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Electron transmission through one-dimensional chains of randomly spaced identical potentials
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An alternative method is developed for calculating the average kinetic characteristics of a one-dimensional
chain consisting ofN randomly spaced potentials. A finite-difference equation for the average resistance^rN&
is found. Its solution provides thêrN& as a function ofN, the energy of the infalling electron and the chain
disorder parameter. It is shown that the relationship between the average resistance and chain length is a sum
of three power-law functions. In the limiting case of infinitely long chains, the dependence^rN& on N is
exponential for arbitrary electron energies and values of the disorder parameter. In this case all the states of the
single-electron spectrum are localized.
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I. INTRODUCTION

The description of the elementary excitations and ene
spectrum of a random medium is an important problem
condensed matter theory.1–3 The interest in this topic is mo
tivated by the necessity of finding the average kinetic ch
acteristics and different correlation functions of quasipe
odic, nonregular, or random systems.4–11

It is well known that the electric conductivity at zero tem
perature vanishes in the case of a random field with a str
degree of disorder. This critical phenomenon is a con
quence of the localization of all electron states. An ex
mathematical method and universal approach to the des
tion of the crossover from delocalized to localized states
arbitrary dimensions do not exist so far.12 In particular, in the
case of a one-dimensional~1D! system even a weak disorde
leads to localization of all states of the single-electr
spectrum.13,14 Recent investigations15,16 demonstrate that in
1D systems with correlated disorder delocalized states
appear.

Following the pioneering work by Anderson,1 much effort
has been devoted to the understanding of the transport p
erties of 1D disordered and quasiperiodic systems. Alo
with the practical interest, related to the technical advanc
fabrication of structures with predetermined parameters,17,18

the quantitative description of the properties of 1D system
important for qualitative understanding of physical pheno
ena in two- and three-dimensional systems.19–22 The exactly
solvable 1D models can be used as a test for new approa
which can also be applied to the higher (d.1) dimensional
problems.

A quantitative analysis of the localization of electro
states in 1D systems has been carried out in Refs. 23
starting from the kinetic theory. Landauer27 found the dimen-
sionless resistancer for spinless electrons in a 1D disordere
medium, by dividing the current by the difference of th
chemical potentials between both sides of the sample.
PRB 620163-1829/2000/62~20!/13501~7!/$15.00
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localization radiusj is then determined by the asymptot
behavior of the average resistance, which depends on
system size as14 (\5e251)

^r&5 1
2 ~eL/j21!, L→` ~1!

where^r& is the Landauer resistance averaged over the
dom field, andL is the system’s length. Note that for a lo
calized state the radiusj depends on the energy of the ele
tron and the disorder parameters of the system, while fo
delocalized statej is infinite.

In this work we develop an alternative method for calc
lating average kinetic characteristics of a 1D chain consis
of identical, randomly spaced potentials. In the first step
solve the general scattering problem for a chain consistin
identical, periodically spaced potentials. In the second s
we obtain analytical expressions for the average resistanc
a disordered system. We show that in the case of a ran
field all the states of the single-electron spectrum are lo
ized. Our approach is based on the method of recurrent r
tions for scattering amplitudes of arbitrary 1D chains.28

II. SCATTERING PROBLEM

Let us consider a model, for which the electron poten
energy is a superposition of nonoverlaping atomic potent
Vn(x2xn) spaced atx1 ,x2 , . . . ,xN of 1D chain points:

V~x!5 (
n51

N

Vn~x2xn!, ~2!

wherexn,xn11 and N is the number of potentials. We as
sume that the asymptotic behavior of the wave function
the form

c~x!5eikx1RNe2 ikx, x→2` ~3!

c~x!5TNeikx, x→` ~4!
13 501 ©2000 The American Physical Society
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where RN and TN are electron reflection and transmissi
amplitudes, respectively, andk25E (2m051, m0 is electron
mass! is the energy of an incident electron.

