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Fluorescence from a few electrons
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Systems containing few fermior(g.g., electronsare of great current interest. Fluorescence occurs when
electrons drop from one level to another without changing spin. Only electron gases in a state of equilibrium
are considered. When the system may exchange electrons with a large reservoir, the electron-gas fluorescence
is easily obtained from the well-known Fermi-Dirac distribution. But this is not so when the number of
electrons in the system is prevented from varying, as is the case for isolated systems and for systems that are
in thermal contact with electrical insulators such as diamond. Our accurate expressions rest on the assumption
that single-electron energy levels are evenly spaced, and that energy coupling and spin coupling between
electrons are small. These assumptions are shown to be realistic for many systems. Fluorescence from short,
nearly isolated, quantum wires is predicted to drop abruptly in the visible, a result not predicted by the
Fermi-Dirac distribution. Our exact formulas are based on restricted and unrestricted partitions of integers. The
method is considerably simpler than the ones proposed earlier, which are based on second quantization and
contour integration.

[. INTRODUCTION lationship is linear rather than parabolic, aads exactly a
constant. Level spacings in small irregular metal particles
A number of remarkable experiments involving few elec-(with a size on the order of 10 nnare nearly uniform as a
trons in semiconductors and free space, metal particles, armbnsequence of the mechanism of level “repulsion.” The
spin-1/2 atoms at low temperatures have been recentlgrobability that adjacent levels are separatechy, for the
reported™? Only electrons are considered below. These col-appropriate ensemble, of the forefexp(—¢?), a sharply
lections of electrons may be isolated or in thermal contacpeaked function ok.* As is well known, the Landau levels
with the environment, but, in any event, the number of parthat describe electron motion in uniform magnetic fiélase
ticles is constant. The Fermi-Dirg&D) distribution holds evenly spaced. These levels are highly degenerate, but the
when electrons may be freely exchanged with a large resecoupling between degenerate statespressing the drift of
voir (grand-canonical ensembjebut is inaccurate for the electrons through the magnetic field linesay be neglected
systems considered. The present paper provides simple anger some period of time. Likewise, two- or three-
accurate formulas for electron occupancy and fluorescenagimensional harmonic oscillators, modeling, for example, the
for evenly spaced single-electron energy levels. Spontaneousnfinement of electrons in traps, exhibit degenerate evenly
emission is supposed to be weak enough not to perturb imspaced levels. Our approach may be generalized to degener-
portantly the system state of equilibrivthOnly a vanish-  ate levels. It is appropriate to mention also that the density of
ingly small Coulomb interaction between electrdiscon-  states of(two-dimensiongl quantum wells with parabolic
sidered. The time required for the system to reachbands is a constant within a subband. This implies that the
equilibrium is not needed because averagings are performeghergy-level spacing is constant on the average, though not
over unlimited time scales. Quantum optics effects, such asxactly.
resonance fluorescence or superradiance, will not be consid- The amount of light spontaneously emitted by electronic
ered. systems depends on the optical-mode density of state, which
The assumption of evenly spaced single-electron energig different for free-space, low-dimensional structures, or
levels is not as restrictive as one may think at first. Considephotonic band-gap materials. It is not the purpose of the
indeed one-dimensional devices such as the quantum wirggesent paper to discuss such problems. Because all compari-
employed in modern laser diodédf the wire is uniform  sons are made at the same optical wavelength, terms depend-
over its length and the valence and conduction bands areg on wavelength onlyessentially the optical-mode density
parabolic in the energy-momentum space, the energy spacing statg¢ may be dropped. The quantity that we calculate is
e between adjacent levels is not a constant. However, ththe probability that the system exhibits an electron at l&vel
variations ofe may be neglected near the Fermi level as longand a hole(no electron at levelk’, with k—k’'=#Aw/e=d,
as the temperature is not too high. For zero-band-gap semivhere denotes the Planck constant divided by 2nd o
conductors such as PhSny.16Te, the energy-momentum re- the angular optical frequency of observation. In pure semi-
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conductors, electron-momentum conservation entails thaiccupied is simply related t8V. The numbem(k;k") of

transitions may occur only symmetrically with respect to themicrostates whose levélis occupied and levet’ is empty

