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Electron transmission through one-dimensional chains of randomly spaced identical potentials

Ashot Zh. Khachatriah
Physics Department, State Engineering University of Armenia, 375049 Yerevan, Armenia

Gerd Roepké
Fachbereich Physik, Universitd&Rostock, D-18051 Rostock, Germany

David H. Badalyan and David M. Sedrakfan
Physics Department, Yerevan State University, 375046 Yerevan, Armenia
(Received 8 November 20D0

An alternative method is developed for calculating the average kinetic characteristics of a one-dimensional
chain consisting oN randomly spaced potentials. A finite-difference equation for the average resiétapce
is found. Its solution provides th@y) as a function o\, the energy of the infalling electron and the chain
disorder parameter. It is shown that the relationship between the average resistance and chain length is a sum
of three power-law functions. In the limiting case of infinitely long chains, the dependgngeon N is
exponential for arbitrary electron energies and values of the disorder parameter. In this case all the states of the
single-electron spectrum are localized.

[. INTRODUCTION localization radius¢ is then determined by the asymptotic
behavior of the average resistance, which depends on the
The description of the elementary excitations and energgystem size a8 (h=e?=1)
spectrum of a random medium is an important problem of 1 aL/E
condensed matter theoty® The interest in this topic is mo- (p)=3(e"*=1), Lo (1)

tivated by the necessity of finding the average kinetic Charwhere( p) is the Landauer resistance averaged over the ran-
acteristics and different correlation functions of quaSiperi'dom field, andL is the System’s |ength Note that for a lo-
odic, nonregular, or random systefnis* calized state the radiusdepends on the energy of the elec-

It is well known that the electric conductivity at zero tem- on and the disorder parameters of the system, while for a
perature vanishes in the case of a random field with a strongg|gcalized staté is infinite.
degree of disorder. This critical phenomenon is a conse- |n this work we develop an alternative method for calcu-
quence of the localization of all electron states. An exaciating average kinetic characteristics of a 1D chain consisting
mathematical method and universal approach to the descripy jgentical, randomly spaced potentials. In the first step we
tion of the crossover from delocalized to localized states insp|ve the general scattering problem for a chain consisting of
arbitrary dimensions do not exist so f&in particular, inthe  jdentical, periodically spaced potentials. In the second step
case of a one-dimensiondlD) system even a weak disorder e optain analytical expressions for the average resistance of
leads to localization of all states of the single-electrony disordered system. We show that in the case of a random
spectrum'>** Recent investigation$® demonstrate that in field all the states of the single-electron spectrum are local-
1D systems with correlated disorder delocalized states caged. Our approach is based on the method of recurrent rela-

appear. _ _ tions for scattering amplitudes of arbitrary 1D chaifs.
Following the pioneering work by Andersdmuch effort

has been devoted to the understanding of the transport prop-
erties of 1D disordered and quasiperiodic systems. Along
with the practical interest, related to the technical advance in Let us consider a model, for which the electron potential
fabrication of structures with predetermined parametet8, energy is a superposition of nonoverlaping atomic potentials
the quantitative description of the properties of 1D systems i&/,(x—x,,) spaced ak,,X,, ... Xy of 1D chain points:
important for qualitative understanding of physical phenom-

Il. SCATTERING PROBLEM

ena in two- and three-dimensional systefg? The exactly N

solvable 1D models can be used as a test for new approaches, V(x)= Z Vi(X=Xn), 2
which can also be applied to the highe&>1) dimensional -t

problems. wherex,<X,, andN is the number of potentials. We as-

A quantitative analysis of the localization of electron sume that the asymptotic behavior of the wave function has
states in 1D systems has been carried out in Refs. 23—-26e form
starting from the kinetic theory. Landadéfound the dimen-

sionless resistangefor spinless electrons in a 1D disordered Pp(x)=e+Rye M, x——x 3
medium, by dividing the current by the difference of the .
chemical potentials between both sides of the sample. The P(x)=Tpe", x—o (4
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where Ry and Ty are electron reflection and transmission lll. THE ELECTRON SCATTERING ON THE PERIODIC

amplitudes, respectively, akd=E (2my=1, m, is electron
mass is the energy of an incident electron.

