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Nonequilibrium Josephson effect in mesoscopic ballistic multiterminal SNS junctions
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We present a detailed study of the nonequilibrium Josephson effect in quantum three- and four-terminal SNS
devices. We focus our discussion on the anomalous dc Josephson current which is a prominent feature of open
nonequilibrium quantum SNS structures. This current is revealed under tunnel injection and it grows with the
applied voltage across the injection point, in sharp contrast to the effect of nonequilibrium population of the
Andreev states which induces oscillations and sign reversal of the Josephson current as a function of injection
voltage. The anomalous current does not decay with the length of the junction even in the long junction limit
L> ¢+, This long-range effect is microscopically connected to the similar property of the injection current. We
study the resonant features in the dependence of the Josephson current and the injection current on the injection
voltage and superconducting phase difference, discuss the effect of asynienetyssover tor-periodic
phase dependencand the role of resistive NS interfaces which introduce additional, normal electron, reso-
nances. The Josephson effect is qualitatively similar in three- and four-terminal junctions, while the injection
current in four-terminal junctions exhibits a specific resonant behavior due to Fano resonances.

[. INTRODUCTION SNS junctions. Very recently, Baselmanet al® were able
to experimentally reverse the direction of the Josephson cur-
The art of controlling Josephson current transport througtent. S o
mesoscopic superconducting junctions poses many chal- In ballistic junctions, the problem of nonequilibrium cur-
lenges for theory and experiment from both fundamental an§ent injection is of particular interest: Andreev quantization

. . . . 3 . . .
applied points of view. One possibility is to use a Josephsof]! Pallistic junctions™ provides means for achieving a dra-
field effect transistofJOFET, 2 where control of the Jo- Malic variation of the nonequilibrium iﬁphson current. It
sephson equilibrium current is imposed via an electrostati pas been found by Wendin and Shum at nonequilib-

gate. Another solution is to connect the normal region to Yium filling of Andreev levels may considerabénhancehe

. : o ritical current even at zero temperature as well as reverse
normal voltage blaS(_aq reservoir. Injection .Of _elec_:trons aNGhe direction of the current. Various aspects of the nonequi-
holes allows nonequilibrium quasiparticle distributions to bejiyjym josephson effect in ballistic junctions has been fur-
maintained in the\ region, making it possible to control the ar analyzed in Refs. 15 and 16.

nonequilibriumJosephson current. Recent progress in fabri- A fyrther step beyond the work in Ref. 10 was taken by
cation of superconducting junctions has brought forward asamuelsson, Shumeiko, and Werdinwho showed that
number of interesting multiterminal structures, e.g., two-modification of the Josephson current in ballistic junctions
dimensional electron gas, junctiofig, metallic junctions;®  under injection does not reduce to the effect of nonequilib-
and highT, junctions’ The purpose of this paper is to pro- rium population. An essential aspect is the ability of the scat-
vide a broad description of Josephson current transpoterer at the injection point to shift the phases of the quasipar-
through quantum SNS junctions under conditions of nondicles. In such a case, the connection to the injection lead also
equilibrium in the normal region due to connection to a volt- affects the form of the wave function of the Andreev reso-
age biased normal reservoir. nances, and therefore affects Josephson currents flowing
The effect of nonequilibrium distribution of electrons in through the resonances.
the normal region of SNS junctions was theoretically studied This is particularly dramatic for long junctions, where the
in the beginning of 1980%These early studies were focused equilibrium Josephson current is exponentially small at finite
on nonstationary effects in long SNS junctiotesffect of  temperaturé/'8 In contrast, theanomalousnonequilibrium
electromagnetic radiation, ac Josephson regimaere non-  Josephson current does not depend on the length of the junc-
equilibrium leads to enhancement of the critical current ation (long-range Josephson effeét This means that, in
finite temperature. More recently, a similar problem wasprinciple, a dissipationless current of the order of the equi-
studied in classical and quantum superconducting point corlibrium Josephson current of a short junction can be restored
tacts where the nonequilibrium dc Josephson current can hender conditions of filling up all the Andreev levels in the
suppressed and even reversdthe effect of the suppression gap. The effect is most pronounced in junctions with a small
and the reversal of the Josephson current under tunnel injeaumber of transport modes. This opens up the possibility for
tion in multiterminal SNS junctions was first studied by vana new kind of Josephson transistor where the supercurrent is
Wees, Lenssen, and Harm&hi ballistic junctions and by turned on when the gate voltage is switched freMi=0 to
Volkov!! in diffusive junctions(see also Ref. 12 Suppres- eV=A.
sion of the Josephson current due to injection has been ex- The long-range Josephson effect associated with anoma-
perimentally demonstrated in both ballidtiand diffusive  lous Josephson curréfitmust be distinguished from the so-
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FIG. 1. A schematic picture of the three-terminal SNS junc’[ionamp,IItUde from the injection lead 1 to Iead.2 or 3. m a
setup under consideration, with a normal reservoir attached to thiultichannel treatment,,d and e become matrices describ-
normal part of the junction. The normal reservoir is connected tdNd the scattering between the channels. In this paper we
the superconducting loofgrounded via a voltage source biased at however choose to consider a single-mode structure.

V. The right figure shows a closeup of the junction area with the In the junction presented in Fig. 1, the curréptinjected
arrows showing the direction of the current flow in the junction. into the junction from the normal reservoir splits at the con-
nection point. At the NS interfaces, the normal current is
called dissipative Josephson effétiThe latter consists of a converted into a supercurrent. The supercurrent flows around
net current flow between the superconducting electrodes astBe loop and is drained at a point connected to the normal
result of asymmetric phase dependent splitting of the injecreservoir via a voltage source biased at voltd¥g@here are
tion current. This current may flow in absence of a potentiatwo major questions about the currents:what is the cur-
difference between the superconducting electrodes, in addient I; in injection electrode 1 as function of the applied
tion to the true Josephson current. In practice, these two eftoltage and superconducting phase difference, @ndow
fects may coexist and therefore the analysis of the injectiofs the current distributed between the arms 2 and 3?
current is a necessary element of the analysis of the nonequi- The first problem has been discussed eaffiet; and the
librium Josephson effect. picture is the following: due to Andreev quantization the

In this paper, we analyze the nonequilibrium Josephsoproblem is equivalent to a resonant transmission problem.
effect in three- and four-terminal ballistic SNS junctions For weak coupling to the normal reservoér<1, the prob-
with different lengths and geometry, with transparent ancability of an incoming electron to be reflected is large unless
resistive SN interfaces and for various temperatures. its energy coincides with an Andreev level. In such a case,

The paper is organized as follows. In Sec. Il, we present #he electron is back scattered as a hole which produces a
general discussion of the currents in a 3-terminal SNS desurrent density peak. The current as a function of applied
vice. In Sec. Ill we describe our model based on the stationvoltage between the normal reservoir and the juncti®it)
ary Bogoliubov—de Genne®dG) equation. The derivation thus increases stepwise, typical for resonant transport, with
of all currents in the case of a three-terminal junction withposition and height of the steps depending on the phase dif-
transparent NS interfaces is presented in Sec. IV. In Sec. \ference between the superconductors.
we discuss the equilibrium and nonequilibrium Josephson The second question about current distribution between
currents, both in a short and long junction; the effect of barthe junction arms concerns a subtle problem of the coexist-
riers at the NS interfaces is discussed in Sec. VI. The injecence of the injection current flowing through the supercon-
tion current and the normal conductance are analyzed in Seductor and the nonequilibrium Josephson current. Generally,
VII. In Sec. VIII we discuss four-terminal junctions. the injected current asymmetrically splits between the two
SN interfaces and induces a net phase-dependent current cir-
culating within the loop without producing voltage drop
across the SNS junctioi. This current flows in addition to

