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Nonequilibrium Josephson effect in mesoscopic ballistic multiterminal SNS junctions

P. Samuelsson, J. Lantz, V. S. Shumeiko, and G. Wendin
Department of Microelectronics and Nanoscience, Chalmers University of Technology and Go¨teborg University,

S-41296 Go¨teborg, Sweden
~Received 20 April 1999; revised manuscript received 1 October 1999!

We present a detailed study of the nonequilibrium Josephson effect in quantum three- and four-terminal SNS
devices. We focus our discussion on the anomalous dc Josephson current which is a prominent feature of open
nonequilibrium quantum SNS structures. This current is revealed under tunnel injection and it grows with the
applied voltage across the injection point, in sharp contrast to the effect of nonequilibrium population of the
Andreev states which induces oscillations and sign reversal of the Josephson current as a function of injection
voltage. The anomalous current does not decay with the length of the junction even in the long junction limit
L@jT . This long-range effect is microscopically connected to the similar property of the injection current. We
study the resonant features in the dependence of the Josephson current and the injection current on the injection
voltage and superconducting phase difference, discuss the effect of asymmetry~a crossover top-periodic
phase dependence! and the role of resistive NS interfaces which introduce additional, normal electron, reso-
nances. The Josephson effect is qualitatively similar in three- and four-terminal junctions, while the injection
current in four-terminal junctions exhibits a specific resonant behavior due to Fano resonances.
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I. INTRODUCTION

The art of controlling Josephson current transport throu
mesoscopic superconducting junctions poses many c
lenges for theory and experiment from both fundamental
applied points of view. One possibility is to use a Joseph
field effect transistor~JOFET!,1,2 where control of the Jo-
sephson equilibrium current is imposed via an electrost
gate. Another solution is to connect the normal region t
normal voltage biased reservoir. Injection of electrons a
holes allows nonequilibrium quasiparticle distributions to
maintained in theN region, making it possible to control th
nonequilibriumJosephson current. Recent progress in fa
cation of superconducting junctions has brought forwar
number of interesting multiterminal structures, e.g., tw
dimensional electron gas, junctions,2–4 metallic junctions,5,6

and high-Tc junctions.7 The purpose of this paper is to pro
vide a broad description of Josephson current trans
through quantum SNS junctions under conditions of n
equilibrium in the normal region due to connection to a vo
age biased normal reservoir.

The effect of nonequilibrium distribution of electrons
the normal region of SNS junctions was theoretically stud
in the beginning of 1980s.8 These early studies were focuse
on nonstationary effects in long SNS junctions~effect of
electromagnetic radiation, ac Josephson regime!, where non-
equilibrium leads to enhancement of the critical current
finite temperature. More recently, a similar problem w
studied in classical and quantum superconducting point c
tacts where the nonequilibrium dc Josephson current ca
suppressed and even reversed.9 The effect of the suppressio
and the reversal of the Josephson current under tunnel in
tion in multiterminal SNS junctions was first studied by v
Wees, Lenssen, and Harmans10 in ballistic junctions and by
Volkov11 in diffusive junctions~see also Ref. 12!. Suppres-
sion of the Josephson current due to injection has been
perimentally demonstrated in both ballistic4 and diffusive
PRB 620163-1829/2000/62~2!/1319~19!/$15.00
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SNS junctions.5 Very recently, Baselmanset al.6 were able
to experimentally reverse the direction of the Josephson
rent.

In ballistic junctions, the problem of nonequilibrium cu
rent injection is of particular interest: Andreev quantizati
in ballistic junctions13 provides means for achieving a dra
matic variation of the nonequilibrium Josephson current
has been found by Wendin and Shumeiko14 that nonequilib-
rium filling of Andreev levels may considerablyenhancethe
critical current even at zero temperature as well as reve
the direction of the current. Various aspects of the noneq
librium Josephson effect in ballistic junctions has been f
ther analyzed in Refs. 15 and 16.

A further step beyond the work in Ref. 10 was taken
Samuelsson, Shumeiko, and Wendin16, who showed that
modification of the Josephson current in ballistic junctio
under injection does not reduce to the effect of nonequi
rium population. An essential aspect is the ability of the sc
terer at the injection point to shift the phases of the quasip
ticles. In such a case, the connection to the injection lead
affects the form of the wave function of the Andreev res
nances, and therefore affects Josephson currents flow
through the resonances.

This is particularly dramatic for long junctions, where th
equilibrium Josephson current is exponentially small at fin
temperature.17,18 In contrast, theanomalousnonequilibrium
Josephson current does not depend on the length of the j
tion ~long-range Josephson effect!.16 This means that, in
principle, a dissipationless current of the order of the eq
librium Josephson current of a short junction can be resto
under conditions of filling up all the Andreev levels in th
gap. The effect is most pronounced in junctions with a sm
number of transport modes. This opens up the possibility
a new kind of Josephson transistor where the supercurre
turned on when the gate voltage is switched fromeV50 to
eV5D.

The long-range Josephson effect associated with ano
lous Josephson current16 must be distinguished from the so
1319 ©2000 The American Physical Society
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1320 PRB 62SAMUELSSON, LANTZ, SHUMEIKO, AND WENDIN
called dissipative Josephson effect.19 The latter consists of a
net current flow between the superconducting electrodes
result of asymmetric phase dependent splitting of the in
tion current. This current may flow in absence of a poten
difference between the superconducting electrodes, in a
tion to the true Josephson current. In practice, these two
fects may coexist and therefore the analysis of the injec
current is a necessary element of the analysis of the none
librium Josephson effect.

In this paper, we analyze the nonequilibrium Joseph
effect in three- and four-terminal ballistic SNS junctio
with different lengths and geometry, with transparent a
resistive SN interfaces and for various temperatures.

The paper is organized as follows. In Sec. II, we prese
general discussion of the currents in a 3-terminal SNS
vice. In Sec. III we describe our model based on the stat
ary Bogoliubov–de Gennes~BdG! equation. The derivation
of all currents in the case of a three-terminal junction w
transparent NS interfaces is presented in Sec. IV. In Sec
we discuss the equilibrium and nonequilibrium Joseph
currents, both in a short and long junction; the effect of b
riers at the NS interfaces is discussed in Sec. VI. The in
tion current and the normal conductance are analyzed in
VII. In Sec. VIII we discuss four-terminal junctions.

II. NONEQUILIBRIUM JOSEPHSON CURRENTS

In this paper, we will consider two junction configura
tions: three and four terminal. The 3-terminal configurati
~see Fig. 1! is an elementary structure which gives all ne
essary information for understanding the Josephson e
also in the four-terminal junction, to be discussed below. T
normal part of the junction is inserted between two sup
conducting electrodes. The superconducting electrodes
connected with each other to form a loop and the magn
flux threading the loop allows us to control the phase diff
encef5fR2fL across the junction.

We consider a junction in the ballistic limit, when th
length L5L21L3 of the normal part of the junction is
shorter than both the elastic and inelastic scattering leng
L! l e ,l i . We use a simplified description of the connecti
point, modeling it by a scattering matrixS that connects in-
going and outgoing wave-function amplitudes:20

Cout5SC in , ~1!

FIG. 1. A schematic picture of the three-terminal SNS junct
setup under consideration, with a normal reservoir attached to
normal part of the junction. The normal reservoir is connected
the superconducting loop~grounded! via a voltage source biased a
V. The right figure shows a closeup of the junction area with
arrows showing the direction of the current flow in the junction
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S5S A122e Ae Ae

Ae r d

Ae d r
D , ~2!

wherer andd are reflection and transmission amplitudes
scattering between lead 2 and lead 3 andAe is the scattering
amplitude from the injection lead 1 to lead 2 or 3. In
multichannel treatment,r ,d ande become matrices describ
ing the scattering between the channels. In this paper
however choose to consider a single-mode structure.

In the junction presented in Fig. 1, the currentI 1 injected
into the junction from the normal reservoir splits at the co
nection point. At the NS interfaces, the normal current
converted into a supercurrent. The supercurrent flows aro
the loop and is drained at a point connected to the nor
reservoir via a voltage source biased at voltageV. There are
two major questions about the currents:~i! what is the cur-
rent I 1 in injection electrode 1 as function of the applie
voltage and superconducting phase difference, and~ii ! how
is the current distributed between the arms 2 and 3?

The first problem has been discussed earlier,21–23 and the
picture is the following: due to Andreev quantization th
problem is equivalent to a resonant transmission probl
For weak coupling to the normal reservoir,e!1, the prob-
ability of an incoming electron to be reflected is large unle
its energy coincides with an Andreev level. In such a ca
the electron is back scattered as a hole which produce
current density peak. The current as a function of appl
voltage between the normal reservoir and the junction~IVC!
thus increases stepwise, typical for resonant transport,
position and height of the steps depending on the phase
ference between the superconductors.

