-orbital model which uses a minimum basis set
sizes are still needed. that includes ones-like antibonding orbital for the conduc-
Current theoretical methods applied to SAQD’s includetion band and thre@-like bonding orbitals for the valence
the single-band or multiband effective mass mettbd?  band and only nearest-neighbor interactions are included.
k-p?~2"and empirical pseudopotential methddsAll these  The interactions between the four bond orbitals are deter-
methods have their advantages and disadvantages. Theined by requiring the band structures of constituent bulk
effective-mass anll- p methods are most convenient to use, materials near the zone center to be identical to those ob-
but they quickly become cumbersome when the full boundtained by thek-p theory. Thus, the model is equivalent to
ary conditions needed to take into account the differences ithe real-space version of thkep model. In addition, it offers
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the flexibility to include the full band structure if needed by spectively.a and 8 of the binary constituent component are

expanding the range of interactions between bond orbitalfom Martin’s calculations® For the bond-bending param-

and it can take into account the change of the bonding natureter 8 of In-Ga-As, we takeg;jx= Vi; Bik following Ref.

at the interfaces between constituent materials by using aps.

propriate interaction parameters. This model has been suc- To calculate the strain tensor, we used an efficient method

cessfully applied to quantum wells(QW’s) and quantum  to minimize the potential energy given above. Since the sys-

wires (QWR’s) either grown by chemical etchifgor by the  tems contain more than iGtoms, it is impractical to di-

strain-induced lateral-layer orderi§ILO) process> rectly solve the equatiosV/JR=0. We first place the atoms
Combining the EBOM with an efficient algorithm allows on the ideal lattice of bulk GaAs; then we allow atoms to be

us to study the electronic properties of large-size SAQD’sdisplaced from these ideal positions and in each iteration

reliably. Numerical solutions of energy eigenvalues with anonly one atom is displaced while others are fixed. The dis-

accuracy better than 16 eV for a system of 1Datoms can  placement of atoni is determined according to the forée

be achieved on a 500 MHz DEC alphastation and the CPU= — 5V/gx; with periodic boundary conditions in the plane

time for obtaining the wave function of a given conduction- perpendicular to the growth direction. We repeat this process

band(CB) or valence-bandVB) state is less than 5 or 8 h until the force acting on each atom becomes zero.

with our method. Widely varying shapes of SAQD’s have Once the equilibrium is reached, the strain tensor is cal-

been reported including pyramid, truncated pyramid, conegulated according to the method described in Ref. 34,

or lens. Since pyramidal dots wi{11G sidewall are mostly namely,

studied, we apply our method to this kind of dot so that we

can make a meaningful comparison with previous calcula- R R R 1
tions. Four different sizes of pyramidal QD’s with base 0.1  TH0.2x 1034
lengths equal to 125, 158, 204, and 250 A  are studied. e=R| Roiy Ro2y Roay -1, (2)

Furthermore, we also present calculations on a QD with a
truncated pyramidal shape.
The organization of this paper is as follows. In Sec. II, we

R0,12 RO,Z& R0,342

briefly introduce our theoretical method. In Sec. Ill we Wherel is the unity matrix,Roj;=Ro;—Ro;, i,j=1,4, and
present our results and discussions. In Sec. IV a brief sunfRo;i (i=1,4) denotes the positions of the four As atoms sur-
mary is given. rounding a cation. Here we chosig,=(1,—1,0)a/2,

Ro2=(—1,0,1)%/2, andRy34=(1,1,0)a/2, wherea is the

lattice constant of GaAs or InAs, depending on the site.
Il. THEORETICAL METHODS

A. Valence-force-field model for strain distribution B. EBOM for electronic states

The electronic states of SAQD depend strongly on the The energy levels and wave functions of the capped py-

strain distribution. There are two methods to solve the strain, 4o self-assemble quantum dots are calculated in the ef-
distribution in QD's: the continuum mechanid&M) model fective bond-orbital model. A detailed description of this

and valence-force-fieltFF) model. Pryoret al3* and Stier method can be found in Refs. 30. 37 and 38. The EBOM
et al?® compared the results obtained by these two models;seqd here is a tight-binding-like model in which osdike

They found that the differences at the interfaces are Iarge%tonduction band and threelike valence bandgbefore in-

while in the interior of QD’s the differences are insignificant: cluding the spin-orbit interactiorare coupled. After includ-

S_lnce the VF.F model can give a strain tensor on the atom|smg the spin-orbital interaction, we have two conduction
tic level, avoid potential failure at the interface, and retain, -1 ds and six valence bands. Thus. the present model should
the correct point symmetry of the system, we chose to usg, compared with the eight-baikdp model as used in Ref.

the VFF model in favor of the CM model. Furthermore, 26. To estimate the effects of the piezoelectric charge in-

sin((:jelb(;)thl thgtthI;F _mtodel tgnd ttf:et effectivk(]a b(.)ndl'zrbi?lduced by the shear strain, we also included the piezoelectric
model deal wi € interactions between chemical bonas, qptig). The piezoelectric potential at sRein the EBOM

the combination of the two models represents a perfect maks
. . ; given by
riage of the lattice property and electronic property.

