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Fluorescence from a few electrons
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Systems containing few fermions~e.g., electrons! are of great current interest. Fluorescence occurs when
electrons drop from one level to another without changing spin. Only electron gases in a state of equilibrium
are considered. When the system may exchange electrons with a large reservoir, the electron-gas fluorescence
is easily obtained from the well-known Fermi-Dirac distribution. But this is not so when the number of
electrons in the system is prevented from varying, as is the case for isolated systems and for systems that are
in thermal contact with electrical insulators such as diamond. Our accurate expressions rest on the assumption
that single-electron energy levels are evenly spaced, and that energy coupling and spin coupling between
electrons are small. These assumptions are shown to be realistic for many systems. Fluorescence from short,
nearly isolated, quantum wires is predicted to drop abruptly in the visible, a result not predicted by the
Fermi-Dirac distribution. Our exact formulas are based on restricted and unrestricted partitions of integers. The
method is considerably simpler than the ones proposed earlier, which are based on second quantization and
contour integration.
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I. INTRODUCTION

A number of remarkable experiments involving few ele
trons in semiconductors and free space, metal particles,
spin-1/2 atoms at low temperatures have been rece
reported.1,2 Only electrons are considered below. These c
lections of electrons may be isolated or in thermal cont
with the environment, but, in any event, the number of p
ticles is constant. The Fermi-Dirac~FD! distribution holds
when electrons may be freely exchanged with a large re
voir ~grand-canonical ensemble!, but is inaccurate for the
systems considered. The present paper provides simple
accurate formulas for electron occupancy and fluoresce
for evenly spaced single-electron energy levels. Spontane
emission is supposed to be weak enough not to perturb
portantly the system state of equilibrium.3 Only a vanish-
ingly small Coulomb interaction between electrons4 is con-
sidered. The time required for the system to rea
equilibrium is not needed because averagings are perfor
over unlimited time scales. Quantum optics effects, such
resonance fluorescence or superradiance, will not be con
ered.

The assumption of evenly spaced single-electron ene
levels is not as restrictive as one may think at first. Consi
indeed one-dimensional devices such as the quantum w
employed in modern laser diodes.1 If the wire is uniform
over its length and the valence and conduction bands
parabolic in the energy-momentum space, the energy spa
e between adjacent levels is not a constant. However,
variations ofe may be neglected near the Fermi level as lo
as the temperature is not too high. For zero-band-gap s
conductors such as Pb0.84Sn0.16Te, the energy-momentum re
PRB 620163-1829/2000/62~20!/13482~8!/$15.00
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lationship is linear rather than parabolic, ande is exactly a
constant. Level spacings in small irregular metal partic
~with a size on the order of 10 nm! are nearly uniform as a
consequence of the mechanism of level ‘‘repulsion.’’ T
probability that adjacent levels are separated bye is, for the
appropriate ensemble, of the forme4exp(2e2), a sharply
peaked function ofe.4 As is well known, the Landau levels
that describe electron motion in uniform magnetic fields2 are
evenly spaced. These levels are highly degenerate, bu
coupling between degenerate states~expressing the drift of
electrons through the magnetic field lines! may be neglected
over some period of time. Likewise, two- or thre
dimensional harmonic oscillators, modeling, for example,
confinement of electrons in traps, exhibit degenerate eve
spaced levels. Our approach may be generalized to dege
ate levels. It is appropriate to mention also that the densit
states of~two-dimensional! quantum wells with parabolic
bands is a constant within a subband. This implies that
energy-level spacing is constant on the average, though
exactly.

The amount of light spontaneously emitted by electro
systems depends on the optical-mode density of state, w
is different for free-space, low-dimensional structures,
photonic band-gap materials. It is not the purpose of
present paper to discuss such problems. Because all com
sons are made at the same optical wavelength, terms dep
ing on wavelength only~essentially the optical-mode densi
of state! may be dropped. The quantity that we calculate
the probability that the system exhibits an electron at levek
and a hole~no electron! at levelk8, with k2k85\v/e[d,
where\ denotes the Planck constant divided by 2p and v
the angular optical frequency of observation. In pure se
13 482 ©2000 The American Physical Society
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PRB 62 13 483FLUORESCENCE FROM A FEW ELECTRONS
conductors, electron-momentum conservation entails
transitions may occur only symmetrically with respect to t
Fermi level, implying thatk5(11d)/2, k85(12d)/2, with
odd d, if k50 labels the zero-temperature top electron. W
will particularly consider the case where this condition hol