In this paper, we will consider two junction configura- the true Josephson current which is affected by the injection-
tions: three and four terminal. The 3-terminal configurationinduced nonequilibrium. Since only the total current in the
(see Fig. 1is an elementary structure which gives all nec-loop can be measured, there is no way to distinguish the
essary information for understanding the Josephson effectonequilibrium Josephson current from the circulating injec-
also in the four-terminal junction, to be discussed below. Thdion current. However, the nonequilibrium Josephson current
normal part of the junction is inserted between two supercan be naturallydefinedin the limit of small coupling be-
conducting electrodes. The superconducting electrodes ateeen the SNS junction and the normal reserveir; 0: the
connected with each other to form a loop and the magnetimjection current becomes vanishingly small in this limit and
flux threading the loop allows us to control the phase differ-may be neglected, while the true Josephson current tends to a
ence¢= ¢pg— ¢ across the junction. finite value. Following this definition, we will focus on the

We consider a junction in the ballistic limit, when the limit e<1 when discussing the Josephson current below.
length L=L,+L3 of the normal part of the junction is The scattering states carrying the current can qualitatively
shorter than both the elastic and inelastic scattering length&e described as electrons or holes entering the SNS junction
L<lg,l;. We use a simplified description of the connectionfrom the injection lead 1, being split at the connection point,
point, modeling it by a scattering matr&that connects in- scattered back and forth in the junction by Andreev reflec-
going and outgoing wave-function amplitud@s: tions at the NS interfaces and normal reflections at the con-

nection point, and then finally leaving the junction, having
Vou=S¥in, (1) effectively transported current from one superconductor to

II. NONEQUILIBRIUM JOSEPHSON CURRENTS
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FIG. 2. The current voltage characteristit¢C) for | © (upped
and|~ (lower for a junction with seven Andreev levels foE
<A. The currents jump every time the voltag¥ is equal to the
energy of an Andreev level, typical for resonant transport.

FIG. 3. The charge current density for two resonant Andreev
levels for injected electron$ (dotted and holes" (dashed their
sumi™ (solid) and difference~ (dash dottef] Note that the dif-
the other. When the dwell timé/T" at the Andreev reso- fTerence current ~ has the same sign for both resonances. Inset

. . . . . wo lowest order paths for an injected electr@olid) or a hole
nances is smaller than the inelastic scattering tiper in (dashed at a resonance. The gray ellipse denotes the effective scat-

the jgnction, the quasiparticle d.ist.ribqtior? in the qormal '€~ terer due to the three lead connection. The difference of the currents
gion is determined by the Fermi distribution function of the e 1o these processes is proportional torkii)sin ¢, the first-

normal reservoir, and the current in the leqels2 or 3 from  qer term of the anomalous current.
injected quasiparticles can be written
B junction compared with the wave functions of true Andreev
IJ:J dE(ifne+i}‘nh), 3 bo_und states. Th_e origin of th_e anomalous current can qual_i-
— tatively be described by considering the lowest order quasi-
particle classical paths which contribute to the resonances in
transparent junctionsR<<1) with perfect NS interfaces.
Consider a resonant state where the most of the electrons

where i*™ is the current density for injected electrons
(holeg and n®M=nc(E+eV) are the Fermi distribution
functions n. the - normal reservoir, withne=[1  5ye to the left and the holes to the right, only a fraction of
TexpE/kT)] ~. The dwell time at the Andreev resonanceshem traveling in the opposite direction due to normal scat-
is de_termlned by the coupling to the res_ervelrand the tering at the connection point. An injected electron gives rise
spacing between resonances, roughly varying beteand 1, g jeft-going electron in lead 2 with the amplitude 1
five /L, depending on the length of the junction. This puts a. gi¢rg* =iy with b= dg— ¢, (not taking electron and
lower constraint on.t.he coupling constantwhich thus has e dephasing and the energy dependent phase picked up
to obey the inequalities when Andreev reflecting into accourthus giving a contri-
bution to the current of the orderdRD+ Re(rd*e'?) (see

L/ &olli<e<l, “ inset in Fig. 3. Correspondingly, an injected hole gives rise
whereéy=huvg/A. to a right-going hole in lead 3 with amplitude 1
The current in Eq(3) can conveniently be rewritten +e '“.de®rr* and a contribution to the current of order

1+RD+Re(rd*e %) (see right figure in inset in Fig.)3
[~ ij+ e h i TN The difference currerit” thus contains a part proportional to

'j—ﬁde S (%N + S (*=nD) =17+l O Rgrd*(e?—e *)]=2Im(rd*)sin(¢), which is the lead-

ing term in the anomalous current. At a resonant state where
wherei * =i®+i" andi ~=i®—i". Quasiparticles are also in- the particles move in the opposite direction, i.e., the electrons
jected from the superconductors for energies above the ste the right and the holes to the left, we find from the same
perconducting gap. Since the superconductors are groundegiguments that the anomalous current is again proportional
(V=0), the current from the superconductors is an equilibto 2Im(rd*)sin(¢), with the same sign. The anomalous cur-
rium current. This current plus the currerit=1, =13 in-  rent thus flows in the same direction for all resonances, in
jected from the normal reservoir in absence of applied voltcontrast to the equilibrium Josephson current which changes
age, is the total equilibrium current. Applying a bias voltagesign from one level to the next. The IVC for is thus a
(V#0), I* becomes the nonequilibrium current due to staircase, as shown in Fig. 2, saturating@%t>A due to the
population of the empty Andreev levels, giving rise to cur-absence of sharp resonances for energies above the supercon-
rent jumps when the injection energy equals the Andreev ducting gap. This has a dramatic effect on the long range
level energieqdsee Fig. 2. This makes it possible to probe properties of the Josephson current.
the energy of the Andreev leve($161° For a long junction (> &,=Ave/A), the IVC in Fig. 2

Thel ™ part of the current is entirely nonequilibrium cur- becomes dense, since there is a large numbeté, of An-

rent. It partly consists of the injection current; however, theredreev levels in the junction. The spacing between the An-
is also a component which does not vanish in the limit ofdreev levels is~%vg/L, so at temperatures exceeding the
weak coupling to the reservoir: we call this the anomalousnterlevel distance, the current is averaged to zero while
Josephson curreft. This current results from a different |1~ is reduced to a smooth ramp function. We thus get a
form of the Andreev resonance wave functions in the opercurrentl ~ that increases linearly with voltage up év/=A
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and saturates at a level of the order of the equilibrium Jo- uei ve'?i

sephson current of a short junctidny eA/%. This current is \I’,:df'* eld™4 djh*’ g ia'
independent of the length of the junction, since there is a v
large number of levels-L each carrying a current 1/L. ue®] veldi] |

+dPT e rdl T e (9

Ill. CALCULATION OF THE CURRENT

The wave functions are normalized to unit amplitude of the

incoming quasiparticles. The upper and lower components
We consider a three-terminal junction with asymmetricandv of the wave function are defined as

current injection [,#L3) and perfect transmission at the

A. General formulation

NS interfaces. The wave functions in the different regions of 1
N : : . =(1+¢/E) E>A
the junction are found from the stationary one-dimensional 2
Bogoliubov—de Gennes equatfén u(+),v(—)= \/17 : (10
=(Ex¢)/A E<A
=EV, Hy=—5—-—-E
A*  —Hp O 2mgxe where é=JE?—AZ for E>A and é=iAZ—E? for E<A.