In the VFF model of Keatin§f and Martin® the lattice
energy of the system is described by the sum of bond stretch- ep,(R")
. . : P
ing and bond bending terms, which takes the form Vo(R)=—2> —
R’ 450|R—R |

1 3 2 2 \2/1p2 1 3
V=7 > 7 (Rij—Ro;))/Roj+ 7 > ;k 2Bik(Rij-Rik whereeis the electron charge is the static dielectric con-
N b stant, andp,(R’) is the piezoelectric charge at si&. Due
+R0inOik/3)2/R0in0ik! ) to the singularity of the Coulomb interaction at the origin
o o (whenR’=R), we approximate the denomina{®—R’| by
wherei runs over all the atom positionsandk run over the  an effective interaction length,, which is taken to be half of
nearest-neighbor sites ofR;; is the vector joining the sites the bond length. Sincp,(R’) is a smooth function oR’,
i andj, R;; is the length of the bondR,;; is the correspond- the result is insensitive to the value 1.
ing equilibrium length in the binary constituents, amg and The Hamiltonian forp-like valence band statebefore
Bijk are the bond-stretching and bond-bending constants, reacluding the spin-orbit interactiorhas the form
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TABLE |. Parameters used in the present wdrk units of eV). group theory notation of Ref. 40. The four elements of the
C,, group areE (identity), o, (mirror plane normal to the
Parameters GaAs InAs [110] direction or thex’ axis), o, (mirror plane normal to
CB minimunt 1.495 0.662 the[110] direction or they’ axis), andC, (twofold rotation
VB maximun? 0.0 0.26 about thef[001] axig). For example, to find the highest-lying
Spin-orbital coupling 0.34 0.38 VB state withA, symmetry, we first make an initial guess of
Deformation potentials the wave function denoted ,(R) for R in a quadrant of the
a. 717 508 QD unit cell. We then require the wave function frin the
a _1.16 ~1.00 three other quadrants to be relatedXQ(R) by applying the
bU 16 18 threg symmetry operaf[ionsjl, o, , andC,. The wave func-
d 493 _31 tion is updated each iteration along the gradient of the po-
: tential defined asf=—2(H—(E))C, where (E)=C'HC.
aReference 44. Since all matrix elements are real at this stage, we @e
bReference 43. equal to the transpose € To find the excited states of the
same symmetry type, we repeat the above procedure, but
. with the added constraint that requires the state to be or-
Hyor=(EptVp) 5M,+2 expk'T{Exyrara, thogonal to the states previously solved.
T In the second step we find the eigenstate of the CB-VB
+[(Exu— Exy) Tfﬂszz(l— Ti)]5a,a'}+ Her, coupled Hamiltonian using the eigenstates of the decoupled

Hamiltonian obtained in step 1 as the initial guess. At this
3 step the energy of interest falls in the middle of the spectrum

where 7,=(2/2)R,.,: a=x.y,z are dimensionless compo- for the coupled Hamiltonian, and we can no longer use the
[ o 1)

nents of the four lattice vectors defined above. The interactoniugate gradient method here. Since our initial guess is

tion parameter€,, Eyy, Eyy, andE,, can be directly re- already a good approximation to the final answer, we can

lated to thek - p band parameters and the analytical relationsf'.nd the accgrate eigenstate by S|m'ply inverting the Schro
can be found in Ref. 30/, is the piezoelectric potential, and dmggr_equatlon. We shall refer to this method as the inverse
H; is the strain Hamiltonian. Becaust only couples sites Schradinger eqyatlcr)]mISE)h%ethod. Our I_SE_me;ho;j goes as
separated by a nearest-neighbor distance, the number of nofrq_llows. We write the Schieiinger equation in the form
zero matrix elements ofl needed to be stored is linearly
proportional to the number of atoms in the systéw).(Thus, > (n|H|n")Cp +(n|H|n)C,=EC,, (5)
our algorithm scales like ordex. n'+n

