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Dispersive energy transport and relaxation in the hopping regime
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A method for investigating relaxation phenomena for charge-carrier hopping between localized tail states is
developed. It allows us to consider both charge and energydispersivetransport. The method is based on the
idea of quasielasticity: the typical energy loss during a hop is much less than all other characteristic energies.
We investigate two models with different density-of-state energy dependencies with our method. In general,
we find that the motion of a packet in energy space is affected by two competing tendencies. First, there is a
packet broadening, i.e., dispersive energy transport. Second, there is a narrowing of the packet if the density of
states is depleting with decreasing energy. It is the interplay of these two tendencies that determines the overall
evolution. If the density of states is constant, only broadening exists. In this case a packet in energy space
evolves into a Gaussian one, moving with a constant drift velocity and mean-square deviation increasing
linearly in time. If the density of states depletes exponentially with decreasing energy, the motion of the packet
slows down tremendously with time. For large times the mean-square deviation of the packet becomes con-
stant, so that the motion of the packet is ‘‘solitonlike.’’
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I. INTRODUCTION

In recent years much attention has been devoted to
study of relaxation processes of nonequilibrium charge c
riers in strongly localized systems, where transport proce
via phonon-assisted hopping, as with photoexcited cha
carriers in band tails~see, e.g., Refs. 1–6! and Anderson
insulators~see, e.g., Refs. 7–9!. In such systems particularl
small relaxation rates are observed. Often the smallnes
the relaxation rate is attributed to interaction effects. Ho
ever, even in strongly localized noninteracting electron s
tems, long-lasting relaxation processes are known to be
rule, and not the exception.10

A theoretical investigation of such relaxation processe
notoriously difficult, since the system is strongly disorder
and always in a transient state. In most problems one is
terested in time scales which are large compared to the
needed for a single hop. For such time scales all quant
depend strongly on frequency, even for very low freque
cies, so that the consideration of dispersive transport is v
On the other hand, in most problems of interest both spa
and energetic disorder exists. Due to the latter fact, tra
tions are inelastic. The inelastic character of transitions,
relaxation, leads to a flow of energy from the electron syst
to the phonon system. Due to disorder, this transport of
ergy is also dispersive. Therefore, dispersive energy tra
port and relaxation are intimately connected. Investigation
the relaxation process requires both a consideration of
persive particle transportand a consideration of dispersiv
energy transport.

The intricate physical situation also manifests itself
equations that have to be considered. Since transport is
elastic even in the simplest approximation, the investigat
requires solution of integral equations~see, e.g., Refs. 11–
13!. Due to the fact that the particle moves in an ener
PRB 620163-1829/2000/62~20!/13440~15!/$15.00
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dependent density of states, the kernel of these integral e
tions does not depend only on the difference between the
energies. The traditional method for handling the situati
percolation theory, is not applicable here. The effectiv
medium methods of Movaghar and co-workers, as poin
out by those authors, give incorrect results for systems at
temperature.14,15 Furthermore, beyond the Markovian ap
proximation the derivation of these integral equations its
represents an intricate problem. To our knowledge, in ad
tion to the attempts by Movaghar and co-workers, numer
investigations~see, e.g., Refs. 1 and 2!, and physical intuitive
considerations~see, e.g., Ref. 1!, mainly Markovian equa-
tions have been used~see, e.g., Ref. 12!.

It is the aim of the present paper to fill this gap, and
provide a formalism that can be used for studying relaxat
phenomena of strongly localized charge carriers far fr
equilibrium in the hopping regime, taking into account bo
dispersive particle transport and dispersive energy transp
To this end we focus, for the sake of definiteness, on re
ation of photoexcited, noninteracting, nonequilibrium char
carriers in band tails of, e.g., amorphous semiconduct
like amorphous Si:H. At first glance, this problem seems
be rather special. If the number of charge carriers excite
small, the Fermi correlation is negligible, so that one has
cope with linear rate equations. The linearity of the transp
equations is, of course, the basic ingredient in solving
problem. A closer look at the problems of interest revea
however, that most of the problems can be formulated in
way. Clearly, how to achieve linearization depends on
experiment chosen, but, provided the number of charge
riers excited is small, the smallness of the particle num
can always be invoked. In this case, the number of partic
at a site is certainly not small compared to its equilibriu
value, but small compared to unity. After linearization t
13 440 ©2000 The American Physical Society
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structure is, in principle, quite similar to the case conside
here.

Below we present a derivation of a framework for t
consideration of relaxation phenomena due to phon
assisted hopping at zero temperature. We focus on the
of strong localization, where dispersive effects are expec
to be most pronounced. Here the disorder manifests itse
a strong dependence of transport coefficients on freque
for very low frequencies. Consequently, in this regime
diffusion propagator cannot be calculated from Markov
transport equations, such as those used, e.g., in Ref. 12
simplify our integral equations we use the concept
quasielasticity: the particle changes its energy only by
small amount in one hop.

The method is applied to a study of dispersive ene
transport. We find that two tendencies are always presen
long as the density of states does not decrease with incr
ing energy. First, there is a widening of the packet due
statistical spreading, i.e., dispersive energy transport. S
ond, there is narrowing of the packet due to a decrease o
density of states with decreasing energy. The overall ev
tion is determined by the interplay of these two tendenc
We have studied both tendencies in two limiting cases: fo
particle moving in a constant density of states, and fo
particle moving in an exponential density of states. In
first case the impact of the density-of-state decrease is
sent, so that only the statistical spreading is present. Here
packet evolves into a Gaussian packet moving with cons
drift velocity in energy space. The packet width increas
with time asAt. The other result is obtained for an expone
tial density of states. Here both tendencies are present.
find that the velocity of the packet slows down strongly w
time. In this case the mean-square deviation of energy e
tually becomes time independent. Consequently, the mo
of the packet in energy space is ‘‘solitonlike.’’ Concrete r
sults on the diffusion propagator, its time dependence, an
moments for exponential densities of states are of releva
for photoluminescence experiments on amorphous Si:H.

II. BASIC EQUATIONS

We consider photoexcited, localized charge carriers
band tails at zero temperature. After excitation the cha
carriers lower their energy by phonon-assisted hops betw
localized states. SinceT50, only hops from higher to lowe
energy occur. In this situation the charge carriers are
strong nonequilibrium. We assume that the number of
cited charge carriers is small, and that their energies are
from the Fermi level, so that it is very unlikely that an ele
tron jumps to a site already occupied. Consequently, we
neglect the Fermi correlation. In this case electron trans
can be described by the rate equation.17,18

dpm

dt
5(

m8
~pm8Wm8m2pmWmm8!. ~1!

In calculating the transition probabilities, we assume that
electron-phonon coupling strength is weak, so that only o
phonon processes have to be taken into account. The
zero temperature, the transition probabilities are given b

Wm8m5Q~v2«m81«m!Q~«m82«m!W~ uRmm8u!, ~2!
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where

W~ uRmm8ut !5ne22auRmm8u. ~3!