Let us recall that, in statistical mechanics, isolated s
tems are described by microcanonical ensembles, sys
that may exchange energy but not particles with a reser
are described by canonical ensembles and systems that
exchange both energy and particles with a reservoir are
scribed by grand-canonical ensembles. The Fermi-D
distribution5 is applicable to finite systems only in the latt
case. That is, the FD distribution is invalid for isolated sy
tems and for systems that are in contact with an electr
insulator such as diamond. In the present context, ‘‘finit
~or ‘‘small’’ or ‘‘mesoscopic’’! means thatkBT, where T
denotes the absolute electron gas temperature, is not n
sarily large compared with the adjacent-level energy sp
ings e. In grand-canonical ensembles, the fluorescenc
proportional to theproductof the probabilities that the uppe
level is occupied and that the lower level is empty. In c
nonical ensembles, it turns out that fluorescence is pro
tional to thedifferencebetween lower and upper levels o
cupancies. This is apparently a new result.

Exact formulas for the level occupancy in finite singl
spin systems with evenly spaced levels in contact with a h
bath have been reported before.4,6–9 Our method6 consists of
first enumerating the microstates of isolated systems. Su
quent averaging provides expressions for the canonical o
pancies. This method is considerably simpler than
second-quantization methods and integral-transforma
formulas employed in Refs. 4 and 8. The present paper g
eralizes the results reported in Ref. 6 to account for the
that some electrons may change spin in the course of t
Simple, exact formulas for fluorescence are obtained for
lated systems and canonical ensembles. For arbitrary l
energies and the canonical ensemble, known recurre
formulas10 are satisfied by our more special, but explic
forms.

The FD distribution is derived in Sec. II to set up th
notation and to recall why, in grand-canonical ensemb
spin is properly accounted for by a twofold degeneracy. T
method of accounting for the electron spin, however, is
valid in microcanonical or canonical ensembles because
paired electrons may be in either one of two distinguisha
states. Finite systems that exchange energy but not part
with a reservoir are considered in Secs. III and IV. In S
III, the electron spin is supposed to be strictly preserved a
for simplicity, it is supposed that there are as many electr
with spin up as with spin down. Formulas valid for singl
spin electrons need only be multiplied by factors of 2 in th
situation. In Sec. IV, electrons are allowed to change spin
the course of time~but not during a spontaneous emissi
event!. For the sake of clarity, only essential formulas rel
ing to canonical ensembles are given in the main text,
tailed derivations and intermediate results being relegate
Appendixes A and B.

The purpose of Appendix A is to explain why the tot
numberW of microstates of isolated systems is related to
partitions of integers, for single-spin-state electrons. It
shown that the numberm(k) of microstates whose levelk is
at
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occupied is simply related toW. The numberm(k;k8) of
microstates whose levelk is occupied and levelk8 is empty
is shown to be simply related tom(k), and thus toW. Av-
eraging, with the Boltzmann factor as a weight, provides
corresponding formulas in the canonical ensemble. Appen
B explains how the possibility that electrons may chan
spin in the course of time is accounted for.

II. FERMI-DIRAC DISTRIBUTION

The probabilityp that a system in thermaland electrical
contact with a large medium containsN1 electrons with spin
up, N2 electrons with spin down, and energyU is propor-
tional to the corresponding number of medium states~sub-
scriptsm) conveniently written as exp@Sm(Nm

1 ,Nm
2 ,Um)# with

Sm the medium entropy. If the system-medium contact
very weak, energies as well as particle numbers add up
first-order expansion ofSm with respect to its arguments the
gives

p~N1,N2,U !5C exp~2aN12aN22bU !, ~1!

whereC denotes a constant and

b5
]Sm

]Um
,

a[2bm5
]Sm

]Nm
1

5
]Sm

]Nm
2

. ~2!

Here,b[1/kBT, whereT denotes the temperature andm the
Fermi level. A singlem value occurs because the mediu
behavior is the same for electrons of opposite spins.

