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R-matrix approach to low-energy electron energy-loss spectroscopy from NiO
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Low-energy electron energy-loss spectra from NiO have been calculatedRisiagrix methods to describe
the excitation of 8-3d transitions on the Ni ions. The effect of the crystal field is fully included, though only
single scattering is considered at this stage. The total scattering cross sections demonstrate the importance of
exchange-scattering processes in addition to direct scattering, even at higher energies of the scattering electron.
The differential cross sections allow the investigation of angular, spin, and symmetry dependence for com-
parison with experiment. For certain transitions the angular dependence shows zeros associated with the point
group symmetry of the Ni ion, and these are discussed. The ratio of spin-flip to non-spin-flip contributions is
calculated exactly for multiplicity-changing transitions, and is shown to be independent of scattering geometry
and energy of the incident electron.

. INTRODUCTION clude the crystal field in which the i ion is situated—this
has a strong effect on the target and its interaction with the
Electron energy-lossEELS) experiments provide an im- scattering electron. At this stage we only calculate single-site
portant probe of the electronic structure of solids, yieldingscattering, though in the final section of this paper we shall
information on the momentum and energy transfer associateautline the inclusion of multiple scattering, which will be the
with electronic excitation.At high primary energies this subject of subsequent work.
can be described in the Born approximation by a dielectric After describing theR-matrix method in Sec. Il, in Secs.
loss functior? Recently, there has been much interest in low-IlI-V we shall explain how it is modified to include the
energy EELSLE-EELS) in which electrons with a primary effect of the octahedral crystal field appropriate t& Nin
energy of typically 20-100 eV are scattered in low-energyNiO. A group theoretical analysis is needed, not only for
electron diffraction (LEED) geometry—non-dipole-active |dent_|fy|n_g the different states, bL_Jt also to factorlze_the
transitions can be excited by impact scattering, and electroff@miltonian and thex matrix. A major part of the work is
exchange can give rise to multiplicity-changing transitians. consequently the transformation between the spherical group

LE-EELS has been used to study the localizet3al intra- and the octahedr&,, group. Another important modification

atomic excitations in transition-metal compounds, particu_compared with atomic physics applications of ﬂle_natnx
larly interesting because they may play a role in high-.methOd s that we use amu_ch smaller sphere radius separat-
temperature superconductivity. The loss energies measur%%g the inner and outer regions, an atomic sphere radius of

E ) : .~ 2.58 a.u. compared with typically 7 a.u. in scattering from a
in this way are well described by a parametrized crystal fiel ) . .

. . .~ Tree atom. In Sec. VI results will be given for total and dif-
model. However, the work described here and in a PTEVIOUR: rential cross sections as a function of primary electron en-
Letter® is the first attempt to explain the actual loss spectra P y

and their dependence on primary enerav. anale of scattering'9Y” together with spin dependence of the scattering. This
. penden P y gy ang %’rovides information on the relative importance of direct and
and spin polarization. We use thHematrix method from

. ) Y : . exchange scattering. The relative strength of the various tran-
atomic physics, generalizing it to the solid-state environ- ~.. ; : S
. 36 sitions will be explained, and a symmetry analysis will be
ment, and apply it to LE-EELS from Ni\t used to discuss zeros in the differential cross sections in cer-
The R-matrix method is a multichannel version of Scatter_tain eometries. We shall compare our results with several
ing theory, taking into account inelastic processes corre- g ' b

sponding to excitations within the scattering center, which inexperlment% in Sec. VI, and on the whole agreement wil

. o ; ; . turn out to be satisfactory. Finally in Sec. VIII we shall dis-
our case is the Ni" ion. The central idea iR-matrix theory . . .
. ) . : . . cuss the extension to multiple-scattering theory.
is that space is separated into two regidiise inner region
where the scattering electron fully interacts with the target,
and an outer region where the now distinguishable electron
moves in an effective field produced by the target system and R-matrix theory is widely used to solve electron-
its surroundings. Our modification of the method is to in-scattering problems in atomic and molecular phy5ftsve

II. R-MATRIX THEORY
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shall now outline the theory as applied to electron scatteringtate, sayi, and scattering angular momentum, dayare

by a single-scattering atom or ion witth active electrons. subsumed in the Greek indexthough sometimes we shall
give them explicitly. The channel functions are eigenstates of
The (N+1)-electron Schradinger equation that we wish to the total spin angular momentum; they also transform ac-
solve is cording to some representation of the spatial symmetry
group of the system—in the case of the free atom they are
Hy+1W=EV. (1)  eigenstates of the total orbital angular momentum. The basis

The basic idea oR-matrix theory is the separation of the functions are then expanded in the form

space surrounding the atom into two regions: an internal re-

gion (r=<a) where the scattering electron interacts strongly d(Xe, .. ,XN+1)=A2 ‘i(xl. L XN ;?N+110'N+1)
with the target and in which we describe the many-electron ]

system by all+ 1)-electron wave function, and an external

-1

region (>a) where the scattered electron moves in an ef- XTNG U (1)@

fective one-electron field produced by the target and its sur-

roundings. In the internal region we build up the solution to +2 Xi(X1, «« o Xnt1)Dik s (8)
|

Eqg. (1) from (N+ 1)-electron basis functions, but before we

can do this we make the Hamiltonian in this bounded region

- " ) where A is the antisymmetrization operator. The one-
e_pr|C|tIy Hermitian t_)y adding on the Bloch operdtdf de- electron radial functions; represent the motion of the scat-
fined over theR-matrix sphere !