Herea is the inverse of the localized state radius, andn is
the phonon frequency. The energyv is the upper bound for
the energy transferred in one hop. Note that in the mater
of interestv can be much smaller than the Debye frequen
since not all phonons can interact with localized electro
equally well. Short-wavelength phonons are ineffective sin
the electron-phonon coupling constant tends to zero for m
mentaq with q/2a@1. Therefore, the effective upper pho
non momentum is of the order 2a, and not of the order of the
inverse lattice constant of the host material. Furthermore
disordered systems the high-energy phonons are locali
and need not contribute to transport.

The first step function in front of the transition probabi
ties restricts transitions to those between sites separated
mostv in energy space. Thus it decreases the energy re
ation rate. In impurity conduction, and in nearly all papers
relaxation of charge carriers in band tails, this step funct
is usually replaced by unity. In impurity conduction this
quite reasonable, since it is assumed that hops are restr
within a narrow strip near the Fermi level, which is sma
compared to the Debye energy. In the band-tail proble
however, we can see no reason for neglecting it in adva

To calculate the transport quantities of interest, we ha
to calculate the diffusion propagator. In order to render
analytical calculations feasible, we introduce continuous
ordinates. The change of representation is defined by

n~r!5(
m

pmd~r2rm!, ~4!

wherer5(R,«) and rm5(Rm ,«m) . In this representation
rate equation~1! takes the form

dn~r!

dt
5E dr8n~r8!V~r8,r!, ~5!

whereV is determined by the equations

V~r8,r!5E dr1h~r1!wr1
~r8,r!, ~6!

wr1
~r8,r!5W~r8,r1!@d~r12r!2d~r82r!#, ~7!

and

h~r!5(
m

d~r2rm!. ~8!

The Laplace-transformed equation is

sn~r!2no~r!5E dr8n~r8!V~r8,r!, ~9!

where no(r)5n(r,t50) is the initial condition. We will
assume thatpm(t50) is a function p0(Rm ,«m), so that
no(r)5p0(r)h(r).

Equation ~9! can be solved using the Green’s-functio
method. The solution is given by
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n~r!5E dr8no~r8!F~r8,r!. ~10!

The Green’s function satisfies the equation

sF~r8,r!2E dr1 V~r8,r1!F~r1 ,r!5d~r82r!.

~11!

Due to probability conservation, the Green’s functionF and
the probabilitywr̃ satisfy the relations

E dr F~r8,r!5
1

s
, ~12!

E dr wr̃~r8,r!50. ~13!

III. CONFIGURATION AVERAGE

In order to calculate the configuration average, we assu
that the sites are distributed homogeneously in space.
distribution of site energies is supposed to be given by so
distribution functionp($« i%). Accordingly, the average o
any quantity depending on the energy and positions of s
is given by

^A&5E Pm

dRm

V d«m p~$«m%!A~$Rm ,«m%!, ~14!

whereV is the volume of the system. The application of t
averaging procedure to the structural factorh serves, in par-
ticular, as a definition for the density of states, i.e.,

N~«!5^h~r!&. ~15!

Products of the structural factorh are averaged according t

^h~r1!•••h~rn!&5N~r1!d~r12r2!•••d~rn212rn!.
~16!

Using these definitions, the configuration average of Eq.~10!
can be calculated diagrammatically.19,20 The diagrammatic
method leads to the following set of equations for the cal
lation of the configuration averagên(r)& of the electron
densityn(r) ~Ref. 20!:

^n~r!&5E dr1 dr2 p0~r1!S~r1 ,r2!F~r2 ,r!, ~17!

sF~r8,r!5d~r82r!1E dr1 P~r8,r1!F~r1 ,r!,

~18!

P~r8,r!5E dr1 N~r1!Pr1
~r8,r!, ~19!

Pr1
~r8,r!5wr1

~r8,r!

1E dr2 dr3 wr1
~r8,r2!F~r2 ,r3!Pr1

~r3 ,r!,

~20!
e
he
e

s

-

S~r8,r!5N~«8!Fd~r82r!1E dr1 F~r8,r1!Pr8~r1 ,r!G .
~21!

HereF(r8,r)5^F(r8,r)& .

IV. EFFECTIVE MEDIUM

Given the system of integral equations~18!–~21!, the
main problem is to find an approximate self-consistent so
tion to it. The situation is quite similar to that of the calc
lation of the equilibrium conductivity in a disordere
system.19,20 There, an approximate solution of the syste
could be found by introducing a proper decomposition of
function F, the diffusion propagator, into short- and lon
wavelength limits, according to

F~r8,r!5 f ~s!C~«!d~r82r!1F̃~r8,r!, ~22!

where f (s) was a frequency-dependent parameter that co
be related to the critical hopping lengthRc via the equation

f n5 exp~22aRc!, ~23!

andC(«) was an energy-dependent function determined
the principle of detailed balance. This decompostion ori
nated from the notion that the integrals in the integral eq
tions are governed by products of transition probabilities a
diffusion propagators, and for strongly localized electro
the latter quantities are short-ranged functions compare
the transition probabilities. Using the decomposition~22!,
the effective-medium approximation reduces to the repla
ment ofF by f C(«)d(r82r) in the calculation of the effec-
tive transition probabilityP @Eq. ~20!# and of the irreducible
block S @Eq. ~21!#.

Here in the band-tail problem we use the same philo
phy. We first decompose the diffusion propagator into t
parts, according to

F~r8,r!5 f ~«,s!d~r82r!1F̃~r8,r!. ~24!

Then, to investigate the consequences of this decomposi
we insert Eq.~24! into Eq. ~20!. Performing a partial sum-
mation, we obtain

Pr̃~r8,r!5w̃r̃~r8,r!1E dr1 dr2 w̃r̃~r8,r1!

3F̃~r1 ,r2!Pr̃~r2 ,r!, ~25!

where the renormalized transition probabilitiesw̃r̃(r8,r) are
given by Eq.~7!, with W replaced by

W̃~r8,r;s!5
W~r8,r!

11 f ~«8,s!W~r8,r!
. ~26!

Note that the renormalized transition probability depen
now ons via the functionf («,s).

At this point, introduction of the functionf («,s), the ef-
fective medium, still seems to be rather arbitrary. Howev
if we now choose the effective medium in such a way th
the integrals overF̃ vanish, the renormalized transition prob
abilities yield the exact solution of the diffusion problem.
that case the functionS turns into
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S~r8,r!5N~«8!d~r82r!, ~27!

so that Eq.~17! can be cast in the form

^n~r;s!&5E dr8^no~r8!&F~r8,r!. ~28!

Therefore, the functionF(r8,r) can be identified with the
diffusion propagator.

Note that, in contrast to the calculation of the conductiv
close to equilibrium, the critical hopping length is expect
to depend somehow on the instantaneous position of the
ticle in the tail. Consequently, in the present situationf is a
function of energy, and not a parameter, that has to be de
mined self-consistently.

V. DIFFUSION PROPAGATOR
IN EFFECTIVE-MEDIUM APPROXIMATION

For the moment we put aside the question of the deter
nation of the effective medium to elaborate further on
consequences of the renormalization of the transition pr
abilities. To this end we focus on the diffusion propagato

The equation for the diffusion propagator is given by E
~14!. In the effective-medium approximation, when calcul
ing the irreducible partP, only the lowest-order contribution
to P with respect toF̃ is taken into account, so thatPr̃

5w̃r̃ . In that approximation the equation for the diffusio
propagator in the momentum representation reads

sF~qu«8,«!5d~«82«!