The wave vectors arg®"=\2m/#?\Er*= ¢ in the super-

which givesE as a departure frorkr . The wave functions &ﬁ)nductors and ankP"= \Zm/A%\E- * E in the normal re-

are then matched at the NS interfaces and at the connect ions. The wave functions are matched at the NS interfaces
point, which gives the full scattering state wave function for9 :

H L : nd at the injection point. The three-terminal injection point
injected quasiparticles. The cross section of the supercorﬁEE : 1

ducting electrodes is much larger than the magnetic penetrés- mtf{)d_eled by tlhte jcatt(e)lng<rr(1)ag‘?>? dglvzn byqu'Eﬁ)' Thle
tion depth, which allows one to control the phase difference,?Ca egngdimﬁ |_u /ezs( 561 R‘_)’l_an Dr_odezyR_e reza—
by means of the magnetic flulk threading the superconduct- ions Re(d*)=—¢/2 an =1-€(D=|d|*R=|r[")

: . . due to the unitarity of the scattering matrix. Moreover
ing loop (see Fig. 1 To neglect the effect of the magnetic - . ol '
field on the normal electrons in the SNS junction we assumdM(rd*)=oVRD—€%/4, with o==1 dependent on the

that the area of the normal region of the junction is smallPase of the scatterer. For simplicity the coupling parameter

compared to the area of the superconducting loop so that tHe 'S chosen real and positive. The scatt(.ermg.amplltudes are

magnetic flux through the normal region is much smaller@SSumed to be energy independent, which gives the scatter-

than the flux quantum. In this case, a gauge in the normdNd matrix for hole wave-function amplitude®, =S, . )

region can be chosen such that the influence of magnetic ASSUMINg A<Eg we make the approximatiog®=q

field is fully accounted for by the superconducting phase=Ke in the superconductors and=k"=kg in the normal

difference, which in this case is gauge invariant. The elecfegion except in exponentials where we pkt"=kg

trostatic potential in the SNS junction is zero since the po-=E/(%ivg). At energiesE<A, only electrons and holes from

tential difference between the normal reservoir and the SN&e normal reservoirs are injected in the junction. for

junction drops at the injection point, due to rapid spreading>A quasiparticles from the superconductors are also in-

out of the current in the normal reservoir. jected. The current of the scattering states in the three normal
Since the cross section of the normal region is assumed t¢gions are calculated following the Landauerttiker scat-

be much smaller than the cross section of the supercondudering approaci® The spectral current density in regipris

ing electrodegas indicated in Fig. ) the influence of the given by

normal region on the superconductors can be neglected. We

apply the approximat[c?ﬁ with A(X) con.stant in the super- i|(E)= E(|Cj+,e|2_|cj—,e|2+|Cj+,h|2_|cl_—,h|2)_ (11)

conductors and zero in the normal region, h

A€ x<—L, We now define energy dependent phaggs=y— B, 3in
B B each of the leads 2 and 3, consisting of the phase
A()=30 A La=x<Ls, (@) =arccosE/A) picked up by the electrons and holes when
A€'PR x>, Andreev reflecting, and the dephasilms:(ke—kh)Lm

where the gauge invariant phase difference between the suI—ZELZS/(ﬁUF) of the electrons and holes while propagat-

SV ing ballistically through the normal region. Furthermore, it is
perconductors igh= ¢pgr— ¢, . We can then make an ansatz . o
: . : . . . convenient to separate out the specific features of asymmetry
with plane waves in the different regions of the junction. For

i ) . o by introducing sum phases#2 0,+ 65, B8=pB,+ B3, and
positive energies=>0 we put in the normal regions the difference phaseg= 6,— 65, defining essential phase

=123, parameters characterizing the junction,
¥,=c'e 1 ok | oh.— 0 o ik 0= y— Bl2=arccosE/A) —EL/(fivg), (12)
i 1o i1
X= B3~ B2=2Ell(five), (13
i iih
+Cje’ 0 e |kex+CJh,+ 1 elk X (8) WhereL:L2+ L3 and|:L3_L2

The current densities of the scattering states in leads 2
and in the superconductojs-L,R and 3 from electrons; ; and holes 2’3 are then given by
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difference¢ for different lengthd =0 (left), L~ &, (middle), and
—€[1—cog2y—B3) +cosg(cosy —cos 20)]}) L>¢&, (right) of the junction withD=0.7. Solid lines are for a
(15) symmetric junctionl =0, dashed for an asymmetric one. A gap
opens up in the spectrum &t=0 due to the asymmetry.
with the superscripg(h) related to+(—) and where
B. Weak-coupling limit

= — — — 2 2 o
Z=[(1~e)cos—Rcosy—D cos]"+ S|n220.(16) In the limit of small coupling to the reservoig<1, the

Andreev resonances are very sharp and the current densities
From Egs.(14) and(15) it follows that the sum of the elec- are calculated by evaluating the expressidn appearing in
tron and hole current densitiés,=i®+i", are equal in leads the Egs.(17)—(19), in the limit e—0. This is done in detail

2 and 3, giving the sum current density in Appendix B, and give$see Eq.(B6)]
de € . € T dE .
. R . . R — -
i"=ig=iy=—1-5{Dsin¢gsin20}. (17) i'iﬂoz nEt D|sin¢sin20|d¢5(E Ev). (@21

The difference current densities=i®—i" in leads 2 and 3 whereE,, are the energies of the bound Andreev states. To
are not equal, however. We therefore define the anomalousalculate the current density, information about the bound
current densityi; as that part of the difference current den- state energies as well as the derivative of the energy with
sity which survives in the limit—0, respect to phase difference is thus needed. The bound state
energies are given b7y the zeros of the denominZtdEq.
ig=— 0'4Fe % JVRD— €%/4 singy(cosy —cos 20)}. (16)] at =0, namely
(18) cos 20=Rcosy+ D cosdg. (22

The energy of the Andreev levels as a function of phase

difference¢ is plotted in Fig. 4. In the figure it is shown that

de &2 the Andreev levels appear in pairs, labeled mywith an
—{sinzx+(cosx+ cos¢)(cosy—cos 20)} upper (+) and a lower () level (referring toE>0). The

z index n is zero for the pair of levels with positive energy

(19 closest tcEg . In the case of one single bound state, the level

and splits asymmetrically between the two horizontal arms 2S labeled byE, .

and 3, The derivative of the bound state energy with respect to

phase is obtained by differentiating E@2), giving

The injection current density,;=i; —i, is given by,

iinj=F

2e € _
linj2.3= £ 7110826 - B, dE; Dsing 1 . L . I Rsin)( !
d¢ 2sin20| JaAZ—(E5)? hug  hug sin20
+ cos¢(cosy—cos 26)}. (20 . 23)
From the relation$ " (E)=—i"(—E) andi (E)=i"(~E)  The expression for the sum current density is given by in-

one can calculate the current densities for all energies insidserting Eqs(21)—(23) into Eq. (17), giving

the gap|E|<A. The continuum current density, for energies

outside the gapE|>A, is calculated in the same way. How- . 2e o dE .

ever, since the Andreev reflection probability decays very ] @5(5—55), (24)
rapidly outside the gap, the Andreev resonances become very o

broad and contribute much less to the current. Only the quawvhere the relation s@fdE/d¢)sin¢sin20]=—1 [see Eq.
siparticles injected from the superconductors contribute sigéB9)] has been taken into account. The expres$&h co-
nificantly to the current, as will be discussed below. The fullincides with the equation for the Andreev bound state
formulas for the continuum current density for a symmetriccurrent® derived directly from the BdG equation. From the
junction1=0 is presented in Appendix A. alternating slopes of the energy-phase relakggp), plotted
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in Fig. 4, it is clear that the sum current density ia
(~dE/d¢) changes sign between two subsequent Andreev Ia:J dE E(ne—nh) : (30
resonancessee Fig. 3.
The anomalous current densityis given directly by in-  and the injected current,
serting Eq.(21) into Eq. (18), namely :
|1=|mj=f dE %(ne—n“) . (31)

. 2e .

= —(r?sgr(squ) VRD
With these definitions, the total currents in leads 2 and 3 may

be written as

*

cosy—cos¢ |dE, N
X - S(E-E]). 25
;t |sin 26| do | ( n) (25) lo=leqt I+ 1a—1linj 2,

I : 32
For a symmetric junctiohm=0,cosy=1, the anomalous cur- la=leqt 1 +1a+linj 3, (32

rent density does not change sign as a function of energy, ) _
opposite to the sum current densiisee Fig. 3. For finite ~ Wherelin;=lin; >+ linj 3. As discussed in Sec. Il, the sepa-
asymmetry, the anomalous current might change sign. Howation of the anomalous current is arbitrary, and has physical
ever, this does not lead to strong suppression of the totdl€aning only in the weak-coupling limit whe,;—0.
anomalous current, as will be shown below in Sec. VB. In the weak-coupling limit, the integrals in E¢f29) and
The injection current;,;=i; —i; goes to zero foe<1. (30) become sums over resonant states,
We approximate the injection current in the weak-coupling o dE*
limit by the first-order term ire, given by inserting the ex- l,=— 2 n
pression fore/Z in the zero coupling limit into Eq(21), hiit do

[n®(Eq)+n"(Ey)—2n(E))], (33

_ 8e « Sir? y+D(cosy— cos¢)?
linj= €2~ >

n= |sin 26|

e
2= —o%sgr(sin ¢)VRD
"

dé

The injection current density is closely related to the anoma- (34)
lous current density, , in the sense that the injection current The equilibrium current for energid&| <A is given by in-
density is positive for all energies and values of the phaseerting Eq.(24) into Eq. (28),

difference¢.

cosy—cos¢ |dE, ‘

S(E-E;). (26 X2 “snzel | dg | M (EN) - (ED].