tered electron. They form a complete radial basis and are

N+1 _ eigenstates of a static one-electron approximatioH §a 1,
d b-1
Lni1= 2 Zori—a)--——— 2
= e 1d2; 1(1+1)
, : - - - -——)+ U (r)+Ug(Hu (nN=E%u(r), (9
Herer; is the radial coordinate of theh electron, andb is a 2 dr2 22 0 J PRIV

constant that is conventionally introduced to provide some
variational flexibility in the boundary condition. TheN(  jth the following R-matrix boundary condition:
+1)-electron basis functions used to expahdn the inter-
nal region satisfy the matrix Schiimger equation a du
(UHNs 1 Lne 1l 43D ine = Exdi » ©) uj dr

where the integral in the matrix element is over the internah:ina”y, theXi’s are bound states of the\'& 1)-e|ectr0n sys-
region only. The solutions to E@3) satisfy the Schrdinger  tem that vanish by thB-matrix boundary and are included to
equation(1) within the internal region, with the following ensure completeness. From the basis functigpand their

b. (10

homogeneous boundary condition on the boundary: energiesE, we can then construct the Green function in Eq.
1 a(riy) ©). - :
— K —b. (4) The full (N+1)-electron wave function" is now pro-
b Or; jected onto the channel functions to give one-electron radial

We shall takeéb=0 in this work. To find the full solution of functionsF (r):
the Schrdinger equation¥’, matched onto the outer region, _
in terms of these basis functions we rewrite L. as F(r)=r{® V)" (11)

(Hyi1tLhnye1—BE)YP =Ly, VP, (5) The prime indicates that the integration is carried out over all
electron space and spin coordinates, except the radial coor-

and then from the Green function corresponding to €. dinate of the scattered electron. Substituting into ®gand

. puttingr on theR-matrix boundary, we then obtain a gener-
1 alized logarithmic derivative equation for tle’s,
wy=2 |0 == (Yl Lnsa V). (6)
< URCE dF
. . . F(a)=aX RJ(E)—"| (12
The (N+1)-electron basis functiong, are built up from « dr f—a
theN-electron eigenstates of the target Hamiltorigy, cor-
responding to the atom without the scattering electron: where we have introduced thB-matrix defined on the
boundary
Hy®i= 6D . (7
The target states are coupled to symmetry-adapted angular _ i Wy W ek
. X ) R.(E)= , (13
and spin functions of the scattering electron to form channel 2a ¥ E—E
functions @ (X, ... XniTni1.0Ns1), Where Xi, ... Xy

are the spatial and spin coordinates of the target electron¥ith

andry., andoy., are the angular and spin components of _ )
the scattering electron, respectively. The particular target Wy=a( D@ ¢ 4 (14)
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Equations(12) and (13) give the required boundary condi- d®®d®— St Pee Ded Fea G¢, (17)
tions on theF, functions so that they match onto the solu-
tions of the N+ 1)-electron problem within the internal re-
gion. F, is just the one-electron wave function of the 6
scattered electron when the target is in the correspondin§1 )- . .
target state and satisfies a one-electron Stihger equation The five SF_’he”Ca' targei sta_tes are _found frog‘n a Hartree-
in the external region. With this generalized logarithmic de-F0ck calculation of free Ni", with HamiltonianHy:

rivative, the scattering solution is fully defined, and from the ;, _1 _3pe _1lpe _3re P

form of the functionsF, we can find the matrix for use in ©='S, @p=7PL Dp=D5 =TS P %_é)
scattering calculations.

we see that all the states produced must be &/&in our
scattering calculation we include these 11 target states, Eq.

To find the 11 cubic target states we first form linear com-
IIl. INCLUDING THE CRYSTAL FIELD binati_ons of t_he sph_erical states thgt transform according to
the different irreducible representations
The NP* ion in NiO is in a cubic environment, and crys- _
tal field theory may be used to find the electron states of the h1=P4,
d® ion'? In this section we shall describe how the crystal PN
field can be included in a scattering calculation: the original to- ¢2=2 b Psm
computer codes for calculating the target states, channel m
functions, and radial functions use the spherical symmetry of
the free ion, and thege must all be transformed into functions SAgg: B3=> b3 ®Pam,
forming representations of the octahed@}, symmetry m
group. This allows us to factorize both tiNeelectron and
(N+1)-electron Hamiltonians, greatly reducing the compu- % :2 b
tational effort. 4p~ & Fam=3me

A. Target states b, = > bl Do,
m

We first consider the target states of thé Nion in the
octahedral field, considering only states associated with -
3d-3d excitations. The @2 configuration gives rise to five Tt beu=> bl®sn, (19
terms in the spherical environment of the free ion:

1 3 1 3 1 ~
Se, Pe, De, Fe, Ge, ¢7M: % bl;mCI)Zm ,
with 3Fe2as the ground state. The crystal field potential has 3Tlg:
the formt $g,= > bl Dy,
1/2 1/2 m
V(r,0,¢)= 1—2> ,8r4[Y40(0,¢)+ 12 [Yad0.9) -
¢9,u:% bgmq)3m'
1 .
Y4 a(6,0)]|+ Vi, (19 Tzat )
$10,= 2 blon®sm,

whereV),, the Madelung potential, is the electrostatic shift "

at the origin due to the neighboring iofisand this splits the

spherical terms as follow¥:'® Mogt  b11,= 2 by ®am.
m

1 1

S*—"Ayq, The summations are over the magnetic quantum number
3me 3 of the spherical states; in the case of two-dimensi&ahd

P* =Ty, three-dimensional’; andT,, u runs over the components of
lme 1 1 the representation. The tilde over the wave functions indi-
D™= Byt Tag, (16) cates cubic symmetryb’s are transformation coefficients

found from group theoretical projection operator

3 3 3 3 .

Fe— Ayt T1g+ Ty, techniques?