Fermi level, implying thak=(1+d)/2, k' =(1—d)/2, with  is shown to be simply related tm(k), and thus tow. Av-

oddd, if k=0 labels the zero-temperature top electron. Weeraging, with the Boltzmann factor as a weight, provides the

will particularly consider the case where this condition holds corresponding formulas in the canonical ensemble. Appendix
Let us recall that, in statistical mechanics, isolated sysB explains how the possibility that electrons may change

tems are described by microcanonical ensembles, systerBin in the course of time is accounted for.

that may exchange energy but not particles with a reservoir

are described by canonical ensembles and systems that may Il. FERMI-DIRAC DISTRIBUTION

exchange both energy and particles with a reservoir are de- . . .
scribed by grand-canonical ensembles. The Fermi-Dirac The probabilityp that a system in thermaind electrical

distributior? is applicable to finite systems only in the latter CONtact with a large medium contaiNs” electrons with spin

case. That is, the FD distribution is invalid for isolated sys-UP: N~ €léctrons with spin down, and energyis propor-

tems and for systems that are in contact with an electricafonl to the corresponding number of medium stash-
insulator such as diamond. In the present context, “finite” SCriPtSM) conveniently written as eXBin(Ny Ny ,Un)] with

(or “small” or “mesoscopic”’) means thakgT, where T S, the medium e_ntropy. If the syst_em-medium contact is
denotes the absolute electron gas temperature, is not nec¥&"y Weak, energies as well as particle numbers add up. A
sarily large compared with the adjacent-level energy Spacf_|(st—order expansion db,, with respect to its arguments then
ings e. In grand-canonical ensembles, the fluorescence i§'VeS
proportional to theproductof the probabilities that the upper T N B
level is occupied and that the lower level is empty. In ca- P(N",N",U)=Cexg—aN"—aN"—-pU), (1)
nonical enser_nbles, it turns out that fluorescence is PropotshareC denotes a constant and

tional to thedifferencebetween lower and upper levels oc-

cupancies. This is apparently a new result. S,

Exact formulas for the level occupancy in finite single- B=——,
spin systems with evenly spaced levels in contact with a heat U
bath have been reported bef8fE.? Our methof consists of
first enumerating the microstates of isolated systems. Subse- IdSn  ISm
guent averaging provides expressions for the canonical occu- a=-—pBu= N = &N_’ 2
m m

pancies. This method is considerably simpler than the

second-quantization methods and integral-transformatiopq e B=1ksT, whereT denotes the temperature ancthe
formulas employed in Refs. 4 and 8. The present paper geferm; jevel. A singlex value occurs because the medium
eralizes the results reported in Ref. 6 to account for the fagtahavior is the same for electrons of opposite spins.

that some electrons may change spin in the course of time. |+ t51ows from Eq. (1) that the probabilitiesp® that a

Simple, exact formulas for fluorescence are obtained for 'Soﬁondegenerate state of enexgyis unoccupiedp® that it is

lated systems and canonical ensembles. For arbitrary 'ev?)lccupied by an electron of either spin, apf that it is
energies and the canonical ensemble, known recurren '

formulas® are satisfied by our more special, but explici'[,%gCCUpIed by two electrons are, respectively,
forms. p(O)=C

The FD distribution is derived in Sec. Il to set up the '
notation and to recall why, in grand-canonical ensembles,
spin is properly accounted for by a twofold degeneracy. This
method of accounting for the electron spin, however, is in- 5
valid in microcanonical or canonical ensembles because un- p®=Cc?, 3
paired electrons may be in either one of two distinguishable
states. Finite systems that exchange energy but not particl
with a reservoir are considered in Secs. Ill and IV. In Sec.
11, the electron spin is supposed to be strictly preserved and®
for simplicity, it is supposed that there are as many electrons
with spin up as with spin down. Formulas valid for single- (k) = 2 2 _ 2
spin electrons need only be multiplied by factors of 2 in that 7o' z7'+1 exdB(e—wm)]+l gl2kqq’
situation. In Sec. IV, electrons are allowed to change spin in (4)
the course of timgbut not during a spontaneous emission
even). For the sake of clarity, only essential formulas relat-whereq=exp(— ) denotes the Boltzmann factor. In the last
ing to canonical ensembles are given in the main text, deexpression it is assumed that=k, wherek denotes any
tailed derivations and intermediate results being relegated teelative integer. The separatienbetween adjacent-level en-
Appendixes A and B. ergies is taken as the energy unit, with a typical value for

