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R-matrix approach to low-energy electron energy-loss spectroscopy from NiO
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Low-energy electron energy-loss spectra from NiO have been calculated usingR-matrix methods to describe
the excitation of 3d-3d transitions on the Ni ions. The effect of the crystal field is fully included, though only
single scattering is considered at this stage. The total scattering cross sections demonstrate the importance of
exchange-scattering processes in addition to direct scattering, even at higher energies of the scattering electron.
The differential cross sections allow the investigation of angular, spin, and symmetry dependence for com-
parison with experiment. For certain transitions the angular dependence shows zeros associated with the point
group symmetry of the Ni ion, and these are discussed. The ratio of spin-flip to non-spin-flip contributions is
calculated exactly for multiplicity-changing transitions, and is shown to be independent of scattering geometry
and energy of the incident electron.
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I. INTRODUCTION

Electron energy-loss~EELS! experiments provide an im
portant probe of the electronic structure of solids, yieldi
information on the momentum and energy transfer associ
with electronic excitations.1 At high primary energies this
can be described in the Born approximation by a dielec
loss function.2 Recently, there has been much interest in lo
energy EELS~LE-EELS! in which electrons with a primary
energy of typically 20–100 eV are scattered in low-ene
electron diffraction ~LEED! geometry–non-dipole-active
transitions can be excited by impact scattering, and elec
exchange can give rise to multiplicity-changing transition3

LE-EELS has been used to study the localized 3d-3d intra-
atomic excitations in transition-metal compounds, parti
larly interesting because they may play a role in hig
temperature superconductivity. The loss energies meas
in this way are well described by a parametrized crystal fi
model. However, the work described here and in a previ
Letter4 is the first attempt to explain the actual loss spec
and their dependence on primary energy, angle of scatte
and spin polarization. We use theR-matrix method from
atomic physics,5 generalizing it to the solid-state environ
ment, and apply it to LE-EELS from NiO.3,6

TheR-matrix method is a multichannel version of scatte
ing theory, taking into account inelastic processes co
sponding to excitations within the scattering center, which
our case is the Ni21 ion. The central idea inR-matrix theory
is that space is separated into two regions:5 the inner region
where the scattering electron fully interacts with the targ
and an outer region where the now distinguishable elec
moves in an effective field produced by the target system
its surroundings. Our modification of the method is to
PRB 620163-1829/2000/62~20!/13508~14!/$15.00
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clude the crystal field in which the Ni21 ion is situated—this
has a strong effect on the target and its interaction with
scattering electron. At this stage we only calculate single-
scattering, though in the final section of this paper we sh
outline the inclusion of multiple scattering, which will be th
subject of subsequent work.

After describing theR-matrix method in Sec. II, in Secs
III–V we shall explain how it is modified to include th
effect of the octahedral crystal field appropriate to Ni21 in
NiO. A group theoretical analysis is needed, not only
identifying the different states, but also to factorize t
Hamiltonian and theR matrix. A major part of the work is
consequently the transformation between the spherical gr
and the octahedralOh group. Another important modification
compared with atomic physics applications of theR-matrix
method is that we use a much smaller sphere radius sep
ing the inner and outer regions, an atomic sphere radiu
2.58 a.u. compared with typically 7 a.u. in scattering from
free atom. In Sec. VI results will be given for total and d
ferential cross sections as a function of primary electron
ergy, together with spin dependence of the scattering. T
provides information on the relative importance of direct a
exchange scattering. The relative strength of the various t
sitions will be explained, and a symmetry analysis will
used to discuss zeros in the differential cross sections in
tain geometries. We shall compare our results with sev
experiments3,6 in Sec. VII, and on the whole agreement w
turn out to be satisfactory. Finally in Sec. VIII we shall di
cuss the extension to multiple-scattering theory.

II. R-MATRIX THEORY

R-matrix theory is widely used to solve electron
scattering problems in atomic and molecular physics.7,8 We
13 508 ©2000 The American Physical Society
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PRB 62 13 509R-MATRIX APPROACH TO LOW-ENERGY ELECTRON . . .
shall now outline the theory as applied to electron scatte
by a single-scattering atom or ion withN active electrons.

The „N¿1…-electron Schrödinger equation that we wish to
solve is

HN11C5EC. ~1!

The basic idea ofR-matrix theory is the separation of th
space surrounding the atom into two regions: an internal
gion (r<a) where the scattering electron interacts stron
with the target and in which we describe the many-elect
system by a (N11)-electron wave function, and an extern
region (r .a) where the scattered electron moves in an
fective one-electron field produced by the target and its s
roundings. In the internal region we build up the solution
Eq. ~1! from (N11)-electron basis functions, but before w
can do this we make the Hamiltonian in this bounded reg
explicitly Hermitian by adding on the Bloch operator9,10 de-
fined over theR-matrix sphere

LN115 (
i 51

N11
1

2
d~r i2a!S ]

]r i
2

b21

r i
D . ~2!

Herer i is the radial coordinate of thei th electron, andb is a
constant that is conventionally introduced to provide so
variational flexibility in the boundary condition. The (N
11)-electron basis functions used to expandC in the inter-
nal region satisfy the matrix Schro¨dinger equation

^ckuHN111LN11uc j& int 5Ekdk j , ~3!

where the integral in the matrix element is over the inter
region only. The solutions to Eq.~3! satisfy the Schro¨dinger
equation~1! within the internal region, with the following
homogeneous boundary condition on the boundary:

1

ck

]~rck!

]r i
5b. ~4!

We shall takeb50 in this work. To find the full solution of
the Schro¨dinger equationC, matched onto the outer region
in terms of these basis functions we rewrite Eq.~1! as

~HN111LN112E!C5LN11C, ~5!

and then from the Green function corresponding to Eq.~3!
we obtain

uC&5(
k

uck&
1

Ek2E
^ckuLN11uC&. ~6!

The (N11)-electron basis functionsck are built up from
theN-electron eigenstates of the target HamiltonianHN , cor-
responding to the atom without the scattering electron:

HNF i5e iF i . ~7!