With the strain tensoe;; calculated according to the VFF ) . ) ]
model as described above, the strain Hamiltonian is relateyheren (or n’) is a composite label for site and orbital
to &;; according to Bir-Pikus theor3f. For the VB states we (R, ). Inverting the above equation, we have
have

—AVy+D;  \3de, J3de,, C“‘En (nIH[n")Cr I(E=(n[H|M)), (6)
Hy=| V3dey, —AVy+D, \3de, |, et
with E=C'HC.
J3de,, V3de,  —AVy+D; The above recursion relation is solved by iteration until
4 the self-consistency is reached. It turns out that the ISE
where ;= (g, +&;1)/2, AVy=(as+a)(exct 8yt s, method converges very fast as long as the initial guess is

D, =b(28x—eyy—£,.), Do=b(2evy—&x—&,,), and D good enough. I_:or elecftron ground states of all cases consid-
=ld(28( 2 ).Zaereél a(z b andd arezij)eformatign ered here, within 1000 iterations a convergence in the energy
potentiézls listed in Table I eigenvalue better than 16 eV can be achieved.

The Hamiltonian for thes-like conduction band iH In the third step, we include the spin-orbital interaction.
=E +V,+Cy(8,+&yte,,), WhereE, is the on-site oSr- The total Hamiltonian including the spin-orbit interaction
S p XX yy z7)» S

bital energy for thes-like orbital, V, is the piezoelectric po- takes the form
tential, andc; is the CB deformation potential. The coupling
between slike and p-like bond orbitals is given by
<S|H|a1RO>:EspTa- .

In order to solve the single electron Sclirmger equation
of the system containing more than®ltoms efficiently, we where H, and H4 are Hamiltonians for spin-up and spin-
adopt a three-step procedure. In the first step, we decouplfown components, each being identical to the one used in
the CB and VB states and use a conjugate gradient method &tep 2. HerdJ;, andV, describe the spin-orbital interaction
find the low-lying eigenstates dfig for the CB and high- between states of the same spin and opposite spin. The non-
lying eigenstates of, for the VB for a given symmetry zero matrix elements dte (X|Ugoly)=—(y|UsdX)=
type. Here we utilize th€,, symmetry of SAQD’s and re- —iA/3, (X|Vgsiz)=—(Z|Vso/X)=A/3, and (y|Vslz)=
quire the eigenstates to transform according toAhe A,, —(z|Vsoly)=—iA/3, whereA is the spin-orbit splitting for
B4, or B, representation. Here and henceforth, we adopt thealence band states. All spin-orbit coupled states transform

[HutUse Ve

H_ y (7)
Vlo Hd_Uso



13634 SOPHIA J. SUN AND YIA-CHUNG CHANG PRB 62

T[OOI] = 0.4F
//N Al
7 I\ s
]
S X
/' £
[010] w 0.4
(
(1001
_o4f
FIG. 1. Schematic plot of the pyramidal dot and wetting layer 3
geometry.z is the growth directionx is [100], andy is [010]. |
5 oo}
according to the double group representationCof,. The ?
spin-up and spin-down states have the ffrm £ 02}
. . 3
P1=(|AD) = 1|A)) X1zt (—[B1)+i|B2)) X112, (8)
¥-12=(|B1)+i[B2)) x1ot+ (|AD) +i|A)) x-12,  (9) FIG. 2. Diagonal elements of the strain potential of dot 1 in the

I plane of 17 A from dot basé) along thex direction withy=0

whereA,, A, By, B, label the symmetry type of the spatia (A line as shown in Fig. lLand (b) along they direction with b/2

part, andy,, and x4, denote the up and down electron —17 A (B line as shown in Fig. )L The solid line is forV,,

spinor. . . . . . dashed line fow,,, dotted line forV,,, and dot-dashed line for
The eigenstates of the spin-orbit coupled Hamiltonian arg,

again solved via the ISE method as described in step 2. Each”
state is twofold due to the Kramer's degeneracy and the twejly comes from the diagonal elements. Figures 2 and 3 show
degenerate states are related by applying the time-revers@le diagonal elements of the strain Hamiltoniafg for
operator. In this step, the wave functions become compleXgots 1 and 5 along lines A and B. He¥&=Cy (e, + ey
However, the CPU time required to get convergent results is gy v, = — AV, + D;,Vyy=—AVy+D,, and V,~
comparable to that in step 2, since the spin-orbit interaction. Ay, + D,. Also, AV}, ,D;,D,, andD5 are defined in Sec.
only mixes different spin states on the same orbital site, S B, The strain distribution at the interface and along pri-
the multiplication ofU or V by the eigenvectoC can be  mary axes is similar for dots of different sizes, but the strain
performed efficiently. The material parameters used in thejistribution in the interior of dot is quite different. From
present calculation are listed in Table . these figures, we see that the hydrostatic strain is approxi-
mately uniform throughout the dot. The primary effect of the
Ill. RESULTS AND DISCUSSIONS biaxial strain distribution is that in the large d@iot 5 the