It follows from Eq. ~1! that the probabilitiesp(0) that a
nondegenerate state of energyek is unoccupied,p(1) that it is
occupied by an electron of either spin, andp(2) that it is
occupied by two electrons are, respectively,

p(0)5C,

p(1)5Cz,

p(2)5Cz2, ~3!

with z[exp(2a2bek). Normalization (p(0)12p(1)1p(2)

51) givesC51/(11z)2. The occupancy~average number
of electrons! nFD52p(1)12p(2) of level k is therefore

nFD~q;k!5
2

z2111
5

2

exp@b~ek2m!#11
5

2

q1/22k11
,

~4!

whereq[exp(2b) denotes the Boltzmann factor. In the la
expression it is assumed thatek5k, where k denotes any
relative integer. The separatione between adjacent-level en
ergies is taken as the energy unit, with a typical value
1-mm-long quantum wires ofe51 meV. In the last expres
sion in Eq.~4!, k51 labels the level just above the top ele
tron atT50 K, and we have setm5 1

2 . Note that for largek
values,nFD(q;k)'2qk21/2.
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13 484 PRB 62ARNAUD, CHUSSEAU, AND PHILIPPE
The average system energy added on top of theT50 K
energy is obtained by summing up the occupancy over
levels, and subtracting a similar sum for theT50 K distri-
bution. The result is6

r FD~q!5 (
j 51,3, . . .

j

q2 j /211
. ~5!

In grand-canonical ensembles, occupancies at diffe
levels are independent. For a single-spin state, this me
that the probability that levelk is occupied and levelk8 is
empty is the product of levelk occupancy and (12 level k8
occupancy!. When the two-spin states are considered,
obtain

LFD~q;k,k8!52
nFD~q,k!

2 S 12
nFD~q,k8!

2 D . ~6!

Fluorescence may indeed occur for 8 out of the 16 possi
ties of occupancy of levelsk and k8 ~no electron, spin-up
electron, spin-down electron, or two electrons for each of
two levels!. Because occupancies are independent, the
of the probabilities that fluorescence events occur is foun
be given by Eq.~6!.

If the electron-momentum conservation law is enforc
we havek5(11d)/2, k85(12d)/2, and the FD fluores-
cence in Eq.~6! reads after rearranging

LFD~q;d!5
2

~q2d/211!2
. ~7!

Thus, the fluorescence in the grand-canonical ensemb
given by a simple function of temperatureT and angular
optical frequency of observation,v. We will see that the
canonical ensemble fluorescence is given by a simple se

III. FLUORESCENCE WITHOUT SPIN FLIP

For single-spin electrons, the occupancy in isolated s
tems is given by a simple formula reported in Ref. 6. T
proof, omitted in Ref. 6, is given in Appendix A of th
present paper@see Eq.~A12!#. If the energy added to the
system is denoted byr, the numberW(r ) of configurations
of the system is equal here to the numberp(r ) of partitions
of r. Indeed, microstates may be obtained by shifting el
trons upward from theirT50 K locations by nonincreasing
steps that sum up tor. Let us recall that a partition ofr is a
nonincreasing sequence of positive integers summing upr.
For example,~2,1,1! is a partition of 4. The numberp(4) of
partitions of 4 equals 5. By convention,p(0)51 andp(r )
50 if r ,0.

To illustrate the difference existing between the exact
sult and the Fermi-Dirac distribution, let us note that, for a
microstate, the energy separation between the top elec
and the lowest hole cannot exceedr e, wheree denotes as
before the adjacent-level energy spacing. Accordingly,
fluorescence drops abruptly at an angular optical freque
v5r e/\. When r @1, a system temperatureT may be
defined:6 kBT'eA6r /p. As an example, room-temperatu
isolated systems withe51 meV should not emit visible
light according to the exact formula, while some faint light
ll
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expected according to the FD distribution.
In the present section, it is supposed that the elect

spins are preserved in the course of time and that there a
many electrons with spin up and spin down, for simplicity.
then suffices to multiply the expressions for single-spin el
tron occupancy, average energy, and fluorescence, give
Appendix A, by factors of 2.

The occupancy reads, according to Eq.~A13!,

nu~q;k!522 (
j 51,2, . . .

~21! jqjk1 j ( j 21)/2. ~8!

Note that, for large k values, nu(q;k)'2qk so that
nu(q;k)/nFD(q;k)5Aq, if the expression fornFD(q;k) in
Eq. ~4! is used.