Due to the conservation of the current, the reflection and

transmission coefficients satisfy the well-known relation

|Rn[Z+[T|?=1. 5

In the general form, the determination of scattering ampli-
tudesRy and Ty, for potential(2) can be reduced to solving

of the following second-order finite-difference equatidhs:

Dn=AnDn-1—BnDn-2, (6)

Dn=AnDn_1—BnDn_2, (7
where

DN:]./.rN, E)N:RN/TN' (8)

The coefficientsAy andBy in Egs.(6) and(8) are of the
form

AN:1/IN+BN/tKI—lI fOI‘ N>1

9

Bn=rntn-1/tN N1,

A]_:l/tl, B]_:O,

wheret, is the transmission amplitud@A) andr, is the
reflection amplitudgRA) of the nth atomic potential. Note

that in Egs.(6) and (A8) N is a discrete variable, so that

DN—j:]-/TN—j and DN—j:RN—j/TN—j (j:1,2, Ce N_l)

STRUCTURES

Let us consider the particular case of the poteni?)
whenN identical nonoverlaping and arbitrary shaped poten-
tials are spaced periodically, in which case the electron po-
tential energy is

N

V(X)= 2, u(x—an),

n=1

(14)

wherea is the chain period. Since the atomic potentials are
identical, the RA'sr, andr; of the n and n’ scattering
centers differ by the phase factor

ro=rpexgi2ka(n’—n)J, (15
while at the same time the TA are equal:
tnr :tn (16)

Using Egs.(15), (16), and(A10), one can see that for a
periodic chain the coefficienisy andBy are independent of
N:

An=A=11t+(1%) te'2ke,

By=B=¢€'?a N>1

17
wheret is the transmission amplitude of an individual poten-

tial of the periodic system. Taking into account E&j7), Eq.
(6) can be transformed to the form

correspond to the TA and RA for the system constructed

from the firstN—j potentials of the chain, i.e., the potentials

S AVa(X—Xp). _
The quantitiedDy and Dy satisfy the same equatiors)

and (A8). To obtain the special solutions, the initial condi-

tions must be specified. These conditions differ Boy and
Dy and have the form

Do=1, Dy=1ft;, D=0, Dy=ry/t;, (10

whereDQandBO correspond to the electron free motion and

Dny=ADy-1—BDy-2, (18
subject to initial conditions
Do=1, D;=1#k. (19
The solution of Eq(18) is
Dn=Cia)+Coaj, (20)

where the constantS; andC, have to be determined from
the initial conditions(19). The quantitiesy; and «, are the
roots of the following characteristic equation:

D, and D; to the scattering on the first atomic potential and can be represented as

V,(x—X;). For example, if the potential is @ function
[Vi(X—X1)=u;8(x—X%4)], then

D—1+ 2 f -
T e T

—iuy

i 2kxq
2ke .

11

The solution(6) or (A8) can be represented in the form
DN:dle"'dN' (12)

Substitutingd,, from Eq. (12) into Eq. (6) we find the fol-
lowing nonlinear algebraic system:
d,=A,—B,/d,—1 (n=23,...N), (13

which, in the general case, can be solved numerically.

a’—Aa+B=0 (21)
ap=e'kash) (22)

where
cosB=Ree ™), (23)

It is important to note that expressiq@3) determines the
electron energy spectrum for a periodical system. It relates
the electron quasimomentum with the TA of the atomic po-
tential of the syster®

Furthermore using Eq$19), (20), and(22), we find

c _1+Im(e‘ikat‘1)
12727 2sinB

Substituting Egs(22) and (24) into Eq. (20) we finally ob-
tain

(24)
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sinN ,3 wherea is the average distance between the scatterers, and
Dy=e" 8| cosNB+Im(e ' at™ 1) Sing (25  the average length of the systdnis equal to N—1)a. We
take the average value of the random quantifies to be
The result(25) determines the TATy [Eq. (8)] for an arbi-  equal to zero:
trary periodical potentia{14).