A. Strain distributions

0.4}

Strain distributions in four SAQD’s with base length g 02k 4 \(a)
=125, 158, 204, and 250 A plus a truncated pyramidal dot T ool I D e ,’ =
are calculated via VFF model as described in Sec. Il. Figure - = =
1 shows a schematic plot of a pyramidal QD on a wetting g 0.2 3 i
layer. The GaAs capping layer is not shown. We use a large £ .04 VT <)
supercell to model an isolated QD. The supercell size for the ﬁ 5 55 . = 00
four dots considered here is 8836ax2la, 42ax42a
X 24a, 508 508 283, and 5@ 58ax 32, wherea is the XA
lattice constant of bulk GaAsa=5.6533 A. In all our cal- _o4f o)
culations the wetting layer is set to be one monolay4k ) @ oz J L
of InAs. T | e ez

Considering that strain is much stronger near the inter- g 00p =i [ S
faces, we shall investigate the strain distribution in these dots 8 02} \“-\ ,-"/
along a tangential line parallel to one of the dot borders in a € o4l [ /
plane normal to Zline B in Fig. 1). For comparison, we also 7 265 — _':-J" - oo

investigate the strain distribution along a primary axis .
through the center in the same plafiee A in Fig. 1). The yA)

confinement induced by the strain is determined by the strain . 3. piagonal elements of the strain potential of dot 5 in the
HamiltonianHy; plus the piezoelectric potentiddy, since  plane of 17 A from dot basé) along thex direction withy=0

the presence of shear strain can induce a piezoelectric chargg line as shown in Fig. Land (b) along they direction with b/2

in zinc-blende semiconductors. The off-diagonal elements of-17 A (B line as shown in Fig. @ The solid line is forVs,

the strain Hamiltonian are relatively small and less signifi-dashed line foiv,y, dotted line forV,,, and dot-dashed line for
cant and the confinement effect on the wave function primayv,,.
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FIG. 4. Strain distribution alonf001] of dot 1 and dot 2. The 3 0.281
solid line and dot line are for the hydrostatic strain of dot 1 and dot ECS 0.96
2, dashed line and dot-dashed line for the biaxial strain of dot 1 and 'f, )
dot 2. g 0.24
0.22

strain potentiaV,, near the interface has a maximum at the

center of line B(with x=17 A from the dot bordér while in Base Lentgh (nm)

the small dot it has maxima at the corners of the dot. The

qualitative difference in the strain distribution can cause a FIG. 5. Energy levels of the four lowest-lying conduction bands

dramatic change in the hole charge density distribution in dognd the highest-lying valence bands vs dot size.

5 in comparison to dots 1-4 as will be discussed in Sec.

B. plus the effects of the corresponding band offsets. Due to the
Figure 4 shows the strain distribution along thaxis for  presence of biaxial strain, different components of the hole

dots 1 and 2. For dot @runcated pyramid the strain distri-  states experience different potential profiles. For example, at

bution is different from that in dot 1 only near the truncatedthe center of line B in dot 5 the component of hole states is

top of the pyramid as shown in Fig. 4. Since the wave func-subject to a confining potential of a height around 0.36 eV

tion of the ground state for an electron or hole are predomi{0.1 eV due tdV,, plus 0.26 eV due to the VB offseand the

nantly localized near the base area of the dot, we expect the component of hole states is not confined, sintg=

photoluminescence property of the truncated pyramid to be-0.4 eV, which overcomes the 0.26 eV VB offset. Thus,

very similar to that in the pyramidal dot of the same basepased on the information provided in Figs. 2 and 3, we can

length. This will be reflected in the interband optical matrix conclude that the confined hole states in SAQD’s are pre-

elements shown in Sec. Il B. dominantly linear combinations oflike andy-like bond or-
As indicated earlier by Grundmaret al> the piezoelec- pitals.
tric potentialV, is significant at dot borders alorig10] and Since the hydrostatic strain distribution is approximately