The second question about current distribution betw
the junction arms concerns a subtle problem of the coex
ence of the injection current flowing through the superco
ductor and the nonequilibrium Josephson current. Gener
the injected current asymmetrically splits between the t
SN interfaces and induces a net phase-dependent curren
culating within the loop without producing voltage dro
across the SNS junction.19 This current flows in addition to
the true Josephson current which is affected by the inject
induced nonequilibrium. Since only the total current in t
loop can be measured, there is no way to distinguish
nonequilibrium Josephson current from the circulating inje
tion current. However, the nonequilibrium Josephson curr
can be naturallydefinedin the limit of small coupling be-
tween the SNS junction and the normal reservoir,e→0: the
injection current becomes vanishingly small in this limit a
may be neglected, while the true Josephson current tends
finite value. Following this definition, we will focus on th
limit e!1 when discussing the Josephson current below

The scattering states carrying the current can qualitativ
be described as electrons or holes entering the SNS junc
from the injection lead 1, being split at the connection poi
scattered back and forth in the junction by Andreev refl
tions at the NS interfaces and normal reflections at the c
nection point, and then finally leaving the junction, havi
effectively transported current from one superconductor
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PRB 62 1321NONEQUILIBRIUM JOSEPHSON EFFECT IN . . .
the other. When the dwell time\/G at the Andreev reso
nances is smaller than the inelastic scattering timel i /vF in
the junction, the quasiparticle distribution in the normal
gion is determined by the Fermi distribution function of t
normal reservoir, and the current in the leadsj 52 or 3 from
injected quasiparticles can be written

I j5E
2`

`

dE~ i j
ene1 i j

hnh!, ~3!

where i j
e(h) is the current density for injected electron

~holes! and ne(h)5nF(E6eV) are the Fermi distribution
functions in the normal reservoir, with nF5@1
1exp(E/kT)#21. The dwell time at the Andreev resonanc
is determined by the coupling to the reservoire and the
spacing between resonances, roughly varying betweenD and
\vF /L, depending on the length of the junction. This puts
lower constraint on the coupling constante, which thus has
to obey the inequalities

L/ l i ,j0 / l i!e!1, ~4!

wherej05\vF /D.
The current in Eq.~3! can conveniently be rewritten

I j5E
2`

`

dEF i j
1

2
~ne1nh!1

i j
2

2
~ne2nh!G5I j

11I j
2 , ~5!

wherei 15 i e1 i h and i 25 i e2 i h. Quasiparticles are also in
jected from the superconductors for energies above the
perconducting gap. Since the superconductors are grou
(V50), the current from the superconductors is an equi
rium current. This current plus the currentI 15I 2

15I 3
1 in-

jected from the normal reservoir in absence of applied v
age, is the total equilibrium current. Applying a bias volta
(VÞ0), I 1 becomes the nonequilibrium current due
population of the empty Andreev levels, giving rise to cu
rent jumps when the injection energyeV equals the Andreev
level energies~see Fig. 2!. This makes it possible to prob
the energy of the Andreev levels.10,16,15

The I 2 part of the current is entirely nonequilibrium cu
rent. It partly consists of the injection current; however, th
is also a component which does not vanish in the limit
weak coupling to the reservoir: we call this the anomalo
Josephson current.16 This current results from a differen
form of the Andreev resonance wave functions in the op

FIG. 2. The current voltage characteristics~IVC! for I 1 ~upper!
and I 2 ~lower! for a junction with seven Andreev levels for 0,E
,D. The currents jump every time the voltageeV is equal to the
energy of an Andreev level, typical for resonant transport.
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junction compared with the wave functions of true Andre
bound states. The origin of the anomalous current can qu
tatively be described by considering the lowest order qu
particle classical paths which contribute to the resonance
transparent junctions (R!1) with perfect NS interfaces.

Consider a resonant state where the most of the elect
move to the left and the holes to the right, only a fraction
them traveling in the opposite direction due to normal sc
tering at the connection point. An injected electron gives r
to a left-going electron in lead 2 with the amplitude
1eifRd* e2 ifLr with f5fR2fL ~not taking electron and
hole dephasing and the energy dependent phase picke
when Andreev reflecting into account! thus giving a contri-
bution to the current of the order 11RD1Re(rd* eif) ~see
inset in Fig. 3!. Correspondingly, an injected hole gives ri
to a right-going hole in lead 3 with amplitude
1e2 ifLdeifRr * and a contribution to the current of orde
11RD1Re(rd* e2 if) ~see right figure in inset in Fig. 3!.
The difference currenti 2 thus contains a part proportional t
Re@rd* (eif2e2 if)#52Im(rd* )sin(f), which is the lead-
ing term in the anomalous current. At a resonant state wh
the particles move in the opposite direction, i.e., the electr
to the right and the holes to the left, we find from the sa
arguments that the anomalous current is again proportio
to 2Im(rd* )sin(f), with the same sign. The anomalous cu
rent thus flows in the same direction for all resonances
contrast to the equilibrium Josephson current which chan
sign from one level to the next. The IVC forI 2 is thus a
staircase, as shown in Fig. 2, saturating ateV.D due to the
absence of sharp resonances for energies above the supe
ducting gap. This has a dramatic effect on the long ran
properties of the Josephson current.

For a long junction (L@j05\vF /D), the IVC in Fig. 2
becomes dense, since there is a large number;L/j0 of An-
dreev levels in the junction. The spacing between the A
dreev levels is;\vF /L, so at temperatures exceeding t
interlevel distance, the currentI 1 is averaged to zero while
I 2 is reduced to a smooth ramp function. We thus ge
currentI 2 that increases linearly with voltage up toeV5D

FIG. 3. The charge current density for two resonant Andre
levels for injected electronsi e ~dotted! and holesi h ~dashed!, their
sum i 1 ~solid! and differencei 2 ~dash dotted!. Note that the dif-
ference currenti 2 has the same sign for both resonances. Ins
Two lowest order paths for an injected electron~solid! or a hole
~dashed! at a resonance. The gray ellipse denotes the effective s
terer due to the three lead connection. The difference of the curr
due to these processes is proportional to Im(rd* )sinf, the first-
order term of the anomalous current.
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1322 PRB 62SAMUELSSON, LANTZ, SHUMEIKO, AND WENDIN
and saturates at a level of the order of the equilibrium
sephson current of a short junction,I;eD/\. This current is
independent of the length of the junction, since there i
large number of levels;L each carrying a current;1/L.

III. CALCULATION OF THE CURRENT

A. General formulation

We consider a three-terminal junction with asymmet
current injection (L2ÞL3) and perfect transmission at th
NS interfaces. The wave functions in the different regions
the junction are found from the stationary one-dimensio
Bogoliubov–de Gennes equation24

F H0 D

D* 2H0
GC5EC, H052

\2

2m

d2

dx2
2EF ~6!

which givesE as a departure fromEF . The wave functions
are then matched at the NS interfaces and at the conne
point, which gives the full scattering state wave function
injected quasiparticles. The cross section of the superc
ducting electrodes is much larger than the magnetic pene
tion depth, which allows one to control the phase differen
by means of the magnetic fluxF threading the superconduc
ing loop ~see Fig. 1!. To neglect the effect of the magnet
field on the normal electrons in the SNS junction we assu
that the area of the normal region of the junction is sm
compared to the area of the superconducting loop so tha
magnetic flux through the normal region is much sma
than the flux quantum. In this case, a gauge in the nor
region can be chosen such that the influence of magn
field is fully accounted for by the superconducting pha
difference, which in this case is gauge invariant. The el
trostatic potential in the SNS junction is zero since the
tential difference between the normal reservoir and the S
junction drops at the injection point, due to rapid spread
out of the current in the normal reservoir.

Since the cross section of the normal region is assume
be much smaller than the cross section of the supercond
ing electrodes~as indicated in Fig. 1!, the influence of the
normal region on the superconductors can be neglected.
apply the approximation25 with D(x) constant in the super
conductors and zero in the normal region,

D~x!5H DeifL x,2L2

0 2L2,x,L3

DeifR x.L3

, ~7!

where the gauge invariant phase difference between the
perconductors isf5fR2fL . We can then make an ansa
with plane waves in the different regions of the junction. F
positive energiesE.0 we put in the normal regionsj
51,2,3,

C j5cj
1,eF1

0Geikex1cj
h,2F0

1Ge2 ikhx

1cj
e,2F1

0Ge2 ikex1cj
h,1F0

1Geikhx ~8!

and in the superconductorsj 5L,R
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C j5dj
e,1Fueif j

v Geiqex1dj
h,2Fveif j

u Ge2 iqhx

1dj
e,2Fueif j

v Ge2 iqex1dj
h,1Fveif j

u Geiqex. ~9!

The wave functions are normalized to unit amplitude of t
incoming quasiparticles. The upper and lower componenu
andv of the wave function are defined as

u~1 !,v~2 !55A
1

2
~16j/E! E.D

A1

2
~E6j!/D E,D

, ~10!

wherej5AE22D2 for E.D and j5 iAD22E2 for E,D.
The wave vectors areqe,h5A2m/\2AEF6j in the super-
conductors and andke,h5A2m/\2AEF6E in the normal re-
gions. The wave functions are matched at the NS interfa
and at the injection point. The three-terminal injection po
is modeled by the scattering matrix20,21given by Eq.~2!. The
scattering amplitudese (0<e<0.5), d and r obey the rela-
tions Re(rd* )52e/2 and D1R512e (D5udu2,R5ur u2)
due to the unitarity of the scattering matrix. Moreove
Im(rd* )5sARD2e2/4, with s561 dependent on the
phase of the scatterer. For simplicity the coupling parame
e is chosen real and positive. The scattering amplitudes
assumed to be energy independent, which gives the sca
ing matrix for hole wave-function amplitudesSh5Se* .

Assuming D!EF we make the approximationqe5qh

5kF in the superconductors andke5kh5kF in the normal
region except in exponentials where we putke,h5kF
6E/(\vF). At energiesE,D, only electrons and holes from
the normal reservoirs are injected in the junction. ForE
.D quasiparticles from the superconductors are also
jected. The current of the scattering states in the three nor
regions are calculated following the Landauer-Bu¨ttiker scat-
tering approach.26 The spectral current density in regionj is
given by

i j~E!5
e

h
~ ucj

1,eu22ucj
2,eu21ucj

1,hu22ucj
2,hu2!. ~11!

We now define energy dependent phasesu2,35g2b2,3 in
each of the leads 2 and 3, consisting of the phaseg
5arccos(E/D) picked up by the electrons and holes wh
Andreev reflecting, and the dephasingb2,35(ke2kh)L2,3
52EL2,3/(\vF) of the electrons and holes while propaga
ing ballistically through the normal region. Furthermore, it
convenient to separate out the specific features of asymm
by introducing sum phases 2u5u21u3 , b5b21b3, and
the difference phasesx5u22u3, defining essential phas
parameters characterizing the junction,

u5g2b/25arccos~E/D!2EL/~\vF!, ~12!

x5b32b252El/~\vF!, ~13!

whereL5L21L3 and l 5L32L2
The current densities of the scattering states in lead

and 3 from electronsi 2,3
e and holesi 2,3

h are then given by
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i 2
e,h52

e

h

e

Z
„2D sinf sin 2u

6$s2ARD2e2/4 sinf~cosx2cos 2u!

1e@12cos~2g2b2!1cosf~cosx2cos 2u!#%…,

~14!

i 3
e,h52

e

h

e

Z
„2D sinf sin 2u

6$2sARD2e2/4 sinf~cosx2cos 2u!