To determine the quantitlp, Eq. (8) has to be solved f _ f _
with the initial conditions F(Ax)Axdax =0, ] f(Ax)dAx =1, (32

o =~ heref(Ax) are the distribution functions fakx;, which
Do=0, D;=r/t. 20 W ! !
0 1=r 0 e supposed to be the same fors¥, (1=1,2, ... N—1).
DeterminingC, and C, from Egs.(26) and (20) we obtain  The region of integration of the functiof(Ax,) has to be

for Dy the following expression: chosen in such a manner that the potentials of the nearest
) scatterers, for an arbitrary realization of random field, do not
~ :[SlnNﬁei(N_l)ka 27) overlap. ' . .
N"t sing ' Using the random field averaging procedure, the resis-

t itt
ExpreSS|ons(27) and (25) determine the RA for a periodic ance can be written as

system Ry=Dy/Dy). Note that the functlonQN andDy

are directly related to the dimensionless Landauer resistance, (pn)= J J|DN| f(AXy)- - F(AXn-1)

which can be expressed as the ratio of reflected and trans-

mitted intensities*?’ XdAX;- - -dAXN_1. (33
:|DN|2_1:|5N|2 (29) As is clear from Eq(33), the problem of the determination

of the average resistance is reduced to the averaging of the
The differences between the Landauer conductance and thgndom quantity] DN|2 A direct derivation of an explicit

Kubo formula were analyzed in many pap&ts! expression foDy does not appear to be possibfeThere-
Using Egs.(25), (27), and(28), we obtain for the Land-  fore in order to evaluate the integréd3), we attempt to

auer resistance of the periodic chain obtain the equation for the unknown quantiyy|?, whose
solution gives the dependence of the average resistance on

2 .
on=|- smzNB. (29) the model parameters. This equation is derived in the Appen-
t sirtp dix and has the following form,
It is evident from Eqs(29) and (23) that, when| cosﬁ|s1, (pr)= (N2 +m){pp_1)—N2(I —m){pn_2)
the dependence opy on N is a periodic function. If . .
| cosp|>1, thenB=iy (y is rea), andpy can be written in +n%(pn-3)+(1—n")(py), (34)
the form where
_|r|?sintNB m=(1-n?(2(p;)+1), I=4codp—-1. (35
PNZIT T : (30)
sint? g3

The initial conditions for Eq(34) are
Relation(30) means that for states outside of a conductivity
band the resistance exponentially tends to infinity, when
—o0, Expressiong25) and (29) generalize previous results

2
. (p2)=(n?I+m+1){p;).

r
(p0)=0, (p1)= ‘f

obtained for layered homogeneous media and for chains (36
composed of periodié-like potentials’ Conditions(36) follow directly from Eq.(33). In Eqgs.(34)—
(36)

IV. THE RESISTANCE OF THE CHAIN WITH
STRUCTURAL DISORDER : :
n2:<el2kAx|>:f f(AX|)e|2kAX|dAX| ] (37)

Let us consider a 1D model consisting of identical, ran-
domly spaced potentials. We will assume that for an arbi+or example, wherf(Ax,) is a Gaussian distribution func-
trary realization of random field the distances between potjon,
tentials are larger compared with the radius of the action of
an individual potential. ggés form of disorder is usually
called a structural disordér f(AX)= ————e

As follows from Eqgs.(6), (8), and(28) the resistance of a 2m((AX)%)
chain ofN identical potentials depends on the distances bethenn? depends of(Ax)?) and has the form
tween the nearest scatterers only, ig;,can be considered

— AX212((AX)?) (39)

as a function of the quantitiesx.;—x| (I=1,2,... N n2= e~ 2KX(8%?) (39
—1). Here we assuml, ., — x| to be random and indepen-
dent, so that where((Ax)?) is the disorder parameter of the system.

Equation(34) is an inhomogeneous finite-difference equa-
[X| 11— X |=a+Ax, (31)  tion with constant coefficients. Its solution can be written as
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3

(pn)=2, Cyj'+Co, (40)

whereCq, andC; (j=1,2,3) are constantyg; (j=1,2,3) are
the roots of the characteristic equation

y;3 = (n2l+m)y;2+n?(I—=m)y;—n*=0, (41)

which are calculated using the standard formulas for the so-

lution of a cubic equation:

y;=a+b+(n?l+m)/3,

b -b
y2’3=—%ti aT Y3+ (nA+m)/3, (42
where
_3 q _3 _9_

a= V_§+ Q, b= > \/6,

B (n2I+m P on¥(l-m)(nll+m)
a=-2\—3 3 -

q 2 p 3 (n2|+m)2

Q:(E) +(§) s pz—T-}—nz(l—m).
(43

As follows from Egs.(42) and(43), for Q>0 Eq.(41) has

one real- and two complex-valued roots. Wh@r<0, all
three roots are real.