The average added energy reads6

r u~q!52 (
j 51,2, . . .

j

q2 j21
. ~9!

We first compare in Fig. 1~a! the occupancy in isolated
systems with the FD occupancy. The former is obtained
multiplying ni(r ;k) given in Eq.~A12! by a factor of 2 to
account for the two-spin states. The FD occupancy is gi
in Eq. ~4!, with q expressed in terms of the average energr
with the help of Eq.~5!. Note that, below 0.1, isolated
system occupancies aresmaller than FD occupancies.

Consider next the case where the system is in contact
a heat bath. The ratio of the exact occupancy in Eq.~8!
@whereq is expressed in terms of the average energyr with
the help of Eq.~9!# and the FD occupancy@Eqs.~4! and~5!#

FIG. 1. Ratio of exact and Fermi-Dirac (nFD) occupancies plot-
ted as functions ofnFD at equal values of the average added ene
r. The isolated single-spin-state electron occupancy in~a! was mul-
tiplied by 2 to account for the two-spin states. In~a! and ~b! spin
flip is not allowed. In~c! electrons of different spins may exchang
energy but spin flip is not allowed. Cases~d! and~e! are the same as
cases~b! and ~c!, respectively, except that spin flip is allowed.~f!
collects previous results for an average added energyr 5600.
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PRB 62 13 485FLUORESCENCE FROM A FEW ELECTRONS
is represented in Fig. 1~b! as a function of the FD occupanc
for various values of the average energyr ~namely,r 56, 60,
and 600!. Below 0.1, the exact occupancyexceedsthe FD
occupancy. Figure 2~a! shows that, when the comparison
made at equal temperaturesT ~instead of equal average en
ergies!, the opposite occurs. In Fig. 2, we have chosen
represent the occupancy ratios as functions of the level n
ber k ~referred to the Fermi level! instead of the FD occu
pancy.

To evaluate fluorescence, we need to know the num
m(r ;k;k8) of microstates of added energyr having an elec-
tron at level k and none at levelk85k2d, where d
[\v/e. Appendix A shows that this quantity is easily e
pressible in terms of the numbersm(r ;k) of microstates hav-
ing an electron at levelk ~irrespectively of other state occu
pancies!. Averaging the result overr with qr as a weight to
account for energy fluctuations in the presence of a heat b
the fluorescence is found to be@see Eq.~A9!#

Lu~q;k,k8!5
nu~q;k8!2nu~q;k!

q2d21
, ~10!

wherenu(q;k) is given in Eq.~8!.
If the law of electron-momentum conservation is e

forced, the fluorescence reads

Lu~q;d!5LuS q;
11d

2
,
12d

2 D . ~11!

Recall thatq[exp(2e/kBT) ~wheree is typically 1 meV
and room temperature corresponds tokBT526 meV) and
d[\v/e. The fluorescence ratioLu(q;d)/LFD(q;d) accord-
ing to Eq. ~7! and Eq.~11! is represented in Fig. 3~a! as a
function of d for different temperatures. It is interesting th
canonical and grand-canonical fluorescences almost coin
at small wavelengths even though the occupancies are q
different in that limit.

IV. FLUORESCENCE WITH SPIN FLIP

Electron spins are now allowed to vary in the course
time ~but not during a fluorescence event!. The numbersN1

and N2 of electrons with spin up and spin down, respe
tively, may fluctuate, but their sumN11N2[N remains
constant if the system is isolated or in contact with an el

FIG. 2. This figure is similar to Fig. 1, but the compariso
between canonical and grand-canonical ensembles is made at
temperatures rather than at equal average energies. The en
level spacing is supposed to be 1 meV, typical of 1-mm-long quan-
tum wires. The parameter is the electron-gas absolute temper
T. ~a! Spin flip is not allowed.~b! Spin flip is allowed.
o
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trically insulating heat sink such as diamond. The occupa
and fluorescence for coupled-spin electrons is derived fr
previous expressions through a succession of partition
and averagings. Because the details are lengthy, they are
egated to Appendix B. Remarkably, many summations
be performed in closed form so that the final result is simp

The occupancy reads

nc~q;k!5

(
j 52`

1`

qj 2
nu~q;k1 j !