2e@12cos~2g2b3!1cosf~cosx2cos 2u!#%…

~15!

with the superscripte(h) related to1(2) and where

Z5@~12e!cos 2u2R cosx2D cosf#21e2 sin2 2u.
~16!

From Eqs.~14! and ~15! it follows that the sum of the elec
tron and hole current densities,i 15 i e1 i h, are equal in leads
2 and 3, giving the sum current density

i 15 i 3
15 i 2

152
4e

h

e

Z
$D sinf sin 2u%. ~17!

The difference current densitiesi 25 i e2 i h in leads 2 and 3
are not equal, however. We therefore define the anoma
current densityi a as that part of the difference current de
sity which survives in the limite→0,

i a52s
4e

h

e

Z
$ARD2e2/4 sinf~cosx2cos 2u!%.

~18!

The injection current densityi in j5 i 3
22 i 2

2 is given by,

i in j5
4e

h

e2

Z
$sin2 x1~cosx1cosf!~cosx2cos 2u!%

~19!

and splits asymmetrically between the two horizontal arm
and 3,

i in j 2,356
2e

h

e2

Z
$12cos~2u2b2,3!

1cosf~cosx2cos 2u!%. ~20!

From the relationsi 1(E)52 i 1(2E) and i 2(E)5 i 2(2E)
one can calculate the current densities for all energies in
the gapuEu,D. The continuum current density, for energi
outside the gapuEu.D, is calculated in the same way. How
ever, since the Andreev reflection probability decays v
rapidly outside the gap, the Andreev resonances become
broad and contribute much less to the current. Only the q
siparticles injected from the superconductors contribute
nificantly to the current, as will be discussed below. The f
formulas for the continuum current density for a symmet
junction l 50 is presented in Appendix A.
us

2

de

y
ry

a-
-

l

B. Weak-coupling limit

In the limit of small coupling to the reservoir,e!1, the
Andreev resonances are very sharp and the current den
are calculated by evaluating the expressione/Z appearing in
the Eqs.~17!–~19!, in the limit e→0. This is done in detail
in Appendix B, and gives@see Eq.~B6!#

lim
e→0

e

Z
5(

n,6

p

Dusinf sin 2uu UdE

dfUd~E2En
6!. ~21!

whereEn
6 are the energies of the bound Andreev states.

calculate the current density, information about the bou
state energies as well as the derivative of the energy w
respect to phase difference is thus needed. The bound
energies are given by the zeros of the denominatorZ @Eq.
~16!# at e50, namely27

cos 2u5R cosx1D cosf. ~22!

The energy of the Andreev levels as a function of pha
differencef is plotted in Fig. 4. In the figure it is shown tha
the Andreev levels appear in pairs, labeled byn, with an
upper (1) and a lower (2) level ~referring toE.0). The
index n is zero for the pair of levels with positive energ
closest toEF . In the case of one single bound state, the le
is labeled byE0

2 .
The derivative of the bound state energy with respec

phase is obtained by differentiating Eq.~22!, giving

dEn
6

df
5

D sinf

2 sin 2u S 1

AD22~En
6!2

1
L

\vF
1

l

\vF
R

sinx

sin 2u D 21

.

~23!

The expression for the sum current density is given by
serting Eqs.~21!–~23! into Eq. ~17!, giving

i 15
2e

\ (
n,6

dE

df
d~E2En

6!, ~24!

where the relation sgn@(dE/df)sinf sin 2u#521 @see Eq.
~B9!# has been taken into account. The expression~24! co-
incides with the equation for the Andreev bound sta
current28 derived directly from the BdG equation. From th
alternating slopes of the energy-phase relationE(f), plotted

FIG. 4. Andreev bound state energies as a function of ph
differencef for different lengthsL50 ~left!, L;j0 ~middle!, and
L@j0 ~right! of the junction withD50.7. Solid lines are for a
symmetric junctionl 50, dashed for an asymmetric one. A ga
opens up in the spectrum atf50 due to the asymmetry.
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in Fig. 4, it is clear that the sum current dens
(;dE/df) changes sign between two subsequent Andr
resonances~see Fig. 3!.

The anomalous current densityi a is given directly by in-
serting Eq.~21! into Eq. ~18!, namely

i a52s
2e

\
sgn~sinf!ARD

3(
n,6

cosx2cosf

usin 2uu UdEn
6

df
Ud~E2En

6!. ~25!

For a symmetric junctionl 50,cosx51, the anomalous cur
rent density does not change sign as a function of ene
opposite to the sum current density~see Fig. 3!. For finite
asymmetry, the anomalous current might change sign. H
ever, this does not lead to strong suppression of the t
anomalous current, as will be shown below in Sec. V B.

The injection currenti in j5 i 3
22 i 2

2 goes to zero fore!1.
We approximate the injection current in the weak-coupl
limit by the first-order term ine, given by inserting the ex-
pression fore/Z in the zero coupling limit into Eq.~21!,

i in j5e
8e

\ (
n,6

sin2 x1D~cosx2cosf!2

usin 2uu

3UdEn
6

df
Ud~E2En

6!. ~26!

The injection current density is closely related to the anom
lous current densityi a , in the sense that the injection curre
density is positive for all energies and values of the ph
differencef.

C. Structure of the nonequilibrium current

Including the continuum contribution from the superco
ductors~Appendix A! in Eq. ~5!, we can finally write down
the structure of the total current in each lead:

I j5E
2`

`

dEF i j
1

2
~ne1nh!1

i j
2

2
~ne2nh!1 i snFG , ~27!

where i s is the current density from the quasiparticles
jected from the superconductors. The equilibrium curr
(V50) flowing in leads 2 and 3 is given by

I eq5E dE@ i 11 i s#nF ~28!

while in lead 1 it is zero. Subtracting the equilibrium curre
from the total current we get the nonequilibrium current
the horizontal leads 2 and 3. We divide the nonequilibriu
current into the regular currentI r associated with the non
equilibrium population of the existing resonant states,

I r5E dEF i 1

2
~ne1nh22nF!G , ~29!

the anomalous currentI a associated with the essential mod
fication of the Andreev states due to the open normal lea
v

y,

-
al

-

e

-

t

t

,

I a5E dEF i a

2
~ne2nh!G , ~30!

and the injected currentI 1,

I 15I in j5E dEF i in j

2
~ne2nh!G . ~31!

With these definitions, the total currents in leads 2 and 3 m
be written as

I 25I eq1I r1I a2I in j ,2 ,
~32!

I 35I eq1I r1I a1I in j ,3 ,

where I in j5I in j ,21I in j ,3 . As discussed in Sec. II, the sep
ration of the anomalous current is arbitrary, and has phys
meaning only in the weak-coupling limit whenI in j→0.

In the weak-coupling limit, the integrals in Eqs.~29! and
~30! become sums over resonant states,

I r5
e

\ (
n,6

dEn
6

df
@ne~En

6!1nh~En
6!22nF~En

6!#, ~33!

I a52s
e

\
sgn~sinf!ARD

3(
n,6

cosx2cosf

usin 2uu UdEn
6

df
U@ne~En

6!2nh~En
6!#.

~34!

The equilibrium current for energiesuEu,D is given by in-
serting Eq.~24! into Eq. ~28!,

I eq
b 5

2e

\ (
n,6

dEn
6

df
nF~En

6!. ~35!

For energies above the gap, the equilibrium current res
from quasiparticles injected from the superconductors on
since this current is the only continuum current being fin
in the weak-coupling limit~see Appendix A!.

IV. JOSEPHSON CURRENT OF A SHORT JUNCTION

For a short junctionL5 l 50, there is exactly one reso
nance for positive energies 0,E,D. For no coupling to the
normal reservoire50, this resonant Andreev state is co
verted into a bound Andreev state, with the dispersion re
tion E0

25DA12D sin2(f/2). The equilibrium current of a
short junction is thus given by the well-known29 relation

I eq5
eD

\

D sinf

2A12D sin2~f/2!
tanh~E0

2/2kT!. ~36!

The continuum current is zero, which can be seen by put
L50 (b50) in the equations for the continuum current
Appendix A. At zero temperature and zero applied bias, o
the level with negative energy2E0

2 is populated. For an
applied a voltage biasV.0, the electron~hole! population is
shifted upwards~downwards! in energy. When the voltage
eV5E0

2 , the energy of the resonant level, the level becom
populated and there is an abrupt jump of the current. T
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regular part of the current,I r , jumps an amountdI r5
2I eq , thus cancelling the equilibrium Josephson current~see
Fig. 5!. This has recently been observed in experiments4,5

The anomalous current jumps by the amount

dI a5s
eD

2\

ARD sinfusinf/2u

12D sin2~f/2!
~37!

and is thus the total current of the junction. The effect
finite temperature in a zero length junction is merely
smear the steps in the IVC.

In the symmetric case (l 50) it is interesting to extend the
discussion to a longer junction with two resonant levels~see
Fig. 4!, since the current distribution between the levels
comes nontrivial.14,15 In the limit D!1, both resonance
have energies close to the gap edge,E0

6'D, and with the
additional approximationb/2.AD we obtain the expressio
for the derivative of energy with respect to phase@see Eq.
~23!#,

dE0
6

df
56

DAD

4

L

j0

sin~f!

usin~f/2!uA12D sin2~f/2!
. ~38!

The equilibrium bound state current becomes proportiona
I eq

b ;dE0
1/df1dE0

2/df;D ~taking terms of orderD into
account!, but for the currents of the individual levels;AD.
The resonant levels thus carry opposite ‘‘giant’’ curren
which almost cancel in equilibrium. ForL.0, we also have
to take the continuum contribution into account. In has be
shown14 that the continuum contribution to the equilibriu
current is I eq

c 521/2I eq
b , thus giving the total equilibrium

currentI eq51/2I eq
b .

At zero temperature, when a voltage equal to the low
lying level eV5E0

2 is applied, the regular and anomalo
current jumps,

dI r5
eD

\

L

j0

AD sin~f!

2usin~f/2!uA12D sin2~f/2!
, ~39!

dI a5s
eD

\

L

j0

ARD sinf

A12D sin2~f/2!
. ~40!