Linear combinations of they’s with a particular spin and

cubic symmetry give the target sta@%”. Herei numbers
The labeling of the states on the right indicates the irreducthe state(1 to 11), p is the irreducible representation to
ible representation o®,—A;, A,, E, T4, or T,—to which  which it belongs, angk is the component of the representa-
they belong. Note here that all states are evgmor(gerade¢  tion. The linear combinations and target energies are found
since we are dealing with the case of tadoles for which by diagonalizing theN-electron Hamiltonian

the product wave function is always even. Forming the direct o
product Hy=Hyt Ve, (20

1GE = A+ B+ T g+ Toyg.
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TABLE I. Ground state and excited states af-3d excitations
in NiO. The excitation energies are from the EELS experiments XPf(rns )= 2 BRI Y im(Th1)- (22
(Ref. 3 and are compared with our crystal field results. Energies

are in ev. Once agairp is the irreducible representation apdts com-
ponent;h labels the different possible linear combinations of

Symmetry EELS Theory the spherical harmonic with angular momentuthat trans-
Az 0.00 0.00 form like p. The b coefficients are the same as in E9)
*Tyq 1.10 1.05 and are independent of parity, though we have written them
g, 1.60 1.70 with more labels in Eq(22). This is not a trivial point, as
Ty 1.70 1.75 from Eg. (17) all the spherical target states in E49), in-
Ty 275 270 cluding p¢ and 3Fe, have even parity, whereas the odd
Ay 281 280 spherical h_armqnlc_s in Eq22) have odd parity. We shall _
Tig 3.00 313 return to this point ina s_ubsequent paper when we deal with
7, 355 3.28 scattering from an ion in tetragonal symmetry, where the
1Eg _ 4.06 situation is more complicated.
g . . ) .
i 3 412 The cubic channel functions are then given by
2g
A - 7.04 =5 -
(I)iplpzhl(xlr c XNGTNE 1N 1)
i_n the space of the?ﬁk’s. Combining these Iingar combin_a- = > (piu1Pams|PMp)(SMgim|SMg)
tions with theb’s in Eq. (19) we can then write the cubic pipaMgm '
target states in terms of the spherical target stdtgs _ .
X®ip  (Xg, oo 'XN)XEfM(rNH)Xu/z) m(ON+1)-
q)ip,u:% dip,ukmkq)kmka (21 (23
‘ Here (p1u1pouo|PMp) is the cubic Clebsch-Gordan coeffi-
wherek=1, ....,5. cient that couples irreducible representatippg; andp,u,

In the spherlcal Hartree-Fock part of the problem involv-1, form PM,, the irreducible representation and its compo-
ing HY, we scale the electron-electron interaction by a factohent to which the channel function belongs; likewise

of 0.7—this is a standard procedure in crystal field studles(Si Msim|SMg) is the Clebsch-Gordan coefficient that
2

and represents the effects of hybridization of thelectrons . . .
with the ligand orbitald”2 In the crystal field part of the COUPIes the spi&iMs of the target state with the spin of the

problem, we cut the potentiai. off at a radius of 2.58 a.u., Scattering electron to give the sgMs of the channel func-
the atomic sphere radius of Ni in NiO as used in convention. The superscripE’ of the cubic channel function repre-
tional band-structure calculationWe shall subsequently sents all the conserved quantum numbers,

evaluate theR-matrix at this radiug.Finally the N-electron

excitation energies are known_ from the LE-EELS T=PMp, SMg, II,

experiments,and we use these to fix the strength parameter

B in the crystal field potential15). Taking 3=0.0418 a.u. the irreducible representation, spin, and parity. The sub-
we obtain the excitation energies shown in Table I, in excelscripts on the channel function give the target staje ifs

lent agreement with experiment. The Madelung term in Eqsymmetry @,), and the symmetry,), branch f), and

(15) will be treated in Sec. IV. angular momentunl) of the scattering electron.
The cubic channel functions can be rewritten in terms of
B. Channel functions spherical channel function®,, wherek labels the target

state from which the channel function is construcled,the
angular momentum of the scattering electron, &ndre the
spherical quantum numbers

The (N+ 1)-electron scattering wave functions have one
of the following 20 symmetries:

2'A‘lg/u1 4'A‘lg/U! 2'AZQIUI 4'AZQIUI 2Eg/u1 T=LM SM I
= Lo Sy i

4 2 4 2 4
Byur “Tagur "Tagur “Togur "Toguu the total orbital angular momentum, and the same spin and

formed by combining a scattering electron with evghor  parity as inl. Substituting from Eq(21) to replace the cubic
odd (u) parity with the even target states. These symmetriesarget states by spherical target states, and from(Z2).to
also classify the channel functioms and (N+1)-electron  replace the)(pz“2 by spherical harmonics, it can be shown
basis functions) [Eq. (8)]. that
To form the channel functions we couple the cubic target
states with angular and spin functions for the scattering elec-
tron. The spin functions we write a§1/m(on+1). The an-
gular functions appropriate to cubic symmetry are con-
structed from spherical harmonics where

Il

) =T
Fplpzhl EM All;)llpzhqu)kl , (24
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T ~ ol Tr
Al o= 2 (P1aPams| PMp) H. = 2 AL
P1P2 g jiaMm ipypohlji"pipshl7j kKM, p1P,
X (L mILM ) dip , km bBP242. (25) r or
ipguqkmPhim XAi’pipéh’k’l'HkIj,k’I’j" (29
This transformation is very useful for evaluating the matrixyhere
elements of the N+ 1)-electron Hamiltonian, to which we
now turn. or —/AHT -1 0 T -1
Hk|j,kf|'jf_<A(I)k|rN+1uj|HN+1|A(Dkr|rrN+1Uj’>-

(30

These spherical matrix elements can be calculated using a
The next stage in constructing thematrix is to find the  standardR-matrix code for electron-atom and electron-ion
eigenstategpg of the (N+1)-electron HamiltoniadEq. (3) scattering'® Hence the matrix elementg8) are easily evalu-
plus the crystal fiell The Hamiltonian factorizes into the ated. As in the case of the target stat&ec. IllA), the
different irreducible representations of the cubic group. Ex-£lectron-electron interaction is scaled by 0.7.

acty as in Eq.(®) the 7' are expanded in terms of the 18 O SRR B e R ol sites:
antisymmetrized products of channel functigri&gs. (23) P '
and (24)] with the set of one-electron radial functioms

together with bound states of thdl ¢ 1)-electron system: \N/Eip o hliipl 17 = E A;fprlpzhm
P2 "2