(
j 52`

1`

qj 2

, ~12!

wherenu(q;k) is given in Eq.~8!. Comparisons with the FD
distributions are exemplified in Figs. 1~d! and 2~b!. With the
help of theta functions12 the average added energy may
written as a simple sum@see Eq.~B5!#

r c~q!52 (
j 51,2, . . .

S j

q2 j21
1

~21! j j

qj2q2 j D . ~13!

The fluorescence reads@see Eqs.~A14! and ~B6!#

Lc~q;d!5

(
j 52`

1`

qj 2
LuS q; j 1

11d

2
, j 1

12d

2 D
(

j 52`

1`

qj 2

, ~14!

whereLu(q;k,k8) is given in Eq.~10!. Fluorescence is illus-
trated in Fig. 3~b!. Note that the exact result is closer to th
FD result when electrons are allowed to change spin in
course of time.

V. CONCLUSION

When a~possibly small! system is in thermal and electr
cal contact with a large medium such as a piece of cop
the average number of electrons occupying some ene
level ~occupancy! is twice the value given by Fermi-Dira
formula. The fluorescence~light spontaneously emitted with
out electron-spin flip!, defined in terms of the probability tha
an electron at levelk may drop to levelk2\v/e (v denotes
the angular optical frequency of observation!, is also easily
obtained. But when the system is isolated or in thermal c

ual
rgy-

ure

FIG. 3. Ratio of spontaneously emitted light power~fluores-
cence! from 1-mm-long quantum wires in contact with diamon
~canonical ensemble! and copper~grand-canonical ensemble!, re-
spectively, as a function ofd[\v/e. The parameter is the electron
gas absolute temperatureT. ~a! Spin flip is not allowed.~b! Spin flip
is allowed.
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13 486 PRB 62ARNAUD, CHUSSEAU, AND PHILIPPE
tact with an electrical insulator, electron occupancies
given by different expressions. Because modern electro
often employ short quantum wires supported by diamo
heat sinks, it is important to have at our disposal prec
expressions for occupancy and fluorescence in such s
tions. The expressions obtained in this paper were illustra
by comparison with the FD results. We considered the c
where the electron spins are strictly maintained in the cou
of time ~Sec. III! and the case where spin flip is allowe
~Sec. IV!. We found, for example, that small FD occupanc
should be multiplied by approximately exp(2e/2kBT)
'0.22 if e51 meV andT54 K, a factor that differs sig-
nificantly from unity. But, unexpectedly, the fluorescen
turns out to be given rather accurately by the FD distributi

Our mathematical approach is based on a direct enum
tion of the microstates, and the results are expressed in te
of the number of partitions of integers. This method is co
siderably simpler than those previously reported for sim
models, both conceptually and algebraically. A compu
simulation has given results that are in very good agreem
with the analytical formulas reported in this paper.

It is our intention to report in the future analytical an
numerical results relating to mesoscopic laser-diode li
fluctuations. A preliminary step consists of consideri
single-mode cavities incorporating the electron gas at th
mal equilibrium, with one or two bands of states~for a single
band, see Appendix A of the present paper!. The intraband
Auger effect and the stimulated transitions may be int
duced at that stage. Next, the probability that low-lying el
trons be promoted to high-lying levels by the action of
~quiet or fluctuating! pump and the probability that ligh
quanta be absorbed are introduced. At low power, our si
lation gives output light fluctuations that agree very w
with elementary laser-noise theory predictions.15 At high
power, new effects~temperature fluctuations, spectral-ho
burning, statistical fluctuations of the optical gain, etc.! occur
that are difficult to handle analytically.13 The analytical for-
mulas reported in this paper are helpful to assess the a
racy of the simulation in special situations.

APPENDIX A: OCCUPANCY AND FLUORESCENCE FOR
SINGLE-SPIN-STATE ELECTRONS: ARBITRARY

ENERGY LEVELS

We are only concerned in the main text with even
spaced one-electron energy levels$ek%. Rigorous occupancy
formulas are obtained in the present appendix by conside
first arbitrary $ek%. Eventually the number of levels is a
lowed to go to infinity.

Consider an isolated system whose nondegenerate
electron level energies are, in increasing order,e1 , e2 , . . . ,
ek , . . . , eB , with N<B single-spin electrons. According t
the Pauli principle each level may be occupied by only 0
1 electron. The system energyU is therefore the sum ofN of
the ek . The purpose of this appendix is to evaluate the f
lowing.