FIG. 5. The currentsI eq1I r ~dash dotted!, I a ~dashed!, and the
total Josephson currentI eq1I r1I a ~solid! in the horizontal leads 2
and 3 as a function of voltageV at T50 for a short junctionL
50 with D50.8,f53p/4, e50.01, ands521. The total current
is I eq for eV,E0

2 anddI a for eV.E0
2 .
f

-

to

n

st

Both jumps are proportional toAD, and the magnitude of the
total current atE0

2,eV,E0
1 is then much larger than th

equilibrium current.
When the bias voltage is further increased toeV5E0

1

there is a second current jump: the regular current jump
the oppositedirection and becomes equal to the small ne
tive bound state equilibrium currentI r52I eq

b . The anoma-
lous current, however, again jumpsdI a in thesamedirection.
For voltageseV.E0

1 the total current in the junction is thu
I eq

c 12dI a . The full formulas for all the individual currents
including temperature dependence is given in Appendix

V. JOSEPHSON CURRENT OF A LONG JUNCTION

We first discuss the Josephson current in a long (L@j0)
symmetric (l 50) junction. The junction length is limited by
the requirement of Eq.~4!, that the injected quasiparticles d
not scatter inelastically in the junction,L!e l i .

In a long junction there are many (N5@L/(j0p)#) pairs
of resonances, as seen in Fig. 4. The derivative of ene
with respect to phasedE/df in Eq. ~23!, which determines
the current in Eqs.~33!–~35!, can be simplified in a long
junction L@j0,

dE6

df
56

\vF

L

AD sin~f!

4usin~f/2!uA12D sin2~f/2!
. ~41!

This expression holds everywhere@with accuracyO(1/L3)#
except close to the gap edge,D2En;(\vF /L)(j0 /L), a
distance much smaller than the energy distancep\vF /L be-
tween the pairs of levels. Therefore Eq.~41! can be used for
calculation of the currents of all levels except the last pair
levels closest to the energy gap.

A. Equilibrium current

The behavior of the equilibrium Josephson current, b
at zero and finite temperature, is the result of fine comp
sation of the partial bound state and continuum state c
rents. According to Eqs.~41! and ~23!, each of the Andreev
levels carries a current of order 1/L, while each pair of levels
carries a smaller net current of orderdEn

1/df2dEn
2/df

;(1/L)3. Thus the equilibrium current of all bound states

I eq
b 5

e

\

\vF

L

AD sin~f!

2usin~f/2!uA12D sin2~f/2!

3 (
n50

N21

@ tanh~En
2/2kT!2tanh~En

1/2kT!#

1 i * tanh~D/2kT!, ~42!

is determined atT50 by the current from the last pair o
levels atE'D, I eq

b 5 i * ;1/L. This results in an oscillatory
behavior of the bound state current with the junction len
~see Fig. 6!. A similar result was obtained for a fully trans
parent SNS junction in Ref. 30.

The continuum current in Eq.~A4! oscillates in the oppo-
site sense, as also shown in Fig. 6, compensating the o
lations of the bound state current, Eq.~A5!. As a result, the
total current monotonously decays as 1/L,31,32
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I eq~T50!5
e

\

\vF

L

AD sin~f!arccos~R1D cosf!

2pusin~f/2!uA12D sin2~f/2!
.

~43!

When the temperature increases, the sum in Eq.~42! starts to
contribute with negative sign, while the continuum curre
~and alsoi * ) is independent of temperature forkT!D, since
it is an integral over states withuEu.D, Eq. ~A4!. The total
current therefore rapidly decreases with temperature and
comes exponentially small forkT@\vF /L,17,32

I eq~kT@\vF /L !5
e

\
8kTD sinfe22pL/jT, ~44!

wherejT5\vF /kT.

B. Regular current

The regular current can be written, inserting relation~41!
into Eq. ~33!, on the form

I r5
e

\

\vF

2L

AD sin~f!

2usin~f/2!uA12D sin2~f/2!

3 (
n50

N21

@g~En
2!2g~En

1!#1
i *

2
g~D!, ~45!

where g(E)5tanh@(E1eV)/2kT#1tanh@(E2eV)/2kT#
22 tanh(E/2kT). The regular currentI r jumps up or down
every timeeV5En

6 @see Fig. 7#. Each current jump has th
magnitude

dI r5
e

\

\vF

L

AD sin~f!

2usin~f/2!uA12D sin2~f/2!
~46!

at zero temperature. At voltageseV.D, the regular current
is the sum of all states in the range 0,E,D, and is equal to

FIG. 6. The equilibrium bound state~a! and continuum~b! cur-
rents and their sum~dashed! as a function of lengthL for finite
kT50.2D, D50.8, f53p/4, ande50.01. There is a cusp in bot
the bound state and continuum currents when a new bound
forms out of the continuum. The total equilibrium current, howev
dies monotonically with increased length. Inset: The equilibriu
bound state and continuum currents as a function of temperatur
a long junctionL515j0 with D50.8, f53p/4, ande50.01. The
bound state current~a! decreases fromI eq

b (T50)5 i * to 2I eq
c ,

when the temperature is increased from zero tokT!\vF /L. The
continuum current~b! is unaffected in this temperature regime.
t

e-

the negative bound state current2 i * , as is clear from the
discussion in the previous section~Sec. V A!.

It is interesting to study the sumI eq1I r , plotted in Fig. 7,
at temperatureskT@\vF /L. In this temperature regime th
equilibrium current is exponentially small and also the reg
lar current steps in the IVC in Fig. 7 are suppressed. Fo
voltageeV;D, the last level, carrying the major part (i * ) of
the bound state current, is populated and the currentI eq1I r

jumps to I eq
c , the value of the continuum current, since a

bound states are populated. This currentI eq
c is of the order of

1/L and the currentI r1I eq increasesat eV;D from zero to
a finite value;1/L.

C. Anomalous current

The anomalous current is given by inserting Eq.~41! into
Eq. ~34!,

I a52s
e

\

\vF

4L

ARD sinf

12D sin2~f!
(
n50

N21

@h~En
1!1h~En

2!#,

~47!

where h(E)5tanh@(E2eV)/2kT#2tanh@(E1eV)/2kT#. We
have neglected the current from the last level close toE
5D, because the currents of all levels add up and the cur
from the last level is negligible. The IVC at zero temperatu
looks like a staircase, as shown in Fig. 8.

The magnitude of the current step at zero temperatur
given by

dI a5
e

\

\vF

2L

ARD sinf

12D sin2~f/2!
. ~48!

At temperatures larger then the interlevel distance,kT
@\vF /L, the staircase IVC is smeared out to a straig
slope, as shown in Fig. 8. The exact position of each le
becomes irrelevant and we can write the sum over bo
states in Eq.~47! as an integral, noting that the expressi
dE/dn5p\vF /L holds for all levels in the sum~47!,

ate
,

for

FIG. 7. The equilibrium currentI eq plus the regular currentI r vs
voltage. L510jo , f5p/2, D50.8, e50.05. Solid line:T50,
dashed dotted:kT50.04D, dashed:kT50.07D. The regular current
jumps alternating by6dI r every time the voltage is equal to th
energy of an Andreev resonance. ForkT@\vF /L and eV.D the
currentI eq1I r5I eq

c .
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(
n50

N

@h~En
1!1h~En

2!#

'
2L

p\vF
E

0

D

dE@ tanh~E1eV!2tanh~E2eV!#

5
4L

\vFp
f ~V,T!, ~49!

where

f ~V,T!5kT lnS cosh~D1eV!/kT

cosh~D2eV!/kTD , ~50!

and the anomalous current takes the simple form

I a52s
e

\

ARD sinf

p@12D sin2~f/2!#
f ~V,T!. ~51!

In the limit \vF /L!kT!D, f (V,T)5min(eV,D): the
anomalous current thus scales linearly with applied volt
up toD. It follows from Eq.~51! that I a is independent of the
length of the junction, being the sum ofN;L levels which
each carries a currentI n;1/L. This gives that the anomalou
current roughly is equal to the total equilibrium current
the short junction. The critical anomalous current is plot
with respect to transparency in the inset in Fig. 8. In the lim
D!1 it is given by (I a)c5(e/\)(AD/p) f (V,T). It is pro-
portional to the first power ofD for T close toTc , therefore
surviving up tokT'D. The anomalous current-phase re
tion ~see inset in Fig. 8! is 2p periodic and resembles that o
the equilibrium Josephson current. The direction of

FIG. 8. The anomalous current as a function of voltageV for ~a!
f5p/4 and ~b! f53p/4 for L510j0 , D50.8, e50.05, ands
521. TemperatureT50 ~solid! and T50.1D ~dashed line!. The
current steps with magnitudedI a are smeared to a straight line fo
kT@\vF /L. Upper inset: The critical anomalous current ateV
5D as a function of transparencyD for coupling constante50.1.
Due to finite couplinge, the critical current always goes to zero fo
R50. Lower inset: The anomalous currentI a(eV5D,kT
@\vF /L) as a function of phase differencef for different trans-
parenciesD50.1, 0.5, and 0.9. The highest amplitude correspo
to the highest transparency and vice versa.
e

d
t

-

e

anomalous current is however proportional tos, i.e., depen-
dent on the phase of the scatterer at the connection p
which is not the case for the equilibrium Josephson curre

To get the complete picture of the Josephson current
long junction,I 5I eq1I r1I a is plotted as a function of bias
voltage for different temperatures in Fig. 9.

The zero-temperature total Josephson current oscill
strongly around a constant slope as a function of volta
showing steps whenever the voltage passes an Andreev l
The step structures are washed out for temperatureskT
@\vF /L, and in this limit the total current roughly coincide
with the anomalous current, given by Eq.~51!.

D. Asymmetric junction

The effect of asymmetry is most pronounced in the lo
limit when the asymmetry is much larger than the cohere
length but much smaller than the total length of the junctio
L@ l @j0. In this limit, the derivative of energy with respec
to phasedE/df in Eq. ~23! reduces to the expression of
symmetric long junction~41!, since usin 2uu.Rusinxu ~see
Appendix B!. The equilibrium currentI eq and the regular
currentI r are not substantially changed in comparison to
symmetric case. In contrast, the anomalous current is m
fied in a nontrivial way, taking the form

I a52s
e

\

\vF

L
ARD3/2sinf

3(
n,6

N
cosx2cosf

12~D cosf1R cosx!2
~ne2nh!, ~52!

obtained by inserting Eq.~41! into Eq. ~34!. For T50 the
step structure in the IVC is modified due to the change
Andreev levels as a result of the asymmetry~see Fig. 4!.
Already for small asymmetryl;j0 the anomalous curren
might change dramatically~see Fig. 10!. Depending on the
phase difference of the junction, the IVC is renormalized a
changes sign for2p/2,f,p/2.