1E d«1$F~qu«8,«1!W̃~qu«1 ,«;s!N~«!

2F~qu«8,«!W̃~0u«,«1 ;s!N~«1!%. ~29!

Of course, since we do not yet know what the effective m
dium looks like, and moreover, as the equation is a com
cated integral equation, we cannot find a solution. The
that the effective medium is a function of energy makes
problem much more complicated. Progress can only
achieved if we can find arguments to simplify the equat
considerably. To this end we focus on the renormalized tr
sition probability. According to Eqs.~2! and ~26!, this is
given by

W̃~Ru«8,«;s!5Q~«82«!Q~v2«81«!
W~R!

11 f ~«8,s!W~R!

5Q~«82«!Q~v2«81«!W̃~Ru«8;s!. ~30!

From the explicit form of the transition probabilities@Eq.
~3!#, we conclude that for largef (e)n, that is, for large val-
ues of the parameter

rc~e!5 ln@ f ~e!n#, ~31!

W̃ acts like the functionu„rc(e)22aR…/ f (e), so thatrc(e)
is to be identified with the dimensionless critical hoppi
length.

Owing to the step functions in front of the transition pro
ability, the energy integrations are restricted to intervals
ar-

er-

i-
e
b-

.
-

-
i-
ct
e
e

n
n-

f

lengthv. Taking this fact into account, the integral equati
for the calculation of the diffusion propagator takes the fo

sF~qu«8,«!5d~«82«!1E
0

v

d«1$F~qu«8,«1«1!

3W̃~qu«11«;s!N~«!2F~qu«8,«!

3W̃~0u«;s!N~2«11«!%. ~32!

Further, we assume that the diffusion propagator, the tra
tion probability W̃(R,«;s), and the density of statesN(«)
are slowly varying functions on intervals of lengthv, so that
the integrand can be expanded with respect to«1. Doing so,
we obtain

sF~qu«8,«!5d~«82«!1vN~«!@W̃~qu«;s!

2W̃~0u«;s!#F~qu«8,«!

1
1

2
v2

]

]«
@F~qu«8,«!W̃~qu«;s!N~«!#.

~33!

We terminate the expansion after the first derivative w
respect to energy. This term describes the biased motio
the particle from sites of higher energy to sites of low
energy. For finite temperatures one would have to repl
F(qu«8,«) in the last term with F(qu«8,«)
1kT]F(qu«8,«)/]« which would describe the energy diffu
sion current. At zero temperature there is no flow of ene
from the phonon system to the particle. Therefore, we exp
the additional term to be rather small, and neglect it.

To investigate transport properties, we restrict our att
tion to the long-wavelength limit. In this case, the elas
contribution yields the diffusion coefficient for particle di
fusion. The term containing the derivative with respect
energy is finite forq→0. If we are interested only in the
long-wavelength limit, here we can setq50, since the re-
maining terms are of higher order with respect toq and
v]/]«. Since a nonzero momentum in this term couples p
ticle diffusion to energy transport, this approximation corr
sponds to a decoupling of these two processes. Then, in
long-wavelength limit, we obtain

sF~qu«8,«!5d~«82«!2D~«,s!q2F~qu«8,«!

1
]

]«
@F~qu«8,«!v~«,s!#, ~34!

where

D~«,s!52
1

2
v“q

2W̃~qu«;s!uqÄ0 ~35!

and

v~«,s!5
1

2
v2N~«!W̃~0u«;s!. ~36!

An asymptotic calculation of the transport coefficien
D(e,s) andv(e,s), for largerc(e,s), yields
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v~«,s!5
1

2

S~d!

d
v2N~«!Frc~«,s!

2a Gd

n exp@2rc~«,s!#

~37!

and

D~«,s!5
1

2

S~d!

d~d12!
vN~«!Frc~«,s!

2a Gd12

n exp@2rc~«,s!#.

~38!

HereS(d) is the solid angle, andd is the spatial dimension
ThusD(«,s) andv(«,s) differ only in pre-exponential fac-
tors.

Equation~34! is easily solved. Its solution is

F~qu«8,«!5
Q~«82«!

v~«;s!
expF2E

«

«8
d«1

s1D~«1 ;s!q2

v~«1 ;s! G .
~39!

Now, at this stage, the validity of our quasielastic a
proximation requires that the second derivative terms
small compared to terms containing first derivatives with
spect to energy. This requirement imposes the following
strictions on the transport coefficientsv andD, the frequency
s, and the momentumq:

vU1v dv
d«U!1, ~40!

vUsvU!1, ~41!

q2v
D

v
!1. ~42!

The applicability of the quasielastic approximation was a
discussed in Ref. 21. There it was concluded that this
proximation should be inapplicable. To substantiate t
statement, numerical calculations were invoked. However
interpreting these data it has to be taken into account
they were obtained using a model that neglects a weigh
of the transition probabilities according to the number
phonons emitted, so that hops between nearly isoenerg
sites were treated as likely as hops from the very top to
very bottom of the tail. Consequently the discussion in R
21 applies only to systems with sufficiently strong electro
phonon interactions, but not to systems with weak electr
phonon interactions. For extraordinarily deep hops to c
tribute to the diffusion propagator they should
characteristic of an ensemble of electrons. This is, howe
not expected and in the experimental data, e.g. on amorp
Si:H,22 not observed. For these reasons the discussion in
21 does not apply to our model.

VI. INTERPRETATION OF THE TRANSPORT
COEFFICIENTS

Before establishing a self-consistency equation, we fi
elaborate further on the physical content of our diffusi
equation. Imagine that we have a particle initially located
(R0 ,«0). Then the initial condition is^no(R,«)&5d(R
2R0)d(«2«0). According to our approximation, the motio
-
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of the charge carrier is composed of two contributions: p
ticle diffusion between isoenergetic sites, and relaxation
energy space. Characteristics of these two processes ar
mean-square displacement and the energy-relaxation
The mean-squared displacement is related to the coeffic
D(e,s), the diffusion coefficient for particle diffusion. Th
rate of energy relaxation is obtained from the derivative w
respect to time of the mean energy, defined by

E~s!5E dr8«8^n~r8,s!&. ~43!

If we use our diffusion equation and perform an integrati
by parts, we obtain

sE~s!2«052E d« PL~«0 ,«;s!v~«,s!, ~44!

where

PL~«0 ,«;s!5F~q50ue0 ,e!. ~45!

Therefore, in general, the time dependence of the mean
ergy is given by complicated integrals. These integrals s
plify considerably in two limiting cases: in the absence
dispersive energy transport, and for an energy indepen
v(«,s). In the absence of dispersive energy transport, i.e.
the Markovian limit in which the transport coefficients a
independent ofs, the integrals can readily be calculated
the time representation. In this situation we simply obtain

PL~«0 ,«;t !5Q~«02«!d@«m~ t !2«#, ~46!

where«m(t) is defined by

t5E
«m

«0 d«1

v~«1!
. ~47!