The purpose of Appendix A is to explain why the total 1-um-long quantum wires oé=1 meV. In the last expres-
numberW of microstates of isolated systems is related to thesion in Eq.(4), k=1 labels the level just above the top elec-
partitions of integers, for single-spin-state electrons. It istron atT=0 K, and we have sgi=3. Note that for largex
shown that the numbem(k) of microstates whose levélis  values,ngp(q;k)~2q< 2

pM=cCz,

ith z=exp(—a—pBe). Normalization 0@ +2p®+p?)
=1) givesC=1/(1+2z)2. The occupancyaverage number
f electron$ nep=2pY+2p® of level k is therefore
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nl/nFD

The average system energy added on top offth® K 2n,./

energy is obtained by summing up the occupancy over all "Fp
levels, and subtracting a similar sum for the0 K distri- 2 isolated
bution. The result &5

heat bath

j
rep()= > ——. (5
=1 q
1
In grand-canonical ensembles, occupancies at different
levels are independent. For a single-spin state, this meang s
that the probability that levek is occupied and levek’ is
empty is the product of leved occupancy and (% level k’
occupancy. When the two-spin states are considered, we
obtain

1

LFD(q;k,k’)=2nFD(q'k)(1_ Nep(9.k')

5 ) : (6) 05

2
Fluorescence may indeed occur for 8 out of the 16 possibili-
ties of occupancy of levelk andk’ (no electron, spin-up 0.001 0-21 0.1 1 0.001 0.31 0.1 1
electron, spin-down electron, or two electrons for each of the FD FD

two levelg. Because occupancies are independent, the sum
of the probabilities that fluorescence events occur is found t0ad as functions ofip at equal values of the average added energy

be given by Eq/(6). . . r. The isolated single-spin-state electron occupandg)invas mul-

If the electron-momentum conservation law is enforced,[ip”ed by 2 to account for the two-spin states. (& and (b) spin
we havek=(1+d)/2, k'=(1-d)/2, and the FD fluores- iy is not allowed. In(c) electrons of different spins may exchange
cence in Eq(6) reads after rearranging energy but spin flip is not allowed. Casel and(e) are the same as
casesb) and(c), respectively, except that spin flip is allowed)
collects previous results for an average added energ§00.

FIG. 1. Ratio of exact and Fermi-Diraa{p) occupancies plot-

Lep(g;d)= (7)

(qfd/2+ 1)2 ' . ) ) )
expected according to the FD distribution.
Thus, the fluorescence in the grand-canonical ensemble is In the present section, it is supposed that the electron
given by a simple function of temperatuiie and angular spins are preserved in the course of time and that there are as
optical frequency of observationy. We will see that the many electrons with spin up and spin down, for simplicity. It
canonical ensemble fluorescence is given by a simple seriethen suffices to multiply the expressions for single-spin elec-
tron occupancy, average energy, and fluorescence, given in
lll. FLUORESCENCE WITHOUT SPIN FLIP Appendix A, by factors of 2.
The occupancy reads, according to E413),
For single-spin electrons, the occupancy in isolated sys-
tems is given b_y a S|mple. formula reported in Ref. 6. The ny(qik)=—2 2 (—1)igik+iG-vr2 ®)
proof, omitted in Ref. 6, is given in Appendix A of the j=12,...
present papefsee Eq.(A12)]. If the energy added to the
system is denoted by, the numbe(r) of configurations Note that, for largek values, n,(q; K)~2q“ so that
of the system is equal here to the numpér) of partitions ~ Nu(d:K)/Nep(9;K) = Va, if the expression fongp(q;k) in
of r. Indeed, microstates may be obtained by shifting elecEd: (4) is used.
trons upward from theiT=0 K locations by nonincreasing '€ average added energy réads
steps that sum up ta Let us recall that a partition ofis a

nonincreasing sequence of positive integers summing up to r(q)=2 D J ©)
For example(2,1,]) is a partition of 4. The numbegy(4) of u =17 . q—J_ 1’

partitions of 4 equals 5. By conventiop(0)=1 andp(r)