Due to the conservation of the current, the reflection a
transmission coefficients satisfy the well-known relation

uRNu21uTNu251. ~5!

In the general form, the determination of scattering am
tudesRN andTN for potential~2! can be reduced to solvin
of the following second-order finite-difference equations:28

DN5ANDN212BNDN22 , ~6!

D̃N5AND̃N212BND̃N22 , ~7!

where

DN51/TN , D̃N5RN /TN . ~8!

The coefficientsAN andBN in Eqs.~6! and~8! are of the
form

AN51/tN1BN /tN21* , BN5r NtN21 /tNr N21 , for N.1
~9!

A151/t1 , B150,

where tn is the transmission amplitude~TA! and r n is the
reflection amplitude~RA! of the nth atomic potential. Note
that in Eqs.~6! and ~A8! N is a discrete variable, so tha
DN2 j51/TN2 j and D̃N2 j5RN2 j /TN2 j ( j 51,2, . . . ,N21)
correspond to the TA and RA for the system construc
from the firstN2 j potentials of the chain, i.e., the potentia
(n51

N2 jVn(x2xn).
The quantitiesDN andD̃N satisfy the same equations~6!

and ~A8!. To obtain the special solutions, the initial cond
tions must be specified. These conditions differ forDN and
D̃N and have the form

D051, D151/t1, D̃050, D̃15r 1 /t1 , ~10!

whereD0 andD̃0 correspond to the electron free motion a
D1 and D̃1 to the scattering on the first atomic potent
V1(x2x1). For example, if the potential is ad function
@V1(x2x1)5u1d(x2x1)#, then

D1511
iu1

2k
, D̃15

2 iu1

2k
ei2kx1. ~11!

The solution~6! or ~A8! can be represented in the form

DN5d1d2•••dN . ~12!

Substitutingdn from Eq. ~12! into Eq. ~6! we find the fol-
lowing nonlinear algebraic system:

dn5An2Bn /dn21 ~n52,3, . . . ,N!, ~13!

which, in the general case, can be solved numerically.
d

i-

d

III. THE ELECTRON SCATTERING ON THE PERIODIC
STRUCTURES

Let us consider the particular case of the potential~2!,
whenN identical nonoverlaping and arbitrary shaped pote
tials are spaced periodically, in which case the electron
tential energy is

V~x!5 (
n51

N

u~x2an!, ~14!

wherea is the chain period. Since the atomic potentials a
identical, the RA’sr n and r n8 of the n and n8 scattering
centers differ by the phase factor6

r n85r nexp@ i2ka~n82n!#, ~15!

while at the same time the TA are equal:

tn85tn . ~16!

Using Eqs.~15!, ~16!, and ~A10!, one can see that for a
periodic chain the coefficientsAN andBN are independent o
N:

AN5A51/t1~ t* !21ei2ka, BN5B5ei2ka, N.1
~17!

wheret is the transmission amplitude of an individual pote
tial of the periodic system. Taking into account Eq.~17!, Eq.
~6! can be transformed to the form

DN5ADN212BDN22 , ~18!

subject to initial conditions

D051, D151/t. ~19!

The solution of Eq.~18! is

DN5C1a1
N1C2a2

N , ~20!

where the constantsC1 andC2 have to be determined from
the initial conditions~19!. The quantitiesa1 anda2 are the
roots of the following characteristic equation:

a22Aa1B50 ~21!

and can be represented as

a1,25ei (ka6b), ~22!

where

cosb5Re~e2 ikat21!. ~23!

It is important to note that expression~23! determines the
electron energy spectrum for a periodical system. It rela
the electron quasimomentum with the TA of the atomic p
tential of the system.29

Furthermore using Eqs.~19!, ~20!, and~22!, we find

C1,25
1

2
6

Im~e2 ikat21!

2 sinb
. ~24!