C. Matrix elements

kk'LM L'M/

~T _ =T T’ rr’
hXas e Xnea) Aip%hlj Pip o1 XA Vekj e (3D

X(Xgs o e XN NA 1 TN 1) The spherical matrix elements

71 FF!
XN Ui (MN+1D)@ip, pohljk Vewij ket
~f N+1
! . _ . —1 N -1
+2X| (Xli "'1XN+l)b|k' (26) —<.A(Dk|rN+1Uj Z:l Vc(ri,ﬁi,¢i)‘ACI>k,|,rN+1uj/>
The states in the first summation are called continuum func- (32)

tions, because they are finite at tRematrix boundary and ¢ pe expressed in terms of the reduced matrix elements of
match on to t_he scattering electron .at the boundary. The4 using the Wigner-Eckart theorethwhich are also calcu-
bound states in the second summation come freomd‘he lated by the standarB-matrix electron scattering cod.
conflgurat!on of NT ; the spherlczal bo_und state.h%i_é sym- In the case oszg and 2ng symmetries, to which the
metry, which splits intc”Eq and *Tg in the cubic field. Itis  pound state contributes, the continuum-bound and bound-
again convenient to write these in terms of the sphericahound matrix elements also have to be determined. These
bound state can also be found in terms of the corresponding spherical
matrix elements, using Eq&5) and (27).
~T_ PMp
Xi _% bh'm Alm @7 IV. R MATRIX AND SCATTERING IN THE CRYSTAL
FIELD

mze;;n ele’é llibélc‘?zgev\il:: 'ﬁ :stlatésﬁl}j'mol?rf]fg;?r;ts magﬁ _ Having _diagonalif_(fad theN+ 1)-electron Hami!tonian to
nation of the spherical states occurs for each cubic irreducdive the eigenstateg, and the corresponding eigenvalues,
ible representation in this casand =2 for the spherical We construct th&k matrix. TheR matrix is diagonal in the
angular momentum. symmetry labeld”, and each symmetry can be treated sepa-

We now evaluate the matrix elements of the Hamiltonianrately both for evaluating thR matrix and for calculating its
first the continuum-continuum matrix elements of the spheri-contribution to the scattering.
cal part of the Hamiltoniarh-lﬂﬂ, including the Bloch op-
erator Constructing the R matrix
The R matrix is given by the sum over stat€s3); the

surface amplitudes in this summati@t¥) are given in terms
of the expansion coefficients in E(R6):

~or
iplpzhlj,i’pipéh’l rj’

S - T
=(AD, ol N 1 HR 1 AD

ip.p, Nialj). (29

pypohl =z ~F
v WLk:a<q)il;)1p2hl|¢lI;>r:a:; uj(a)aiplpzhljk- (33
Using Eq.(25) this can be related to the matrix elements

between spherical states: (The channel index on w subsumes the labeippshlk.)
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Now the sum over states is in principle over an infinite  To evaluate the scattering at the smaller radius, we propa-
number of states—only then does it give tRematrix ex-  gate theR matrix for Ni* back from 7 a.u. with the same
actly. Needless to say, in practice the summation is finite, bubne-electron effective Hamiltonia(®) used to find they;’s.
fortunately the contribution from the omitted states can beTheR matrix at the larger radius provides the one-point loga-
approximated by the Buttle correctiéhThe idea of this is rithmic derivative boundary condition for integrating the
that the omitted states, which have higher energy, are reléschralinger equation backwards at the working enefgto
tively insensitive to the exact details of the potential and tothe smaller radius. This integration is conveniently per-
many-body interactions with the target states. Their contriformed using standar®-matrix propagator techniques in
bution to theR matrix can then be replaced by that of solu- which the range 2.58 asr<7 a.u. is divided into sectors,
tions to the static one-electron equati®. Let us work with  {r;}. R matrices at successively smaller radii are determined
u;’s that satisfy a zero-derivative boundary condition at thefrom the propagation equations
R-matrix boundary, that is, Eq4) with b=0. The exacR

matrix for the one-electron problem is then given by —rR(r))= iLL— iLR[GiRR—ri+1R(ri+1)]‘1GiRL,
(37)
R(E)= i uj(a) (34) where theG' are Green’s functions corresponding to [E9).
2ai= E?— E’ evaluated on the lefiL) or right (R) ith sector boundarie’.

In the simplest model, which we use, the potential is repre-
But using Eq.(12) we can find theR matrix at energyE  sented as the sum of the spherical part of the static potential
directly, from the solution to Eq9) atE integrated outwards of the NF* ion and an equivalent exchange potential of the
tor=a: form

1 1
R(E)= (39 VE(r)~ Ep(r)l’?’, (39

a du/dr

r=a
wherep is the ground-state target densiyThese are ex-
pected to provide an accurate representation of the full inter-
action in the outer part of the-matrix internal region. In this
case the single-electron-scattering equatié®g are un-
N ) coupled and it is possible to simplify the propagation
_i 2 uj(a) scheme. Generalizations in which the equations are coupled
L, 2af=1 EJQ—E' by the full static potential are straightforward. At this point
(36)  the solutions of the Schdinger equation and their deriva-
tives are then used to find the shiftBdmatrix (12).
This is the Buttle correction, and by construction it provides  The propagate® matrix gives the logarithmic derivative
an exact correction to the restricted sum of states for the12) of the scattering wave functions at this smaller ragius
static one-electron problem. Provided tf} is big enough  and this completely defines the scattering properties. Beyond
for the static Hamiltonian to provide a reasonable approxia we take a flat potential, and the outer region can be ex-
mation toHy 4, it may be added on to the summatitB)  panded in partial waves, labeled by the channel index, with
over the eigenstates of theN(-1)-electron Hamiltonian, radial dependence given by
found usingV uj’s in Eq. (26), to correct for the missing
states. FudD)=]P.1) 8.+ N(PIK,, (39
The radiusa of the R-matrix sphere should in principle R ~
extend further than the target states and bound states in thigherej, andn, are Riccati-Bessel functions,, is the K
expansiong8) and (26), and typically for the Ni* ion in  matrix, and. and« run over the open channels. The momen-
free spac@=7 a.u. However, in the solid-state environmenttum p, is given by
an electron “feels” the full Coulomb potential of the ion
over a much shorter distance, typically the atomic sphere pf+ €=2E, (40)
radius, and beyond this radius it interacts predominantly with

If we now consider a restricted summation ovEreigen-
statesu; in Eq. (34), the contribution taR from the missing
eigenstates is given by