X

b :E 2 ﬁ
C. Structure of the nonequilibrium current € f i1 do
Including the continuum contribution from the supercon-For energies above the gap, the equilibrium current results
ductors(Appendix A in Eg. (5), we can finally write down  from quasiparticles injected from the superconductors only,
the structure of the total current in each lead: since this current is the only continuum current being finite
in the weak-coupling limi{see Appendix A

ne(ES). (39)

S+

» i i
Ij:f_wdE

j e h i e h S
—(n*+n")+ =—(n°*=n")+i°>ng|, (2
2 ( ) 2 ( ) F @7 IV. JOSEPHSON CURRENT OF A SHORT JUNCTION

wherei® is the current density from the quasiparticles in- FOr @ short junctiorL=1=0, there is exactly one reso-

jected from the superconductors. The equilibrium currenf!@nce for positive energies<E<A. For no coupling to the
(V=0) flowing in leads 2 and 3 is given by normal reservoire=0, this resonant Andreev state is con-

verted into a bound Andreev state, with the dispersion rela-

tion E, =A\1-D sir’(¢/2). The equilibrium current of a
qu:f dE[i " +i®Ing (28 short junction is thus given by the well-knofrelation

while in lead 1 it is zero. Subtracting the equilibrium current | _% Dsing

from th_e total current we get the nc_meqwhbnum cur_r_en? in eq g 21— D sirk($/2)

the horizontal leads 2 and 3. We divide the nonequilibrium

current into the regular currett associated with the non- The continuum current is zero, which can be seen by putting

equilibrium population of the existing resonant states, L=0(B8=0) in the equations for the continuum current in
Appendix A. At zero temperature and zero applied bias, only
the level with negative energy E, is populated. For an

, (29 applied a voltage biag>0, the electrorihole) population is
shifted upwardgdownward$ in energy. When the voltage

the anomalous curreht associated with the essential modi- eV=E, , the energy of the resonant level, the level becomes

fication of the Andreev states due to the open normal lead,populated and there is an abrupt jump of the current. The

tanh(Eg /2kT).  (36)

s

|
|r=de

?(ne+ n"—2ng)
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FIG. 5. The current$.+ |, (dash dottef |, (dasheg and the
total Josephson currenf,+1,+1, (solid) in the horizontal leads 2
and 3 as a function of voltag€ at T=0 for a short junctionL
=0 withD=0.8,¢=37/4,e=0.01, ando=—1. The total current
is |4 for eV<E, andél, for eV>E, .

regular part of the currentl,, jumps an amountl,=
—leq, thus cancelling the equilibrium Josephson curfeae
Fig. 5. This has recently been observed in experiménts.
The anomalous current jumps by the amount

B %\/ﬁDsin¢|sin¢>/2|
~ 728 1-Dsik(¢12)

(37

a

and is thus the total current of the junction. The effect of
finite temperature in a zero length junction is merely to

smear the steps in the IVC.

In the symmetric casd €0) it is interesting to extend the
discussion to a longer junction with two resonant levskse
Fig. 4), since the current distribution between the levels be
comes nontrivial*!® In the limit D<1, both resonances
have energies close to the gap edgg~A, and with the
additional approximatiogg/2> /D we obtain the expression
for the derivative of energy with respect to phdsee Eq.

(23],

dE; A L sin(¢) 39
d¢ = 4 & |sin(¢/2)|V1—D sirA(l2)

The equilibrium bound state current becomes proportional t

I2q~dE§/d¢+dE5/d¢>~D (taking terms of ordeD into
account, but for the currents of the individual levets\D.

The resonant levels thus carry opposite “giant” currents

which almost cancel in equilibrium. F&r>0, we also have
to take the continuum contribution into account. In has bee
showrt* that the continuum contribution to the equilibrium
current islgq=—1/2lgq, thus giving the total equilibrium
currentlgq=1/2 gq.

At zero temperature, when a voltage equal to the lowest

lying level eV=E, is applied, the regular and anomalous
current jumps,

P VD sin(¢) (39)
" & 2sin(¢/2)|VI—D siA($12)
5|a=0'%£ VRDsing (40)

f &0 J1-Dsirk(¢/2)
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Both jumps are proportional tgD, and the magnitude of the
total current atE, <eV<E, is then much larger than the
equilibrium current.

When the bias voltage is further increasedetd=E,
there is a second current jump: the regular current jumps in
the oppositedirection and becomes equal to the small nega-
tive bound state equilibrium curreht= —ng. The anoma-
lous current, however, again jumpk, in the samedirection.

For voltagese V>E; the total current in the junction is thus
leqt2814. The full formulas for all the individual currents
including temperature dependence is given in Appendix C.

V. JOSEPHSON CURRENT OF A LONG JUNCTION

We first discuss the Josephson current in a longr €;)
symmetric (=0) junction. The junction length is limited by
the requirement of Eq4), that the injected quasiparticles do
not scatter inelastically in the junctioh<el; .

In a long junction there are manNE&([L/(&gm)]) pairs
of resonances, as seen in Fig. 4. The derivative of energy
with respect to phasdE/d¢ in Eq. (23), which determines
the current in Eqs(33)—(35), can be simplified in a long
junctionL> &,

dE*_fve_ Dsing) )
dé = L 4]sin(¢/2)|V1—D sir(¢p/2)

This expression holds everywhemwith accuracyO(1/L%)]
except close to the gap edgad—E,~(hve/L)(&/L), a
distance much smaller than the energy distamte /L be-
tween the pairs of levels. Therefore E41) can be used for

calculation of the currents of all levels except the last pair of
levels closest to the energy gap.

A. Equilibrium current

The behavior of the equilibrium Josephson current, both
at zero and finite temperature, is the result of fine compen-
sation of the partial bound state and continuum state cur-
rents. According to Eq941) and(23), each of the Andreev
levels carries a current of orderL1/while each pair of levels
garries a smaller net current of orddE, /d¢p—dE, /d¢
~(1/L)3. Thus the equilibrium current of all bound states,

o _©hve VD sin(¢)
4 fi L 2|sin(¢p/2)| V1D sirf(/2)
n N—1

X > [tanHE, /2kT)—tanKE, /2kT)]
n=0

+i* tanh(A/2KT), (42

is determined alf=0 by the current from the last pair of
levels atE~A, 12,=i*~1/L. This results in an oscillatory
behavior of the bound state current with the junction length
(see Fig. 6. A similar result was obtained for a fully trans-
parent SNS junction in Ref. 30.