Therefore, we obtain

dE~ t !

dt
5

d«m~ t !

dt
52v@«m~ t !#. ~48!

Consequently,v is the rate of energy relaxation, and«m(t) is
the instantaneous position of the particle in energy space
general, however, in disordered systems the coeffic
v(«,s) depends ons, so thatenergy transport is dispersive.
In that case the integral in Eq.~44! can only be calculated
easily if v is independent of energy. Then, owing to pro
ability conservation,

S dE

dt D ~s!52
v~s!

s
~49!

is obtained. Below we shall see that energy independ
transport coefficients are obtained for constant density
states only.

VII. SELF-CONSISTENCY EQUATION

So far we have only investigated the consequences of
renormalization. In order to complete the approximati
scheme, we still have to calculate the effective medium
self. Of course, we cannot calculate the effective medi
exactly, since this would amount to finding an exact solut
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to the diffusion problem. Rather we shall try to calcula
f («,s) self-consistently.

The transport coefficients are properties of the Gree
functionF, the diffusion propagator. Thus, in order to find a
equation for f («,s), we should relate the transport coef
cients toP, the irreducible part of the diffusion propagato
The diffusion coefficient comprises only elastic contrib
tions; however, in the relaxation problem a proper desc
tion of inelastic processes is vital. Therefore, in establish
a self-consistency equation, we focus on the energy re
ation ratev.

The equation for the diffusion propagator forq50 is
given by

sPL~«8,«;s!5d~«82«!1PL~«8,«,s!E d«1 P~«1 ,«;s!

1
]PL~«8,«;s!

]« E d«1~«12«!P~«1 ,«;s!.

~50!

If we compare Eq.~50! with Eq. ~34! we deduce that

v~«,s!5E d«1~«12«!P~«1 ,«;s!. ~51!

Now we decomposev, as defined in Eq.~51!, into two parts,
one part that contains only the effective-medium approxim
tion ~EMA! for P,

v~«,s!5E d«1~«12«!PuEMA~«1 ,«;s!, ~52!

and a partdv(«,s), that contains the deviationsF̃. Self-
consistency requires that

dv~«,s!50. ~53!

v(«), as defined by Eq.~52!, is in accordance with definition
~36!, taking into account Eq.~37! and the inequality
v f 8(«)/ f («)!1 @Eq. ~40!#, owing to which contributions
proportional to this parameter are negligible.

We now focus on the self-consistency equation~53!.
While Eq.~52! contains only the effective-medium contribu
tion to the diffusion propagator,dv is a functional of the
effective mediumf and the deviationF̃. By construction, it is
at least linear inF̃ . If this equation could be solved exactl
an exact solution to the diffusion problem could be fou
within quasielastic accuracy. In practice this is not possib
and therefore we depend on further approximations. To s
plify this equation, we take into account only the lowe
order contributions to this equation with respect toF̃, i.e., we
linearizedv with respect toF̃ and require that the first-orde
contribution vanishes. This approach is quite close to
usual coherent-potential-approximation philosophy, in wh
vanishing of thet matrix is required in its lowest-order ap
proximation. Using this procedure, we obtain the se
consistency equation

1

2
v2N~e! f ~e,s!W̃~0ue;s!5av2

sb

W̃~0ue;s!N~e!
,

~54!
’s

-
g
x-

-

,
-

-

e
h

-

wherea andb are simply numbers. A detailed derivation o
this equation is given in Appendix A.

In deriving the self-consistency equations, we have i
posed further restrictions on the effective transition pro
abilities, which determine the range of its applicability.
terms ofrc , inequalities~40! and ~41!, used in the deriva-
tion, read~prime is derivative with respect to«)

uvrc8~«,s!u!1, ~55!

urc~«,0!2rc~«,s!u!rc~«,0!. ~56!

In addition, when calculating the integrals,

rc~«,s!@1, ~57!

was used. A closed solution to the self-consistency equa
can only be found in the limits50. In this limit, we obtain

rc~«,s50!5
2a

@vN~«!#1/d F 2da

S~d!G
1/d

, ~58!

whereS(d) is the solid angle ind dimensions.
For s satisfying Eq.~56!, Eq. ~54! can be cast in the form

@rc~«,0!2rc~«,s!#exp@rc~«,0!2rc~«,s!#5
s

V~«!
,

~59!

where

V~«!5
2da

bvrc~«,0!
v~«,0!. ~60!

According to Eq.~59!, the critical hopping length decrease
with increasing frequency. Note that the structure of Eq.~59!
for calculation of the dispersion of the critical hopping leng
obtained here agrees completely with that obtained for
critical hopping length in calculating the equilibrium
conductivity.17,20

The dispersion of the transport coefficients is determin
completely by the dispersion of the critical hopping leng
For smalls the frequency dependent pre-exponential fact
can be ignored, so that from Eq.~59! explicit equations for
the transport coefficients can be obtained. They are given

D~«,s!

D~«,0!
ln

D~«,s!

D~«,0!
5

s

V~«!
, ~61!

v~«,s!

v~«,0!
ln

v~«,s!

v~«,0!
5

s

V~«!
. ~62!

The formal solution of these equations is given by Lambe
W function W(z), defined by the equation z
5W(z)expW(z). Using Lambert’s function, we can write

D~«,s!5D~«,0!expW @s/V~«!#, ~63!

v~«,s!5v~«,0!expW @s/V~«!#. ~64!

VIII. CONSTANT DENSITY OF STATES

A constant density of states, although of not much phy
cal relevance, gives us a unique opportunity to study pur
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dispersive energy transport. Here bothV(«) and v0
5v(«,0) are independent of energy. Consequently, the
ergy distribution functionPL(e0 ,e;s) @Eq. ~45!#, can readily
be calculated. The calculation yields

PL~«02«,s!5
Q~«02«!

v~s!
expF2

s~«02«!

v~s! G . ~65!

The time dependence of this function can be obtained
inverse Laplace transformation. Using Eq.~62! to change the
integration variable froms to y5v/v0, the inverse Laplace
transform of Eq.~65! may be written

PL~«02«,t !5
V

v0
Q~«02«!E

C

dy

2p i

ln y11

y

3expFVty ln y2
V

v0
~«02«!ln yG , ~66!
o

rg

rd

c
he
t
g

tr
s

e
th
ti
i

o
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y

with a properly chosen integration contourC. At large
enought, that is forVt@1, this expression, using the saddl
point method, simply gives the Gaussian packet

PL~«02«,t !'Q~«02«!
V

v0

1

2ApVt

3expF2
~«02«2v0t !2

4v0
2t/V

G . ~67!

According to Eq.~49!, the energy-relaxation rate is

dE~ t !

dt
52E

C

ds

2p i

v~s!

s
est. ~68!

Again, the time dependence of the energy-relaxation rate
be calculated using asymptotics. Doing so, we obtain
dE~ t !

dt
'2v05 11A e

2p

1

~Vt !3/2
exp~2Vt/e! as Vt@1

A2p

eVt
$ ln@e/~Vt !#%22 as Vt!1.