=0 if r<0. We first compare in Fig. (B the occupancy in isolated

To illustrate the difference existing between the exact resystems with the FD occupancy. The former is obtained by
sult and the Fermi-Dirac distribution, let us note that, for anymultiplying n;(r;k) given in Eq.(A12) by a factor of 2 to
microstate, the energy separation between the top electragtcount for the two-spin states. The FD occupancy is given
and the lowest hole cannot exceee, wheree denotes as in Eq.(4), with q expressed in terms of the average enargy
before the adjacent-level energy spacing. Accordingly, thevith the help of Eq.(5). Note that, below 0.1, isolated-
fluorescence drops abruptly at an angular optical frequencyystem occupancies asenallerthan FD occupancies.
w=relh. Whenr>1, a system temperatur€ may be Consider next the case where the system is in contact with
defined® kyT~e\/6r/m. As an example, room-temperature a heat bath. The ratio of the exact occupancy in &j.
isolated systems witte=1 meV should not emit visible [whereq is expressed in terms of the average enargyith
light according to the exact formula, while some faint light is the help of Eq(9)] and the FD occupand¥gs.(4) and(5)]
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FIG. 2. This figure is similar to Fig. 1, but the comparison  FIG. 3. Ratio of spontaneously emitted light pow@uores-
between canonical and grand-canonical ensembles is made at eqeahce from 1-um-long quantum wires in contact with diamond
temperatures rather than at equal average energies. The energganonical ensembleand copper(grand-canonical ensemblere-
level spacing is supposed to be 1 meV, typical gifi-long quan-  spectively, as a function af=% w/e. The parameter is the electron-
tum wires. The parameter is the electron-gas absolute temperatuggas absolute temperatufe(a) Spin flip is not allowed(b) Spin flip
T. (&) Spin flip is not allowed(b) Spin flip is allowed. is allowed.

is represented in Fig.(lh) as a function of the FD occupancy trically insulating heat sink such as diamond. The occupancy
for various values of the average energynamely,r=6, 60, and fluorescence for coupled-spin electrons is derived from
and 600. Below 0.1, the exact occupanexceedshe FD  previous expressions through a succession of partitionings
occupancy. Figure (2) shows that, when the comparison is and averagings. Because the details are lengthy, they are rel-
made at equal temperatur€ginstead of equal average en- egated to Appendix B. Remarkably, many summations can
ergies, the opposite occurs. In Fig. 2, we have chosen tde performed in closed form so that the final result is simple.
represent the occupancy ratios as functions of the level num- The occupancy reads

ber k (referred to the Fermi levelinstead of the FD occu- o

pancy. > )
To evaluate fluorescence, we need to know the number j:z_w o’ ny(aik+j)

m(r;k;k") of microstates of added energyhaving an elec- n.(g;k)= = , (12

tron at level k and none at levelkk’=k—d, where d 2 qu

=hwle. Appendix A shows that this quantity is easily ex- [

pressible in terms of the numbergr;k) of microstates hav-
ing an electron at levet (irrespectively of other state occu-
pancie$. Averaging the result over with " as a weight to
account for energy fluctuations in the presence of a heat bat
the fluorescence is found to heee Eq.(A9)]

wheren,(q;k) is given in Eq.(8). Comparisons with the FD
distributions are exemplified in Figs(d) and Zb). With the
Help of theta functior’$ the average added energy may be
written as a simple surfsee Eq(B5)]