~1! The numberW(N,U) of possible ways of obtaining
some given U ~number of microstates or ‘‘statistica
weight’’!.

~2! The numberm(N,U;k) of microstates whose levelk
e
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is occupied. The occupancyn(N,U;k) of level k is defined
asm(N,U;k)/W(N,U).

~3! The numberm(N,U;k;k8) of microstates whose leve
k is occupied and levelk8 is empty. The fluorescenc
L(N,U;k;k8) emitted by electrons dropping from levelk to
level k8 is defined asm(N,U;k;k8)/W(N,U).

These evaluations will be presented in reversed order.
us first relate the numberm(N,U;k;k8) of microstates whose
level k is occupied and levelk8 is empty to the numbers
m(N,U;k) defined above. For each microstate, let the el
tron at levelk be transferred to the lower empty levelk8. The
numberN of electrons is unaffected but the total energy g
reduced fromU to U2d whered5ek2ek8.0, and the roles
of k andk8 are reversed. The equality

m~N,U;k;k8!5m~N,U2d;k8;k! ~A1!

therefore holds. Now notice that

m~N,U;k!2m~N,U;k;k8!5m~N,U;k8!2m~N,U;k8;k!
~A2!

because the two sides of the above equation count
crostates whose levelsk andk8 arebothoccupied. When the
expression in Eq.~A2! is introduced into Eq.~A1! iteration
gives a recurrence relation form(N,U;k;k8) that reads

m~N,U;k;k8!5 (
j 51,2, . . .

3@m~N,U2 jd;k8!2m~N,U2 jd;k!#.

~A3!

The above series terminates when the total energy vanis
i.e., whenjd exceedsU.

Consider next them(N,U;k) microstates whose levelsk
are occupied, and remove these electrons. The same nu
of microstates is obtained, withN21 electrons, total energy
U2ek , and no electron at levelk. The number of these new
microstates may be written as the difference between
total number of microstates and the number of microsta
whose levelk is occupied. We have therefore the identity

m~N,U;k!5W~N21,U2ek!2m~N21,U2ek ;k!.
~A4!

After a sufficient number of iterations, either the energy
the number of electrons becomes negative and the last
vanishes. The quantitym(N,U;k) may therefore be written
as a finite sum

m~N,U;k!52 (
j 51,2, . . .

~21! jW~N2 j ,U2 j ek!.

~A5!

The series terminates whenj exceeds eitherN or U/ek .
We have the obvious identity~the number of occupied

states for the whole set of microstates being written in t
different manners!

NW~N,U !5 (
k>1

m~N,U;k!. ~A6!
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PRB 62 13 487FLUORESCENCE FROM A FEW ELECTRONS
A system in contact with a heat bath at temperatureT is
described by the canonical ensemble. Let us define as in
main textq[exp(2b), whereb[1/kBT. The so-called par-
tition functionZ(N,q) is the sum overU of qUW(N,U), and
the average energy is (q/Z)]Z(N,q)/]q. When both sides of
Eq. ~A6! are multiplied byqU and summed overU we ob-
tain, using Eq.~A5!,

Z~N,q!5
1

N (
k51,2, . . .

(
U>0

qUm~N,U;k!

52
1

N (
j 51,2, . . .

~21! j (
k51,2, . . .

qj ek

3 (
U>0

qU2 j ekW~N2 j ,U2 j ek!

52
1

N (
j 51,2, . . . ,N

~21! jZ~1,qj !Z~N2 j ,q!.

~A7!

Indeed, for a single electron (N51), U may only take
one of theek values and the statistical weightW is unity. It
follows that Z(1,q) is the sum overk from 1 to B of qek.
Note thatZ(0,q)51. Equation~A7! was obtained earlier14

from a less direct proof.
The occupancy~average number of electrons! n(q;k) of

level k is equal to the sum overU of qUm(N,U;k), divided
by Z(N,q), where m(N,U;k) is given in Eq. ~A5! and
Z(N,q) is defined in Eq.~A7! from a recurrence relation
Thus

n~q;k!5

2 (
j 51,2, . . .

~21! jqj ekZ~N2 j ,q!

Z~N,q!
. ~A8!