~69!
in
red
are
Note that the problem of energy relaxation in the case
constant density of states@v(«,s) is independent of«] is
completely equivalent to one of the non-Markovian cha
transport in strong electric fieldsE, when the diffusion~de-
scribed by the second derivative with respect to the coo
nates! is totally neglected. One has only to replacev(s)
→u(s)E, u(s) being the mobility.16,17 In the context of dis-
persive particle transport, the regimesVt!1 andVt@1 are
the regimes of anomalous and normal ‘‘diffusion,’’ respe
tively. The main difference between them is that while t
sites are usually distributed homogeneously in space,
density of states is usually an increasing function of ener

IX. EXPONENTIAL DENSITY OF STATES

A. The saddle-point approximation and its breakdown
for large times

Calculation of the time dependence of the energy dis
bution function for an arbitrary density of states on the ba
of Eqs. ~34!–~36!, ~61!, and ~62! turns out to be a quite
intricate problem. A tool that can be utilized in tackling th
problem is the saddle-point approximation. How to apply
saddle-point approximation for the calculation of the quan
ties of interest for an arbitrary density of states is shown
Appendix B. Below we focus on the exponential density
states, which is relevant, e.g., to amorphous Si:H.

We assume that the density of states is given by

N~«!5N0 expS 3
«

D D . ~70!

To simplify the notations, we use the abbreviations
f

e

i-

-

he
y.

i-
is

e
-
n
f

v̄5
bv

2da
, ~71!

n̄5
2da2

b
n. ~72!

Then Eqs.~37!, ~58!, and~60! can be cast into the forms

v~«,0![v~«!5v̄n̄ exp@2r~«!#, ~73!

V~«!5
n̄

r~«!
exp@2r~«!#, ~74!

r~«!5rc~«,0!5A expS 2
«

D D , ~75!

where

A5
2a

@vN~0!#1/d F 2da

S~d!G
1/d

. ~76!

Using these equations it follows from the formulas derived
Appendix B that the time dependence of the mean-squa
deviation and the time dependence of the mean energy
given by

s2~«m ,«0![s2~ t,«0!.v̄DF12
t0
2

~ t1t0!2G , ~77!
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«m~ t !.2D lnF 1

A
lnS v̄

D
n̄~ t1t0! D G , ~78!

where

t0~«0!5
D

n̄r~«0!v~«0!
. ~79!

Note that, according to the saddle-point approximati
the distribution is Gaussian. Furthermore, the dispersio
constant fort@t0. Consequently, for time scales in line wit
the applicability of the saddle-point approximation, the m
tion of the energy packet is ‘‘solitonlike,’’ that is, the pack
moves without distortion.

The applicability condition for the saddle point@Eq.
~B13!# requires that

v̄

D
r2~«m!!1. ~80!

Becauser(«m) grows with t, the saddle-point method, an
consequently all the results of this section, becomes inv
for sufficiently larget. The physical meaning of conditio
~80! is the following: at t@t0 the width of the electron’s

energies distribution isd«5Av̄D. Becauser; exp(2«/D),

the variation ofr is dr/r5Av̄/D, and becausev; exp

(2r), we havedv/v5dr5Av̄r2/D. Thus condition~80! is
just that the variation of the electron’s ‘‘velocity’’ across th
distribution is smaller than the velocity itself.

B. Form of the distribution for large times

Even if the initial conditions are such that condition~80!
is fulfilled, and a Gaussian distribution is formed, at so

moment of timerm[r(«m) becomes of the order ofAD/v̄,
which definitely should result in some deviation of the d
tribution function from its symmetric, Gaussian form. F
the exponential density of states, the distribution function
the Laplace representation, using Eqs.~64! and ~73!–~75!,
may be written

PL~«0 ,«;s!52
1

s
r

]

]r
expF2

1

v̄
E

r0

r

dx
W~sxex!

x2 G ,

~81!

where we have setn̄51 andD51 by appropriate choice o
time and energy units. Under the same conditions wh
were used in the derivation of the above formula, the follo
ing approximation is valid:

E
r0

r

dx
W~sxex!

x2
[G~s,r!2G~s,r0!;

G~s,r!5
1

r2
W~srer!F11

1

2
W~srer!G1OS W

r3
,
W 3

r3 D .

~82!

When calculating the distribution function at sufficient
large times, the characteristic values ofs, giving the main
contribution in the inverse Laplace integral, become so sm
,
is

-

id

e

-

n

h
-

ll

that one can supposeusur0 exp(r0)!1 and G(s,r0)
'sr0

21 exp(r0). Under this condition the distribution func
tion approaches initial conditions independence of sha
P(«0 ,«;t)→f@«,t1t0(«0)#, t0(«0)5(v̄r0)21 expr0,

f~«,t !5E
2 i`

1 i` ds

2p i
fL~«,s!est

52E
2 i`

1 i` ds

2p is
r

]

]r

3expH st2
1

v̄r2
W~srer!F11

1

2
W~srer!G J .

~83!

Now we consider the moments of the distribution at lar
times. In the Laplace-representation the moments are defi
by the equation

xnL~s!5E
0

`

dt e2st^«n&~ t !5E
r0

`dr

r
~2 ln r!nPL~«0 ,«,s!

→est0E dr

r
~2 ln r!nfL~«,s!. ~84!

We omit the irrelevant time shift multipleest0 in further
discussions.

For v̄r2@1, moments can be calculated as an expans

in powers of the small parameter 1/(Av̄r). Doing so, we
obtain for the first moment, the mean energy,

x1~ t !5^«&~ t !'2D ln
1

A
ln~ b̃Av̄t !2Apv̄

2

1A p

8v̄

1

ln2~ b̃Av̄t !
1•••, ~85!

where b̃5A2e211g/2, and g is Eulers’s constant. For the
distribution’s dispersions2(t)5x2(t)2x1

2(t),

s2~ t !5S 22
p

2
D v̄1~11 ln 2!

A2pv̄

ln~Av̄t !
1•••, ~86!

is obtained, and for the third central momentm3(t)5^@«
2^«&(t)#3& we have

m3~t!52~p23!Ap

2
v̄3/213@p~12 ln 2!21#

v̄

ln~Av̄t !
.

~87!

Figures 1, 2, and 3 show the mean-energy, the mean sq
deviation, and the dimensionless coefficient of asymmetr

Moving along the same line the whole distribution fun
tion can be reconstructed at large times from all of its m
ments. Doing so, we find that at large times and smallv̄ the
distribution function approaches
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f~«,t !5
]

]« H expF2
~«2« t!

2

2v̄
G , «,« t

1, «.« t ,

« t5 ln ln t.

~88!

In Fig. 4 some plots of the distribution function~83!, com-
pared with its asymptotic form@Eq. ~88!#, are shown.

C. Initial stage of the evolution

What happens at the initial stage of the evolution depe
much on the initial condition. Att50 it was supposed tha
P(«,«0 ;t50)5d(«2«0), so that all charge carriers hav
the same energye0. To gain some insight into the initia
stage of the evolution, we study the behavior of the deri
tive

P1~e0 ,t !5
]PL~e0 ,e;t !

]e U
e5e0

. ~89!