1 o u@? 1 u
2aj:/\/’+1E?—E_adU/dr

neighboring atoms. This is the muffin-tin or atomic sphere\'\’hereei is the energy of target stat@ssociated with chan-
approximation that is frequently made in band-structure nel: andEls the energy of the.NJr:I..)—eIectron sta'teK can
and electron-molecule scattering calculatiéh€f course be founq in terms of th& matrix using the matching equa-
there will still be some Coulomb interaction with the distant " (12

ion, that can mediate inelastic processes, but this will be A -

screened by the intervening ions. The atomic sphere radius ](pa)+ﬁ(pa)K=Ra(dJ(pr) N dn(pr) K

of Ni?* in NiO is taken to be 2.58 a.u. from a conventional dr dr | _. /)
band-structure calculatidii,and we determine the scattering (41)

at this radius. In a full multiple-scattering calculation we

would consider scattering by all the atomic spheres in the The scattering cross sections can be found from the on-
crystal, but in this paper we use a single-scattering approxishellt matrix, which describes the transition between a state
mation, taking a constant potential outside the atomic sphen@ which the scattering electron has momentpnand the
radius. target is in staté and the state’,i’
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"t p,i). 42 ) .
(P 7ltlp) N f(p',i'—p,i)=—(2m)2> >, dE”de’”
The t matrix is calculated from th& matrix defined in Eq. L
(39) by the equation X(p,,i ,lE”,L”,i />
2iK ><<E/I,Lr/'ir/|t|E///’L///,i/l/><E/l/'Lm'i///|p,i>.
t= —. (43
1-iK (50)

We shall show how thé matrix is used in Sec. V.
The Madelung potentiaV/,, in the crystal field(15) is
incorporated into the calculation as a shift in the discrete

Now

(N+1)-electron energie€, in the R-matrix summation 1 2
(13). EachEy is shifted by (E,L,i|p,i)= \/_55(E ?+Ei )YL(FS)! (51)
Ex—Ex+(N+1)Vy, (44)

and substituting into Eq(50) and evaluating the integrals,
but the target energies entering E40) are also shifted, we obtain
giving a shift in the total energy

E—-E+NV,. (45) f(p',i’—p,i)
The R matrix is then given by —(2m)? . .
S > (E,L%IUELIYL(P)Y], (D).
=3 W W e 46 PP L
RB)= 50 > ESvo—E (46) (52

A charge of=2 on each ion in the NiO structure gives a - ; -
value for V), of +0.87 a.u. As the charge on the ions is Substituting back into Eq48) gives
certainly less than the nominal charge, we somewhat arbi-

trarily reduceV,, to +0.75 a.u. There is another potential qo

shift in the problem—the inner potential, which gives a dif- 5~ (P',i"<p,i)
ferent zero of energy inside and outside the crystal. This

shifts the scattering electron kinetic energy, but we neglect (2m)* ) _

this effect. Our approximate treatment of these energy shifts = — E 2 (L",i"[tlL,i)

is justified, we believe, by the relative insensitivity of our P™

scattering results to primary electron energy. XL i[tT[L™,i ’)YL(ﬁ)Yfrr(ﬁ)YEr(ﬁ’)YL'"(ﬁ')- (53)

V. SCATTERING CROSS SECTIONS
We now convert the angular momentum representation

The scattering amplitude, for scattering an electron With||_’i> to our symmetry-adapted functions. This state is given
momentump and with the target in staie to momentunp’

o . ) s explicitly by
and target’, is given in terms of the correspondihgnatrix
byll
ILiy=®ipu, YimX(1/2)m> (54)
f(p’,i"—p,i)=—(2m)*p',i'lt|p,i), (47)
and the differential scattering cross section is then given bf‘”d using Eq?@;’gﬂngﬁfﬁ) and rearranging in terms of the
channel funcuontIJiplp"zhI S we obtain
do roar '_p,f roir 2 48
We now introduce a complete set of states in an angular ILiy=_2> > brP2"2PMp|pyuipoms)
; ; . PMpSMg papuoh !
momentum representation for the scattering electron:
~ SMgll
X(SMg|SMg zm) b " el (55

f dE, ; |E,L,i)E,L,i|=1. (49)

where the coefficients in the summations have been defined
Here |E,L,i) corresponds to a spherical wave with angularpreviously. Substituting Eq55) into Eq.(53) and rearrang-
momentumL incident on target, with total energyE given  ing, we obtain the following expresssion for the differential
by Eq.(40). Using Eq.(49), Eq. (47) becomes scattering cross section:
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9 pimepm="T L S S S S S S (g N 1D )*
dQ p2 na PSMp P'S’M;; pohl p'h Il p"h"l" pr//hwl//r i p ) h'l’ Ip1p2h| ! p’p’”hW|W 'P1 p ph1
1 1 1 1
X > > (SMS SiMSIEm)(S’M'S SiMSiEm)(SMS SI’M’S_Em')<S'M’S SI’M’S_Em’)
MsMg MSIM'SI ' '
phl psh'l’
x pgh/rl " pg/hml m , (56)

PMpP'Mp) | PMpP' MY,

p/
wherel'={PdII}. Heren,, is the degeneracy of the incoming channel and is given 18/€2)x 2. The curly brackets in this
equation represent the following expression,
pohl
psh"1” 2 E b:lfﬁ'quml p))(Z (PMP|p1M1p2M2)(P/M|;|p1M1p/2/M/2/))

ron M1

PMpP'Mp) - #2t2

Pky
EH bh/2/|//2 Y|” ”(p))
m

(57)

and depend on the direction of the incident electron bpam A. Total cross section

We now derive the total cross section from E§3). Av- We first consider the total scattering cross section to study
eraging Eq(53) with respect to the directions of the incident the variation in intensity with the energy of the incident elec-
and scattered electrqnandp’ gives tron E;,c = p?/2. Figure 1 shows results for the elastic cross
section and Fig. 2 two representative inelastic cross sections.
The elastic cross section is seen to be 2—3 orders of magni-
tude larger than the inelastic cross sections, in agreement
with LE-EELS experiments where the low-energy region of
the spectra is dominated by the zero-loss pebklike the