When the temperature is increased beyond the interle
distancekT@\vF /L, the step structure becomes smear
and we get a periodic modulation of the IVC on the scale
eV;\vF / l . This modulation arises from the factor cosx.

s

FIG. 9. The total currentI 5I eq1I r1I a as a function of voltage.
At zero temperature we haveI r1I eq ~dash dotted!, I a ~dashed!, and
the total currentI r1I eq1I a ~solid!. The total current for tempera
tures kT@\vF /L is plotted ~dotted!. Junction parameters areD
50.8,f53p/4, L520j0 , e50.01, ands521.
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When the temperature is further increased tokT@\vF / l
this periodic structure is smeared out and the IVC once ag
becomes a straight line, but with renormalized slope. In
high-temperature limit the amplitude of the terms in the s
in Eq. ~52! oscillates with a period\vF / l . During this pe-
riod, the filling factorsn can be taken to be constant, and w
can sum over one period to get the average value. Perfo
ing this summation in the continuum limit, we get

(
one period

cosx2cosf

12~D cosf1R cosx!2

'
\vF

2l E0

2p cos~x!2cos~f!

12~D cosf1R cosx!2
d x

5
L

l

1

8RAD
S usin~f/2!u

A12D cos2~f/2!
2

ucos~f/2!u

A12D sin2~f/2!
D .

~53!

This quantity is energy independent and we can then s
over the filling factors following the procedure from th
symmetric case~49!:

(
averaged periods

~ne2nh!'
4l

\vFp
f ~V,T!. ~54!

The anomalous current then becomes

I a52s2
e

\

D

pAR
sinf

3S usin~f/2!u

A12D cos2~f/2!
2

ucos~f/2!u

A12D sin2~f/2!
D f ~V,T!,

~55!

which is independent of both the lengthL and the asymmetry
l. We also find that the renormalized anomalous current
comesp periodic. This can qualitatively be explained by th
fact that the 2p-periodic part of the anomalous current de
sity is very sensitive to asymmetry, oscillating fast with e
ergy on the scale of\vF / l , becoming washed out durin
summation over bound states at high temperatureskT

FIG. 10. The asymmetric anomalous currentI a vs voltage for
different asymmetries~a! l 50j0, ~b! l 52j0, and ~c! l 540j0 for
kT@\vF /L, D50.8, e50.05, L560j0 , f5p/4, and s521.
The IVC is changed dramatically already for as small asymme
l;j0, if the phase difference2p/2,f,p/2.
in
is

m-

m

e-

-

@\vF /l. Thep periodic part of the current does not have th
sensitivity and is the only part of the anomalous current t
survives. The asymmetric anomalous current-phase rela
is shown in Fig. 11.

Thep periodicity and the zeros atf5np/2 give the con-
dition that the slope of the IVC must change sign due
asymmetry in the range2p/2,f,p/2, as shown in Fig.
10. The critical asymmetric anomalous current as a funct
of transparencyD is shown in the inset in in Fig. 11. Th
behavior is very similar to the critical anomalous current
the symmetric case, the main difference being that the
plitude is reduced by roughly a factor of 2.

VI. INTERFACE BARRIERS

In any realistic experimental situation, normal reflecti
at the NS interface, modeled by a barrier with reflection a
plituder b , must be taken into account.33 The general expres
sion, considering both the interface barriers and the midp
scatterer, becomes analytically intractable. We can howe
analyze the case where the midpoint scatterer is absenR
50) to get an understanding of the effect of NS barriers
the junction properties, and then treat the general case
injection and midpoint scatterer numerically.

In the absence of the superconducting leads~a NININ
junction!, the two barriers give rise to normal Breit-Wigne
resonances for the electrons and holes. Understating
properties of these resonances turns out to be crucial
describing the behavior of Andreev levels and current tra
port. The energies of the electron and hole resonances
calculated straightforwardly:

En
e522EFF12

p~n2n!

kFL G ,
Em

h 52EFF12
p~m2n!

kFL G , ~56!

y

FIG. 11. The asymmetric anomalous currentI a at eV5D and
kT@\vF /L as a function of phase differencef for different trans-
parenciesD50.1,0.5, and 0.9. Inset: The critical anomalous curr
(I a)c , for eV5D andkT@\vF /L, as a function of transparencyD
for coupling constante50.1.
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wherer b5ARbeinp and n(m) are integers denoting the in
dex of the electron~hole! resonances. The intersection b
tween electron and hole resonances (En

e5Em
h ) is given by

Ln1m5lF/4(m1n22n) with the Fermi wavelengthlF
52p/kF . These normal resonances are plotted in Fig. 1

For the junction with superconducting leads, one can
the same way as before calculate the equation for the bo
Andreev states (uEu,D), with the result35

Db
2 cosf12Rb cosb2cos~2g2b!2Rb

2 cos~2g1b!

24Rb sin2g cos~b0!50, ~57!

where we have definedb0562Ee,h/(\vF /L) and 1 (2)
denotes hole~electron! resonance energies. One can dr
some qualitative conclusions on how the Andreev levels
related to the normal resonances by looking at Fig. 12. In
limit of high barrier transparencyRb!1, the Andreev levels
are weakly modified by the barriers. In the opposite lim
Rb;1, the Andreev levels get pinned at the normal re
nances, but there are no level crossings at the points w
the normal electron and hole resonances intersect.

We find the same interlevel distance\vFp/L in the junc-
tion with the superconducting leads~SINIS junction! and
normal leads~NININ junction!. The main difference is tha
the normal resonance move very quickly through the ju
tion when the lengthL increases, while the Andreev leve
oscillate up and down.

Considering Andreev state energies close to the Fe
level, E!D, one can derive a simplified dispersio
relation,34

sin2~b/2!5
Db

2 cos2~f/2!14Rb sin2~b0/2!

~11Rb!2
. ~58!

Using this relation we can study the bound state curren
different length limits.

In the short limit,L!j0 there are two cases to be consi
ered. For nearly transparent barriersDb;1, and thus broad
resonancesG5Db\vF /L@D, one can neglect dephasin

FIG. 12. The Andreev levels~solid! and the normal electron an
hole resonances~dotted! as a function of lengthL of the junction
with four Andreev levels in~a! weak resonance limitRb!1 ~b!
strong resonance limitRb;1. The lengths of two subsequent inte
sections of normal resonancesLn1m and Ln1m21 are shown with
arrows.
n
nd

re
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-
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-
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~puttingb50) and just get the total transparency of the jun
tion D5Db

2/@Db
214Rb sin2(b0/2)# to be put into the standard

zero length junction equilibrium current formula. In th
strong barrier caseDb!1 the resonances are sharpG!D
and one can not neglect the dephasing. Assuming that
resonance is close to Fermi energyEe,h!D, we can putb
!1 in Eq. ~58! and obtain35,36

E56AG2 cos2~f/2!1~Ee,h!2. ~59!

When the resonance is exactly at the Fermi energyEe,h50,
the Josephson current is given by

I 5
eG

\
sin~f/2!tanhS G cos~f/2!

2kT D . ~60!

The critical current at low temperatures (kT!G) is thus
smaller than the critical current of a short, clean junction
a factorG/D.

For a long junctionL@j0 we can calculate the derivativ
of energy with respect to phase,

dE

df
56

\vF

2L

Db
2 sinf

A~11Rb!42@Db cosf24Rb cos~b0!#2
,

~61!

In the weak barrier limitRb!1, this just causes oscillation
with length around the clean junction (Rb50) result. In the
strong barrier limitRb;1, one can distinguish two limits
When the length of the junction is far away from the leng
Ln1m where the electron and hole resonances intersect,
junction is out of resonance. The second term in Eq.~61! is
negligible and the current from the individual levels th
becomes

I 56
evF

4L
Db

2 sinf. ~62!

It is proportional toDb
2 and thus strongly suppressed. In th

opposite limit, when the length of the junctionL5Ln1m
5lF(m1n22n)/4, the junction is in resonance. Whenn
1m is even we get the current carried by each level

I 56
evF

L

Db sinf

4ucos~f/2!u
~63!

and whenn1m is odd we get

I 56
evF

L

Db sinf

4usin~f/2!u
. ~64!

We see that the current is proportional toDb , just as ex-
pected for the junction in resonance. The current carried
thus of the order of the single barrier junction current. A
interesting feature is that the current is dependent on
parity of the sum of the electron and hole resonance ind
n1m. When the third lead is connected to the junction, t
scattering at the connection point just splits the Breit-Wign
resonances, and the qualitative picture for the bound st
derived without the third lead connected survives.

To calculate the total equilibrium, regular or anomalo
current, the currents carried by all individual levels have
be summed up. In the weak barrier limitRb!1 we just find
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that all properties calculated above for the symmetric ju
tion without barriers hold, with a small length depende
modulation;Rb with a perioddL;lF . In the strong barrier
limit Rb;1, the result will depend on whether the junction
in or out of resonance.

Figure 13 shows the resonant behavior of the equilibri
current as a function of length. The current has a peak aro
lengthsL5lF/4(m1n12n). The phase dependence of th
current at the resonant peaks is well described by the exp
sions for the single level currents~63! and ~64!.

The anomalous current is also strongly length depend
and when the junction is in resonance we have an anoma
current I a;sDbARD while when we are out of resonanc
I a;sDb

2ARD. It turns out that there is an anomalous curre
even without scattering at the connection point, but it os
lates around zero as a function of length with the per
;lF .

VII. INJECTION CURRENT

In this section, we turn to a discussion of the injecti
current. This current is small within our assumption ofe
!1; however, in practice, it may be comparable to the
sephson current and therefore important for the nonequ
rium Josephson effect as was explained in the Introduc
and in Sec. II. The injection current can also be used
experimental detection of the nonequilibrium Joseph
current.16,37 This current has a close microscopic relation
the anomalous Josephson current.