The continuum current in EqA4) oscillates in the oppo-
site sense, as also shown in Fig. 6, compensating the oscil-
lations of the bound state current, E45). As a result, the
total current monotonously decays as 312
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FIG. 7. The equilibrium currerlt,q plus the regular current vs

FIG. 6. The equilibrium bound state) and continuun{b) cur- voltage. L=10¢,, ¢=m/2, D=0.8, €=0.05. Solid line:T=0,
rents and their sunfdashegl as a function of lengthL for finite dashed dotteck T=0.04A, dashedkT=0.07A. The regular current
kT=0.2A, D=0.8, ¢=37/4, ande=0.01. There is a cusp in both jumps alternating by* §l, every time the voltage is equal to the
the bound state and continuum currents when a new bound staanergy of an Andreev resonance. Far>7%v: /L andeV>A the
forms out of the continuum. The total equilibrium current, however,currentl o, +1,= ng.
dies monotonically with increased length. Inset: The equilibrium
bound §tate_and continuu_m currents as a function of temperature f?ﬁe negative bound state curreni*, as is clear from the
a long junctionL = 15¢, with D=0.8, ¢=37/4, ande=0.01. The discussion in the previous sectiéBec. V A.

b _ ik _c
bound state currenta) decreases frome (T=0)=i" to —l¢, It is interesting to study the sutg,+1,, plotted in Fig. 7,
when the temperature is increased from zer«Te<Avg/L. The . < .
. . Co . at temperaturekT>fv /L. In this temperature regime the
continuum currentb) is unaffected in this temperature regime. S . .
equilibrium current is exponentially small and also the regu-

) lar current steps in the IVC in Fig. 7 are suppressed. For a

e hvg D sin(¢)arcco$R+ D cos¢) voltageeV~ A, the last level, carrying the major pait( of

i L 2x|sin(¢/2)|VI—D siid($2) the bound state current, is populated and the cutlrgpt!,
(4

3  jumps tolgq, the value of the continuum current, since all
bound states are populated. This curﬂ@aﬁs of the order of
1/L and the current, + 4 increasesateV~A from zero to

a finite value~1/L.

Teg+1; (eA/h)

leg(T=0)=

When the temperature increases, the sum in(&2).starts to
contribute with negative sign, while the continuum current
(and alsa*) is independent of temperature foF <A, since
it is an integral over states witlie| > A, Eq. (A4). The total
current therefore rapidly decreases with temperature and be- C. Anomalous current

comes exponentially small fadeT>7%vg /L1732 o . . .
P y UF The anomalous current is given by inserting E4ll) into

e Eq. (34),

leg(KT>five/L)= ﬁ8kTDsin¢e‘2”L’§T, (49
- e ive JRDsing ' B
where&r=hve /KT la=—07 20 ———5— > [N(E;)+h(E,)],
4L 1-Dsir?(¢) n=o0
B. Regular current (47)
The regular current can be written, inserting relat{dm)
into Eq. (33), on the form where h(E)=tanH(E—eW/2kT]—tanH(E+eW/2kT]. We
have neglected the current from the last level closeéEto
e fivg JD sin(¢) =A, because the currents of all levels add up and the current
Irzg TP DSt from the last level is negligible. The IVC at zero temperature
2[sin(¢/2)| V1= D sim($/2) looks like a staircase, as shown in Fig. 8.
N-1 i* The magnitude of the current step at zero temperature is
x 2 [9(E,)—9(Ep)]+59(4), (45  givenby
where g(E)=tanH(E+eW/2kT]+tani (E—eW/2kT] e hv \/ﬁsincﬁ
—2 tanhEg/2kT). The regular current, jumps up or down 5|a=g 2_LF _— (48
every timeeV=E_ [see Fig. T. Each current jump has the 1-Dsir(¢/2)

magnitude
At temperatures larger then the interlevel distankd,
e hvg \/Bsin(da) >hvg/L, the staircase IVC is smeared out to a straight
5|r:gT 2[sin( $/2)| V1—D sirt( $12) (46) slope, as shown in Fig. 8. The exact position of each level
becomes irrelevant and we can write the sum over bound
at zero temperature. At voltaged/> A, the regular current states in Eq(47) as an integral, noting that the expression
is the sum of all states in the rangezE<A, and is equal to dE/dn=m#v/L holds for all levels in the sun7),
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FIG. 9. The total currenit=1.4+1,+1, as a function of voltage.
At zero temperature we have+ | o4 (dash dottey | , (dashedi and

' — the total current, +1.4+1, (solid. The total current for tempera-
-1.0 0 1.0 tureskT>Avg /L is plotted (dotted. Junction parameters aif@
eV/A =0.8,¢=37/4,L=20&,, €=0.01, ando=—1.

1
134

FIG. 8. The anomalous current as a function of volteder (a) anomalous current is however proportionabtpi.e., depen-
¢=ml4 and(b) ¢=3m/4 for L=10¢, D=0.8, €=0.05, ando  dent on the phase of the scatterer at the connection point,
=—1. Temperature'=0 (solid) and T=0.1A (dashed ling The  \yhich is not the case for the equilibrium Josephson current.
current steps with m.agnltudﬁa ar(.e.smeared to a straight line for To get the complete picture of the Josephson current in a
kTs>hve/L. Upper inset: The critical anor_‘nalous current et long junction,| =loqt |+, is plotted as a function of bias
=A as a function of transparendy for coupling constang=0.1. voltage for different temperatures in Fig. 9.

Due to finite cou_plings, the critical current always goes to zero for The zero-temperature total Josephson current oscillates
;Zo' /LL)O;V:; fILTr?cettiénTo?e h::émc;i’cflflg:j:n é?;:ﬂ?g;:?r;; strongly around a constant slope as a function of voltage,

e s . ) showing steps whenever the voltage passes an Andreev level.
parenciedD=0.1, 0.5, and 0.9. The highest amplitude corresponds]_he step structures are washed out for temperatiies
to the highest transparency and vice versa. . N .

g P y >hve/L, and in this limit the total current roughly coincides

N with the anomalous current, given by E&J1).

> [h(E;)+h(E;)]

n=0 D. Asymmetric junction

2L (& The effect of asymmetry is most pronounced in the long

TrﬁUFL dE[tanf(E+eV)—tanHE—eV)] limit when the asymmetry is much larger than the coherence
length but much smaller than the total length of the junction,
L>1>¢&,. In this limit, the derivative of energy with respect

- waWf(V'T)’ 49 o phasedE/d¢ in Eq. (23) reduces to_ the expr_ession of a
symmetric long junction(41), since |sin 26>R/siny| (see
where Appendix B. The equilibrium current., and the regular
A Ik currentl, are not substantially changed in comparison to the
= M symmetric case. In contrast, the anomalous current is modi-
f(V,T)=kTIn , (50 Y e :
cosi{A —eV)/kT fied in a nontrivial way, taking the form
and the anomalous current takes the simple form
| ——go %Jﬁowsinqs
e VRDsin¢ a hoL
2= oy - f(Vv,T). (51
w[1—D sir?(¢/2)] . N COSy— COSh ey o2
. —-n"),
In the limit Zve/L<kT<A, f(V,T)=min(eV,A): the n+1—(D cosd;JchosX)z(n

anomalous current thus scales linearly with applied voltage

up toA. It follows from Eq.(51) thatl , is independent of the  obtained by inserting Eq41) into Eq. (34). For T=0 the
length of the junction, being the sum bif~L levels which  step structure in the IVC is modified due to the change of
each carries a curreh{~ 1/L. This gives that the anomalous Andreev levels as a result of the asymmetsge Fig. 4.
current roughly is equal to the total equilibrium current of Already for small asymmetry~ &, the anomalous current
the short junction. The critical anomalous current is plottedmight change dramaticallgsee Fig. 10 Depending on the
with respect to transparency in the inset in Fig. 8. In the limitphase difference of the junction, the IVC is renormalized and
D<1 it is given by (,).=(e/#%)(JD/7)f(V,T). It is pro- changes sign for 7/2< p<m/2.

portional to the first power oA for T close toT., therefore When the temperature is increased beyond the interlevel
surviving up tokT~A. The anomalous current-phase rela-distancekT>#Avg/L, the step structure becomes smeared
tion (see inset in Fig. Bis 27 periodic and resembles that of and we get a periodic modulation of the IVC on the scale of
the equilibrium Josephson current. The direction of theeV~#uvg/l. This modulation arises from the factor cps
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FIG. 10. The asymmetric anomalous curréptvs voltage for
different asymmetriega) | =0¢&,, (b) |=2¢&,, and(c) | =40¢, for
kT>fhve/L, D=0.8, €e=0.05, L=60¢,, ¢=/4, ando=—1.

When the temperature is further increase&1>7%v /|

I (e A/R)

0 0.5 1
The IVC is changed dramatically already for as small asymmetry o/t
|~ &y, if the phase difference- 7/2< p</2.