Expression~A8! was reported before.10

The probability that levelk be occupied and that levelk8
be empty at temperatureT is similarly obtained by summing
qUm(N,U;k;k8) overU, and dividing the result byZ(N,q),
wherem(N,U;k;k8) is given in Eq.~A3!. The result of the
summation may be expressed as thedifferenceof the lower
and upper occupancies, according to

L~q;k,k8!5
n~q;k8!2n~q;k!

qek82ek21
, ~A9!

where the occupancyn(q;k) is given in Eq.~A8!. Thus the
fluorescence is equal to the difference between the occu
cies atk8 andk multiplied by the Bose function.

Let us now specialize the above formulas for the c
whereek5k, k51, . . . ,B. Considering the displacement o
the N electrons from their least-energy locations (k51 –N)
beginning to the one on top, we observe thatW(N,U) is the
numberp(P;N,r ) of partitions of theadded energy r[U
2N(N11)/2 into at mostN parts, none of them exceedin
P[B2N. Note that the numbersp(P;N,r ) may be obtained
from a recurrence relation,11 p(P;N,r )2p(P;N21,r )
5p(P21;N,r 2N). Let us now change slightly our nota
he

n-

e

tion, lettingk50 denote the top electron in the least-ener
configuration, and let us employ the added energyr instead
of the total energyU as an argument. Equation~A5! reads

m~N,r ;k!52 (
j 51,2, . . .

~21! j

3p„P1 j ;N2 j ,r 2 jk2 j ~ j 21!/2….

~A10!

If r does not exceedN and P, it is intuitive that
p(P;N,r )5p(r ), wherep(r ) denotes the number of unre
stricted partitions ofr. Equation~A10! then simplifies to

m~r ;k!52 (
j 51,2, . . .

~21! j p„r 2 jk2 j ~ j 21!/2….

~A11!

This expression was reported~for the first time to our knowl-
edge! in Ref. 6. If N andP are infinite ($ek%5Z), Eq. ~A11!
holds for any finite value ofr and the corresponding single
spin-state occupancy of an isolated system is

ni~r ;k!5m~r ;k!/p~r !. ~A12!

Averaging the numerator and denominator of above exp
sion with qr as a weight withr from 0 to ` gives the ca-
nonical occupancy4

n~q;k!52 (
j 51,2, . . .

~21! jqjk1 j ( j 21)/2. ~A13!

Finally the expression in Eq.~A9! simplifies in the presen
situation to

L~q;k,k8!5
n~q;k8!2n~q;k!

qk82k21
. ~A14!

We have set up a Monte Carlo simulation program t
enables us to recover previous analytical expressions. Fo
case of isolated systems, a constant probability per unit t
is ascribed to level-changing events that preserve ene
The system eventually reaches a state of equilibrium with
electron distribution very close to the one derived from p
vious recurrence formulas. The Fermi-Dirac distribution
obtained in the limit of largeB values, with temperatures an
Fermi levels that depend on the energy given initially to t
system. Our computer program may handle single-electr
level distributions that could be difficult to analyze theore
cally ~for example, two bands of states!.

When the system is in thermal contact with a heat b
electrons at levelk are ascribed a probability per unit time,p,
of being demoted to levelk21 and a probabilityq p of being
promoted to levelk11, provided these levels are empt
Strictly speaking, these prescriptions rest on an Einstein-t
model of solids that supposes that the atoms are vibratin
frequencyvphonon5e/\, wheree denotes as before the ele
tronic level spacing. But the details of the thermalizati
model turn out to be rather unimportant. The computer p
gram enabled us to reproduce the theoretical results w
great accuracy. For example, whenB5100, e51 meV, and
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T5100 K, the numerical distribution fits the Fermi-Dira
distribution with a discrepancy not exceeding 0.2%.

When the electron gas is enclosed in a single-mode c
ity, the probability that the cavity containsm light quanta is
proportional toW(r 2md), whereW(r ) denotes the statisti
cal weight of the electron gas for an added energyr; see
Appendix B of Ref. 6. If, initially, only the highest levels ar
occupied, we obtain exactly, from the recurrence relation
isfied byp(P;N,r ), variance(m)/average(m)5(B11)/6.