Substituting Eqs.~22! and ~24! into Eq. ~20! we finally ob-
tain
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DN5eiNkaS cosNb1Im~e2 ikat21!
sinNb

sinb D . ~25!

The result~25! determines the TATN @Eq. ~8!# for an arbi-
trary periodical potential~14!.

To determine the quantityD̃N , Eq. ~8! has to be solved
with the initial conditions

D̃050, D̃15r /t. ~26!

DeterminingC1 and C2 from Eqs.~26! and ~20! we obtain
for D̃N the following expression:

D̃N5
r

t

sinNb

sinb
ei (N21)ka. ~27!

Expressions~27! and ~25! determine the RA for a periodic
system (RN5D̃N /DN). Note that the functionsD̃N and DN
are directly related to the dimensionless Landauer resista
which can be expressed as the ratio of reflected and tr
mitted intensities:14,27

r5uDNu2215uD̃Nu2. ~28!

The differences between the Landauer conductance and
Kubo formula were analyzed in many papers.30,31

Using Eqs.~25!, ~27!, and ~28!, we obtain for the Land-
auer resistance of the periodic chain

rN5UrtU
2 sin2Nb

sin2b
. ~29!

It is evident from Eqs.~29! and ~23! that, whenu cosbu<1,
the dependence ofrN on N is a periodic function. If
u cosbu.1, thenb5 ig (g is real!, andrN can be written in
the form

rN5UrtU
2 sinh2Nb

sinh2b
. ~30!

Relation~30! means that for states outside of a conductiv
band the resistance exponentially tends to infinity, whenN
→`. Expressions~25! and ~29! generalize previous result
obtained for layered homogeneous media and for ch
composed of periodicd-like potentials.32

IV. THE RESISTANCE OF THE CHAIN WITH
STRUCTURAL DISORDER

Let us consider a 1D model consisting of identical, ra
domly spaced potentials. We will assume that for an a
trary realization of random field the distances between
tentials are larger compared with the radius of the action
an individual potential. This form of disorder is usual
called a structural disorder.2,33

As follows from Eqs.~6!, ~8!, and~28! the resistance of a
chain ofN identical potentials depends on the distances
tween the nearest scatterers only, i.e.,rN can be considered
as a function of the quantitiesuxl 112xl u ( l 51,2, . . . ,N
21). Here we assumeuxl 112xl u to be random and indepen
dent, so that

uxl 112xl u5a1Dxl , ~31!
ce,
s-

the

s

-
i-
-
f

-

wherea is the average distance between the scatterers,
the average length of the systemL is equal to (N21)a. We
take the average value of the random quantitiesDxl to be
equal to zero:

E f ~Dxl !DxldDxl50, E f ~Dxl !dDxl51, ~32!

where f (Dxl) are the distribution functions forDxl , which
are supposed to be the same for allDxl ( l 51,2, . . . ,N21).
The region of integration of the functionf (Dxl) has to be
chosen in such a manner that the potentials of the nea
scatterers, for an arbitrary realization of random field, do
overlap.

Using the random field averaging procedure, the re
tance can be written as

^rN&5E •••E uD̃Nu2f ~Dx1!••• f ~DxN21!

3dDx1•••dDxN21 . ~33!

As is clear from Eq.~33!, the problem of the determinatio
of the average resistance is reduced to the averaging o
random quantityuD̃Nu2. A direct derivation of an explicit
expression forD̃N does not appear to be possible.34 There-
fore, in order to evaluate the integral~33!, we attempt to
obtain the equation for the unknown quantityuD̃Nu2, whose
solution gives the dependence of the average resistanc
the model parameters. This equation is derived in the App
dix and has the following form,

^rN&5~n2l 1m!^rN21&2n2~ l 2m!^rN22&

1n4^rN23&1~12n4!^r1&, ~34!

where

m5~12n2!~2^r1&11!, l 54 cos2b21. ~35!