. . inelastic cross sections, the elastic cross section has not con-
Again we convert the statdk, i) into our symmetry-adapted yerged as a function dffor energies greater than about 0.8

77_3
E(iu_i)=4—22 (L7t L iYL, tTL i), (58)
pT L

functions, and averaging over target spins we obtain a.u. Figure 1 gives the contributions to the cross section from
different | values[the contributions in Eq(59) from [ #1’
473 are very small and we see that these show resonaiacel
— T p(2S+1) . ) o .
(i’ —i)= — — antiresonangestructure increasing in energy hsncreases.
p> Ps popshh’ Il 2Ni(25+1) The highert values hardly contribute at lower energies.
5 150.0 . . . . .
X|<(I)I p p h’|’|t|q)|plp2hl>| ’ (59)

whereT'={PdII}. Herep is the magnitude of the momen-
tum of the incident electronP, p;, and p, represent the 100.0 L
cubic symmetries of the compound state, the target, and the
scattering electron, respectively. The scattering electron has
angular momentunh, and theh indicates that differenp,’s

may be associated with each valueloN; and Ny are the

degeneracies of the target state and the compound state, and 50.0 |
the S; and S are the corresponding spins.

VI. RESULTS

0.0 -
To obtain convergence in our resufts within 1% accu- 0.0 0.4 0.8 1.2 16 20

racy), it is sufficient to use 15 one-electron functioasin Incident energy (Hartreec)

Eq. (26). We take the angular momentum of the scattered FG. 1. The total elastic cross sectiéthick solid line together
electron up td =4, sufficient for convergence in the inelas- with the individual contributions from the orbital angular momen-
tic scattering cross section throughout the energy range thaim components of the scattering electrbs,0 (thin solid line, |
we consider, though not for the elastic scattering cross sec=1 (dotted ling, | =2 (dashed ling | =3 (dot-dashed ling and|
tion. =4 (long-dashed line They axis has unitsa%.
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0.1 - ' - ' - - - - than the multiplicity-changing triplet-singlet excitations that
only occur via exchange scattering. Surprisingly, the cross
sections for the multiplicity-changing excitations stay sig-
nificant for energies much greater than the loss energies. In
electron scattering from simple atorfgich as Hg the scat-
tering cross section is largest when the primary energy is
almost equal to the loss energy and negligible when the ratio
of primary energy to loss energy is greater than about®10.
Experimental measurements confirm that exchange scatter-
ing of the 3 excitations in NiO play an important role at
these higher primary energies, and this had been attributed to
0tr 1 hybridization of the localized states with bandlike stétes.
However, our model does not include these hybridization
effects and yet we still observe the contribution of exchange

02| b

scattering.
J Among the triplet-singlet transitions the weakest are those
0.0 . . . N P Y . . . from the 3A,, ground state to the staté®\;;, 'E4, and
00 05 10 15 20 00 05 10 15 20 IT,4, and the weakest of the triplet-triplet transitions is to
Incident energy (Hartrees) Incident energy (Hartrees)

the 3T, state. The’A,, ground state has the electronic con-
FIG. 2. The averaged total cross sections for the loss processéigjuration (tzg)ﬁ(eg)2 (i.e., 2 holes ineg),3 thus we can re-
2Agq—'T1q (3.28 eV, and ®A,,—3Ty, (3.13 V). They axis has  arrange the hole configuration and calculate the states pro-
units a;. duced from each rearrangement using the symmetry of the
system and group theoretical direct product techniques. From
All the inelastic cross sections show very sharp resonancthese it is found that these weakest transitions in both the
structure at energies below 0.8 a.u., whereas above this valueplet-singlet and triplet-triplet cases occur when there are
the spectra are fairly featureless and very similar. These resowo holes int,g, i.e., the (2(_3,)4(eg)4 electron configuration.
nances occur due to coupling between the different orbitalhis is reasonable as two electrons need to be excited in
angular momentum components of the scattering electroorder to produce the latter configuration.
and the Ni 3 target, as we can see from Fig. 3, which shows
the angular momentum decomposition. Such resonances also
appear in the free ion, and the couplings are to both the
initial and final target states. We note in Fig. 3 that the in- We now consider the differential cross section, with the
elastic results are indeed converged lfer4. incoming and outgoing electron beams in one scattering
In general, the triplet-triplet excitations that involve both plane in order to study spatial symmetry. In all the following
direct and exchange scattering mechanisms are more intenstidies the incident and scattering beams are in the plane
containing the surface norm&01) and the(100 axis. 6;
0.1 — T — T and #; are measured with respect to the surface normal, and
¢ is the azimuthal angle measured with respect to(110%)
axis.
Figure 4 shows a polar plot for the spin-averaged differ-
ential cross-section of the elastic peakEgf, =20 eV. This
is dominated by forward scattering, as we might expect. In a

B. Differential cross section: Angle dependence

] our single-scattering treatment is better justified.

The polar plots given in Figs. 5—8 show the spin-averaged
differential cross sections for several inelastic transitions, for
an incident energy of 20 eV. As we can see, the transitions to
the stateslAlg and 3T2g (Figs. 5 and 6, respectivelyshow
0 g 0.0 L el = zero intensity for forward and backward scattering. We see

00 04 08 12 16 2 00 04 08 12 16 20 from the shape of the electron scattering that the excitations
Incident energy (Hartrees) Incident energy (Hartrees) in Figs. 5 and 6 are dominated biywave scattering, whereas

FIG. 3. The contributions from the orbital angular momentum N Figs. 7 and 8 there is a small contribution frgmvaves in
components of the scattering electron to the total cross sections f@ddition to the dominand-wave scattering. Figure 9 shows
the loss processedA,,— 1T, (3.28 eV and °A,,—°T,, (3.13  the differential cross sections for excitations to the different
eV). The overall total cross sections are omitted to avoid confusionl 14 States, which we see have a similar angle dependence.
with the various lines, but are given in Fig. 2. The lines are definedThis emphasizes the importance of the symmetry of the tar-
as in Fig. 1, and thg axis again has unita3. get state in determining the angular distribution of scattering.