The target states are coupled to symmetry-adapted ang
and spin functions of the scattering electron to form chan
functions F̄i(x1 , . . . ,xN ; r̂N11 ,sN11), where x1 , . . . ,xN
are the spatial and spin coordinates of the target electr
and r̂N11 andsN11 are the angular and spin components
the scattering electron, respectively. The particular tar
g
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state, sayi, and scattering angular momentum, sayl, are
subsumed in the Greek indexi, though sometimes we sha
give them explicitly. The channel functions are eigenstate
the total spin angular momentum; they also transform
cording to some representation of the spatial symme
group of the system—in the case of the free atom they
eigenstates of the total orbital angular momentum. The b
functions are then expanded in the form

ck~x1 , . . . ,xN11!5A(
i j

F̄i~x1 , . . . ,xN ; r̂N11 ,sN11!

3r N11
21 uj~r N11!ai jk

1(
i

x i~x1 , . . . ,xN11!bik , ~8!

where A is the antisymmetrization operator. The on
electron radial functionsuj represent the motion of the sca
tered electron. They form a complete radial basis and
eigenstates of a static one-electron approximation toHN11,

2
1

2

d2uj

dr2
1

l ~ l 11!

2r 2
uj~r !1U0~r !uj~r !5Ej

0uj~r !, ~9!

with the following R-matrix boundary condition:

a

uj

duj

dr
5b. ~10!

Finally, thex i ’s are bound states of the (N11)-electron sys-
tem that vanish by theR-matrix boundary and are included t
ensure completeness. From the basis functionsck and their
energiesEk we can then construct the Green function in E
~6!.

The full (N11)-electron wave functionC is now pro-
jected onto the channel functions to give one-electron ra
functionsF i(r ):

F i~r !5r ^F̄iuC&8. ~11!

The prime indicates that the integration is carried out over
electron space and spin coordinates, except the radial c
dinate of the scattered electron. Substituting into Eq.~6! and
putting r on theR-matrix boundary, we then obtain a gene
alized logarithmic derivative equation for theF i’s,

F i~a!5a(
k

Rik~E!
dFk

dr U
r 5a

, ~12!

where we have introduced theR-matrix defined on the
boundary

Rik~E!5
1

2a (
k

wikwkk

Ek2E
, ~13!

with

wik5a^F̄iuck& r 5a8 . ~14!
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13 510 PRB 62P. JONESet al.
Equations~12! and ~13! give the required boundary cond
tions on theF i functions so that they match onto the sol
tions of the (N11)-electron problem within the internal re
gion. F i is just the one-electron wave function of th
scattered electron when the target is in the correspon
target state and satisfies a one-electron Schro¨dinger equation
in the external region. With this generalized logarithmic d
rivative, the scattering solution is fully defined, and from t
form of the functionsF i we can find thet matrix for use in
scattering calculations.11

III. INCLUDING THE CRYSTAL FIELD

The Ni21 ion in NiO is in a cubic environment, and crys
tal field theory may be used to find the electron states of
d8 ion.12 In this section we shall describe how the crys
field can be included in a scattering calculation: the origi
computer codes for calculating the target states, cha
functions, and radial functions use the spherical symmetr
the free ion, and these must all be transformed into functi
forming representations of the octahedralOh symmetry
group. This allows us to factorize both theN-electron and
(N11)-electron Hamiltonians, greatly reducing the comp
tational effort.

A. Target states

We first consider the target states of the Ni21 ion in the
octahedral field, considering only states associated w
3d-3d excitations. The 3d8 configuration gives rise to five
terms in the spherical environment of the free ion:

1Se, 3Pe, 1De, 3Fe, 1Ge,

with 3Fe as the ground state. The crystal field potential h
the form12

Vc~r ,u,f!5S 7

12D
1/2

br 4FY40~u,f!1S 5

14D
1/2

@Y44~u,f!

1Y424~u,f!#G1VM , ~15!

whereVM , the Madelung potential, is the electrostatic sh
at the origin due to the neighboring ions,13 and this splits the
spherical terms as follows:14,15

1Se→1A1g ,

3Pe→3T1g ,

1De→1Eg11T2g , ~16!

3Fe→3A2g13T1g13T2g ,

1Ge→1A1g11Eg11T1g11T2g .

The labeling of the states on the right indicates the irred
ible representation ofOh—A1 , A2 , E, T1, or T2—to which
they belong. Note here that all states are even (g or gerade!
since we are dealing with the case of twod holes for which
the product wave function is always even. Forming the dir
product
g

-

e
l
l
el

of
s

-

th

s

t

-

t

de
^ de→Se

% Pe
% De

% Fe
% Ge, ~17!

we see that all the states produced must be even.16,12 In our
scattering calculation we include these 11 target states,
~16!.

The five spherical target states are found from a Hartr
Fock calculation of free Ni21, with HamiltonianHN

0 :

F15
1Se, F253Pe, F351De, F453Fe, F551Ge.

~18!

To find the 11 cubic target states we first form linear co
binations of the spherical states that transform according
the different irreducible representations

1A1g : H f̃15F1 ,

f̃25(
m

b2mF5m ,

3A2g : f̃35(
m

b3mF4m ,

1Eg : H f̃4m5(
m

b4m
m F3m ,

f̃5m5(
m

b5m
m F5m ,

1T1g : f̃6m5(
m

b6m
m F5m , ~19!

3T1g : H f̃7m5(
m

b7m
m F2m ,

f̃8m5(
m

b8m
m F4m ,

1T2g : H f̃9m5(
m

b9m
m F3m ,

f̃10m5(
m

b10m
m F5m ,

3T2g : f̃11m5(
m

b11m
m F4m .

The summations are over the magnetic quantum numbem
of the spherical states; in the case of two-dimensionalE and
three-dimensionalT1 andT2 , m runs over the components o
the representation. The tilde over the wave functions in
cates cubic symmetry;b’s are transformation coefficient
found from group theoretical projection operat
techniques.14

Linear combinations of thef̃k’s with a particular spin and
cubic symmetry give the target statesF̃ ipm . Herei numbers
the state~1 to 11!, p is the irreducible representation t
which it belongs, andm is the component of the represent
tion. The linear combinations and target energies are fo
by diagonalizing theN-electron Hamiltonian

HN5HN
0 1Vc , ~20!
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PRB 62 13 511R-MATRIX APPROACH TO LOW-ENERGY ELECTRON . . .
in the space of thef̃k’s. Combining these linear combina
tions with theb’s in Eq. ~19! we can then write the cubic
target states in terms of the spherical target statesFkmk

,

F̃ ipm5(
kmk

dipmkmk
Fkmk

, ~21!

wherek51, . . . ,5.
In the spherical Hartree-Fock part of the problem invo

ing HN
0 , we scale the electron-electron interaction by a fac

of 0.7—this is a standard procedure in crystal field stud
and represents the effects of hybridization of thed electrons
with the ligand orbitals.17,18 In the crystal field part of the
problem, we cut the potentialVc off at a radius of 2.58 a.u.
the atomic sphere radius of Ni in NiO as used in conv
tional band-structure calculations.~We shall subsequently
evaluate theR-matrix at this radius.! Finally the N-electron
excitation energies are known from the LE-EEL
experiments,3 and we use these to fix the strength parame
b in the crystal field potential~15!. Taking b50.0418 a.u.
we obtain the excitation energies shown in Table I, in exc
lent agreement with experiment. The Madelung term in
~15! will be treated in Sec. IV.