APPENDIX B: OCCUPANCY AND FLUORESCENCE
FOR TWO-SPIN-STATE ELECTRONS

In the present appendix we restrict ourselves to ene
levelsek5k, with k51,2, . . . , theorigin of the energy be-
ing set atk50. Electrons are allowed to change spin in t
course of time. We first consider an isolated system w
constant numbers of spin-up and spin-down electrons (N1

andN2, respectively!, electrons of different spins being a
lowed to exchange energy. Next, spin flip is allowed. Av
aging, with the Boltzmann factor as a weight provides oc
pancies for the case where the systems are in contact w
heat bath. Occupancies in these various situations are i
trated in Fig. 1, again by comparison with the FD distrib
tion.

Consider first an isolated system withN1 spin-up elec-
trons andN2 spin-down electrons, and suppose that the t
subsystems may exchange energy but that spin flip is
allowed. SettingN11N2[2N andN12N2[2n, the sys-
tem least energy is

U05
N1~N111!

2
1

N2~N211!

2
5N~N11!1n2.

~B1!

If r>n2 denotes the energy added to the system on to
N(N11), the remaining energys5r 2n2 splits into r 1 in
subsystem 1 andr 25s2r 1 in subsystem 2.

We have shown in Appendix A that, for the case presen
considered and in the limitN→`, the number of microstate
for single-spin electrons is the number of partitionsp(r ) of
the excess energyr. The number of microstates relating
one particular splitting ofs is thereforep(r 1)p(r 2). Accord-
ingly, occupancies are obtained by averaging single-s
state occupancies shifted by6n, with a probability law pro-
portional top(r 1)p(s2r 1) with r 1 running from 0 tos:

ne~r ;k!

5

(
r 1

@m~r 1 ;k2n!p~s2r 1!1m~s2r 1 ;k1n!p~r 1!#

(
r 1

p~s2r 1!p~r 1!

,

~B2!

wherem(r ;k) is given by Eq.~A11!. Figure 1~c! compares
ne(r ;k) in Eq. ~B2! to nFD in Eqs. ~4! and ~5! for the case
where n50 (N15N2 or r 5s) and various values of the
added energy.

When spin flip is allowed,N11N252N remains fixed,
but n[(N12N2)/2 may take any value that does not e
v-

t-

y

h

-
-
a

s-
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o
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y

n-

ceedAr , wherer denotes as before the energy added on
of N(N11). If r 56, for example, five values ofn are per-
mitted, namely,n50, n561, andn562. It thus suffices to
sum the numerator and denominator of Eq.~B2! over per-
missible values ofn. The occupancy reads

ns~r ;k!

5

(
n

(
r 1

@m~r 1 ;k2n!p~s2r 1!1m~s2r 1 ;k1n!p~r 1!#

(
n

(
r 1

p~s2r 1!p~r 1!

,

~B3!

where the sum overr 1 is from 0 tos5r 2n2, andm(r ;k) is
given Eq.~A11!. The two terms in the numerator give equ
contributions. Figure 1~e! comparesns(r ;k) as given in Eq.
~B3! with the FD distribution for various values of the adde
energy.

When the system is in contact with a heat bath at te
perature reciprocalb, r fluctuates with a probability lawqr

where, as before,q[exp(2b). Accordingly, occupancies ar
obtained by multiplying the numerator and denominator
the previous expression in Eq.~B3! by qr and summing over
r from 0 to `. The denominator gives the sum over state

Z* ~q!5(
r

qr(
n

(
r 1

p~r 1!p~r 2n22r 1!

5S (
r

qrp~r ! D 2

(
n

qn2
, ~B4!

which may be written as an infinite product.12 The average
added energy reads

r c~q!5
q

Z*

dZ!

dq
5 (

j 51,2, . . .
S 2 j

q2 j21
1

~21! j2 j

qj2q2 j D .

~B5!

The expression for the occupancy may be reduced t
double sum, which coincides with the one given in Eq.~8!,
shifted by6n and weighted byqn2

. This final result is in-
tuitive since unbalancing betweenN1 and N2 increments
the energy byn2. We have

nc~q;k!5

(
n

@n~q;k2n!1n~q;k1n!#qn2

(
n

qn2
, ~B6!

where the sums overn run from 2` to 1`, andn(q;k) is
given in Eq.~A13!. The two terms in the numerator give th
same contributions. The occupancync(q;k) may be ex-
pressed as a function of the average energy andk with the
help of Eq.~B5!. Comparison with the FD distribution is in
Fig. 1~e!.

Similarly the fluorescence is obtained by shiftingk by n

with a weight factorqn2
.
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