L . ] (—1)j
ny(g;k") —ny(g;k) ro(gq)=2 _ - | 13
Lu(askk)=— q_d_lu , (10) (@ ,-:%,,. a’'-1 d-q! 3
wheren,(q:K) is given in Eq.(8). The fluorescence reaflsee Eqs(Al14) and(B6)]
If the law of electron-momentum conservation is en- too 1+d 1-d
forced, the fluorescence reads j? i ; —
D R A )
1+d 1-d Le(g;d)= = , (14
Lugid)=Ly{ & ———— 1D > g

j=—

Recall thatg=exp(—e/kgT) (Wheree is typically 1 meV  whereL ,(q;k,k’) is given in Eq.(10). Fluorescence is illus-
and room temperature correspondskiol =26 meV) and trated in Fig. 8b). Note that the exact result is closer to the
d=fiw/e. The fluorescence ratio,(q;d)/Lgp(q;d) accord-  FD result when electrons are allowed to change spin in the
ing to Eqg.(7) and Eq.(11) is represented in Fig.(8) as a course of time.
function ofd for different temperatures. It is interesting that
canonical and grand-canonical fluorescences almost coincide V. CONCLUSION
at small wavelengths even though the occupancies are quite
different in that limit. When a(possibly small system is in thermal and electri-

cal contact with a large medium such as a piece of copper,
IV. ELUORESCENCE WITH SPIN ELIP the average nurr_1ber _of electrons ogcupying some energy
level (occupancy is twice the value given by Fermi-Dirac

Electron spins are now allowed to vary in the course offormula. The fluorescendéight spontaneously emitted with-
time (but not during a fluorescence everithe numberdN™  out electron-spin flip defined in terms of the probability that
and N~ of electrons with spin up and spin down, respec-an electron at levek may drop to levek—# w/e (w denotes
tively, may fluctuate, but their sumN™+N~"=N remains the angular optical frequency of observatiois also easily
constant if the system is isolated or in contact with an elecobtained. But when the system is isolated or in thermal con-
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tact with an electrical insulator, electron occupancies args occupied. The occupanayN,U:k) of level k is defined
given by different expressions. Because modern electronicgs m(N,U;k)/W(N,U).
often employ short quantum wires supported by diamond (3) The numbem(N,U;k;k’) of microstates whose level
heat sinks, it is important to have at our disposal precisg is occupied and levek’ is empty. The fluorescence
expressions for occupancy and fluorescence in such situg(N,U:k;k’) emitted by electrons dropping from levietto
tions. The expressions obtained in this paper were illustratefvel k' is defined asn(N,U;k;k’)/W(N,U).
by comparison with the FD results. We considered the case These evaluations will be presented in reversed order. Let
where the electron spins are strictly maintained in the coursas first relate the numben(N,U;k;k’) of microstates whose
of time (Sec. lll) and the case where spin flip is allowed level k is occupied and levek’ is empty to the numbers
(Sec. IV). We found, for example, that small FD occupanciesm(N,U;k) defined above. For each microstate, let the elec-
should be multiplied by approximately expé/2kgT) tron at levelk be transferred to the lower empty lewél The
~0.22 if e=1 meV andT=4 K, a factor that differs sig- numberN of electrons is unaffected but the total energy gets
nificantly from unity. But, unexpectedly, the fluorescencereduced fronl to U—d whered= €, — €., >0, and the roles
turns out to be given rather accurately by the FD distributionof k andk’ are reversed. The equality

Our mathematical approach is based on a direct enumera-
tion of the microstates, and the results are expressed in terms m(N,U;k;k")=m(N,U—d;k’;k) (A1)
of the number of partitions of integers. This method is con-

siderably simpler than those previously reported for similartherefore holds. Now notice that

models., both cqnceptually and alggbraically. A computer m(N,U:k)—m(N,U:k:k")=m(N,U:k’")—m(N,U:k’:k)
simulation has given results that are in very good agreement (A2)
with the analytical formulas reported in this paper.