. o2 multiple-scattering treatment of inelastic scattering, an
N inelastic-scattering event is sandwiched between multiple-
:' elastic-scattering events: the dominance of forward elastic
0 scattering means that the directions of the incoming and in-
', elastically scattered electron will tend to be preserved, and
0 01 f
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FIG. 4. Polar plot of the spin-averaged differential cross section FiG. 6. Polar plot of the spin-averaged differential cross-
. g . 2 . . .
for the elastic transition’A,;—3A,;. The axes have unitsg. sections of transition to final staféf,, (1.05 e\). The axes have
Einc=20 eVv. unitsa3. Ei,.=20 eV.

When the incoming and outgoing electron beams lie parA,y changes sign, buf\,4 is invariant—hence the matrix
allel to a particular symmetry axis or in a particular mirror element, which must be invariant under the transformation,
plane, there are often geometries for which the cross sectios zero. This is consistent with a previous Lettér.
must be zero by the point group symmetry. In this way we A similar argument holds for the transition to tfg,
can explain the results shown in Figs. 5 and 6, with zercstates, where the matrix element under consideration is
intensity for forward and backward scattering in the transi<p’ Tog| T|pA,g). However, T,y has three components that
tions toA;4 and T,4 multiplet states. This can be seen from transform ascy, yz, andzx, so a more detailed analysis is
the transformation properties of the initial and final necessary by investigating each component individually.
states;" and the corresponding matrix elements. In theagain considering the twofold rotation about thed() sym-
case of the transitions t@lg we consider the matrix element metry axiS, thezx Component disp|ays no Change in Sign'
(P’ Asg| TIPAg), wherep andp’ label the incident and out-  which along with the sign change of the, state means that
going electron beams. Whenandp’ are both parallel to the  the matrix element must be zero. However, the two remain-
(101) axis, we consider the twofold rotation about this axis.ing components of th&, state transform into each other so

0.15 0.2
0.1 - 0.1 =
0.05 i
: 0
0
, o1 | 2
0.05 | 1
0.2 .
0.1 g
0.3 4
0.15 g
02 1 | --------- | 1 1 04 | e | 1 1
0.15 0.1 0.05 0 0.05 0.1 0.15 0.2 0.2 0.1 0 0.1 0.2 0.3 0.4

FIG. 5. Polar plot of the spin-averaged differential cross- FIG. 7. Polar plot of the spin-averaged differential cross sec-
sections of transition to final staﬂe‘\lg (2.80 eV). The axes have tions of transition to final statéEg (1.70 e\). The axes have units
unitsa3. Ei.=20 eV. a2. Einc=20 eV.
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03 [ (a) {03+ (b) .

0.2

0.1 0.1

0.0 L— = . 0.0 : : ~
30.0 80.0 130.0 180.0 30.0 80.0 130.0 180
Scattering angle (degr) Scattering angle (degr)
o oo oz oz o8 o8 y FIG. 10. The spin-fligsolid line) and non-spin-flipdot-dashed

line) differential cross sections for two transitionga) 3A2g
FIG. 8. Polar plot of the spin-averaged differential cross sec-—>1T19 (3.28 eV energy logsand (b) 3Azg—>3Tlg (1.75 eV energy
tions of transition to final statéT1g (3.13 e\). The axes have units los9. The scattering angle is related to the polar angfleby 6;
aZ. Ejnc=20 eV. =135°—a. They axis has units3. E;,.=20 eV.

nothing can be inferred for these. In order to examine thes

we apply a reflection in the-x mirror plane. Now theA,, rules relating the intensities of varying spin flip, which fol-

state is invariant under such a reflection, Bytandyz dis- o, 4om the properties of the Clebsch-Gordan coefficients
play a change in sign. So the corresponding matrix elements

must also be zero. So we have shown that an excitation to tH&Ms|SiMs zm) in Eq. (56). Only certain combinations of
T,y state shows zero intensity for backward and forwardClebsch-Gordan coefficients are nonvanishing. Considering
scattering by a combination of rotation and mirror-plane arthe multiplicity-changing transitions, we find that for the
guments. non-spin-flip transitions the only nonvanishing combination
There seems to be no symmetry reason for the zeros & (11110%1)2(11|00%%)2, which reduces tc. Similarly

+90° in the transition to"A, in Fig. 5. These are presum- he ‘only nonvanishing combination for the spin-flip transi-
ably a consequence of the partial waves of the scatterlngon is

Gariable to the description of scattering. There are interesting

1_111-113y2(L1_1|9pL—1)2 i 2
electron that couple to this transition. Is (3|1 ,122, (2 2|00? 2,) ’ Wh'_Ch equalss. :
Therefore the spin-flip to non-spin-flip ratio is 2, as found in
C. Differential cross section: Spin dependence a previous Lettef! This combination only holds for the

_triplet-singlet transitions; the triplet-triplet transitions have a

Spin-resolved experiments, in which the spins of the inCi-p5re complicated spin-flip to non-spin-flip ratio that needs
dent and scattered electrons are determined, add anothporbe calculated explicitly.

. . - Figure 10 shows the intensity of both the spin-flip and
non-spin-flip contributions for the two transitions indicated.

12 -\\ 1 The incoming scattering angles are fixed with=45° and

\ ¢;=0°. The outgoing scattering angleis varied, with fixed

A\ ¢:=180°. The incident energy of the scattering electron is
R 20 eV. Figure 108) shows a multiplicity-changing transition,

and the spin-flip to non-spin-flip ratio is 2 in agreement with
the analysis of the Clebsch-Gordan coefficients. In the
triplet-triplet transition shown in Fig. 1B), the spin-flip to
non-spin-flip ratio changes with scattering angle, and the
non-spin-flip contribution is stronger than the spin-flip con-
tribution.