[110] and the signs o/, along these two directions are uniform in all dots, the ground-state wave functions and
opposite. Thus the envelope functions with and without thecharge density distributions for electrons in these dots are
piezoelectric effect are quite different as will be shown in thequalitatively similar and they are all peaked near the center
next section, even though their energy levels are fairly closeof the dot. The piezoelectric effect on wave functions of
The maximum values d#| for dots 1, 3, 4, and 5 are 50.4, low-lying electron states are very small since the piezoelec-
60.7, 73.1, and 85.0 meV, respectively. tric potential is much smaller than the confinement potential
determined by the strain potential and band offset. Moreover,
the effect of the spin-orbit interaction is weak, and each elec-
tron state has a predominant component which transforms
The strain HamiltoniatH; and piezoelectric potentid,  according the irreducible representations of g, point
plus band offsets determine the quantum confinement ofroup. Figure 6 shows contour plots of charge density distri-
wave functions. In order to investigate the effect$def and  butions for the first four conduction-band stat€B1—-4) of
Vp, we first study the electronic structures by leaving outdot 1 in the plane witz=17 A from the base. Our results
V,,; we then study the effect of the piezoelctric potential byof electronic levels and charge density distributions agree
addlngv The energies of the four low-lying conduction- well with the k- p calculations of Stieet al?®
band states and four high-lying valence-band states vs dot For valence-band states, without the piezoelectric effect
size are shown in Fig. 5. the hole wave functions and charge density distributions are
Without the strain effects, the confinement of electron orsensitive to the dot size due to a different biaxial strain dis-
hole is determined by the corresponding band offsee tribution. In particular, the hole charge density distribution of
Table ). Namely, in the InAs region, the electron sees adot 5 is quite different from that of dots 1—-4. Figure 7 shows
potential well with depth 0.833 eV while the hole sees athe contour plots of charge density distributions for the hole
potential well with depth 0.26 e¥? Including the diagonal ground stategVB1) of dots 1 and 5 in the plane with
elements oH,;, the net potential profile seen by an electron=17 A from the dot base. We can see that the VB1 charge
or hole is described by the curves shown in Figs. 2 and 3lensity of dot 1 is concentrated along fi4.0] diagonal line

B. Electronic structures
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oB1 oB2 (a) Dot1 (b) Dot5
504 .
50 VB1| 120 VBT
< 0 @ 60
g g 0 0
-501 >
-60
CB4 -
50 @ -50 120
50 120 VB2
L O
>~ 60
-50 < 0 0
>
50 0 50 50 0 50 60
X (A) X (A) .50 -120
FIG. 6. Contour plots of the charge density distributions for 50 120
states CB1—4with piezoelectric effegtfor dot 1 in a plane at
=17 A from the dot base. 60
of the dot and it has an appreciable amplitude near the center< © 0
For dot 5 the charge density is peaked at the center of tan > -60
gential lines near the dot bordefishe B and the equivalent
lines due to point-group symmejnand it has very small -50 -120
amplitude near the center of the dot. Due to the strong spin-
orbit coupling, no predominant symmetry type of hole enve- 50 120
lope functions can be identified. 60
Next, we consider the effects of the piezoelectric potential
(Vp). We found that the inclusion dof , can distort the hole . 0 0
wave functions substantially as shown in Fig. 8 for the top > 60
four valence-band state®/B1-4) of dots 1 and 5. The 50
-120
(a) -50 0 50 -120 60 0 60 120
50 X (A) X (A)
FIG. 8. Contour plots of the charge density distributions for
< 0 states VB1-4(with the piezoelectric effettin a plane az=17 A
>~ from the dot base fofa) dot 1 and(b) dot 5.
-501 charge densities for all four hole levels are stretched along
the[110] axis, which can be seen by comparing Fig. 7 with
Fig. 8 for ground holes. This change in the hole charge den-
sity distribution leads to substantially different interband op-
160 tical properties with and without the piezoelectric effect.
Comparing our results and those of Stetiral,, good coinci-
80+ dence can be seen. However, the energy difference between
the corresponding electron and hole states is smaller than
0 that of Stieret al. This is mainly due to the different defor-
mation potentials in our paper, which are taken from Ref. 25.
.80/ Investigating the various components of wave functions,
it can be seen that electron wave functions contain predomi-
nantly ans componen{around 90% while hole wave func-
'16_(%60 80 0 80 160 tions for the top four VB states contain primarikyandy
X (A) components(or bond characteys indicating that they are

mainly derived from the heavy-hole band. As pointed out by

FIG. 7. Contour plots of the charge density distributions for theothers, the envelope function for the ground st&@8l) is

ground hole statéwithout the piezoelectric effecin a plane az

=17 A from the dot base fofa) dot 1 and(b) dot 5.

s-like, while the envelope functions for excited stat€82-
CB4) arep-like.
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TABLE II. Interband transition energieén eV) and the corresponding overlap integrals betweensthe
component of the electron state and tkle y’, and z components of hole states with and without the
piezoelectric effect. Values in parentheses are results with the piezoelectric effect.