It is our intention to report in the future analytical and because the two sides of the above equation count mi-
numerical results relating to mesoscopic laser-diode lightrostates whose leveklsandk’ areboth occupied. When the
fluctuations. A preliminary step consists of consideringexpression in Eq(A2) is introduced into Eq(A1) iteration
single-mode cavities incorporating the electron gas at thergives a recurrence relation fon(N,U;k;k’) that reads
mal equilibrium, with one or two bands of statésr a single
band, see Appendix A of the present pgpdihe intraband ,

Auger effect and the stimulated transitions may be intro- M(N,Uskik ):j >

duced at that stage. Next, the probability that low-lying elec-

trons be promoted to high-lying levels by the action of a X[m(N,U—jd;k")—m(N,U—jd;k)].

(quiet or fluctuating pump and the probability that light (A3)

guanta be absorbed are introduced. At low power, our simu-

lation gives output light fluctuations that agree very well The above series terminates when the total energy vanishes,

with elementary laser-noise theory predictidRsAt high i.e., whenjd exceeddJ.

power, new effectftemperature fluctuations, spectral-hole  Consider next then(N,U;k) microstates whose levels

burning, statistical fluctuations of the optical gain, ptmcur  are occupied, and remove these electrons. The same number

that are difficult to handle analytically. The analytical for-  of microstates is obtained, witi— 1 electrons, total energy

mulas reported in this paper are helpful to assess the accur— ¢, , and no electron at levéd The number of these new

racy of the simulation in special situations. microstates may be written as the difference between the
total number of microstates and the number of microstates
whose levek is occupied We have therefore the identity

=12,...

APPENDIX A: OCCUPANCY AND FLUORESCENCE FOR
SINGLE-SPIN-STATE ELECTRONS: ARBITRARY M(N,U;K)=W(N—1U—€)—m(N—1U— ¢;K).
ENERGY LEVELS (A4)

We are only concerned in the main text with evenly After a sufficient number of iterations, either the energy or
spaced one-electron energy levgdg}. Rigorous occupancy the number of electrons becomes negative and the last term
formulas are obtained in the present appendix by consideringanishes. The quantityn(N,U;k) may therefore be written
first arbitrary {€,}. Eventually the number of levels is al- as a finite sum
lowed to go to infinity.

Consider an |solgted sy§te'm whqse nondegenerate one- m(N,U;k) = — E (—1)IW(N=],U—]ep).
electron level energies are, in increasing ordgr,e,, ..., =17 .
€, ..., €g, With N<B single-spin electrons. According to (A5)

the Pauli principle each level may be occupied by only O or ) _ ) )

1 electron. The system enertyis therefore the sum dfi of ~ The series terminates wherexceeds eitheN or U/e.

the e.. The purpose of this appendix is to evaluate the fol- We have the obvious identitithe number of occupied

lowing. states for the whole set of microstates being written in two
(1) The numbeW(N,U) of possible ways of obtaining different manners

some given U (number of microstates or ‘“statistical

weight). . NW(N,U)= >, m(N,U:k). (16)
(2) The numbem(N,U;k) of microstates whose levél k=1
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A system in contact with a heat bath at temperafliie  tion, lettingk=0 denote the top electron in the least-energy
described by the canonical ensemble. Let us define as in tteonfiguration, and let us employ the added eneargystead
main textq=exp(-B), where=1/kgT. The so-called par- of the total energyJ as an argument. EquatidA5) reads
tition functionZ(N,q) is the sum oveb) of q"W(N,U), and
the average energy isi{Z) 9Z(N,q)/dq. When both sides of N k)= — E PN
Eq. (A6) are multiplied byq and summed oveld we ob- m(N,3k) =17 .. (—1)
tain, using Eq(A5),

Xp(P+jiN—j,r—jk—=j(j—1)/2).

1
ZN =5 > > q’m(N,Usk) (A10)
N =17 ... 050
If r does not exceed\ and P, it is intuitive that
— i (—1) E qi e p(P;N,r)=p(r), wherep(r) denotes the number of unre-
Nj-i7 ... k=12, ... stricted partitions of. Equation(A10) then simplifies to
X 2, 4TINS U e mrk== ¥ (-1 -jk-i(-1)/2.
= =12, ...
(A11)
1 This expression was reportéfr the first time to our knowl-
=——— > (-1iz(19HZ(N-j,q). edge in Ref. 6. IfN andP are infinite {e,}=7), Eq.(A11)
Nj=12"..N holds for any finite value of and the corresponding single-
(A7) spin-state occupancy of an isolated system is
Indeed, for a single electroN=1), U may only take ni(r;k)=m(r;k)/p(r). (A12)

one of thee, values and the statistical weighlt is unity. It
follows thatZ(1,g) is the sum ovek from 1 to B of k.
Note thatZ(0,q)=1. Equation(A7) was obtained earli&t
from a less direct proof.