B. Channel functions

The (N11)-electron scattering wave functions have o
of the following 20 symmetries:

2A1g/u , 4A1g/u , 2A2g/u , 4A2g/u , 2Eg/u ,

4Eg/u , 2T1g/u , 4T1g/u , 2T2g/u , 4T2g/u ,

formed by combining a scattering electron with even~g! or
odd ~u! parity with the even target states. These symmet
also classify the channel functionsF! and (N11)-electron
basis functionsc̃ @Eq. ~8!#.

To form the channel functions we couple the cubic tar
states with angular and spin functions for the scattering e
tron. The spin functions we write asx (1/2)m(sN11). The an-
gular functions appropriate to cubic symmetry are co
structed from spherical harmonics

TABLE I. Ground state and excited states of 3d-3d excitations
in NiO. The excitation energies are from the EELS experime
~Ref. 3! and are compared with our crystal field results. Energ
are in eV.

Symmetry EELS Theory

3A2g 0.00 0.00
3T2g 1.10 1.05
1Eg 1.60 1.70
3T1g 1.70 1.75
1T2g 2.75 2.70
1A1g 2.81 2.80
3T1g 3.00 3.13
1T1g 3.55 3.28
1Eg – 4.06
1T2g – 4.12
1A1g – 7.04
-
r
s

-

r

l-
.

s

t
c-

-

Xhl
pm~ r̂N11!5(

m
bhlm

pm Ylm~ r̂N11!. ~22!

Once againp is the irreducible representation andm its com-
ponent;h labels the different possible linear combinations
the spherical harmonic with angular momentuml that trans-
form like p. The b coefficients are the same as in Eq.~19!
and are independent of parity, though we have written th
with more labels in Eq.~22!. This is not a trivial point, as
from Eq. ~17! all the spherical target states in Eq.~19!, in-
cluding 3Pe and 3Fe, have even parity, whereas the oddl
spherical harmonics in Eq.~22! have odd parity. We shal
return to this point in a subsequent paper when we deal w
scattering from an ion in tetragonal symmetry, where
situation is more complicated.

The cubic channel functions are then given by

F! ip1p2hl
G̃ ~x1 , . . . ,xN ; r̂N11 ,sN11!

5 (
m1m2MSi

m
~p1m1p2m2uPMP!~SiMSi

1
2 muSMS!

3F̃ ip1m1
~x1 , . . . ,xN!Xhl

p2m2~ r̂N11!x~1/2! m~sN11!.

~23!

Here (p1m1p2m2uPMP) is the cubic Clebsch-Gordan coeffi
cient that couples irreducible representationsp1m1 andp2m2
to form PMP , the irreducible representation and its comp
nent to which the channel function belongs; likewi

(SiMSi

1
2 muSMS) is the Clebsch-Gordan coefficient th

couples the spinSiMSi
of the target state with the spin of th

scattering electron to give the spinSMS of the channel func-
tion. The superscriptG̃ of the cubic channel function repre
sents all the conserved quantum numbers,

G̃[PMP , SMS , P,

the irreducible representation, spin, and parity. The s
scripts on the channel function give the target state (i ), its
symmetry (p1), and the symmetry (p2), branch (h), and
angular momentum~l! of the scattering electron.

The cubic channel functions can be rewritten in terms
spherical channel functionsF̄kl

G , wherek labels the target
state from which the channel function is constructed,l is the
angular momentum of the scattering electron, andG are the
spherical quantum numbers

G[LML , SMS , P,

the total orbital angular momentum, and the same spin
parity as inG̃. Substituting from Eq.~21! to replace the cubic
target states by spherical target states, and from Eq.~22! to
replace theXhl

p2m2 by spherical harmonics, it can be show
that

F! ip1p2hl
G̃ 5 (

kLML

Aip1p2hkl
G̃G F̄kl

G , ~24!

where

s
s
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Aip1p2hkl
G̃G 5 (

m1m2mkm
~p1m1p2m2uPMP!

3~ l kmklmuLML!dip1m1kmk
bhlm

p2m2 . ~25!

This transformation is very useful for evaluating the mat
elements of the (N11)-electron Hamiltonian, to which we
now turn.

C. Matrix elements

The next stage in constructing theR matrix is to find the

eigenstatesc̃k
G̃ of the (N11)-electron Hamiltonian@Eq. ~3!

plus the crystal field#. The Hamiltonian factorizes into th
different irreducible representations of the cubic group. E

actly as in Eq.~8!, the c̃k
G̃’s are expanded in terms of th

antisymmetrized products of channel functions@Eqs. ~23!
and ~24!# with the set of one-electron radial functionsuj
together with bound states of the (N11)-electron system:

c̃k
G̃~x1 , . . . ,xN11!5A (

ip1p2hl j
F! ip1p2hl

G̃

3~x1 , . . . ,xN ; r̂N11 ,sN11!

3rN11
21 uj~rN11!aip1p2hl jk

1(
i

x̃ i
G̃~x1 , . . . ,xN11!bik . ~26!

The states in the first summation are called continuum fu
tions, because they are finite at theR-matrix boundary and
match on to the scattering electron at the boundary.
bound states in the second summation come from thed9

configuration of Ni1; the spherical bound state has2De sym-
metry, which splits into2Eg and 2T2g in the cubic field. It is
again convenient to write these in terms of the spher
bound state

x̃ i
G̃5(

m
bhlm

PMPx lm , ~27!

where i 51,2 labels the cubic states. Theb coefficients are
the same as in Eq.~22!, with h51 ~only one linear combi-
nation of the spherical states occurs for each cubic irred
ible representation in this case! and l 52 for the spherical
angular momentum.