FIG. 1. Mean energy plotted as a function of ln lnt for ~a!

v̄/D51021, 100,t,108; ~b! v̄/D51022, 53102,t,10200; and

~c! v̄/D51024, 53104,t,105000. ~Thick line, numerical calcula-
tion of the integrals; thin line, asymptotical calculation of the in
grals.!
s

-

P1 is expected to change sign in the process of unstick
For small timesP1 should be positive, so that the distributio
still sticks at e5e0. In the course of time, the distributio
separates from its initial condition. IfP1 is negative the dis-
tribution is unstuck, so that the instant of unsticking is r
lated to the zero ofP1. Using formulas~B1!, ~64!, and~73!–
~75!, we obtain

P1~r0 ,t !'
1

~v̄r0!2EC

dz

2p i
Fz~11z!2

v̄

D
r0

2Gexpt~tzez!.

~90!

Herer05A exp(2«0 /D) andt5( n̄t/r0)e2r0. In Eq.~90! the
new integration variablez5W @(s/ n̄)r0er0# was introduced
for s, and terms proportional to (v̄/D)r!1 were neglected.

For t@1 this integral may be readily evaluated in th
saddle-point approximation, which yields

P1~r,t !'2
1

v̄D
A e

2pt
expS 2

t

eD . ~91!

FIG. 2. Mean-square deviations plotted as a function of ln lnt.
The values of the parameters are the same as in Fig. 1.
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Whent!1 one has to perform an integration by parts fir
which gives

P1~r,t !5
1

v̄2r2t
E

C

dz

2p i

3Fz212
v̄r2

D~11z!
2

v̄r2

D~11z!2Gexp~tzez2z!.

Then the saddle point-approximation yields

P1~r,t !'
e

A2pv̄2r2
~zc

2212v̄r2!, zc' ln
1

t
2 ln ln

1

t
.

~92!

At sufficiently small t the above expression is positiv
which means that the distribution is ‘‘stuck’’ near«5«0,
that is, it monotonously decreases as«02«.0 increases. At
somet5t0 , P1 changes sign. If (v̄/D)r0

2@1, this corre-

sponds tozc0' ln(1/t0)'Av̄/Dr0, otherwiset0;1. This
corresponds just to the instant of time when the distribut

FIG. 3. Coefficient of asymmetrym3 /s3 plotted as a function of
ln ln t. The values of the parameters are the same as in Fig. 1.
,

n

separates from the initial point—its maximum is at«,«0.
For t!t0 the width of the distribution on the energy sca
may be estimated as

D«~ t !;
P0~r,t !

P1~r,t !
, ~93!

FIG. 4. Plots of the energy distribution function atv̄/D50.1
and ~a! t5103, ~b! t5104, ~c! t5106, and~d! t5109. ~Thick line,
numerical calculation of the integrals; thin line, asymptotical calc
lation of the integrals!.
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where P0(r0 ,t)5PL(e0 ,e0 ;t). Using formulas~B1!, ~64!,
and ~73!–~75!, we obtain

P0~«0 ,t !5
1

v̄r0t
E

C

dz

2p i
exp~tzez2z!. ~94!

The integral may be evaluated using the saddle-p
method. The saddle-point equation,f 8(z)5t(z11)ez21
50, gives us the saddle-point valuezc5W(e/t)21, that is
zc' ln(1/t)2 ln ln(1/t) at t!1, and zc'e/t21 as t@1.
To ensure the correctness of the saddle-point approxima
one should require the parameteru f-(zc)u2/u f 9(zc)u35u(3
1zc)

2/(21zc)
3u to be small. While this is true att@1, this

parameter appears to be'1 att!1. Therefore, the result fo
t!1 is correct up to a multiple of order 1 only. In th
saddle-point approximation we have

P0~r,t !'5
1

A2pv̄r
S e

t D 3/2

expS 2
t

eD ast@1

e

A2pv̄r
S ln

e

t
2 ln ln

e

t D ast!1.

~95!

Consequently,

De~ t !'
v̄r0

zc
'

v̄r

ln~1/t!
. ~96!

This formula is valid if ln(1/t)!r, up to times correspond

ing to eithert;1 if ( v̄/D)r0
2!1, or ln(1/t)'Av̄/Dr0 oth-

erwise. In the former case the distribution width becomes
the order ofv̄r just before it separates from the initial poin
After this, the distribution, as shown in a previous subs

tion, widens toAv̄D, and the Gaussian packet moves dow
ward, until its center reaches the value corresponding tr

;AD/v̄. In the latter case the packet’s width is;Av̄D

!v̄r at the very moment of its ‘‘unsticking.’’ In both case
to consider subsequent evolution, one has to use some
approximation instead of the saddle-point one.

X. CONCLUSIONS

In this paper we have presented an effective met
which permits an investigation of relaxation phenomena
localized charge carriers far from equilibrium due to phono
assisted hopping at zero temperature. From the point of v
of the formalism, the main equations are those for the ca
lation of the diffusion propagator@Eqs.~34!, ~35!, and~36!#,
and Eqs.~60!, ~61!, and~62!, which determine the dispersio
of the transport coefficients. These equations show that b
particle transport and energy transport are dispersive. E
tions ~61! and~62! lead to a strong dependence of the diff
sion constantD(e;s) and the rate of energy relaxatio
v(e;s) on frequencys even for low frequencies. To ou
knowledge, these equations have not been derived in the
erature so far, for systems far from equilibrium. In fact,
the literature, mainly frequency-independent transport co
ficients can be found~see, e.g., Ref. 21 and referenc
therein!. The strong dependence of the transport coefficie
on s results in a non-Markovian equation for the calculati
t

n,
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w
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th
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lit-
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ts

of the diffusion propagator@Eq. ~34!#. This distinguishes our
equations from the Markovian integral equations used
Refs. 11–13. The latter equations can, in principle, be
tained from our leading Eq.~11! by neglecting statistica
correlation, so as to average every factor independently.

Using our effective-medium method we have investiga
the relaxation of charge carriers in band tails atT50. Ac-
cording to our results, energy relaxation is connected w
dispersive transport. Even if we have no real diffusion in t
system, since the temperature is zero, we have some sp
ing of the energy distribution with time. For a constant de
sity of states the situation is completely equivalent to that
an electron’s motion in a disordered system, subjected to
electric field.16 The main difference between the abov
mentioned problem and the energy relaxation is that in
former case the sites are distributed homogeneously in sp
while in the energy-relaxation problem the density of sta
is a decaying function of energy for most physical system
In this situation we arrive at a picture in which particles of
packet with lower energies move slower than particles w
higher energy. This leads to the opposite tendency: at fi
there is a slowing of the packet spreading. The time dep
dence of the dispersion, being linear at the first stage of
evolution, slows down later. Later on, different possibiliti
exist, depending on the particular energy dependence of
density of states.