Let us now find the constant, andC;. ConstantCy is

a particular solution of Eq34) and it is easy to see that

Co=—1/2. (44

To determineC; (j=1,2,3) we first derive, using Eq&36),
(41), and(44), the following linear system of equations:

3
le C;={(po)+1/2,

3
2}1 Ciy;=(p1)+1/2,

(45)
3
J_Zl Ciy;2=(pa)+1/2.
The solution of systen@b) is
Clzl (2(p2) +1)—(2(p1) +1)(Y2+Y3) +Y2y3 . (49

2 (Y2=Y) (Y3~ Y1)

The constant€, andC; can be obtained from Eg46) via
a cyclic permutation o/, y,, andys.
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V. THE LOCALIZATION RADIUS
OF SINGLE-ELECTRON STATES

In this section we prove that in the considered 1D random
model all single-electron states are localized, i.e., the local-
ization radius

= lim ———
& M (o)

(47)

is a finite function, which is independent bf for arbitrary
values of parametens t, andk. To do this, we investigate
the properties of the roots of the characteristic equaddn
According to Viete’'s theorem, we have the following rela-
tionship for the roots of Eq41):

y1y2ys=n. (48)

Note thatn?>0 by definition. As follows from Eq(48) all
three roots are reald=<0), when they are positive. If one of
the roots is positive while the remaining ones are negative,
the characteristic equation has only one positive real root.

Let us now demonstrate, that among the roots of (Ed).
there is one root which is greater than or equal to unity. Let
us consider the function

F(y)=y;*= (n?l+m)y;>+n?(I—m)y;—n*. (49

The zeros of the functiofr(x) determine the roots of the
characteristic equation.

It is easy to see that for all values bfm, and n? the
function F(x) is negative at the poiny=1. If x—x the
function F(x)—o and whenx— —o, then F(x)— —o°.
From these properties, it follows, in particular, that the equa-
tion F(x)=0 contains a root that is larger than unity and
larger than the absolute value of the other roots. Therefore
the asymptotic behavior dfpy) for N—oo has the form

(pn)=Caz—1/2. (50)

Herez, is the root of the characteristic equati@tl), which

is greater than or equal to unitg,&=1) andz,;=|z,|, |z4],
wherez, andz; are the two remaining roots. Substituting Eq.
(50) into Eq.(48) we obtain the following expressions for the
radius of localization:

a

£
As follows from Eq.(42), ¢ has a complicated transcendental
dependence on the disorder parameter of the system, the
electron energy, and the scattering amplitudes.

In Eq. (51), the casez;=1 corresponds to delocalized
states £—). As can be seen from Eq&35) and (41) this
condition is satisfied in the case of periodic chairf£1)
for the conductivity band states. For a random chain, the

Formulas(40)—(46) solve the problem of determination of states with energies equal to the resonance energies of a
the average resistance for a general specified random fielgingle potential of the chainpg=0) are also delocalized.
As we have shown, the dependencém§) on the number of To illustrate the obtained results, we consider a structural
scatterers is a sum of three power law functions. Finally, notelisordered chain consisting of identical rectangular barriers
that taking the disorder parameter in the solutidf) asn>  when the deviation from a periodic chain is described by
=1 (ordered chaip one recovers the form given by Eq. means of the Gaussian distribution functi@®). Using the
(30). expression for TA of a rectangular potential,
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FIG. 1. The dependence éfa for a chain of randomly spaced FIG. 2. The dependence gfa on ka for a weakly disordered
identical rectangular potentials as a function k& for Va? chain of § potentials forq= \{(Ax)?)/a?=0.01 and different val-
=20,d/a=0.5 and different values ofj={(Ax)?)/a’ [if a  ues ofUa [if a=5 A, then ¢:2/2m)U is of the order of 2 eV A
=5 A, then ¢?2/2m)V=25 eV].