Dot No. Hole state AE (eV) Overlap
index (slx’)? (sly")? (sl2)?
Dot 1 VB1 1.0355(1.0322 0.314(0.329 0.333(0.299 0.0(0.0
b=125 A VB2 1.0508(1.0480 0.0(0.0 0.001(0.002 0.0(0.0
h=0.5b VB3 1.0606(1.0612 0.027(0.015 0.024(0.039 0.049(0.045
VB4 1.0649(1.0643 0.004(0.001) 0.005(0.023 0.0(0.0
Dot 2 VBl 1.0341(1.0328 0.317(0.33)1) 0.335(0.303 0.0(0.0
b=125 A VB2 1.0514(1.0489 0.0(0.0 0.0(0.003 0.0(0.0
h=0.4b VB3 1.0624(1.0627% 0.025(0.014 0.023(0.042 0.044(0.040
VB4 1.0656(1.0652 0.005(0.002 0.006(0.017 0.0(0.0
Dot 3 VB1 0.9574(0.9550 0.298(0.302 0.312(0.249 0.0(0.0
b=158 A VB2 0.9679(0.9636 0.0(0.0 0.0(0.003 0.0(0.003
h=0.5b VB3 0.9790(0.9786 0.0(0.018 0.0(0.030 0.008(0.0)
VB4 0.9791(0.9799 0.19(0.003 0.021(0.043 0.030(0.032
Dot 4 VBl 0.8856(0.8810 0.252(0.228 0.261(0.167 0.0(0.0
b=204 A VB2 0.8905(0.8844  0.002(0.0) 0.002(0.003 0.0(0.003
h=0.5b VB3 0.8981(0.8977 0.001(0.037 0.003(0.059 0.0(0.0
VB4 0.9010(0.9012 0.009(0.004 0.010(0.012 0.025(0.019
Dot 4 VB1 0.8352(0.8274 0.192(0.148 0.197(0.100 0.0(0.0
b=250 A VB2 0.8369(0.8289  0.004(0.0) 0.005(0.004 0.0(0.002
h=0.5b VB3 0.8417(0.8326 0.0(0.059 0.002(0.059 0.0(0.0
VB4 0.8452(0.8431) 0.004(0.001) 0.004(0.009 0.013(0.009

We also calculated the electron and hole states of trunwhereCSBY(R) is the expansion coefficient of the CB1 state
cated pyramidal dotdot 2. We found that the energy shifts in terms of a bond orbital of type at siteR. The electron-
in low-lying levels in comparison with untruncated pyrami- hole interaction seen by the hole at sRg is then given by
dal dots are insignificant. This is because the wave functions
of these electron or hole states are primarily localized near
the base of the dot, where the trunca?tion of%he pyramid tip (delven de)= _R21 Pel R1)—60|R1_ Ry| for Ri#Ry,
has little effect.

The exciton states of SAQD’s can be calculated via avheree is the electron charge ang is the static dielectric
self-consistent methddHartree approximatidms adopted in constant. Here, we have used the fact that the bond orbitals
Ref. 26. The exciton state is written as a product of electror@’® orthogonal to each other and the Coulomb potential

and hole state¥ = ¢, and each one-particle state satis- ez/foflz is a smooth function of ;, so we can replace it at
fies the self-consistent Schﬂmger equation the discrete sitd&R;. Due the singularity of the Coulomb in-

teraction at the origintwhenR;=R,), we approximate the
denominator 1, by the average electron-hole distance within
a bond orbital,ry, which is taken to be half of the bond
length. We found that since the on-site Coulomb matrix ele-
ment is only a small fractiofless than 1%of the sum, the
exact value of  is of little importance. Adding the electron-
where Hg(Hy) is the electron(hole) one-particle Hamil-  hole interaction to the one-particle Hamiltonitiy , we can
tonian andv ., is the electron-hole Coulomb interaction. To then find the new hole wave functiog, for the exciton
solve the above self-consistent equations, we use the grounfllowing the same procedure as described in Sec. Il B. The
state wave functiorfin the bond-orbital basjsfor the elec- ~ Procedure is then repeated for the electron to find the new
tron or hole as the initial guess. We then obtain the electrofVave functiong,. After just a couple iterations, the exciton

charge density via the relatidand similarly for the holg binding energy defined aB.+En—(Ecg1—Evp1) can be
obtained with an accuracy better than 0.1 meV. For the four

pyramidal dots the calculated exciton binding energies are
26.1 meV, 20.5 meV, 15.8 meV, 11.8 meV. These values are
consistent in magnitude with those reported in Ref. 26.