We performed a detailed investigation for the exponen
density of states for two time regimes. If the variation of t
ratev in energy space across the distribution is smaller th
the rate itself, that is, ifvr2/D!1, we arrive at the situation
of a packet, moving steadily down along the energy a
without deformation. Dispersion becomes time independ
@see Eq.~77!#. However, since the particles are sinking dow
this condition is violated as time goes by. The parame
vr2/D, being small at the first stage of the evolution, b
comes large. When this parameter is larger than 1, the ste
motion condition is again violated. The packet, previously
Gaussian form, undergoes some restructuring to another
Gaussian stable form, with its width lower than before
some numerical factor of order 1@Eq. ~86!#. In Figs. 3 and 4
it is clearly seen that the packet becomes non-Gaussian.
result remains valid until the very moment that the quasie
ticity conditions break down (vr/D'1).

For the exponential density of states we have found
packet to move as ln lnt, i.e., its motion is strongly slowing
down with time; roughly speaking, the packet almost sto
This type of behavior may be called ‘‘glassy,’’ because t
overall time scale for packet evolution~governed by the ex-
ponential function of the large parameterD/v), becomes
huge.

The main simplification used in our paper is the quasiel
tic approximation. This approximation relies on the sma
ness of the upper bound for energy transferred to the pho
system in one hop. For localized electrons, this upper bo
can be much smaller than the Debye energy of the host
terial, since not all phonons can interact with localized el
trons equally well. For localized electrons the electro
phonon coupling constant approaches zero for phonons
a wave vectorq.2a. Thus highly energetic phonons ar
less effective. Only phonons with energiesv,vD2aa,
wherea is the lattice constant of the host material, are effe
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tive. Furthermore, in disordered systems the highly energ
acoustical phonons are localized, and thus need not con
ute to transport. Nevertheless, the question of whether
quasielastic approximation is applicable depends very m
on the material of interest. If, however, we compare our
sult for the time dependence of the mean energy@Eq. ~78!# in
an exponential density of states with those existing in
literature,1 we also find agreement forv/D'1, which indi-
cates that our results are, at least qualitatively, of wider
lidity. Unfortunately, to our knowledge, in the literature the
are no other results on the width of the energy distribut
available with which to compare.

From our point of view the main open question remaini
is how the results obtained for the exponential density
states may be generalized for other types of energy de
dencies. One can imagine, e.g., that for densities of st
decaying with a decreasing energy that is slower than
exponential energy, the dispersion grows, according to s
sublinear law. Also, in the opposite case, for a density
states decaying faster than the exponential energy, we w
possibly have a dispersion tending to zero for large time

However, it should also be mentioned that it is not co
pletely clear under which situation zero-temperature res
can be applied to systems at finite temperature. In our
proach, we assumed thatT50. However, in a real system
when the carriers are sinking down, the criterion for the te
perature to be treated as zero is violated at every finite v
of T at some moment of time, since the contribution of ho
to sites with higher-energy values becomes more and m
comparable with the contribution of one of the downwa
hops. Therefore, the consideration of temperature beco
vital. Work in this direction is in progress.
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APPENDIX A: DERIVATION
OF SELF-CONSISTENCY EQUATION

Here we derive the self-consistency equation~54!. In or-
der to work out the first-order contribution to the se
consistency equation~53! explicitly, we first-need the first-
order correction toP. This is given by

P (1)~r8,r;s!5E dr1 dr2 dr3 N~«3!w̃r3
~r8,r1 ;s!

3F̃~r1 ,r2!w̃r3
~r2 ,r;s!. ~A1!

If we insert the expression forw̃r3
, we obtain

P (1)~r8,r;s!5E dr1$N~«!W̃~r8,r;s!

3@ F̃~r,r1!2F̃~r8,r1!#W̃~r1 ,r;s!

2N~«1!W̃~r8,r1 ;s!

3@ F̃~r1 ,r!2F̃~r8,r!#W̃~r,r1 ;s!%. ~A2!

Thus, at this stage, the self-consistency equation takes
form
ic
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e
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e
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-
e

s
re

es

e

he

05E dq d«8 d«1~«82«!

3$N~«!W̃~0u«8,«;s!F̃~qu«,«1!W̃~qu«1 ,«;s!

2N~«!W̃~qu«8,«;s!F̃~qu«8,«1!W̃~qu«1 ,«;s!

2N~«1!W̃~0u«8,«1 ;s!F̃~qu«1 ,«!W̃~qu«,«1 ;s!

1N~«1!W̃~qu«8,«1 ;s!F̃~qu«8,«!W̃~qu«,«1 ;s!%.

~A3!

In order to eliminateF̃, we have to replaceF̃(qu«8,«)
5F(qu«8,«)2 f («,s)d(«82«), where F is the effective-
medium approximation of the diffusion propagator. Let
first work out the local contribution. ReplacingF̃ by f 3d,
the first and the third terms of Eq.~A3! cancel each other
The fourth term is zero, taking into account that thed func-
tion of the effective medium is multiplied by its argumen
Thus, whenF̃ is replaced byf («,s)d(«82«), only the sec-
ond term of Eq.~A3! survives. To simplify this term we take
into account that

W̃~que;s!5W̃~0ue,s!fS qrc~e,s!

2a D , ~A4!

wheref is a dimensionless function. Consequently, we o
tain

2E dq d«8~«82«!N~«! f ~«8,s!@W̃~qu«8,«;s!#2

'2E dq@W̃~qu«,s!#2
v2

2
f ~«,s!N~«!

52
1

2
v2S 2a

rc~e,s! D
d

N~e! f ~e,s!W̃2~0ue,s!

3E ddx f2~x!. ~A5!

Here terms proportional tov f 21(«,s)d f(«,s)/d«!1 have
been neglected.

Let us now focus on the contribution of the regular part
the diffusion propagator to the self-consistency equati
Owing to the step functions inF and W̃, the first and third
terms in Eq.~A3! are zero, whenF̃ is replaced byF. Thus
we are left with

E dq d«8 d«1~«82«!

3$2N~«!W̃~qu«8,«;s!F~qu«8,«1!W̃~qu«1 ,«;s!

1N~«1!W̃~qu«8,«1 ;s!F~qu«8,«!W̃~qu«,«1 ;s!%. ~A6!

The range of integration in Eq.~A6! is determined by the
step functions inF and W̃(qu«8,«;s)5u(«82«)u(v2«8

1«)W̃(qu«8;s). Owing to these step functions, the ener
integrations extend at most over intervals of lengthv, so that
the quasielastic approximation can again be applied to
effective-transition probabilities and the density of stat
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The diffusion propagator entering Eq.~A6!, however, cannot
be dealt with in this way, since for arbitraryq the derivatives
of the diffusion propagator are not small compared to
diffusion propagator itself. Therefore, another procedure
needed. To simplify this expression further we consider
~29!. If terms small with respect tovN8/N and
vW̃8(que,s)/W̃(que,s) are neglected, the function

F~xuy8,y!5v2FS x
2a

rc~vy,s!
Uvy8,vyD W̃~vy,s!N~vy!,

~A7!

can be introduced, that satisfies the equation

s

W̃~vy,s!N~vy!v
F~xuy8,y!

5d~y82y!1E
0

1

dy1@F~xuy8,y11y!f~x!

2F~xuy8,y!f~0!#. ~A8!

Then expression~A6! can be cast into the form

vW̃~vy!S 2a

rc~vy,s! D
dE ddx f2~x!