The initial conditions for Eq.~34! are

^r0&50, ^r1&5UrtU
2

, ^r2&5~n2l 1m11!^r1&.

~36!

Conditions~36! follow directly from Eq.~33!. In Eqs.~34!–
~36!

n25^ei2kDxl&5E f ~Dxl !e
i2kDxldDxl . ~37!

For example, whenf (Dxl) is a Gaussian distribution func
tion,

f ~Dx!5
1

A2p^~Dx!2&
e2Dx2/2^(Dx)2&, ~38!

thenn2 depends on̂(Dx)2& and has the form

n25e22k2^(Dx)2&, ~39!

where^(Dx)2& is the disorder parameter of the system.
Equation~34! is an inhomogeneous finite-difference equ

tion with constant coefficients. Its solution can be written
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^rN&5(
j 51

3

Cjyj
N1C0 , ~40!

whereC0 andCj ( j 51,2,3) are constants,yj ( j 51,2,3) are
the roots of the characteristic equation

yj
32~n2l 1m!yj

21n2~ l 2m!yj2n450, ~41!

which are calculated using the standard formulas for the
lution of a cubic equation:

y15a1b1~n2l 1m!/3,

y2,352
a1b

2
6 i S a2b

2 DA31~n2l 1m!/3, ~42!

where

a5A3 2
q

2
1AQ, b5A3 2

q

2
2AQ,

q522S n2l 1m

3 D 3

1
n2~ l 2m!~n2l 1m!

3
2n4,

Q5S q

2D 2

1S p

3D 3

, p52
~n2l 1m!2

3
1n2~ l 2m!.

~43!

As follows from Eqs.~42! and ~43!, for Q.0 Eq. ~41! has
one real- and two complex-valued roots. WhenQ<0, all
three roots are real.

Let us now find the constantsC0 andCj . ConstantC0 is
a particular solution of Eq.~34! and it is easy to see that

C0521/2. ~44!

To determineCj ( j 51,2,3) we first derive, using Eqs.~36!,
~41!, and~44!, the following linear system of equations:

(
j 51

3

Cj5^r0&11/2,

(
j 51

3

Cjyj5^r1&11/2, ~45!

(
j 51

3

Cjyj
25^r2&11/2.

The solution of system~45! is

C15
1

2

~2^r2&11!2~2^r1&11!~y21y3!1y2y3

~y22y1!~y32y1!
. ~46!

The constantsC2 andC3 can be obtained from Eq.~46! via
a cyclic permutation ofy1 , y2, andy3.

Formulas~40!–~46! solve the problem of determination o
the average resistance for a general specified random fi
As we have shown, the dependence of^rN& on the number of
scatterers is a sum of three power law functions. Finally, n
that taking the disorder parameter in the solution~40! asn2

51 ~ordered chain!, one recovers the form given by Eq
~30!.
o-

ld.

te

V. THE LOCALIZATION RADIUS
OF SINGLE-ELECTRON STATES

In this section we prove that in the considered 1D rand
model all single-electron states are localized, i.e., the lo
ization radius

j5 lim
N→`

Na

ln^rN&
~47!

is a finite function, which is independent ofN for arbitrary
values of parametersr, t, andk. To do this, we investigate
the properties of the roots of the characteristic equation~41!.
According to Viete’s theorem, we have the following rel
tionship for the roots of Eq.~41!:

y1y2y35n4. ~48!

Note thatn2.0 by definition. As follows from Eq.~48! all
three roots are real (Q<0), when they are positive. If one o
the roots is positive while the remaining ones are negat
the characteristic equation has only one positive real roo

Let us now demonstrate, that among the roots of Eq.~41!
there is one root which is greater than or equal to unity.
us consider the function

F~y!5yj
32~n2l 1m!yj

21n2~ l 2m!yj2n4. ~49!

The zeros of the functionF(x) determine the roots of the
characteristic equation.