Although there is a large amount of literature on the n
mal conducting properties of SNS structures,38 starting with
the pioneering work by Spivak and Khmelnitskii39 and Alt-
shuler, Khmelnitskii, and Spivak40, most of the work is de-
voted to diffusive junctions. Quantum junctions have qua
titatively different properties, but have recieved much le
attention. However, as we will see, many phenomena fo
in diffusive junctions also exist in quantum junctions a
they can qualitatively be explained within our simple a
physically intuitive model.

A. Symmetric injection

We start by discussing symmetric junctions,l 50. It fol-
lows from a straightforward comparison of Eqs.~18! and

FIG. 13. Short segment of the equilibrium bound state curren
a function of lengthL, to illustrate the resonant behavior. The jun
tion is longL@j0 with Rb50.9, e50.01 andf5p/2.
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~19! that the injection and anomalous Josephson current
eV,D are connected in this case by a simple relation,

I in j52s
e

ARD2e2/4

11cosf

sinf
I a . ~65!

Therefore the injection current increases stepwise with
plied voltage at low temperature just as the anomalous
rent ~see Fig. 14!. However, foreV.D the injection current
continues to grow, unlike the anomalous Josephson curr
which saturates foreV.D ~see Sec. V C!. In this voltage
regime, the injection current steps turn to smooth osci
tions, due to the broadening of resonances, around a stra
line with the slope corresponding to the normal conducta
GN54ee2/h @see Eq.~A3!#. The amplitude of the oscilla-
tions decreases with increased voltage.

We now focus on the properties of the injection current
subgap voltageseV,D. An explicit expression for this
current21 is given by inserting Eq.~19! into Eq. ~31!,

I in j5e2
4e2

h E
2D

D

dE~ne2nh!

3
2 cos2~f/2!sin2 u

@~12e!cos 2u2R2D cosf#21e2 sin2 2u
.

~66!

The height and position of the current steps are stron
dependent on the length of the junction. The height of
steps is most conveniently calculated in the weak coup
limit, where the general current expression in Eq.~66! is
given by

I in j5e
e

\

ucos~f/2!u

ADA12D sin2~f/2!

3(
n,6

UdEn
6

df
U@ne~En

6!2nh~En
6!#. ~67!

In the limit of zero length of the junction~single Andreev
level! the magnitude of the step at zero temperature is

s
FIG. 14. The injection current in lead 1 as a function of volta

for ~a! f5p/4, ~b! f53p/4, and~c! f5p. Zero T ~solid lines!
and T50.05D ~dashed line! with D50.8, L510j0, and e50.05.
For eV.D the slope of the IVC approaches the value of a norm
junction.
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dI in j5e
e

\

AD

2

usin~f/2!ucos2~f/2!

12D sin2~f/2!
, ~68!

while for two levels in junctions of finite length,L;j0, the
steps are

dI in j5e
eD

\

L

j0

cos2~f/2!

A12D sin2~f/2!
~69!

(E0
6'D). For long junctionsL@j0, the current step is

dI in j5e
e

\

\vF

L

cos2~f/2!

12D sin2~f/2!
. ~70!

There are some features of the current, which are indep
dent of the length of the junction. The maximum magnitu
of the differential conductancedIin j /dV at the current onset
is independent ofe and equal to 4e2/h; this property has
been noticed in Ref. 15. At the same time, the maxim
magnitude of the conductance at the current plateaus
factor of e2 smaller. Therefore the amplitude of the curren
phase oscillations strongly varies with voltage and also w
junction parameters, e.g., junction transmissivityD. For ex-
ample, in junctions with finite transmissivityDÞ1, there is a
current plateau at zero voltage and therefore the amplitud
the current-phase oscillations is small, while it dramatica
increases atD51 when the Andreev resonance approac
the Fermi level. This giant enhancement of the conducta
oscillations has been discussed by Kadigrobovet al.22

There is ap shift of the conductance oscillations as
function of phase when moving from one current plateau
another. Such a crossover has been found by Leadbeate
Lambert41 by numerical simulations of multimode SNS jun
tions with arbitrary impurity concentration. In the diffusiv
limit, a similar phenomenon,p shift of the conductance os
cillations when the voltage passes the Thouless energy,
been discussed by Volkov and Zaitsev.42 This effect has been
experimentally observed in various structures.43–45 Within
our model, the crossover phenomenon has a very simple
planation which follows from the phase dependence of
Andreev resonances presented in Fig. 4. At a given volta
the magnitude of the conductance depends on the distan
the nearest Andreev resonance: the closer the resonanc
bigger the conductance. As is clear from the figure, when
phase difference changes from zero top, the distance be-
tween the Andreev resonances confining the odd current
teaus~the first plateau is at zero voltage! decreases, while the
distance between the resonances confining the even pla
increases. As a result, the conductance at the odd plat
has a maximum aroundp, while the conductance at the eve
plateaus has a maximum at zero phase difference. Sim
arguments hold for the phase dependence of the conduct
in diffusive junctions below and above the Thouless ener
which plays the role of the first Andreev resonance. T
conductance as a function of phase for different voltage
plotted in Fig. 15.

At finite temperature, the step structure in the IVC in F
14 is smeared. This effect is most interesting in long ju
tions, where the temperature can be much larger than
distance between the Andreev levels,kT@\vF /L without
supressing superconductivity itself,kT!D. The expression
n-
e

a
-
h

of
y
s

ce

o
and

as

x-
e
e,
to
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e

la-

aus
us
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nce
y,
e
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.
-
he

for the current in this temperature limit is obtained by inse
ing Eq. ~41! into Eq. ~67! and then converting the sum ove
Andreev levels into an integral, just as for the anomalo
current, see Eq.~49!. The current is then given by

I in j5e
4e

h

cos2~f/2!

12D sin2~f/2!
f ~V,T!, ~71!

wheref (V,T) is given by Eq.~50!. The IVC becomes linear
for eV,D, with the slope independent of the length of th
junction and the temperature. The current is thus a true lo
range current. From Eq.~71! it is clear that the conductanc
has a maximum atf50 and a minimum atf5p for all
applied voltageseV,D. This is different from the phase
dependence of the conductance at odd current plateau
zero temperature, and therefore at these plateaus the cur
phase oscillations undergoes ap shift as a function of tem-
perature atkT;\vF /L. The conductance as a function o
phase difference is plotted for different temperatures in
inset in Fig. 16. Such a crossover has recently been obse
in quasiballistic junctions by Dimoulaset al.43 and also a
similar crossover has been observed in diffusive junction
the Thouless temperature.46

It is interesting to point out that the information on th
conductance as a function of phase difference was used
cently by Baselmanset al.6 to determine the direction of the
Josephson current. In a loop geometry a large current ci
lating in the loop may change the applied external flux
phase dependence, thus modifying the phase dependen
the conductance.37

When discussing symmetric junctions, it is also wor
noting that the effect discussed by Volkov and Pavlovsk19

does not exist in these junctions because the injection cur
is equally distributed between the left and the right arms
the junction@see Eq.~20!#.

B. Asymmetric injection

The effect of asymmetry on the injection current is mo
drastic in the limit of a long junction with large asymmet
L@ l @j0, just as for the asymmetric anomalous current. T
shows the strong relationship between the two currents.
injection current is given by inserting Eq.~26! into Eq. ~31!

FIG. 15. The conductance as a function off for different volt-
ages~a! eV50, ~b! eV50.075D, and~c! eV50.15D at zero tem-
peratureT50. D50.9, e50.05, andL520j0. The conductance
maximum shifts fromf'p to f50 upon increasing voltage
There is an absolute minimum atf5p.
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I in j5e
e

\

\vF

L (
n50

N
D sin2~f!1R sin2 x

12~D cosf1R cosx!2
~ne2nh!.

~72!

Averaging over periods and summing up the filling fa
tors, just as in the case of the anomalous current@see Eq.
~53!#, the injection current becomes

I in j5e
e

\

8

Rp F12AD

3S usin~f/2!u3

A12D cos2~f/2!
1

ucos~f/2!u3

A12D sin2~f/2!
D G f ~V,T!.

~73!

The injection current in this limit does not depend on eith
the lengthL or the asymmetryl. It is p periodic, I in j (f
1p)5I in j (f), and this property can be qualitatively e
plained by considering the lowest order paths giving rise
the current.

The upper paths in Fig. 17, corresponding to an injec
electron and giving rise to an outgoing hole, produce a c
rent of the orderi in j;uei (fL1b2)1ei (fR1b3)u25212 cos(f
1x). This part of the current is 2p periodic in the phase
oscillating in energy with a period\vF / l . It is washed out
when summing up the levels in a long junction at tempe
tureskT@\vF / l . The lower paths in Fig. 17, correspondin
to an injected electron giving rise to an outgoing electr
produce a current of the orderi in j;ud* ei (f1b)

1d* ei (2f1b)u25D(212 cos 2f). This part of the current is
p periodic in phase and not sensitive to asymmetry.

The discussion about the periodicity of the conducta
oscillations with respect to phase goes back to the e
eighties. Ap-periodic contribution to the weak localizatio
correction to the conductance in a SNS junction was p

FIG. 16. The maximum conductanceGmax/GN as a function of
T for zero voltage for different juction transparencies,~a! D50.94,
~b! D50.9, and~c! D50.1 ande50.01. The maximum conduc
tance saturates at a constant valueGmax5GN for kT@\vF /L, in-
dependent onD. Inset: The conductance as a function off for
different temperatureskT50, 0.01D, 0.025D, 0.05D, and 0.1D at
zero voltageV50. Increasing temperature from bottom to top
f50. D50.9, e50.05, andL520j0.
r
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dicted by Spivak and Khmelnitskii39 and later Altshuler, Kh-
melnitskii, and Spivak40 It has been shown in numerica
simulations for a structure similar to ours that the full co
ductance, i.e., not only the weak localization contributio
might becomep periodic at finite temperatures.47 A large
p-periodic conductance oscillation with phase was also
served in diffusive samples.48 Whether the explanation fo
the crossover from 2p to p periodicity with increased tem
perature discussed above can account for these observa
remains to be investigated.

VIII. FOUR-TERMINAL JUNCTIONS

The basic properties of the nonequilibrium Josephson c
rent do not change when connecting a second normal re
voir to the normal part of the junction. However, the inje
tion current becomes qualitatively different due to addition
interference between injected quasiparticles that undergo
dreev reflections and quasiparticles that only scatter n
mally.