2

(He+<¢h|vehl ¢h>) Ye=Eebe,

(Hnt(delven de)) ¥n=Ent,

pe<R>=§ ICSEYR) 2,
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C. Optical properties TABLE IIl. Dipole matrix elements for transitions from the

The optical properties of interest include the interband® leCtrop grc;und S,tat?(CB,l) ,to ,exqted states (CB2-4),
transitions (between conduction-band and valence-band(®1el|¢i.c)|°. Polarization direction is either(=y) or z. Values
state$ and intraband transitiondetween QD states derived In parentheses are results with the piezoelectric effect.
from the conduction band InAs SAQD’s on GaA&01)

have been studied by a number of author® via photolu- Dot No. _Electron state AE (eV) X z
minescencgPL) and cathode luminescen¢€L) spectros- Dot 1 CB2 0.1053 300.€308.5 0.0(0.0)
copy. Due to size fluctuation, the excited-state spectrum is CB3 0.1060 297.7292.5 0.0(0.0
difficult to assign unambiguously. Recently, photolumines- CB4 0.1563 0.00.0 18.318.9
cence excitatiorlPLE) spectroscopy was used to study this
issue’’ Here we present the results of our calculations onpy; 3 CB2 0.0885 383.9400.) 0.0(0.0)
ideal homogeneous SAQD’s, although a quantitative com- CB3 00890 379.6367.8 0.0(0.0)
parison between theory and experiment is difficult due to CB4 0.1565 0.00.0 1.6(29.9
size fluctuations.
. Fpr interpand transitiqns, .the .Iinear ab;orption coefficienbot 4 CB2 0.0698 536.8573.8 0.0(0.0
within the dipole approximation is proportional to the over-
lap between electron and hole states. The overlap integrals CB3 00702 53145014  0.0(0.0
b ben p integ CB4 01257 0000  1.1(32.4
are defined as
. 2 Dot 5 CB2 0.0558 725.8798.7 0.0(0.0
(sl a>|2=‘2 C*(RICH(R)|, a=Xx'y'z CB3 0.0562 717.2660.4 0.0(0.0
R CB4 0.1020 0.00.0 0.2(36.9

where the suBerscriptsandf label the initial and final states,
x" is along[110], y" along[110], andzlong[001]. In Table
[l we list the energy differences between ground electron (|r]fy=>, C *(R)C(R)R.
state (CB1) and top four valence state¥B1-4) and the Ra “

corresponding electron-hole overlap integrals. The result§n Table Ill, the dipole matrix elements squared foy, and

W::gPhéasléeS‘ Ir\]/t/?tr?glf? ;Jhn; tri]:zg':lZggliﬁtg?f:gﬁﬁzaéeﬁlgf ?r;lqg polarizations are listed for intraband transitions from the
gition from 'Lhe round elepctron to ground hole stat% is olar—ground electron StateCBI) to upper electron statdCB2—
. g, L 9 S P 4). The intraband transition energies are also listed. It can be
ized along they’ direction, and the degree of polarization

reduces with increasing dot size. With the piezoelectric 0_seen that the dipole matrix elements kgindy polarizations
uces with 1 >INg 1z€. W1 bpiez IC PO%or CB1-CB2 and CB1-CB3 transitions are significant. This
tential included the interband optical transitions for all dots

. . means that light with normal inciden¢alongz) can be di-
become polarized along the direction, and the degree of rectly absorbed via the CB1-CB2 and CB1-CB3 intraband
polarization increases with increasing dot size. This is cause, ansitions. In comparison, thetype quantum well infrared
by the fact that t'he piezoelectric _pote_ntial tends tq str(_atch thBh otodete étor:{QWlP’s) us’ually require special processing
_T_Ole Watlvellfémtgtlgnzatlﬁng thié _dlr?_ctlon as steen in :c:'lg'f'/ (e.g., surface gratingto allow normal incident light to
GZA@ Soa .SAS uD’Ieb CeL pogl?;a_ lon alrgls_o (rjqpyt Oth ?tﬁ couple with electronic intersubband transitidfsn this as-

. d ]7) Q, S by LL and their results ndicate that the pect, the SAQD’s have an advantage over quantum wells for
ratio of X’ to y' polarization is around 1.17 for the funda- infrared detector applications
mental (P1) transition in QD’s with an average base length Finally, we calculate the dipole moment induced by the

of 15 nm. This result is very close to our result of dot 3intraband optical absorption. Because the charge distribu-