FIG. 11. The asymmetric anomalous curréptat eV=A and
kT>#Ave/L as a function of phase differengefor different trans-

this periodic structure is smeared out and the IVC once agaiﬁarenciesD=O.1,0.5, and 0.9. Inset: The cri_tical anomalous current
becomes a straight line, but with renormalized slope. In thig'a)e. for eV=A andkT>%v /L, as a function of transparenéy
high-temperature limit the amplitude of the terms in the sunf©r coupling constant=0.1.

in Eq. (52) oscillates with a periodivg /1. During this pe-
riod, the filling factorsn can be taken to be constant, and we

>hve/l. The 1 periodic part of the current does not have this

can sum over one period to get the average value. Perforngensitivity and is the only part of the anomalous current that

ing this summation in the continuum limit, we get

COSy —COS¢

one period1— (D cos¢+R COSX)2

fivg (27 cogx)—cog ¢)
2l Jo 1—(D cos¢+Rcosy)?

sin(¢/2)]  [cod¢/2)]
J1-Dcof(¢/2) J1-Dsird(¢/2)]
(53

L 1

| 8R\D

survives. The asymmetric anomalous current-phase relation
is shown in Fig. 11.

The 7r periodicity and the zeros @=n/2 give the con-
dition that the slope of the IVC must change sign due to
asymmetry in the range- w/2< ¢$<m/2, as shown in Fig.

10. The critical asymmetric anomalous current as a function
of transparencyD is shown in the inset in in Fig. 11. The
behavior is very similar to the critical anomalous current in
the symmetric case, the main difference being that the am-
plitude is reduced by roughly a factor of 2.

VI. INTERFACE BARRIERS

This quantity is energy independent and we can then sum In any realistic experimental situation, normal reflection

over the filling factors following the procedure from the
symmetric cas€49):

41
(n®—nMy~ ——F(V,T). (54)
averaged periods ﬁUFW

The anomalous current then becomes

| 2e D ind
=—0Z; —=SIn
a ﬁﬁ\/ﬁ

sin(g/2)|  [cog¢/2)]
V1-Dcos($/2) 1—D sir(¢l2)

f(Vv,T),

(55)
which is independent of both the lendttand the asymmetry

I. We also find that the renormalized anomalous current be-

comessr periodic. This can qualitatively be explained by the
fact that the 2r-periodic part of the anomalous current den-
sity is very sensitive to asymmetry, oscillating fast with en-
ergy on the scale ofivg/l, becoming washed out during
summation over bound states at high temperatk@s

at the NS interface, modeled by a barrier with reflection am-
plituder,, , must be taken into accoutitThe general expres-
sion, considering both the interface barriers and the midpoint
scatterer, becomes analytically intractable. We can however
analyze the case where the midpoint scatterer is abgent (
=0) to get an understanding of the effect of NS barriers on
the junction properties, and then treat the general case with
injection and midpoint scatterer numerically.

In the absence of the superconducting legasSNININ
junction), the two barriers give rise to normal Breit-Wigner
resonances for the electrons and holes. Understating the
properties of these resonances turns out to be crucial for
describing the behavior of Andreev levels and current trans-
port. The energies of the electron and hole resonances are
calculated straightforwardly:

e _w(n—v)
Ec= 2EF[1 Rl |
h _W(m—v)
En=2Eg 1 kL | (56)
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l Lol l Lot (putting 3=0) and just get the total transparency of the junc-
1 s v _ tion D=D2/[ D2+ 4R, sir?(3,/2)] to be put into the standard
—\1:\—-’\\1\,— W N zero length junction equilibrium current formula. In the
strong barrier cas®,<1 the resonances are shdrp<A
and one can not neglect the dephasing. Assuming that the
N N resonance is close to Fermi energy"<A, we can putg
< A ) <1 in Eq.(58) and obtaif®>>°
W E=*I'?cos(/2)+(E®M?2. (59
X X . .
FA When the resonance is exactly at the Fermi en&g=0,
_/\/\ the Josephson current is given by
oLl N ef I cod $/2)
(@ Ppm  ® Lo 1= sin(¢/ Z)ta”r( kT )" (60

FIG. 12. The Andreev levelsolid) and the normal electron and The critical current at low temperature&T<I") is thus
hole resonance@otted as a function of lengtt. of the junction  smaller than the critical current of a short, clean junction by
with four Andreev levels in(@ weak resonance limiR,<1 (b) a factorT'/A.
strong resonance limR,~1. The lengths of two subsequent inter- For a long junctior_> £, we can calculate the derivative
sections of normal resonanceg,m andL,.n-, are shown with  of energy with respect to phase,
arrows.

. _ _ _ dE  Aug D2sin¢

wherer,=\R,e'*” andn(m) are integers denoting the in- — =t = 5+
dex of the electrorthole) resonances. The intersection be- do 2L (1+R,)*~[Dycosp— 4Ry, cog Bo)]
tween electron and hole resonanc&s £ E*,}]) is given by (62)
Loysm=Ae/4(m+n—2v) with the Fermi wavelength\p In the weak barrier limiRR,<1, this just causes oscillations
=2m/ke . These normal resonances are plotted in Fig. 12. with length around the clean junctioiR{=0) result. In the

For the junction with superconducting leads, one can irstrong barrier limitR,~1, one can distinguish two limits:
the same way as before calculate the equation for the boungfhen the length of the junction is far away from the length

Andreev states|E|<A), with the resuft® L.+m Where the electron and hole resonances intersect, the
5 ) junction is out of resonance. The second term in &4) is
Dj, cos¢+ 2R, cosp—cog2y—B) —Rycod2y+B) negligible and the current from the individual levels thus
— 4R, siry cog B) =0, (57 ~ Pecomes
where we have define@,=*2E®"/(Ave/L) and + (—) |— +%Dzsin¢ 62)
denotes holgelectron resonance energies. One can draw T4 P '

some qualitative conclusions on how the Andreev levels are , 2
related to the normal resonances by looking at Fig. 12. In thd iS Proportional toDy, and thus strongly suppressed. In the
limit of high barrier transparencig,<1, the Andreev levels OPPOsite limit, when the length of the junctidn=L,,
are weakly modified by the barriers. In the opposite limit=Ar(M+n—2»)/4, the junction is in resonance. When
R,~1, the Andreev levels get pinned at the normal reso-T M is even we get the current carried by each level
nances, but there are no level crossings at the points where o Dy sin
the normal electron and hole resonances intersect. = iﬂ _Zb>7 (63)
We find the same interlevel distanke#/L in the junc- L 4|cod ¢/2)]|
tion with the superconducting leadSINIS junctior) and
normal leadgNININ junction). The main difference is that
the normal resonance move very quickly through the junc- eve Dpsing
tion when the length increases, while the Andreev levels = iT W
oscillate up and down.
Considering Andreev state energies close to the Fermjve see that the current is proportional By, just as ex-
level, E<A, one can derive a simplified dispersion pected for the junction in resonance. The current carried is

and whenn-+m is odd we get

(64)

relation34 thus of the order of the single barrier junction current. An
interesting feature is that the current is dependent on the
) Dgcos’-(q§/2)+4Rb Sir?(Bo/2) parity of the sum of the electron and hole resonance indices
Sirf(B12) = (1+R;)? - (58 n+m. When the third lead is connected to the junction, the

scattering at the connection point just splits the Breit-Wigner
Using this relation we can study the bound state current imesonances, and the qualitative picture for the bound states
different length limits. derived without the third lead connected survives.
In the short limit,L < ¢, there are two cases to be consid- To calculate the total equilibrium, regular or anomalous
ered. For nearly transparent barri@g~ 1, and thus broad current, the currents carried by all individual levels have to
resonanced'=Dpfive/L>A, one can neglect dephasing be summed up. In the weak barrier linit<1 we just find
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FIG. 14. The injection current in lead 1 as a function of voltage
FIG. 13. Short segment of the equilibrium bound state current agor (a) ¢= /4, (b) ¢=3m/4, and(c) ¢=. ZeroT (solid lines
a function of lengti, to illustrate the resonant behavior. The junc- and T=0.05\ (dashed ling with D=0.8, L=10&,, and e=0.05.
tion is longL> &, with R,=0.9, €=0.01 and¢= =/2. ForeV>A the slope of the IVC approaches the value of a normal
junction.
that all properties calculated above for the symmetric junc-
tion without barriers hold, with a small length dependent(19) that the injection and anomalous Josephson currents at
modulation~ Ry, with a periodSL ~\ . In the strong barrier eV<A are connected in this case by a simple relation,
limit R,~1, the result will depend on whether the junction is

in or out of resonance. € 1+ cosé
Figure 13 shows the resonant behavior of the equilibrium linj=—0 - a (65)
current as a function of length. The current has a peak around VRD—¢€%/4 siné

lengthsL=Ag/4(m+n+2v). The phase dependence of the heref he infecti . . ith

current at the resonant peaks is well described by the expreg-—_ere ore the Injection current increases stepwise with ap-

sions for the single level current§3) and (64). plied voltage at low temperature just as 'th.e aﬂomalous cur-
The anomalous current is also strongly length dependerdfnt(Se€ Fig. 14 However, foreV>A the injection current

and when the junction is in resonance we have an anomaloQntinues to grow, unlike the anomalous Josephson current,
currentl ,~oD,+RD while when we are out of resonance which saturates foeV>A (see Sec. V € In this voltage