The occupancyaverage number of electrons(q;k) of
level k is equal to the sum oved of qm(N,U;k), divided n(gk)=— > (—1)igktia-D2  (a13)
by Z(N,q), where m(N,U;k) is given in Eq.(A5) and =12,

Z(N,q) is defined in Eq.(A7) from a recurrence relation.

Averaging the numerator and denominator of above expres-
sion with " as a weight withr from 0 to o gives the ca-
nonical occupandy

Thus Finally the expression in EA9) simplifies in the present
situation to
- (CDdRziN-ig iy MK =@k s
I R GkK)=—F .
n(q;k) ZIN.Q) . (A8) q< k-1
Expression(A8) was reported befor€. We have set up a Monte Carlo simulation program that

The probability that levek be occupied and that level  enables us to recover previous analytical expressions. For the
be empty at temperatufis similarly obtained by summing case of isolated systems, a constant probability per unit time
q“m(N,U;k;k") overU, and dividing the result bZ(N,q), s ascribed to level-changing events that preserve energy.
wherem(N,U;k;k") is given in Eq.(A3). The result of the  The system eventually reaches a state of equilibrium with an
summation may be expressed as diféerenceof the lower  electron distribution very close to the one derived from pre-
and upper occupancies, according to vious recurrence formulas. The Fermi-Dirac distribution is

obtained in the limit of larg® values, with temperatures and
n(q; k") —n(q;k) Fermi levels that depend on the energy given initially to the
qec—e—1 (A9) system. Our computer program may handle single-electron-
level distributions that could be difficult to analyze theoreti-
where the occupanay(q;Kk) is given in Eq.(A8). Thus the  cally (for example, two bands of stajes
fluorescence is equal to the difference between the occupan- When the system is in thermal contact with a heat bat,
cies atk’ andk multiplied by the Bose function. electrons at levelk are ascribed a probability per unit timg,

Let us now specialize the above formulas for the casef being demoted to levéd—1 and a probabilityy p of being
wheree,=k, k=1, ... B. Considering the displacement of promoted to levelk+1, provided these levels are empty.
the N electrons from their least-energy locatioris=(1—N) Strictly speaking, these prescriptions rest on an Einstein-type
beginning to the one on top, we observe 4tN,U) is the  model of solids that supposes that the atoms are vibrating at
numberp(P;N,r) of partitions of theadded energy £U frequencywynonon= €/, Wheree denotes as before the elec-
—N(N+1)/2 into at mostN parts, none of them exceeding tronic level spacing. But the details of the thermalization
P=B—N. Note that the numbers(P;N,r) may be obtained model turn out to be rather unimportant. The computer pro-
from a recurrence relatiolt, p(P;N,r)—p(P;N—1r) gram enabled us to reproduce the theoretical results with
=p(P—1;N,r—N). Let us now change slightly our nota- great accuracy. For example, whBr 100, e=1 meV, and

L(g;k,k")=
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T=100 K, the numerical distribution fits the Fermi-Dirac ceed\/r, wherer denotes as before the energy added on top
distribution with a discrepancy not exceeding 0.2%. of N(N+1). If r=6, for example, five values aof are per-

When the electron gas is enclosed in a single-mode cavnitted, namelyn=0, n=+ 1, andn= =+ 2. It thus suffices to
ity, the probability that the cavity contaims light quanta is  sum the numerator and denominator of EB2) over per-

proportional toW(r —md), whereW(r) denotes the statisti- missible values of. The occupancy reads
cal weight of the electron gas for an added energgee