A. Josephson current

Due to the additional normal electron reservoir, fou
terminal junctions can be biased in different ways. Tw
types of juction configurations are used in experiments.6,49

The junction~a! in Fig. 18 is a straightforward extension o
the three terminal device pictured in Fig. 1. Two norm
reservoirs are connected to the normal part of the junct
The reservoirs are then connected to the grounded super
ducting loop via voltage sources biased atV1 andV4, respec-
tively. In the general case, the currentsI 1 and I 4 are not
equal and thusI 2ÞI 3.

In the junction~b! in Fig. 1, a biasV is applied between
the two normal reservoirs, which are only connected to
superconducting loop via the four-lead connection point.
this case it follows from current conservation thatI 25I 3.
This junction reduces to the junction~a! in Fig. 1 by defining
the potential of the superconducting loop be zero and de
mining the potentialsV1 and V45V12V self-consistently
from the current conservation conditionI 1(V1 ,V4)
5I 4(V1 ,V4).

FIG. 17. The paths in the asymmetric junction giving the fir
order terms of the current. Electrons are drawn with solid lin
holes with dashed. The gray ellipse denotes the effective scat
due to the three-lead connection. The upper paths give rise to ap
periodic component of the current, suppressed at finite tempera
kT@\vF /L. The lower paths, time reversed, give rise to ap peri-
odic component of the current, not suppressed by temperature
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The cross-shaped connection point is modeled for s
plicity by the symmetric scattering matrix

S5S r' Ae Ae d'

Ae r d Ae

Ae d r Ae

d' Ae Ae r'

D , ~74!

wheree describes the coupling of the SNS junction to t
vertical normal leads (0<e<0.25). The horizontal scatter
ing amplitudes now obey the relations Re(rd* )52e and
D1R5122e. The same holds for the vertical scatterin
amplitudesr' andd' .

The current densitiesi j
e(h),1(4) , with the upper index 1 or

4 denoting the lead from which the quasiparticles are
jected, are calculated in the same way as in the case o
three terminal junction. Due to the symmetry of the scatt
ing matrix, quasiparticles injected from leads 1 or 4 give r
to the same current density in leads 2 and 3, i.e.,i 2

e(h),1

5 i 2
e(h),4 and i 3

e(h),15 i 3
e(h),4 .

The expressions for the sum and difference current de
ties in leads 2 and 3 become very similar to the three ter
nal expressions@see Eqs.~17!–~19!#, one just changese
→2e and divides by 2. Neither the vertical transparencyD'

nor the reflectivityR' thus appear explicitly in these expre
sions. In the limit of weak couplinge!1, i 1,15 i 1,45 i 1/2
and i a

15 i a
45 i a/2, and the Josephson current is therefo

given by the equation

I 5I eq1
1

2
@ I r~V1!1I r~V4!#1

1

2
@ I a~V1!1I a~V4!#,

~75!

where the currentsI eq ,I r and I a are the same as in the thre
terminal case, Eqs.~33!–~35!. Noting the relationsI r(2V)

FIG. 18. Two different setups of the four terminal junction.
~a! the normal reservoirs are biased independently atV1 and V4

with respect to the superconducting loop~grounded!, in ~b! only the
potential difference between the normal reservoirs,V, is deter-
mined. In the right figure, a close up of the junction area is sho
with the direction of the currents showed with arrows
-

-
he
r-
e

i-
i-

e

5Ir(V) and I a(2V)52I a(V), we see that for biasV11V4
50 the anomalous current is zero, and forV12V450 the
regular current is zero.

B. Injection current

For the injection current, we only consider the case
symmetric junction,l 50, and no barriers at the NS inte
faces. In this case, the part of the injection current that flo
into the horizontal leads 2 and 3 of the junction is symme
cally split between the leads. The subgap current can be w
ten on the form

I 1(4)5I direct~V12V4!6
I in j8 ~V1!1I in j8 ~V4!

2
1I int ~76!

~detailed expressions are presented in Appendix D!. The first
term is the current flowing directly between the reservoir

I direct5~2e/h!~D'1e!~V12V4!, ~77!

while the second termI in j8 differs from the three-termina
injection current in Eq.~66! by changinge→2e. These two
terms can be understood as a straightforward extension o
three terminal injection current. The sum of these two ter
reduce to the normal current expressionI 1(4)5(2e/h)@(D'

1e)(V12V4)6e(V11V4)# in the case when the junction i
normal.

The last current termI int in Eq. ~76!, however, does no
exist in the three-terminal junctions. It arises from the int
ference between quasiparticles being reflected or transm
in the vertical leads and quasiparticles forming the Andre
resonance by multiple scattering in the horizontal leads. T
interference leads to a new type of resonances, F
resonances,50 which are situated at the same energy as
Andreev resonances~see left inset in Fig. 19!. The Fano

,

FIG. 19. The interference part of the injection current as a fu
tion of voltageV5V152V4 for zero temperature. The junctio
parameters aref5p/2, L510j0 , D'50.6, D50.8, ande50.02.
Left inset: The current densityi (E) for the first resonance atE
'0.14D. Right inset, the zero voltage conductance as function
temperature for two different bias arrangements~a! V15V andV4

50, and~b! V152V45V for D'50.01, D50.8, e50.01 andL
520j0.
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resonances in the current density give rise to a currentI int
periodically oscillating around zero~rather than stepwise
growing! as a function of applied voltage and having sha
peaks, as shown on Fig. 19, the height of the peaks of
order ofe ln e. For bias voltages between the resonances,
conductance is of the order ofe, which is much larger than
the conductance at the current plateaus for the three-term
junctions,;e2. It is interesting to mention that the interfe
ence current does not turn to zero atf5p, in contrast to the
three-terminal injection current@see Eq.~D3!#. The current
I int is plotted in Fig. 19 for a particularly interesting bia
arrangement,V152V45V, when the second term in Eq
~76! disappears due to the symmetry relationI in j (2V)5
2I in j (V) @see Eq.~66!#, and the interference currentI int
fully accounts for the current oscillations with voltage a
superconducting phase.

With increasing temperature, the oscillations of the int
ference current are suppressed and disappear complete
temperatures larger than the distance between the r
nances,kT@\vF /L. Thus the amplitude of the oscillation
of the total current in this limit approaches zero ifV1
52V4, while it remains finite in the general case,V1Þ
2V4, due to oscillations of the currentI in j . This is shown in
the right inset in Fig. 19, where the amplitude of the cond
tance oscillations with the phase difference at zero volta
dG5Gmax2Gmin is plotted as a function of temperature.
the temperature interval\vF /L!kT!D, the total current of
a long junction is independent of temperature and length
the junction and obeys the equation

I 1(4)5
2e2

h F ~D'1e!~V12V4!6e
cos2~f/2!

12D sin2 f/2

3~V11V4!G . ~78!

It follows from this equation that the differential condu
tance dI1 /dV1 ~and dI4 /dV4) is always smaller than~or
equal to, forf50) the conductance of the normal junctio
GN52e2/h(D'12e). The effect of superconductivity in
this temperature regime is thus always todecreasethe con-
ductance.

IX. CONCLUSIONS

We have presented a detailed study of the nonequilibr
Josephson effect in quantum three- and four-terminal S
devices. A prominent feature of open nonequilibrium qua
tum SNS structures is the anomalous dc Josephson cur
This current results from a modification of the current car
ing Andreev states in the SNS junction, due to connection
the junction to a normal electron reservoir. The anomal
current is revealed under nonequilibrium conditions crea
by applying a voltage between the normal reservoir and
SNS junction. The anomalous Josephson current is sens
to the scattering phase shift at the injection point while ot
junction properties~asymmetric position of the injection
point, transmissivity of the injector and NS interfaces! do not
qualitatively affect the current. The current grows with a
plied voltage and saturates ateV.D at a magnitude corre
sponding to the current of a short junction, with critical cu
e
e
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rent I c;eDAD/\ independent on the junction length. Th
enhancement of the critical current persists even in the l
junction limit L@jT . Such behavior is in sharp contrast
the effect of nonequilibrium population of the Andree
states, which merely induces oscillations and sign reversa
the Josephson current as a function of applied injection v
age. The enhancement of the critical current in this cas
strongly length dependent: at best it can be as big asI c
;1/L at eV.D in long junctions and it decays with th
junction length.

The long-range effect in the anomalous Josephson cur
is microscopically connected to the similar property of t
injection current: the injection current oscillates with the s
perconducting phase difference~exhibiting full-scale oscilla-
tion for symmetric injection in a three-terminal junction
with zero atf5p), with the amplitude of the oscillation no
depending on the junction length.

The current-voltage characteristics of both the Joseph
and injection currents have pronounced steplike features,
to the effect of Andreev resonances, with the position a
height of the current features strongly dependent on the
perconducting phase difference. These features are wa
out by temperature. In long junctions with asymmetric inje
tion the superconducting phase dependence of
temperature-smeared current-voltage characteristics beco
p periodic. In the presence of electron back scattering at
NS interfaces, the current oscillates strongly as a function
the junction length due to the effect of normal electron Bre
Wigner resonances. The Josephson effect is qualitativ
similar in three- and four-terminal junctions, while the inje
tion current in four-terminal junctions exhibits a specifi
resonant behavior due to Fano resonances.
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APPENDIX A: CONTINUUM STATE CURRENT

Here we present formulas for the continuum current fo
symmetric (l 50) three-terminal junction without barriers a
the NS interfaces. The continuum current consists of p
ticles injected from both the normal reservoir and the sup
conducting reservoirs. The current density in lead 2 from
injected quasiparticles from the superconductors is

i 2
s5

e

h

2 sinb sinhgc

Zc
$sinf@~4D22De2e2!coshgc

22Dee2gc#24seARD2e2 sin2~f/2!coshgc%,

~A1!

where Zc5$cosb@cosh 2gc(12e)1e sinh 2gc#2R2D cosf%2

1$sinb(sinh 2gc(12e)1e cosh 2gc#%
2 and gc5arccosh(E/

D). In lead 3 we geti 3
s(f)52 i 2

s(2f). This current density
is an oscillating function of energy with largest amplitude f
energies close toE5D and is given at negative energies b
i j
s(E)52 i j

s(2E).
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For the particles injected from the normal reservoir, t
sum current in lead 2 becomes

i 2
152

e

h

e sinb coshgc

Zc
$sinf@2D coshgc1e sinhgc#

14sARD2e2/4 sin2~f/2!sinhgc% ~A2!

with i 3
1(f)52 i 2

1(2f) in lead 3. The difference current i
lead 2 has the form

i 2
252

e

h

e coshgc

Zc
„2coshgc~e cosf12sARD2e2/4 sinf!