Ia~aD§\/ﬁ. It turns out that there is an anomalous Currentreglme, the injection current steps turn to smooth oscilla-

even without scattering at the connection point, but it oscil(jlons’ due to the broadening of resonances, around a straight

lates around zero as a function of lenath with the perio ine with the slope corresponding to the normal conductance
N 9 P n=4ee?/h [see Eq.(A3)]. The amplitude of the oscilla-
~\E.

tions decreases with increased voltage.
We now focus on the properties of the injection current at

VII. INJECTION CURRENT subgap voltageeV<A. An explicit expression for this

current! is given by inserting Eq(19) into Eq. (31),

In this section, we turn to a discussion of the injection

current. This current is small within our assumption ef 4e? (A
<1; however, in practice, it may be comparable to the Jo- IianEZTJ dE(ne—np)
sephson current and therefore important for the nonequilib- -4
rium _Josephson effept_as was explained in the Introduction 2 coZ(p/2)sir? 6
and in Sec. Il. The injection current can also be used for X .
experimental detection of the nonequilibrium Josephson [(1—e€)cos 20— R—D cos¢]*+ € sir’ 26
current!®3” This current has a close microscopic relation to (66)
the anomalous Josephson current.

Although there is a large amount of literature on the nor-The height and position of the current steps are strongly
mal conducting properties of SNS structufésfarting with  dependent on the length of the junction. The height of the
the pioneering work by Spivak and KhmelnitsRiand Alt-  steps is most conveniently calculated in the weak coupling
shuler, Khmelnitskii, and Spivdk most of the work is de- |imit, where the general current expression in E66) is
voted to diffusive junctions. Quantum junctions have quaniven by
titatively different properties, but have recieved much less
attention. However, as we will see, many phenomena found
in diffusive junctions also exist in quantum junctions and
they can qualitatively be explained within our simple and
physically intuitive model.

e |cog ¢/2)|
i D \1-D sirA($/2)

dE=
XE 5

|inj:€

n

& [n®(Eq)—n"(E)]. (67)

A. Symmetric injection

We start by discussing symmetric junctiohs;0. It fol- In the limit of zero length of the junctiofisingle Andreev
lows from a straightforward comparison of Eq48) and level) the magnitude of the step at zero temperature is
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5 e /D |sin(¢/2)|co(¢p/2) -
R ,
MUTh 2 1-Dsirf(¢2) Lo
while for two levels in junctions of finite length, ~ &, the -
steps are =
20.5 b
eA L  cos(¢l2) o
5|inj=€7——. (69) a
&0 \/1—D sir?(¢/2)
(Eg =A). For long junctiond.> &, the current step is % N >
o/
e hvg  Ccof(¢/2) _ _
Olinj= S AL P 70) FIG. 15. The conductance as a functiongofor different volt-
L 1-D S|n2(¢/2) ages(a) eV=0, (b) eV=0.073\, and(c) eV=0.1%A at zero tem-

jperatureT=0. D=0.9, ¢=0.05, andL=20¢,. The conductance
maximum shifts from¢~m to ¢=0 upon increasing voltage.
eThere is an absolute minimum ét= 7.

There are some features of the current, which are indepe
dent of the length of the junction. The maximum magnitud
of the differential conductanagl;,; /dV at the current onsets

is independent of and equal to 4%/ h; this property has S Lo . .
been noticed in Ref. 15. At the same time, the maximumfor the current in this temperature limit is obtained by insert-

magnitude of the conductance at the current plateaus is 'R9 Eq. (41) into Eq. (67) and then converting the sum over

factor of €2 smaller. Therefore the amplitude of the current-cgggi?\/sfg%lsqégo _?k?elgti?éﬁ![’ iéufr:eis ];\?(rar:hs anomalous
phase oscillations strongly varies with voltage and also with ' T 9 y
junction parameters, e.g., junction transmissiityFor ex-
ample, in junctions with finite transmissivi# 1, there is a L 4e coS(¢/2) -
current plateau at zero voltage and therefore the amplitude of inj = €7 1—D siré(¢/2) (V.T),

the current-phase oscillations is small, while it dramatically

increases ab=1 when the Andreev resonance approachesyheref(V,T) is given by Eq.50). The IVC becomes linear
the Fermi level. This giant enhancement of the conductancgy ev<A, with the slope independent of the length of the
oscillations has been discussed by Kadigrobbal* junction and the temperature. The current is thus a true long-
There is am shift of the conductance oscillations as arange current. From Eq71) it is clear that the conductance
function of phase when moving from one current plateau tthas 3 maximum ath=0 and a minimum at= for all
another. Such a crossover has been found by Leadbeater aggp”ed voltageseV<A. This is different from the phase
Lambert* by numerical simulations of multimode SNS junc- dependence of the conductance at odd current plateaus at
tions with arbitrary impurity concentration. In the diffusive zero temperature, and therefore at these plateaus the current-
limit, a similar phenomenong shift of the conductance os- phase oscillations undergoesmashift as a function of tem-
ciIIatior_ls when the voltage passes the '_I'houless energy, h%%rature akT~7%vg/L. The conductance as a function of
been discussed by Volkov and Zaits&his effecthas been  phase difference is plotted for different temperatures in the
experimentally observed in various structut&g’® Within  inset in Fig. 16. Such a crossover has recently been observed
our model, the crossover phenomenon has a very simple e¥; guasiballistic junctions by Dimoulast al*® and also a

planation which follows from the phase dependence of th&jmilar crossover has been observed in diffusive junctions at
Andreev resonances presented in Fig. 4. At a given voltagqpe Thouless temperatut®.

the magnitude of the conductance depends on the distance 0t js interesting to point out that the information on the

the nearest Andreev resonance: the closer the resonance $¥hductance as a function of phase difference was used re-
bigger the conductance. As is clear from the figure, when th@ently by Baselmanst al® to determine the direction of the
phase difference changes from zerosto the distance be- josephson current. In a loop geometry a large current circu-
tween the Andreev resonances confining the odd current p'@ating in the loop may change the applied external flux vs

distance between the resonances confining the even plateage conductancy.

increases. As a result, the conductance at the odd plateaus\yhen discussing symmetric junctions, it is also worth

has a maximum around, while the conductance at the even noting that the effect discussed by Volkov and PaviovSkii
plateaus has a maximum at zero phase difference. Similgjoes not exist in these junctions because the injection current

arguments hold for the phase dependence of the conductangeequally distributed between the left and the right arms of
in diffusive junctions below and above the Thouless energyihe junction[see Eq.(20)].

which plays the role of the first Andreev resonance. The
conductance as a function of phase for different voltages is
plotted in Fig. 15.