We now evaluate the matrix elements of the Hamiltoni
first the continuum-continuum matrix elements of the sph
cal part of the HamiltonianHN11

0 , including the Bloch op-
erator

H̃ ip1p2hl j ,i 8p
18p

28h8 l 8 j 8
0G̃

5^AF! ip1p2hl
G̃ r N11

21 uj uHN11
0 uAF! i 8p

18p
28h8 l 8

G̃
r N11

21 uj 8&. ~28!

Using Eq. ~25! this can be related to the matrix elemen
between spherical states:
-

c-

e

l

c-

,
i-

H̃ ip1p2hl j ,i 8p
18p

28h8 l 8 j 8
0G̃

5 (
kk8LML

Aip1p2hkl
G̃G

3Ai 8p
18p

28h8k8 l 8
G̃G

Hkl j ,k8 l 8 j 8
0G , ~29!

where

Hkl j ,k8 l 8 j 8
0G

5^AF̄kl
G r N11

21 uj uHN11
0 uAF̄k8 l 8

G r N11
21 uj 8&.

~30!

These spherical matrix elements can be calculated usin
standardR-matrix code for electron-atom and electron-io
scattering.19 Hence the matrix elements~28! are easily evalu-
ated. As in the case of the target states~Sec. III A!, the
electron-electron interaction is scaled by 0.7.

The matrix elements of the crystal field~15! are also
transformed to matrix elements between spherical states

Ṽcip1p2hl j ,i 8p
18p

28h8 l 8 j 8
G̃

5 (
kk8LMLL8ML8

Aip1p2hkl
G̃G

3Ai 8p
18p

28h8k8 l 8
G̃G8 Vckl j ,k8 l 8 j 8

GG8 . ~31!

The spherical matrix elements

Vckl j ,k8 l 8 j 8
GG8

5K AF̄kl
G r N11

21 ujU (
i 51

N11

Vc~r i ,u i ,f i !UAF̄k8 l 8
G8 r N11

21 uj 8L
~32!

can be expressed in terms of the reduced matrix elemen
r 4 using the Wigner-Eckart theorem,14 which are also calcu-
lated by the standardR-matrix electron scattering code.19

In the case of2Eg and 2T2g symmetries, to which the
bound state contributes, the continuum-bound and bou
bound matrix elements also have to be determined. Th
can also be found in terms of the corresponding spher
matrix elements, using Eqs.~25! and ~27!.

IV. R MATRIX AND SCATTERING IN THE CRYSTAL
FIELD

Having diagonalized the (N11)-electron Hamiltonian to

give the eigenstatesc̃k
G̃ and the corresponding eigenvalue

we construct theR matrix. TheR matrix is diagonal in the
symmetry labelsG̃, and each symmetry can be treated se
rately both for evaluating theR matrix and for calculating its
contribution to the scattering.

Constructing the R matrix

The R matrix is given by the sum over states~13!; the
surface amplitudes in this summation~14! are given in terms
of the expansion coefficients in Eq.~26!:

wik5a^F! ip1p2hl
G̃ uc̃k

G̃& r 5a8 5(
j

uj~a!aip1p2hl jk . ~33!

~The channel indexi on w subsumes the labelsip1p2hlk.!
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Now the sum over states is in principle over an infin
number of states—only then does it give theR matrix ex-
actly. Needless to say, in practice the summation is finite,
fortunately the contribution from the omitted states can
approximated by the Buttle correction.20 The idea of this is
that the omitted states, which have higher energy, are r
tively insensitive to the exact details of the potential and
many-body interactions with the target states. Their con
bution to theR matrix can then be replaced by that of sol
tions to the static one-electron equation~9!. Let us work with
uj ’s that satisfy a zero-derivative boundary condition at
R-matrix boundary, that is, Eq.~4! with b50. The exactR
matrix for the one-electron problem is then given by

R~E!5
1

2a (
j 51

`
uj~a!2

Ej
02E

. ~34!

But using Eq.~12! we can find theR matrix at energyE
directly, from the solution to Eq.~9! at E integrated outwards
to r 5a:

R~E!5
1

a

u

du/dr U
r 5a

. ~35!

If we now consider a restricted summation overN eigen-
statesuj in Eq. ~34!, the contribution toR from the missing
eigenstates is given by

1

2a (
j 5N11

`
uj~a!2

Ej
02E

5
1

a

u

du/dr U
r 5a

2
1

2a (
j 51

N
uj~a!2

Ej
02E

.

~36!

This is the Buttle correction, and by construction it provid
an exact correction to the restricted sum of states for
static one-electron problem. Provided thatEN

0 is big enough
for the static Hamiltonian to provide a reasonable appro
mation toHN11, it may be added on to the summation~13!
over the eigenstates of the (N11)-electron Hamiltonian,
found usingN uj ’s in Eq. ~26!, to correct for the missing
states.

The radiusa of the R-matrix sphere should in principle
extend further than the target states and bound states in
expansions~8! and ~26!, and typically for the Ni21 ion in
free spacea57 a.u. However, in the solid-state environme
an electron ‘‘feels’’ the full Coulomb potential of the io
over a much shorter distance, typically the atomic sph
radius, and beyond this radius it interacts predominantly w
neighboring atoms. This is the muffin-tin or atomic sphe
approximation that is frequently made in band-structur21

and electron-molecule scattering calculations.22 Of course
there will still be some Coulomb interaction with the dista
ion, that can mediate inelastic processes, but this will
screened by the intervening ions. The atomic sphere ra
of Ni21 in NiO is taken to be 2.58 a.u. from a convention
band-structure calculation,23 and we determine the scatterin
at this radius. In a full multiple-scattering calculation w
would consider scattering by all the atomic spheres in
crystal, but in this paper we use a single-scattering appr
mation, taking a constant potential outside the atomic sph
radius.
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To evaluate the scattering at the smaller radius, we pro
gate theR matrix for Ni21 back from 7 a.u. with the sam
one-electron effective Hamiltonian~9! used to find theuj ’s.
TheR matrix at the larger radius provides the one-point log
rithmic derivative boundary condition for integrating th
Schrödinger equation backwards at the working energyE to
the smaller radius. This integration is conveniently p
formed using standardR-matrix propagator techniques i
which the range 2.58 a.u.<r<7 a.u. is divided into sectors
$r i%. R matrices at successively smaller radii are determin
from the propagation equations