1~12e!@sinhgc2sinh 3gc#2e cosh 3gc

1cosb$2 sinhgc~R1D cosf!1coshgc~e~11cosf!

12sARD2e2/4 sinf#%… ~A3!

with i 3
2(f)52 i 2

2(2f) in lead 3. For negative energies w
get i j

1(E)52 i j
1(2E) and i j

2(E)5 i j
2(2E).

In the limit of weak coupling,i 2
s5 i 3

s5 i s and the total
continuum current is given by, inserting Eq.~A1! into Eq.
~28!,

I eq
c 5

e

h S E
2`

2D

1E
D

` D dEnF~E!

3
4D sinf sinb sinh 2gc

~cosb cosh2gc2R2D cosf!21~sinb sinh 2gc!
2

.

~A4!

Following the methods in Ref. 18 one can rewrite this in
gral as a sum over the residues,

I eq
c 52I eq

b 1
e

h
4kTpD sinf

3 (
p50

` H Fvp

D
coshS vpL

\vF
D1A11S vp

D D 2

sinhS vpL

\vF
D G2

112D sin2~f/2!J 21

, ~A5!

where the first term results from the poles of the curr
density in Eq.~A4! and the second term from the poles at t
Matsubara frequenciesvp52kTp(1/21p). The first term in
Eq. ~A5! is the current carried by the bound states with ne
tive sign. The total equilibrium currentI eq is then just given
by the second term.51 For \vF /L!kT!D only the first term
in the sum is important, giving the current in Eq.~44!. For
T50, the sum overv is converted to an integral, giving th
current in Eq.~43!.

APPENDIX B: SPECTRAL DENSITIES OF BOUND STATE
CURRENTS

In this appendix we analyze the central quantity in t
current density expressions~17!–~19!, given by
e

-

t

-

e

Z
5

e

@~12e!cos 2u2R cosx2D cosf#21e2 sin2 2u
,

~B1!

in the limit of zero couplinge→0. We can conveniently
rewrite

e

Z
5

1

sin2 2u

e

F21e2
~B2!

with F(E,f)5@(12e)cos 2u2Rcosx2D cosf#/sin 2u. In
the limit of zero coupling the expression becomes

lim
e→0

e

F21e2
5pd~F !5(

n,6
pU ]

]E
FU21

d~E2En
6!

~B3!

with the energiesEn
6 , given by

cos 2u2R cosx2D cosf50, ~B4!

being the energies of the bound Andreev states. By rewri

]

]E
F52

df

dE

]

]f
F52

df

dE

D sinf

sin 2u
~B5!

the expression~B3! becomes

lim
e→0

e

Z
5(

n,6

p

Dusinf sin 2uu UdE

dfUd~E2En
6!. ~B6!

From Eq.~B4!, the derivative of energy with respect to pha
becomes

dE

df
52

D sinf

2 sin 2uS 1

AD22E2
1

L

\vF
1

l

\vF
R

sinx

sin 2u D
.

~B7!

Using the relation~B4! and the fact thatR1D51 we can
rewrite

usin 2uu5A~D1R!22~D cosf1R cosx!2

5AD2 sin2 f1R2 sin2 x12DR~12cosf cosx!

~B8!

which shows thatusin 2uu.Rusinxu. This gives that, sinceL
> l by definition, the factor in the parenthesis in the denom
nator in Eq.~B7! is always positive. The relation

sgnS dE

df
sinf sin 2u D521 ~B9!

then follows from Eq.~B7!. Equations~B6! and~B9! are the
technical result of this appendix.

APPENDIX C: CURRENTS FOR DIFFERENT JUNCTION
LENGTHS

Here we list all expressions for the partial bound st
currents in different junction length limits. The junction co
sidered is a symmetric (l 50) three terminal junction withou
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barriers at the NS interfaces, in the weak-coupling limite
!1.

1. Short junction limit „L™j0…

I eq
b 5

eD

\

D sinf

2A12D sin2~f/2!
tanh~E0

2/2kT!, ~C1!

I r5
eD

\

D sinf

4A12D sin2~f/2!
g~E0!, ~C2!

I a5
e

\

sDAR sinfusin~f/2!u

12D sin2~f/2!
h~E0!, ~C3!

I 15
e

\

eADusin~f/2!u

12D sin2~f/2!
h~E0!. ~C4!

When there are two Andreev levels, with 1!D, b/2
.AD andE0

1'E0
2'D, the currents become

I eq
b 5

eD

\

L

j0

AD sin~f!

2usin~f/2!uA12D sin2~f/2!
@ tanh~E0

2/2kT!

2tanh~E0
1/2kT!#, ~C5!

I r5
eD

\

L

j0

AD sin~f!

4usin~f/2!uA12D sin2~f/2!
@g~E0

1!2g~E0
2!#,

~C6!

I a5s
eD

\

L

2j0

ARD sinf

12D sin2~f/2!
@h~E0

1!1h~E0
2!#,

~C7!

I 15e
eD

\

L

j0

cos2~f/2!

A12D sin2~f/2!
@h~E0

2!1h~E0
1!#.

~C8!

2. Long junction limit „Lšj0…

I eq
b 5

e

\

\vF

L

AD sin~f!

2usin~f/2!uA12D sin2~f/2!

3S (
n50

N

@ tanh~En
2/2kT!2tanh~En

1/2kT!# D
1 i * tanh~D/2kT!, ~C9!

I r5
e

\

\vF

2L

AD cos~f/2!

A12D sin2~f/2!
S (

n50

N

@g~En
2!2g~En

1!# D
1

i *

2
g~D!, ~C10!
I a5
e

\

\vF

L

sADR sinf

2@12D sin2~f/2!#
(
n50

N

@h~En
1!1h~En

2!#,

~C11!

I 15
e

\

e\vF

2L

cos2~f/2!

12D sin2~f/2!
(
n50

N

@h~En
2!1h~En

1!#,

~C12!

where

h~E!5tanh@~E2eV!/2kT#2tanh@~E1eV!/2kT#

and

g~E!5tanh@~E1eV!/2kT#1tanh@~E2eV!/2kT#

22 tanh~E/2kT!.

APPENDIX D: FOUR-TERMINAL INJECTION CURRENT

The full expression for the subgap injection current p
sented in Eq.~76!, is given by using the symmetry relation
i 1(4)
e,1 52 i 4(1)

e,4 and i 1(4)
h,1 52 i 4(1)

h,4 ,

I 1(4)5E
2`

`

dE
e

h
~D'1e!@ne,12nh,12~ne,42nh,4!#

6 i in j@ne,12nh,11ne,42nh,4#1 i 0
e@ne,12ne,4#

2 i 0
h@nh,12nh,4#. ~D1!

The current densityi in j is the injection current density in th
horisontal leads 2 and 3, given by Eq.~66! when changing
e→2e. The interference current densities are

i 0
e5

e

h

e

Z
Re$~r'2d'!@r 1d cosf2~r 1d!exp~ i2u!#

3~cosu2R2D cosf1 i e2 sin 2u!%, ~D2!

with i 0
h52 i 0

e(r ,d,r' ,d'→r * ,d* ,r'
* ,d'

* ). For a long junc-
tion at zero temperature, the interference current in the we
coupling limit is given by

I int5
2e

h
eH ~R'2D'!Fp\vF

4L (
n,6

Q~eV2En
6!2VG

12
\vF

L

Im~rd* !Im~r'd'
* !usin~f/2!u

ADA12D sin2~f/2!

3 lnUA12D sin2~f/2!sinu1ADusin~f/2!ucosu

A12D sin2~f/2!sinu2ADusin~f/2!ucosu
UJ
~D3!

whereV5V452V1 andu @defined in Eq.~13!# is given at
energyE5eV. The expression~D3! strictly applies only at
ueV2En

6u@e\vF /L. The current at the resonances satura
at magnitude of the order ofe ln e.
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Rev. Lett.57, 1761~1986!.
n

-

s.

.

27P.F. Bagwell, Phys. Rev. B46, 12 573~1992!.
28V.S. Shumeiko, E.N. Bratus’, and G. Wendin, Fiz. Nizk. Tem

23, 249 ~1997! @Low Temp. Phys.23, 181 ~1997!#.
29W. Haberkorn, H. Knauer, and J. Richter, Phys. Status Solid

47, K161 ~1978!; A. Furusaki and M. Tsukada, Physica B165-
166, 967 ~1990!.

30U. Gunsenheimer, U. Schu¨ssler, and R. Ku¨mmel, Phys. Rev. B
49, 6111~1994!.

31C. Ishii, Prog. Theor. Phys.44, 1525~1970!.
32A.D. Zaikin and G.F. Zharkov, Zh. E´ksp. Teor. Fiz.78, 721

~1980! @Sov. Phys. JETP51, 364 ~1980!#; 81, 1781~1981! @ 54,
944 ~1981!#.

33U. Schüssler and R. Ku¨mmel, Phys. Rev. B47, 2754~1993!; A.
Chrestin, T. Matsuyama, and U. Merkt,ibid. 49, 498 ~1994!; G.
Wendin, V.S. Shumeiko, P. Samuelsson, and H. Takayan
Jpn. J. Appl. Phys., Part 138, 354 ~1999!.

34H.A. Blom, A. Kadigrobov, A.M. Zagoskin, R.I. Shekter, and M
Jonson, Phys. Rev. B57, 9995~1998!.

35G. Wendin and V.S. Shumeiko, Superlattices Microstruct.4, 569
~1996!.

36C.W.J. Beenakker and H. van Houten,Single Electron Tunneling
and Mesoscopic Devices~Springer, Berlin, 1991!.

37V.T. Petrashov, V.N. Antonov, P. Delsing, and T. Claeso
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