Inserting Eq.(56) into Eq.(55), from Eg.(51) we obtain

sinydf, (52 a& 1=(p,)(1—n?)/sirtg. (57)
According to Eq.(57), the radius of localization is infinity
Where)(= VE—V, Vis the magnitude of the potential, add 0n|y for the case wherg?=1 (periodic potentia[
is its width, we find from Eq(23) In Fig. 2 we present a numerical evaluation of E5j) for
> 12 a random chain composed éfpotentials. In this case, the
sin(a—d)k sin yd energy spectrum is given by the well-known formula gos
' =coska+ (U/K)sinka with p;=U?/4k? (U is the strength of
(53)  the s potentia). As a small dimensionless disorder parameter
which is the well-known formula for the energy spectrum of We adopted the ratiq=y((Ax)“)/a“. According to Fig. 2,
periodic Kronig-Penney chain, wheass the system period. for fixed g the increase ob leads to a decrease of the local-
From Eqgs.(30) and(52), for the Landauer resistance of a ization radius of the conductivity band states. As we see in

2+k2

t*=expikd){ cos yd—i 2Ky

cosB=coga—d)k cosyd— 2Ky

moves away from the ends of conductivity band and takes its
(x%2—k?)? maximum value at the center of the band.
plzwsinz)(d. (54)
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APPENDIX

at the end of the band. tials of an arbitrary shape with structural disorder:
It is interesting to consider for the general model the case
of weak disorder (+ n?=s<1) when the energy of an elec- (pn)=(|IDn?)— 1. (A1)

tron corresponds to the conductivity band of the periodi
system|Re(e %@t~ 1)|<1. In this limiting case the roat,
determining the localization radius is

To do this, we first derive certain recurrent relations for
quantity |Dy|?, which can be averaged directly. For the
present case the equation 10 is

z=1+4z, (55) Dn=AnDn-1—BnDn-2, (A2)
where 0<Az<1. where
Inserting Eq.(55) in Eq. (41) and keeping only terms
linear in Az, we arrive at the following expression fdrz: ~ Ay= 14+ (t*) lel2KPn—xn-1 B =e2Kn—xn-1l N>1
(A3)

a2
:M (56) and |xy—Xy_1|=a+AXy_1, Where Axy_; is a random

Az .
siB variable.



13 506

Using Eq.(A2) we can write
|DnJ?=|An|?IDn-1/?+|Dy- 2>~ A\BDn-1D} 5
—ALBNDN-_1Dn-2. (A4)

The last two terms of EqA4) can be rewritten in terms of
the quantitieDy_5 andDy_, using Eq.(A2):

|DnJ2=|An|2 Dy 1) 2+ (1- AyAy-1BY
—ARBNAR_ 1) DN 2] >+ (ANBRAY _5Bn-1
+ANBNAN-BY-1)|Dn—3|?

—ANBN-1BnBN- 2D 3Dn-4

—ANBn_1BEBY_,Dn_3D%_,. (A5)
Replacing in Eq(A4) N by N—2 we find:
IDn-2l*=|An-2|*|Dn-3l*+[Dn-4l?
—An-2B{-2Dn-3DR -4
— A% _,Bn_,DF_sDn_a. (A6)

In Egs.(5) and(6) the corresponding coefficients are aver-
aged separately. For example,

(|An-2l%IDn-3%) = (|An-2|*){|Dn-3]%),
and so on.

(A7)

Calculating the average values of coefficients and exclud-

ing the terms(Dy_3Dyn_4) and (Dy_3Dy_4) We obtain
from Eqgs.(5) and(6)
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(IDNI®) = (%l +m+1)(|Dy-1|?) +[2n% + (1—-n?)m]
X(|Dn=2/%)—[n?(I—m)+n*](|Dy_3%

+n*(|Dy-4/%) =0, (A8)
wherel and m are given in Eq.35). The finite-difference
equation(A8) has the particular solutiofjDy|?>=C), where
C is an arbitrary constant, which can be immediately verified
by a direct substitution. Therefore the homogeneous equation
(A8) can be reduced to an inhomogeneous third-order finite-
difference equation.

Indeed, let us consider the equation

(IDN?)+P1(|Dn_1]2)+P2(|Dy-2[?)
+P3(|Dn-3l?) +P4=0, (A9)

where the coefficient®; are unknown. Replacingl by N
—1 in Eq. (A9) and subtracting the resulting equation Eq.
(A9), we find

(IDNI?)+(P1=1){|Dn_1]?) + (P2—P1){|Dn-2/?)

+(P3—P,){(|Dn_3|?) + P3(|Dy_4|*)=0.  (A10)
This equation takes the same form(a8), when
Pi=—(n?l+m), Py=(n?(I-m), Ps=-n*
(A11)

Using Egs.(Al) and (All), we obtain from Eq.(A9) the
equation(34) for the unknown functior{ py).
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