It is easy to see that for all values ofl, m, and n2 the
function F(x) is negative at the pointy51. If x→` the
function F(x)→` and whenx→2`, then F(x)→2`.
From these properties, it follows, in particular, that the eq
tion F(x)50 contains a root that is larger than unity an
larger than the absolute value of the other roots. There
the asymptotic behavior of̂rN& for N→` has the form

^rN&5C1z1
N21/2. ~50!

Herez1 is the root of the characteristic equation~41!, which
is greater than or equal to unity (z1>1) andz1>uz2u, uz3u,
wherez2 andz3 are the two remaining roots. Substituting E
~50! into Eq.~48! we obtain the following expressions for th
radius of localization:

j5
a

ln z1
. ~51!

As follows from Eq.~42!, j has a complicated transcenden
dependence on the disorder parameter of the system,
electron energy, and the scattering amplitudes.

In Eq. ~51!, the casez151 corresponds to delocalize
states (j→`). As can be seen from Eqs.~35! and ~41! this
condition is satisfied in the case of periodic chain (n251)
for the conductivity band states. For a random chain,
states with energies equal to the resonance energies
single potential of the chain (r150) are also delocalized.

To illustrate the obtained results, we consider a structu
disordered chain consisting of identical rectangular barr
when the deviation from a periodic chain is described
means of the Gaussian distribution function~38!. Using the
expression for TA of a rectangular potential,
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t215exp~ ikd!H cos xd2 i
x21k2

2kx
sinxdJ , ~52!

wherex5AE2V, V is the magnitude of the potential, andd
is its width, we find from Eq.~23!

cosb5cos~a2d!k cosxd2
x21k2

2kx
sin~a2d!k sinxd,

~53!

which is the well-known formula for the energy spectrum
periodic Kronig-Penney chain, wherea is the system period

From Eqs.~30! and~52!, for the Landauer resistance of
single rectangular potential we obtain

r15
~x22k2!2

4x2k2
sin2xd. ~54!

Using Eqs.~52!–~54!, ~41!, and~51! we carried out numeri-
cal calculations of the dependencej/a on ka for different
values of dimensionless disorder parameterq
5A^(Dx)2&/a2~see Fig. 1!. As can be seen, the localizatio
radius is a multivalued function of the electron energy. F
states with energies equal to the resonance energies
single barrier (xd5pN,N51,2, . . . ), theradius of localiza-
tion j tends to infinity. For the states of the band gap,
increase of the disorder leads to an increase of the loca
tion radius. In the conductivity bandj/a attains its maximum
at the end of the band.

It is interesting to consider for the general model the c
of weak disorder (12n25s!1) when the energy of an elec
tron corresponds to the conductivity band of the perio
systemuRe(e2 ikat21)u,1. In this limiting case the rootz1
determining the localization radius is

z1511Dz, ~55!

where 0,Dz!1.
Inserting Eq.~55! in Eq. ~41! and keeping only terms

linear in Dz, we arrive at the following expression forDz:

Dz5
4^r1&~12n2!

sin2b
. ~56!

FIG. 1. The dependence ofj/a for a chain of randomly space
identical rectangular potentials as a function ofka for Va2

520, d/a50.5 and different values ofq5A^(Dx)2&/a2 @if a
55 Å, then (\2/2m)V'2.5 eV# .
f

r
f a

e
a-

e

c

Inserting Eq.~56! into Eq. ~55!, from Eq. ~51! we obtain

aj215^r1&~12n2!/ sin2b. ~57!

According to Eq.~57!, the radius of localization is infinity
only for the case wheren251 ~periodic potential!.

In Fig. 2 we present a numerical evaluation of Eq.~57! for
a random chain composed ofd potentials. In this case, th
energy spectrum is given by the well-known formula cosb
5coska1(U/k)sinka with r15U2/4k2 (U is the strength of
thed potential!. As a small dimensionless disorder parame
we adopted the ratioq5A^(Dx)2&/a2. According to Fig. 2,
for fixed q the increase ofU leads to a decrease of the loca
ization radius of the conductivity band states. As we see
Fig. 2, the localization radius increases when the value ofka
moves away from the ends of conductivity band and takes
maximum value at the center of the band.