3F2E
0

1

dy8E
0

y8
dy1 y8FS xuy81

e

v
,y11

e

v D
1E

0

1E
0

12y1
dy8 y8FS xuy81

e

v
,

e

v D G . ~A9!
o
n-
t

th
e
is
.

For s50, Eq. ~A8! contains no physical parameter. It on
leads to a determination of the function

F0~xuy8,y!5u~y82y!F0~xuy82y!,

which satisfies the equation

05d~y82y!1E
0

1

dy1@F0~xuy8,y11y!f~x!

2F0~xuy8,y!f~0!#. ~A10!

Provided we restrict our consideration to small frequenc
in deriving the self-consistency equation, we only need
take into account the linear contribution of the functionF

with respect tos/„W̃(vy)N(vy)v…. Then, again using the
smallness of the variation of the effective transition pro
abilities and the density of states with respect to change
energy over intervals of lengthv, F can be approximated a

F~xuy8,y!5F0~xuy82y!2
s

W̃~vy!N~vy!v

3E
y

y8
dy1 F0~xuy2y1!F0~xuy12y!. ~A11!

Using this expression the self-consistency equation takes
form of Eq.~54!, where the coefficientsa andb are given by
a5
1

2

E ddx f2~x!E
0

1

~12y!2F0~xuy!

E ddx f2~x!

, ~A12!

b5
1

2

E ddxf2~x!E
0

1

dy~12y!2E
0

y

dy1 F0~xuy2y1!F0~xuy1!

E ddx f2~x!

. ~A13!
e

le-
APPENDIX B: SADDLE-POINT APPROXIMATION

For energy-dependent densities of states, it turns out t
difficult to obtain explicit expressions for the time depe
dence of the energy distribution function. Here, according
Eq. ~45!, the time dependence has to be calculated from
equation

P~«,«0 ,t !5E
2 i`

1 i` ds

2p iv~«,s!
expFst2sE

«

«0 d«8

v~«8,s!
G ,

~B1!
be

o
e

where v(«,s) is given by Eq.~62! or ~64!. Let us try to
integrate overs, using the saddle-point approximation. Th
saddle-point positions0(«,«0 ,t) may be obtained from the
equation

t5E
«

«0 d«8

v~«8!g~«8,s0!
2s0E

«

«0 d«8

v~«8!g2~«8,s0!

]g~«,s0!

]s0
,

~B2!

whereg5v(«,s)/v(«,0)5 expW @s/V(«)# was introduced.
The expression for the diffusion propagator in the sadd
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point approximation may be written as

PL~«,«0 ,t !5
1

A4pD~«,«0 ,s0!

1

v0~«!g~«,s0!

3expF2s0
2E

«

«0 d«8

v0~«8!g2~«8,s0!

]g~«,s0!

]s0
G ,

~B3!

where

D~«,«0 ,s0!52
]2

]s0
2E

«

«0 d«8V~«8!ln g~«8,s0!

2v0~«8!
.0.

~B4!

Assumings0 /V!1, we haveg(«,s0).11s0 /V2s0
2/2V2,

s05
t2T~«,«0!

2D~«,«0!
, D~«,«0!5E

«

«0 d«8

v0~«8!V~«8!
,

T~«,«0!5E
«

«0 d«8

v0~«8!
, ~B5!

and, finally, the diffusion propagator

PL~«,«0 ,t !.
1

A4pD~«,«0!

1

v~«!
expF2

@ t2T~«,«0!#2

4D~«,«0! G .
~B6!

At a given timet the exponent in the above distributio
function is maximal at«5«m , where «m is given by the
condition t5T(«m ,«0), or

t5E
«m

«0 d«8

v0~«8!
. ~B7!

Expanding expression~B6! around «5«m , we have the
Gaussian distribution

PL~«,«0 ,t !.
1

s~«m ,«0!A2p
expF2

@«2«m~«0 ,t !#2

2s2~«m ,«0!
G ,

~B8!
.

ev

lid

lid
with dispersion

s2~«m ,«0!52v0
2~«m!D~«m ,«0!

52v2~«m!E
«m

«0 d«8

v0~«8!V~«8!
. ~B9!

Note that, according to Eq.~B7!, the dispersion is time de
pendent. If the density of statesN(«), and consequently
V(«) and v0(«) are strongly varying functions of«, the
integrals can be further simplified. In this case we have

E
«m

«0 d«8

v~«8!
.Fdv~«0!

d«0
G21

2Fdv~«m!

d«m
G21

, ~B10!

E
«m

«0 d«8

v~«8!V~«8!
.Fd@v~«0!V~«0!#

d«0
G21

2Fd@v~«m!V~«m!#

d«m
G21

, ~B11!

E
«m

«0 d«8

v~«8!V~«8!
.Fdv~«0!V~«0!

d«0
G21

2Fdv~«m!V~«m!

d«m
G21

. ~B12!

The applicability condition for the saddle-point method

D3~«,«0 ,s0!@F ]3

]s0
3E

«

«0
d«8

V~«8!ln g~«8,s0!

2v~«8!
G 2

.

~B13!

Note that this condition restricts the applicability of th
saddle-point approximation to times that are not too lar
Also, from Eqs.~B5! one can see that this approximation
invalid when« is close enough to the initial point«0; here
us0u becomes large, and it is not possible to expand overs0.
Thus the initial stage of the evolution, when the entire d
tribution is concentrated near«0, also has to be investigate
separately.
.
M.

.

1D. Monroe, inHopping Transport in Solids, edited by M. Pollak
and B. I. Shklovskii~North-Holland, Amsterdam, 1991!.

2S. D. Baranovskii, R. Eichmann, and P. Thomas, Phys. Rev
58, 13 081~1998!.

3B. I. Shklovskii, H. Fritzsche, and S. D. Baranovskii, Phys. R
Lett. 62, 2989~1989!.

4R. Stachowitz, M. Schubert, and W. Fuhs, J. Non-Cryst. So
164-166, 583 ~1993!.

5M. Schubert, R. Stachowitz, and W. Fuhs, J. Non-Cryst. So
198-200, 251 ~1996!.

6R. Stachowitz, Ph.D. thesis, Marburg, 1997!.
7Z. Ovadyahu and M. Pollak, Phys. Rev. Lett.79, 459 ~1997!.
8M. Pollak and Z. Ovadyahu, J. Phys. I7, 1595~1997!.
9Clare C. Yu, Phys. Rev. Lett.82, 4074~1999!.
B

.

s

s

10M. Pollak and A. Hunt, inHopping Transport in Solids~Ref. 1!.
11L. E. Golub, S. V. Ivanov, E. L. Ivchenko, T. V. Shubina, A. A

Toropov, J. P. Bergman, G. R. Pozina, B. Monemar, and
Willander, Phys. Status Solidi B205, 203 ~1998!.

12E. L. Ivchenko and A. N. Reznitsky, Philos. Mag.65, 733~1992!.
13L. E. Golub, E. L. Ivchenko, and A. A. Kiselev, J. Opt. Soc. Am

B 13, 1199~1996!.
14B. Movaghar, B. Ries, and M. Gru¨newald, Phys. Rev. B34, 5574

~1986!.
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