2r iR~r i !5GLL
i 2GLR

i @GRR
i 2r i 11R~r i 11!#21GRL

i ,
~37!

where theGi are Green’s functions corresponding to Eq.~9!
evaluated on the left~L! or right ~R! i th sector boundaries.24

In the simplest model, which we use, the potential is rep
sented as the sum of the spherical part of the static pote
of the Ni21 ion and an equivalent exchange potential of t
form

VE~r !;
1

4p
r~r !1/3, ~38!

wherer is the ground-state target density.25 These are ex-
pected to provide an accurate representation of the full in
action in the outer part of theR-matrix internal region. In this
case the single-electron-scattering equations~37! are un-
coupled and it is possible to simplify the propagati
scheme. Generalizations in which the equations are cou
by the full static potential are straightforward. At this poi
the solutions of the Schro¨dinger equation and their deriva
tives are then used to find the shiftedR matrix ~12!.

The propagatedR matrix gives the logarithmic derivative
~12! of the scattering wave functions at this smaller radiusa,
and this completely defines the scattering properties. Bey
a we take a flat potential, and the outer region can be
panded in partial waves, labeled by the channel index, w
radial dependence given by

F ik~r !5 ĵ i~pir !dik1n̂i~pir !K ik , ~39!

where ĵ i and n̂i are Riccati-Bessel functions,K ik is the K
matrix, andi andk run over the open channels. The mome
tum pi is given by

pi
21e i52E, ~40!

wheree i is the energy of target statei associated with chan
nel i andE is the energy of the (N11)-electron state.K can
be found in terms of theR matrix using the matching equa
tion ~12!:

ĵ ~pa!1n̂~pa!K5RaS d ĵ~pr !

dr
U

r 5a

1
dn̂~pr !

dr
U

r 5a

K D .

~41!

The scattering cross sections can be found from the
shell t matrix, which describes the transition between a st
in which the scattering electron has momentump and the
target is in statei and the statep8,i 8
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^p8,i 8utup,i &. ~42!

The t matrix is calculated from theK matrix defined in Eq.
~39! by the equation

t5
2iK

12 iK
. ~43!

We shall show how thet matrix is used in Sec. V.
The Madelung potentialVM in the crystal field~15! is

incorporated into the calculation as a shift in the discr
(N11)-electron energiesEk in the R-matrix summation
~13!. EachEk is shifted by

Ek→Ek1~N11!VM , ~44!

but the target energies entering Eq.~40! are also shifted,
giving a shift in the total energy

E→E1NVM . ~45!

The R matrix is then given by

Rik~E!5
1

2a (
k

wikwkk

Ek1VM2E
. ~46!

A charge of62 on each ion in the NiO structure gives
value for VM of 10.87 a.u. As the charge on the ions
certainly less than the nominal charge, we somewhat a
trarily reduceVM to 10.75 a.u. There is another potenti
shift in the problem—the inner potential, which gives a d
ferent zero of energy inside and outside the crystal. T
shifts the scattering electron kinetic energy, but we neg
this effect. Our approximate treatment of these energy sh
is justified, we believe, by the relative insensitivity of o
scattering results to primary electron energy.

V. SCATTERING CROSS SECTIONS

The scattering amplitude, for scattering an electron w
momentump and with the target in statei, to momentump8
and targeti 8, is given in terms of the correspondingt matrix
by11

f ~p8,i 8←p,i !52~2p!2^p8,i 8utup,i &, ~47!

and the differential scattering cross section is then given

ds

dV
~p8,i 8←p,i !5

p8

p
u f ~p8,i 8←p,i !u2. ~48!

We now introduce a complete set of states in an ang
momentum representation for the scattering electron:

E dE(
i

(
L

uE,L,i &^E,L,i u51. ~49!

Here uE,L,i & corresponds to a spherical wave with angu
momentumL incident on targeti, with total energyE given
by Eq. ~40!. Using Eq.~49!, Eq. ~47! becomes
e

i-

is
ct
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h
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f ~p8,i 8←p,i !52~2p!2(
i 9 i-

(
L9L-

E dE9E dE-

3^p8,i 8uE9,L9,i 8&

3^E9,L9,i 9utuE-,L-,i-&^E-,L-,i-up,i &.

~50!

Now

^E,L,i up,i &5
1

Ap
dXE2S p2

2
1e i D CYL~ p̂!, ~51!

and substituting into Eq.~50! and evaluating the integrals
we obtain

f ~p8,i 8←p,i !

5
2~2p!2

App8
(
LL8

^E,L8,i 8utuE,L,i &YL~ p̂!YL8
* ~ p̂8!.

~52!

Substituting back into Eq.~48! gives

ds

dV
~p8,i 8←p,i !

5
~2p!4

p2 (
LL8

(
L9L-

^L8,i 8utuL,i &

3^L9,i ut†uL-,i 8&YL~ p̂!YL9
* ~ p̂!YL8

* ~ p̂8!YL-~ p̂8!. ~53!

We now convert the angular momentum representa
uL,i & to our symmetry-adapted functions. This state is giv
explicitly by

uL,i &5F̃ ip1m1
Ylml

x~1/2! m , ~54!

and using Eqs.~22! and~23! and rearranging in terms of th
channel functionF! ip1p2hl

PMPSMSP we obtain

uL,i &5 (
PMPSMS

(
p2m2h

bhlml
* p2m2~PMPup1m1p2m2!