ACKNOWLEDGMENTS

We would like to thank M. Aghasyan, D. Blaschke, an
A. Sedrakian for useful discussion. One of us~A. Zh. Kh.!
gratefully acknowledges the support by the Max-Planck S
ciety during his stay at the Physics Department of Rost
University.

APPENDIX

Here we present the derivation of the equation for
average resistance of a chain consisting of identical po
tials of an arbitrary shape with structural disorder:

^rN&5^uDNu2&21. ~A1!

To do this, we first derive certain recurrent relations f
quantity uDNu2, which can be averaged directly. For th
present case the equation forDN is

DN5ANDN212BNDN22 , ~A2!

where

AN51/t1~ t* !21ei2kuxN2xN21u, BN5ei2kuxN2xN21u, N.1
~A3!

and uxN2xN21u5a1DxN21, where DxN21 is a random
variable.

FIG. 2. The dependence ofj/a on ka for a weakly disordered
chain ofd potentials forq5A^(Dx)2&/a250.01 and different val-
ues ofUa @if a55 Å, then (\2/2m)U is of the order of 2 eV Å#.
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Using Eq.~A2! we can write

uDNu25uANu2uDN21u21uDN22u22ANBN* DN21DN22*

2AN* BNDN21* DN22 . ~A4!

The last two terms of Eq.~A4! can be rewritten in terms o
the quantitiesDN23 andDN24 using Eq.~A2!:

uDNu25uANu2uDN21u21~12ANAN21BN*

2AN* BNAN21* !uDN22u21~ANBN* AN22* BN21

1AN* BNAN22* BN21* !uDN23u2

2AN* BN21* BNBN22DN23* DN24

2ANBN21BN* BN22* DN23DN24* . ~A5!

Replacing in Eq.~A4! N by N22 we find:

uDN22u25uAN22u2uDN23u21uDN24u2

2AN22BN22* DN23DN24*

2AN22* BN22DN23* DN24 . ~A6!

In Eqs. ~5! and ~6! the corresponding coefficients are ave
aged separately. For example,

^uAN22u2uDN23u2&5^uAN22u2&^uDN23u2&, ~A7!

and so on.
Calculating the average values of coefficients and excl

ing the terms^DN23* DN24& and ^DN23DN24* & we obtain
from Eqs.~5! and ~6!
-

^uDNu2&2~n2l 1m11!^uDN21u2&1@2n2l 1~12n2!m#

3^uDN22u2&2@n2~ l 2m!1n4#^uDN23u2&

1n4^uDN24u2&50, ~A8!

where l and m are given in Eq.~35!. The finite-difference
equation~A8! has the particular solution̂uDNu25C&, where
C is an arbitrary constant, which can be immediately verifi
by a direct substitution. Therefore the homogeneous equa
~A8! can be reduced to an inhomogeneous third-order fin
difference equation.

Indeed, let us consider the equation

^uDNu2&1P1^uDN21u2&1P2^uDN22u2&

1P3^uDN23u2&1P450, ~A9!

where the coefficientsPJ are unknown. ReplacingN by N
21 in Eq. ~A9! and subtracting the resulting equation E
~A9!, we find

^uDNu2&1~P121!^uDN21u2&1~P22P1!^uDN22u2&

1~P32P2!^uDN23u2&1P3^uDN24u2&50. ~A10!

This equation takes the same form as~A8!, when

P152~n2l 1m!, P25~n2!~ l 2m!, P352n4.
~A11!

Using Eqs.~A1! and ~A11!, we obtain from Eq.~A9! the
equation~34! for the unknown function̂rN&.
h.
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