0.4

VII. COMPARISON WITH EXPERIMENT

0.0

80.0 130.0 180.0
Scattering angle (degr)

300 For a comparison with experimental results we now con-
sider the differential scattering cross sections, and we first
FIG. 9. The spin-averaged differential cross sections for excitadverage over spins of the target and scattering electron for
tions to final states witfT;, symmetry. The loss energies are 3.28 both incident and outgoing cases, corresponding to spin-
eV (1T, solid ling), 3.13 eV T, dot-dashed lineand 1.75 eV integrated LE-EELS experiments. Figure 11 shows results
(3T1g, dotted ling. They axis has unit@a3. Ej,. =20 eV. calculated from our model for two incident energies and two
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FIG. 11. The spin-averaged differential cross sections of two FIG. 12. Experimental spectra from Gorsdeluand Merz. The
scattering geometries and two incident electron energies. The uppérax's is in arbitrary units; otherwise the definitions are as in Fig.
plot hasE;,.=20 eV and the lower hag;,.=50 eV. The solid 11.

line represents specular scattering geomety=(0;=45°) and the . . . .
dashed line off-specular scattering, €45°,6;=10°). Angles are closer together in our calculations than in experiments,

3
measured with respect to the surface normal ang #ds has units where theT,y peak occurs at 3.0eVand tHé—lg peak at
al 3.55 eV. When the discrete losses are broadened by the

Lorentzian, the peaks that are close together produce a very
scattering geometries, which are indicated. In each ¢ase large combined peak, whereas their greater separation in ex-
=0° and ¢;=180°, whereg is the azimuthal angle mea- periment leads to a smaller peak that is submerged in the
sured with respect to thel00) axis. The discrete losses are charge transfer excitations across the band gap.
broadened by a Lorentzian of 250 meV width for comparison We now fix the incoming electron spiispin up and se-
with experiment. These plots are compared with experimenlect the outgoing electron spin, corresponding to spin-
tal data from Gorschiker and MerZ given in Fig. 12. In our  polarized experiments. Figure 13 shows our spin-flip spectra
model we ignore the dominant elastic peak, and we do nofor varying scattering angles in the range 73% a<123°,
consider the 0.6 eV loss peak as it is due to a surface excwith an interval of 3.125°(The scattering angle is related to
tation. Charge transfer excitations across the band gap:; by 6;=135°-«.) The incident energy is 33 eV and the
(above about 4 e\are also excluded in our atomic model. incident angle fixed at 45°. These results, which are Lorent-

From the two figures it is evident that the cross sectiongian broadened by 175 meV, can be compared with the ex-
are heavily dependent on the polar angles of the incident angerimental spin-flip data from Mier et al® given in Fig. 14.
outgoing electron beams, as we discussed in detail in Seé\gain we ignore the elastic peak and do not consider the 0.6
VIB. The relative peak intensities show good agreementV surface excitation. The loss peak at 3.2 eV appears to be
with the experimental data. The 1.05 eV loss peak is due ttoo narrow due to the proximity of the two contributing
a single transition tc?ng The big peak at 1.7 eV is due to states as explained earlier. Our model shows reasonable
two overlapping transitionst Ey (1.70 eV and 3T1g (1.75 agreement with experiment. The peak at 3.2 eV, albeit too
eV). Similarly, the 3.2 eV peak is due to two overlapping narrow, dramatically drops off at large, apparently in
transitions,3Tlg (3.13 eV} and 1Tlg (3.28 e\). This peak agreement with experimefithe role of charge transfer exci-
appears to be too large but this is due to the loss peaks beirtgtions are unclear Most significantly, at 2.7 eV we see a
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Energy Loss (eV)

Energy Loss (eV)

FIG. 13. Spin-flip spectra for a range of scattering angles 73°
<a@=<123° in intervals of 3.125° with 73° being the lowest line.
The remaining polar angles were fixed with=45°, ¢;=0°, and
¢+=180°, Ej,. =33 eV.

FIG. 14. Spin-flip experimental data where the scattering angle
is varied (73<a=<123°).

_ (P Tinl P, 1) =(P" (1 +TGo),i"[t|(1+GoT)p,i).
small shoulder at 73° that slowly increases and becomes (62
quite dominant at 123°. This peak is of particular interest as
it is a combination of two triplet-singlet excitations to the . ) N )
states®A, 4 (2.80 eV} and 1Ty (2.70 eV, for which spin-flip We can consider this as a transition on the target ion between

dominates(Sec. VIQ. There is remarkable agreement be- w;=(1+GOT)|p> and ¢, =(1+ GiTh|p"). w; is the

tween our model and experiment for this peak. LEED wave function arising from scattering eip(r) off
the surface elastically/fg, is the time-reversed LEED wave
VIll. MULTIPLE SCATTERING function corresponding to exip( -r): we let exp(ip-r)

Although we can make contact with experiment using theSCatter off_ t_he surface, and then take _the complex cor_ljugate.
single-scattering approximation, a full theory of LE-EELS The transition between these states is caused Bye in-
must treat the multiple-elastic-scattering events that occuglastic ~scattering from different Ri ions adds
before and after the inelastic scattering. To do this we takéncoherently—we average the intensity from different depths
results from the theoR?° of diffuse LEED used to treat the of ions.
effect of an additional scatterer, with the further simplifica- In this multiple-scattering formalism it is also possible to
tion that the cross section for inelastic scattering is so lownclude the damping of the propagating electrons due to
compared with elastic that we need only consider a singlénean-free-path effects in the electron gas. These are due to
inelastic scattering, with no multiple events. the excitation of electron-hole pairs and plasmons, and the

If t is thet matrix for inelastic scattering by a particular effect on the free-electron wave propagating between our
Ni%* ion in isolation, andT is for elastic scattering by the localized scattering events can be described by a complex
whole semi-infinite crystalincluding this ion, the full in-  optical potential “felt” by G,. This is exactly the same as in
elastict matrix for the ion to undergo the transition in the conventional LEED or photoemission thedR?! This damp-

crystal environment is given by ing is necessary to account for the surface sensitivity of LE-
EELS. The inclusion of multiple scattering in this way is our
T, =t+tGyT+TGot+ TGt G,T (60) next aim in describing LE-EELS from NiO and other
in .

transition-metal oxides and will be the subject of future
Here G, is the free-electron propagator. This can be simpli-work.
fied to

Tin=(1+TGy)t(1+GqT). (61) ACKNOWLEDGMENTS
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