3~SMSuSiMSi

1
2 m!F! ip1p2hl

PMPSMSP , ~55!

where the coefficients in the summations have been defi
previously. Substituting Eq.~55! into Eq. ~53! and rearrang-
ing, we obtain the following expresssion for the different
scattering cross section:
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ds

dV
~p8i 8m8←pim!5

~2p!4

p2

1

na
(

PSMP
(

P8S8MP8
(
p2hl

(
p28h8l8

(
p29h9l9

(
p2-h-l-

^F! i 8p
18p

28h8 l 8
G̃ utuF̃̄ ip1p2hl

G̃ &^F! i 8p
18p

2-h- l-
G̃8 utuF! ip1p

29h9 l 9
G̃8 &*

3 (
MSMS8

(
MSi

MSi
8

S SMSUSiMSi

1

2
mD S S8MS8USiMSi

1

2
mD S SMSUSi8MSi

8
1

2
m8D S S8MS8USi8MSi

8
1

2
m8D

3H p2hl

p29h9l 9

PMPP8M P8
J

p

H p28h8l 8

p2-h-l-

PMPP8M P8
J

p8

, ~56!

whereG̃[$PSP%. Herena is the degeneracy of the incoming channel and is given by (2Si11)32. The curly brackets in this
equation represent the following expression,

H p2hl

p29h9l 9

PMPP8M P8
J

p

5 (
m28m29

S (
ml

bhlml
* p2m2Ylml

~ p̂! D S (
m1

~PMPup1m1p2m2!~P8M P8 up1m1p29m29! D S (
ml9

b
h9 l 9m

l9

p29m29 Yl 9m
l9

* ~ p̂!D ,

~57!
nt

-

t
h

,

re
s-
th

se

udy
c-
ss
ons.
gni-
ent
of

con-
.8
om

n-
and depend on the direction of the incident electron beamp̂.
We now derive the total cross section from Eq.~53!. Av-

eraging Eq.~53! with respect to the directions of the incide
and scattered electronp̂ and p̂8 gives

s̄~ i 8← i !5
4p3

p2 (
LL8

^L8,i 8utuL,i &^L,i ut†uL8,i 8&. ~58!

Again we convert the statesuL,i & into our symmetry-adapted
functions, and averaging over target spins we obtain

s̄~ i 8← i !5
4p3

p2 (
PS

(
p2p28hh8 l l 8

NP~2S11!

2Ni~2Si11!

3u^F! i 8p
18p

28h8 l 8
G̃ utuF! ip1p2hl

G̃ &u2, ~59!

where G̃[$PSP%. Herep is the magnitude of the momen
tum of the incident electron.P, p1, and p2 represent the
cubic symmetries of the compound state, the target, and
scattering electron, respectively. The scattering electron
angular momentuml, and theh indicates that differentp2’s
may be associated with each value ofl. Ni and NP are the
degeneracies of the target state and the compound state
the Si andS are the corresponding spins.

VI. RESULTS

To obtain convergence in our results~to within 1% accu-
racy!, it is sufficient to use 15 one-electron functionsuj in
Eq. ~26!. We take the angular momentum of the scatte
electron up tol 54, sufficient for convergence in the inela
tic scattering cross section throughout the energy range
we consider, though not for the elastic scattering cross
tion.
he
as

and

d

at
c-

A. Total cross section

We first consider the total scattering cross section to st
the variation in intensity with the energy of the incident ele
tron Einc 5p2/2. Figure 1 shows results for the elastic cro
section and Fig. 2 two representative inelastic cross secti
The elastic cross section is seen to be 2–3 orders of ma
tude larger than the inelastic cross sections, in agreem
with LE-EELS experiments where the low-energy region
the spectra is dominated by the zero-loss peak.3 Unlike the
inelastic cross sections, the elastic cross section has not
verged as a function ofl for energies greater than about 0
a.u. Figure 1 gives the contributions to the cross section fr
different l values@the contributions in Eq.~59! from lÞ l 8
are very small#, and we see that these show resonance~and
antiresonance! structure increasing in energy asl increases.
The higher-l values hardly contribute at lower energies.

FIG. 1. The total elastic cross section~thick solid line! together
with the individual contributions from the orbital angular mome
tum components of the scattering electron,l 50 ~thin solid line!, l
51 ~dotted line!, l 52 ~dashed line!, l 53 ~dot-dashed line!, and l
54 ~long-dashed line!. They axis has unitsa0

2.
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All the inelastic cross sections show very sharp resona
structure at energies below 0.8 a.u., whereas above this v
the spectra are fairly featureless and very similar. These r
nances occur due to coupling between the different orb
angular momentum components of the scattering elec
and the Ni 3d target, as we can see from Fig. 3, which sho
the angular momentum decomposition. Such resonances
appear in the free ion, and the couplings are to both
initial and final target states. We note in Fig. 3 that the
elastic results are indeed converged forl 54.

In general, the triplet-triplet excitations that involve bo
direct and exchange scattering mechanisms are more int

FIG. 2. The averaged total cross sections for the loss proce
3A2g→1T1g ~3.28 eV!, and 3A2g→3T1g ~3.13 eV!. The y axis has
units a0

2.

FIG. 3. The contributions from the orbital angular momentu
components of the scattering electron to the total cross section
the loss processes3A2g→1T1g ~3.28 eV! and 3A2g→3T1g ~3.13
eV!. The overall total cross sections are omitted to avoid confus
with the various lines, but are given in Fig. 2. The lines are defin
as in Fig. 1, and they axis again has unitsa0

2.
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than the multiplicity-changing triplet-singlet excitations th
only occur via exchange scattering. Surprisingly, the cr
sections for the multiplicity-changing excitations stay s
nificant for energies much greater than the loss energies
electron scattering from simple atoms~such as He!, the scat-
tering cross section is largest when the primary energy
almost equal to the loss energy and negligible when the r
of primary energy to loss energy is greater than about 126

Experimental measurements confirm that exchange sca
ing of the 3d excitations in NiO play an important role a
these higher primary energies, and this had been attribute
hybridization of the localized states with bandlike state3

However, our model does not include these hybridizat
effects and yet we still observe the contribution of exchan
scattering.

Among the triplet-singlet transitions the weakest are th
from the 3A2g ground state to the states1A1g , 1Eg , and
1T2g , and the weakest of the triplet-triplet transitions is
the 3T1g state. The3A2g ground state has the electronic co
figuration (t2g)6(eg)2 ~i.e., 2 holes ineg),3 thus we can re-
arrange the hole configuration and calculate the states
duced from each rearrangement using the symmetry of
system and group theoretical direct product techniques. F
these it is found that these weakest transitions in both
triplet-singlet and triplet-triplet cases occur when there
two holes int2g , i.e., the (t2g)4(eg)4 electron configuration.
This is reasonable as two electrons need to be excite
order to produce the latter configuration.

B. Differential cross section: Angle dependence

We now consider the differential cross section, with t
incoming and outgoing electron beams in one scatter
plane in order to study spatial symmetry. In all the followin
studies the incident and scattering beams are in the p
containing the surface normal~001! and the~100! axis. u i
andu f are measured with respect to the surface normal,
f is the azimuthal angle measured with respect to the~100!
axis.