Appendix B of Ref. 6. If, initially, only the highest levels are nr:k)
occupied, we obtain exactly, from the recurrence relation sat-
isfied by p(P;N,r), variance(n)/averagein) =(B+1)/6. i )
m(r;k—n)p(s—ry)+m(s—rq;k+n)p(r
EZ[ (r1ik=n)p(s—ry)+m(s=ry;ktn)p(ry)]
APPENDIX B: OCCUPANCY AND FLUORESCENCE = ’
FOR TWO-SPIN-STATE ELECTRONS 2 > p(s—ryp(ry)
n o rq

In the present appendix we restrict ourselves to energy (B3)
levels e,=k, with k=1,2, ..., theorigin of the energy be-
ing set atk=0. Electrons are allowed to change spin in thewhere the sum ovar; is from 0 tos=r —n?, andm(r;k) is
course of time. We first consider an isolated system Wit'"gi\/en Eq(A]_]_) The two terms in the numerator give equa|
constant numbers of spin-up and spin-down electrdws ( contributions. Figure (&) comparesig(r;K) as given in Eq.
andN~, respectively, electrons of different spins being al- (B3) with the FD distribution for various values of the added
lowed to exchange energy. Next, spin flip is allowed. Aver-energy.
aging, with the Boltzmann factor as a weight provides occu- When the system is in contact with a heat bath at tem-
pancies for the case where the systems are in contact withigerature reciprocaB, r fluctuates with a probability lawg"
heat bath. Occupancies in these various situations are illugyhere, as beforegj=exp(— ). Accordingly, occupancies are
trated in Fig. 1, again by comparison with the FD distribu-optained by multiplying the numerator and denominator of
tion. the previous expression in E@3) by q" and summing over

Consider first an isolated system with" spin-up elec- y from 0 to. The denominator gives the sum over states
trons and\N ™ spin-down electrons, and suppose that the two

subsystems may exchange energy but that spin flip is not
allowed. SettingN* +N~"=2N andN*—N~=2n, the sys- ZX(q)=2, g >, > p(ry)p(r—n?—=ry)
tem least energy is ' non

N*(N*+1) N (N +1) ,
Uo= + =N(N+1)+n2

2 2
(B1)

2
=(Z qu(r)) > q", (B4)

which may be written as an infinite proddétThe average

If r=n? denotes the energy added to the system on top ofdded energy reads

N(N+1), the remaining energg=r—n? splits intor, in

subsystem 1 and,=s—r; in subsystem 2. - q dzr _ 2] N (—1)12]
We have shown in Appendix A that, for the case presently ro(q)= zv dqg -7 .. qgi-1 qi-q)/
considered and in the limil— o, the number of microstates (B5)

for single-spin electrons is the number of partitig(s) of

the excess energy. The number of microstates relating to  The expression for the occupancy may be reduced to a
one particular splitting o is thereforep(r;)p(rz). Accord-  double sum, which coincides with the one given in Eg),
ingly, occupancies are obtained by averaging single-spingyfia by £n and weighted b)qnz. This final result is in-
state occupancies shifted byn, with a probability law pro- tuitive since unbalancing betweew* and N~ increments
portional top(ri)p(s—r4) with r4 running from O tos: the energy byn?. We have

Ne(r;K)
> [n(g;k—n)+n(g;k+n)]g"”
2 [m(rysk=n)p(s=ry)+m(s=ryik+n)p(ry)] ny(q:k) = —
r 2
= , E qn
Z p(S—r1)p(ry) n

., (B6)

where the sums ovar run from —o to +o, andn(q;k) is
(B2) given in Eq.(A13). The two terms in the numerator give the
wherem(r;k) is given by Eq.(A11). Figure 1c) compares Same contributions. The occupanecy(q;k) may be ex-
ne(r;k) in Eq. (B2) to ngp in Egs. (4) and (5) for the case Pressed as a function of the average energy lamdth the
wheren=0 (N*=N~ or r=s) and various values of the help of Eq.(B5). Comparison with the FD distribution is in
added energy. Fig. 1(e). _ _ o
When spin flip is allowedN™+N~=2N remains fixed Similarly the fluorescence is obtained by shiftikdpy n
! . . 2
but n=(N"—N7)/2 may take any value that does not ex- with a weight factorg™".
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