(around 1.2 It shoulq be noted_ thqt for aI_I (.jOtS COI’]s'dered’tions in the excited states are very different from the electron
the z-component optical transition is negligible. We can see

. round statéCB1), we expect a large optical-induced dipole
that the electron-hole overlap integrals of dot 5 are more tha ; ; e -
a factor 2 smaller than those of dot 1. This is due to the faCEwoment for SAQD’s. This feature may be utilized for appli

ations in photovoltaic devices. We define the optical-

that in dot 5 the hole wave f“”C“Of.‘ is distributed away frominduced dipole moment for the intraband transitions from the
the center of the dafsee Fig. 8 while the electron ground- CB1 state the CBi excited state=2 4) by
state(CB1) wave function is concentrated at the center of the T

dot. Consistent with the above discussions on the truncation
of the pyramid, the overlap integrals of dot 1 and dot 2 are pi=2> [pcai(R) —peer(R)IR,
approximately the same. ‘
For intraband transitions, the optical matrix element iswhere pcgi(R)=2,/CSB(R)|2. As shown in Table IV, the
proportional to the dipole matrix element, since dipole moments of the three intraband transitions increase
" with dot size.
i
(l|[r,H]|f)=(Ei—Ef)(||r|f>=ﬁ<||p|f), V. SUMMARY
where the superscriptsandf label the initial and final states. We have presented a systematic study of the electronic
Within the bond-orbital basis, the dipole matrix elements carand optical properties of self-assembled quantum dots of dif-
be approximated by ferent sizes via an efficient ordé-numerical method based
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TABLE IV. Optical-induced dipole moment; =2[ pcgi(R) — peei(R) IR in units ofe A. Only thep,
component is listed. Thp, andp, components are negligibly small. Values in parentheses are results with
the piezoelectric effect.

Dot 1 Dot 3 Dot 4 Dot 5
CB1-CB2 —4.34(-4.92 —4.93(—5.39 —5.50(—5.99 —-5.90(—-6.3)
CB1-CB3 —-4.33(—3.63 —-4.92(—4.26 —5.47(-4.92 -5.90(-5.40
CB1-CB4 —4.74(—4.89 —7.40(—6.35 —8.41(—6.96 —9.24(-7.49

on the effective bond-orbital model. MinOSCOpiC strain diS'optica| transitions become po|arized a|0ng Eh_d__O] direc-
tributions have been taken into account within the valencetion and the polarization ratio increases with dot size. This

force-field model and the piezoelectric effect induced byfinding is consistent with the experimeft.
shear strain has also been studied. We first studied the effect \y;o have also calculated the intraband transitions for the

of quantum confinement and strain without including the pi'conduction-band states and we found that the CB1-CB2 and
ezoelectric effect. We found that the strain distribution iSCBl-CBS transitions in all dots considered here have strong
sensmvg to the size of SAQ[.) s, and it can lead tq dlfferer‘tdipole transition strengths for the transverse polarizations (
electromc_ and qpt!cal properties. For _all dots_co_n3|dered, _thgndy) of the normal-incidence light and the transition ener-
hydrostatic strain is approximately uniform within the dot in gies are in the range of 0.05-0.1 eV. Thus, the SAQD's
a plane normal to the groyvtfz) axis and it hgs a nearly considered are suitable for far-infrared detector applications.
constant slope along tteaxis. When the dot size increases We also found that the SAQD’s considered here can have a

to a certa;lrshvalue(Wlth base Itenfg;[rr]\ at:.ouﬂo: 2t5Q)Athte strong z-component optical-induced dipole moment, which
Maxima of thex ory component ol the biaxial strain poten- may find applications in photovoltaic devices.

tial move from the corners of the dot to the centers of the dot' 1 4 o, citon states have also been studied within the Har-

borders. Due to this change in the strain distribution, the[ree approximation. For smaller dotsith base length less
ground-hole-state charge density distribution is quite diffe;ian 200 A, our EBOM results on energy levels, charge

lentdln tthe Iargehdot ccl)(mparled .W'tth thqsctahln .Srtnager gotst{:\n istributions, and exciton binding energies are in good agree-
eads to a much weaker polarization in the interband optica, ot \yith previous- p calculations®

transition for large dots. Furthermore, in the large dot, the
hole charge density is distributed away from the center of the
dot, causing a substantial reduction in the electron-hole over-
lap and hence a much weaker interband transition matrix ACKNOWLEDGMENTS
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