Figure 4 shows a polar plot for the spin-averaged diff
ential cross-section of the elastic peak atEinc 520 eV. This
is dominated by forward scattering, as we might expect. I
multiple-scattering treatment of inelastic scattering,
inelastic-scattering event is sandwiched between multip
elastic-scattering events: the dominance of forward ela
scattering means that the directions of the incoming and
elastically scattered electron will tend to be preserved,
our single-scattering treatment is better justified.

The polar plots given in Figs. 5–8 show the spin-averag
differential cross sections for several inelastic transitions,
an incident energy of 20 eV. As we can see, the transition
the states1A1g and 3T2g ~Figs. 5 and 6, respectively! show
zero intensity for forward and backward scattering. We s
from the shape of the electron scattering that the excitati
in Figs. 5 and 6 are dominated byd-wave scattering, wherea
in Figs. 7 and 8 there is a small contribution fromp waves in
addition to the dominantd-wave scattering. Figure 9 show
the differential cross sections for excitations to the differe
T1g states, which we see have a similar angle depende
This emphasizes the importance of the symmetry of the
get state in determining the angular distribution of scatteri
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When the incoming and outgoing electron beams lie p
allel to a particular symmetry axis or in a particular mirr
plane, there are often geometries for which the cross sec
must be zero by the point group symmetry. In this way
can explain the results shown in Figs. 5 and 6, with z
intensity for forward and backward scattering in the tran
tions toA1g andT2g multiplet states. This can be seen fro
the transformation properties of the initial and fin
states,14,12 and the corresponding matrix elements. In t
case of the transitions toA1g we consider the matrix elemen
^p8A1guTupA2g&, wherep andp8 label the incident and out
going electron beams. Whenp andp8 are both parallel to the
(1̄01) axis, we consider the twofold rotation about this ax

FIG. 4. Polar plot of the spin-averaged differential cross sec
for the elastic transition3A2g→3A2g . The axes have unitsa0

2.
Einc520 eV.

FIG. 5. Polar plot of the spin-averaged differential cros
sections of transition to final state1A1g ~2.80 eV!. The axes have
units a0

2. Einc 520 eV.
r-

on
e
o
-

.

A2g changes sign, butA1g is invariant—hence the matrix
element, which must be invariant under the transformati
is zero. This is consistent with a previous Letter.27

A similar argument holds for the transition to theT2g
states, where the matrix element under consideration
^p8T2guTupA2g&. However,T2g has three components tha
transform asxy, yz, andzx, so a more detailed analysis
necessary by investigating each component individua
Again considering the twofold rotation about the (10̄1) sym-
metry axis, thezx component displays no change in sig
which along with the sign change of theA2g state means tha
the matrix element must be zero. However, the two rema
ing components of theT2g state transform into each other s

n

-

FIG. 6. Polar plot of the spin-averaged differential cros
sections of transition to final state3T2g ~1.05 eV!. The axes have
units a0

2. Einc 520 eV.

FIG. 7. Polar plot of the spin-averaged differential cross s
tions of transition to final state1Eg ~1.70 eV!. The axes have units
a0

2. Einc 520 eV.
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13 518 PRB 62P. JONESet al.
nothing can be inferred for these. In order to examine th
we apply a reflection in thez-x mirror plane. Now theA2g
state is invariant under such a reflection, butxy andyz dis-
play a change in sign. So the corresponding matrix elem
must also be zero. So we have shown that an excitation to
T2g state shows zero intensity for backward and forwa
scattering by a combination of rotation and mirror-plane
guments.

There seems to be no symmetry reason for the zero
690° in the transition to1A1g in Fig. 5. These are presum
ably a consequence of the partial waves of the scatte
electron that couple to this transition.

C. Differential cross section: Spin dependence

Spin-resolved experiments, in which the spins of the in
dent and scattered electrons are determined, add an

FIG. 8. Polar plot of the spin-averaged differential cross s
tions of transition to final state3T1g ~3.13 eV!. The axes have units
a0

2. Einc 520 eV.

FIG. 9. The spin-averaged differential cross sections for exc
tions to final states withT1g symmetry. The loss energies are 3.
eV (1T1g , solid line!, 3.13 eV (3T1g , dot-dashed line! and 1.75 eV
(3T1g , dotted line!. They axis has unitsa0

2. Einc 520 eV.
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variable to the description of scattering. There are interes
rules relating the intensities of varying spin flip, which fo
low from the properties of the Clebsch-Gordan coefficie

(SMSuSiMSi

1
2 m) in Eq. ~56!. Only certain combinations o

Clebsch-Gordan coefficients are nonvanishing. Conside
the multiplicity-changing transitions, we find that for th
non-spin-flip transitions the only nonvanishing combinati

is ( 1
2

1
2 u101

2
1
2 )2( 1

2
1
2 u001

2
1
2 )2, which reduces to1

3 . Similarly
the only nonvanishing combination for the spin-flip tran

tion is (1
2 2 1

2 u121 1
2

1
2 )2( 1

2 2 1
2 u001

2 2 1
2 )2, which equals2

3 .
Therefore the spin-flip to non-spin-flip ratio is 2, as found
a previous Letter.27 This combination only holds for the
triplet-singlet transitions; the triplet-triplet transitions have
more complicated spin-flip to non-spin-flip ratio that nee
to be calculated explicitly.

Figure 10 shows the intensity of both the spin-flip a
non-spin-flip contributions for the two transitions indicate
The incoming scattering angles are fixed withu i545° and
f i50°. The outgoing scattering anglea is varied, with fixed
f f5180°. The incident energy of the scattering electron
20 eV. Figure 10~a! shows a multiplicity-changing transition
and the spin-flip to non-spin-flip ratio is 2 in agreement w
the analysis of the Clebsch-Gordan coefficients. In
triplet-triplet transition shown in Fig. 10~b!, the spin-flip to
non-spin-flip ratio changes with scattering angle, and
non-spin-flip contribution is stronger than the spin-flip co
tribution.

VII. COMPARISON WITH EXPERIMENT

For a comparison with experimental results we now co
sider the differential scattering cross sections, and we
average over spins of the target and scattering electron
both incident and outgoing cases, corresponding to s
integrated LE-EELS experiments. Figure 11 shows res
calculated from our model for two incident energies and t

-

-

FIG. 10. The spin-flip~solid line! and non-spin-flip~dot-dashed
line! differential cross sections for two transitions:~a! 3A2g

→1T1g ~3.28 eV energy loss! and~b! 3A2g→3T1g ~1.75 eV energy
loss!. The scattering angle is related to the polar angleu f by u f

5135°2a. They axis has unitsa0
2. Einc 520 eV.
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scattering geometries, which are indicated. In each casf i
50° andf f5180°, wheref is the azimuthal angle mea
sured with respect to the~100! axis. The discrete losses a
broadened by a Lorentzian of 250 meV width for comparis
with experiment. These plots are compared with experim
tal data from Gorschlu¨ter and Merz,3 given in Fig. 12. In our
model we ignore the dominant elastic peak, and we do
consider the 0.6 eV loss peak as it is due to a surface e
tation. Charge transfer excitations across the band
~above about 4 eV! are also excluded in our atomic mode

From the two figures it is evident that the cross sectio
are heavily dependent on the polar angles of the incident
outgoing electron beams, as we discussed in detail in
VI B. The relative peak intensities show good agreem
with the experimental data. The 1.05 eV loss peak is du
a single transition to3T2g . The big peak at 1.7 eV is due t
two overlapping transitions,1Eg ~1.70 eV! and 3T1g ~1.75
eV!. Similarly, the 3.2 eV peak is due to two overlappin
transitions, 3T1g ~3.13 eV! and 1T1g ~3.28 eV!. This peak
appears to be too large but this is due to the loss peaks b

FIG. 11. The spin-averaged differential cross sections of
scattering geometries and two incident electron energies. The u
plot hasEinc 520 eV and the lower hasEinc 550 eV. The solid
line represents specular scattering geometry (u i5u f545°) and the
dashed line off-specular scattering (u i545°,u f510°). Angles are
measured with respect to the surface normal and they axis has units
a0
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closer together in our calculations than in experimen
where the3T1g peak occurs at 3.0 eV and the1T1g peak at
3.55 eV. When the discrete losses are broadened by
Lorentzian, the peaks that are close together produce a
large combined peak, whereas their greater separation in
periment leads to a smaller peak that is submerged in
charge transfer excitations across the band gap.

We now fix the incoming electron spin~spin up! and se-
lect the outgoing electron spin, corresponding to sp
polarized experiments. Figure 13 shows our spin-flip spe
for varying scattering anglesa in the range 73°<a<123°,
with an interval of 3.125°.~The scattering angle is related t
u f by u f5135°2a.! The incident energy is 33 eV and th
incident angle fixed at 45°. These results, which are Lore
zian broadened by 175 meV, can be compared with the
perimental spin-flip data from Mu¨ller et al.6 given in Fig. 14.
Again we ignore the elastic peak and do not consider the
eV surface excitation. The loss peak at 3.2 eV appears to
too narrow due to the proximity of the two contributin
states as explained earlier. Our model shows reason
agreement with experiment. The peak at 3.2 eV, albeit
narrow, dramatically drops off at largea, apparently in
agreement with experiment~the role of charge transfer exc
tations are unclear!. Most significantly, at 2.7 eV we see

o
er

FIG. 12. Experimental spectra from Gorschlu¨ter and Merz. The
y axis is in arbitrary units; otherwise the definitions are as in F
11.
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small shoulder at 73° that slowly increases and beco
quite dominant at 123°. This peak is of particular interest
it is a combination of two triplet-singlet excitations to th
states1A1g ~2.80 eV! and 1T2g ~2.70 eV!, for which spin-flip
dominates~Sec. VI C!. There is remarkable agreement b
tween our model and experiment for this peak.

VIII. MULTIPLE SCATTERING

Although we can make contact with experiment using
single-scattering approximation, a full theory of LE-EEL
must treat the multiple-elastic-scattering events that oc
before and after the inelastic scattering. To do this we t
results from the theory28,29of diffuse LEED used to treat the
effect of an additional scatterer, with the further simplific
tion that the cross section for inelastic scattering is so
compared with elastic that we need only consider a sin
inelastic scattering, with no multiple events.

If t is the t matrix for inelastic scattering by a particula
Ni21 ion in isolation, andT is for elastic scattering by the
whole semi-infinite crystal~including this ion!, the full in-
elastic t matrix for the ion to undergo the transition in th
crystal environment is given by

T in 5t1tG0T1TG0t1TG0tG0T. ~60!

HereG0 is the free-electron propagator. This can be simp
fied to

Tin5~11TG0!t~11G0T!. ~61!

The transition amplitude for plane wavep to be scattered
into p8, with the target undergoing the transition fromi to i 8,
is then given by

FIG. 13. Spin-flip spectra for a range of scattering angles
<a<123° in intervals of 3.125° with 73° being the lowest lin
The remaining polar angles were fixed withu i545°, f i50°, and
f f5180°, Einc 533 eV.
es
s

-

e

ur
e

-

le

-

^p8,i 8uTinup,i &5^p8~11TG0!,i 8utu~11G0T!p,i &.
~62!

We can consider this as a transition on the target ion betw
cp

15(11G0T)up& and cp8
2

5(11G0
†T†)up8&. cp

1 is the
LEED wave function arising from scattering exp(ip•r ) off
the surface elastically.cp8

2 is the time-reversed LEED wav
function corresponding to exp(ip8•r ): we let exp(2ip•r )
scatter off the surface, and then take the complex conjug
The transition between these states is caused byt. The in-
elastic scattering from different Ni21 ions adds
incoherently—we average the intensity from different dep
of ions.

In this multiple-scattering formalism it is also possible
include the damping of the propagating electrons due
mean-free-path effects in the electron gas. These are du
the excitation of electron-hole pairs and plasmons, and
effect on the free-electron wave propagating between
localized scattering events can be described by a com
optical potential ‘‘felt’’ by G0. This is exactly the same as i
conventional LEED or photoemission theory.30,31This damp-
ing is necessary to account for the surface sensitivity of L
EELS. The inclusion of multiple scattering in this way is o
next aim in describing LE-EELS from NiO and othe
transition-metal oxides and will be the subject of futu
work.

ACKNOWLEDGMENTS

We wish to thank Dr. M. Boon for his help with the grou
theoretical aspects in this paper. P. Jones received fina
support from EPSRC.
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