At finite temperature, the step structure in the IVC in Fig. The effect of asymmetry on the injection current is most
14 is smeared. This effect is most interesting in long junc-drastic in the limit of a long junction with large asymmetry
tions, where the temperature can be much larger than thie>1> &, just as for the asymmetric anomalous current. This
distance between the Andreev leveks>#Auv /L without  shows the strong relationship between the two currents. The
supressing superconductivity itseKT<A. The expression injection current is given by inserting E(R6) into Eq. (31)

(7D

B. Asymmetric injection
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FIG. 17. The paths in the asymmetric junction giving the first-
order terms of the current. Electrons are drawn with solid lines,
holes with dashed. The gray ellipse denotes the effective scatterer

KT/ due to the three-lead connection. The upper paths give rise 10 a 2

A periodic component of the current, suppressed at finite temperature
FIG. 16. The maximum conductan, .,/Gy, as a function of kT}th/L. The lower paths, time reversed, give rise ta geri-

T for zero voltage for different juction transparenciés, D =0.94, odic component of the current, not suppressed by temperature.
(b) D=0.9, and(c) D=0.1 ande=0.01. The maximum conduc-
tance saturates at a constant valiig,= Gy for kT>#uve/L, in-  dicted by Spivak and KhmelnitsRii and later Altshuler, Kh-
dependent orD. Inset: The conductance as a function dffor ~ melnitskii, and Spiva® It has been shown in numerical
different temperaturekT=0, 0.0A, 0.02%\, 0.0%A, and 0.A at  simulations for a structure similar to ours that the full con-
zero voltageV=0. Increasing temperature from bottom to top at ductance, i.e., not only the weak localization contribution,

¢=0.D=0.9, e=0.05, andL =20¢,. might becomer periodic at finite temperaturd$.A large
mr-periodic conductance oscillation with phase was also ob-
I e fivg o Dsirf(¢)+Rsir x oo served in diffusive samplé§. Whether the explanation for
inj= €z —— n-—nw). the crossover from 2 to eriodicity with increased tem-
™R L A=0 1—(D cosg+ R cosy)? 7P Y

perature discussed above can account for these observations
(72 remains to be investigated.
Averaging over periods and summing up the filling fac-
tors, just as in the case of the anomalous curfeae Eg. VIIl. FOUR-TERMINAL JUNCTIONS
(53)], the injection current becomes
The basic properties of the nonequilibrium Josephson cur-

rent do not change when connecting a second normal reser-
R7 1-\D voir to the normal part of the junction. However, the injec-
tion current becomes qualitatively different due to additional

Isin( ¢/2)]3 |cog 4/2)|3 interference petween injecteq qugsiparticles that undergo An-
% + f(V,T). dreev reflections and quasiparticles that only scatter nor-
V1-DcoS(¢/2) 1—-D sir’(¢/2) mally.
(73
The injection current in this limit does not depend on either A. Josephson current
the lengthL or the asymmetryl. It is 7 periodic, liy;(¢ Due to the additional normal electron reservoir, four-

+m)=1inj(#), and this property can be qualitatively ex- terminal junctions can be biased in different ways. Two
plained by considering the lowest order paths giving rise taypes of juction configurations are used in experiméfifs.
the current. The junction(a) in Fig. 18 is a straightforward extension of
The upper paths in Fig. 17, corresponding to an injectedhe three terminal device pictured in Fig. 1. Two normal
electron and giving rise to an outgoing hole, produce a curfeservoirs are connected to the normal part of the junction.
rent of the orderi;,;~|€'(?.7A2) 1 ¢'(?r*A3)|2=2+ 2 cosgp  The reservoirs are then connected to the grounded supercon-
+x). This part of the current is 2 periodic in the phase, ducting loop via voltage sources biased/atandV,, respec-
oscillating in energy with a periodvg/l. It is washed out tively. In the general case, the currerdtsand |, are not
when summing up the levels in a long junction at temperaequal and thu$,#1 .
tureskT>#Av /1. The lower paths in Fig. 17, corresponding  In the junction(b) in Fig. 1, a biasV is applied between
to an injected electron giving rise to an outgoing electronthe two normal reservoirs, which are only connected to the
produce a current of the orderij,~|d* e'(¢*h) superconducting loop via the four-lead connection point. In
+d*e'("¢*P|2=D(2+ 2 cos 2p). This part of the current is this case it follows from current conservation tHat=15.
7 periodic in phase and not sensitive to asymmetry. This junction reduces to the junctiga) in Fig. 1 by defining
The discussion about the periodicity of the conductancehe potential of the superconducting loop be zero and deter-
oscillations with respect to phase goes back to the earlyining the potentialsv, and V,=V,;—V self-consistently
eighties. Am-periodic contribution to the weak localization from the current conservation condition {(Vq,V,)
correction to the conductance in a SNS junction was pre=1,(V,V.).
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FIG. 18. Two different setups of the four terminal junction. In  FIG. 19. The interference part of the injection current as a func-
(@) the normal reservoirs are biased independently/atandV,  tion of voltageV=V,;=—V, for zero temperature. The junction
with respect to the superconducting lo@gounded, in (b) only the ~ parameters ar¢=m/2, L=10¢,, D, =0.6, D=0.8, ande=0.02.
potential difference between the normal reservolrs,is deter-  Left inset: The current densiti(E) for the first resonance &
mined. In the right figure, a close up of the junction area is shown~0.14A. Right inset, the zero voltage conductance as function of
with the direction of the currents showed with arrows temperature for two different bias arrangemefasV,=V andV,

=0, and(b) V,=-V,=V for D, =0.01,D=0.8, €=0.01 andL
The cross-shaped connection point is modeled for sim=20o-

plicity by the symmetric scattering matrix )
=1(V) and | ,(—V)=—14(V), we see that for bia¥;+V,

r, Je Ve d; =0 the anomal_ous current is zero, and ¥y—V,=0 the
regular current is zero.

Ve r o d e
S= Je d r el (74) B. Injection current
d, Ve e r, For the injection current, we only consider the case of

symmetric junction| =0, and no barriers at the NS inter-

where e describes the coupling of the SNS junction to theface:s. In this case, the part of the injection current that flows

vertical normal leads (& e<0.25). The horizontal scatter- into the horizontal leads 2 and 3 of the junction is symmetri-
ing amplitudes now obey the relations Reit)=—e and cally split between the leads. The subgap current can be writ-

D+R=1-2¢. The same holds for the vertical scatteringten on the form
amplitudesr, andd, . , ,
The current densitie™ 1), with the upper index 1 or L=y (Vl_v4)tI‘”i(vl)H‘”i(V“)
4 denoting the lead from which the quasiparticles are in- (@ Tdireet 2
jected, are cal(_:ulat_ed in the same way as in the case of thtﬁetailed expressions are presented in AppendixTDe first
Fhree ter_mmal Jgnctlgn. D'ug to the symmetry of the ;catt.er-term is the current flowing directly between the reservoirs,
ing matrix, quasiparticles injected from leads 1 or 4 gL\)/el rise
t:ié?h()eyéls:nn;(ieg(%tf{r:eirlg’t(h?’fnsny in leads 2 and 3, |§ lgireci=(26/h) (D, + €)(V1—V,), (77)
The expressions for the sum and difference current densiwhile the second termhj,; differs from the three-terminal
ties in leads 2 and 3 become very similar to the three termiinjection current in Eq(66) by changinge— 2e. These two
nal expressiongsee Eqs.(17)—(19)], one just changeg  terms can be understood as a straightforward extension of the
—2€ and divides by 2. Neither the vertical transpareficy ~ three terminal injection current. The sum of these two terms
nor the reflectivityR, thus appear explicitly in these expres- reduce to the normal current expressiag,=(2e/h)[ (D,
sions. In the limit of weak coupling<1, i "l=i"4=i*/2 +e€)(Vi—V,4) = e(Vi+V,)] in the case when the junction is
and it=i4=i,/2, and the Josephson current is thereforenormal.
given by the equation The last current ternh;,; in Eq. (76), however, does not
exist in the three-terminal junctions. It arises from the inter-
1 1 ference between quasiparticles being reflected or transmitted
I=leqt 5[ (VD) +1:(Va) ]+ 51a(V) +1a(Va) ], in the vertical leads and quasiparticles forming the Andreev
(75) resonance by multiple scattering in the horizontal leads. This
interference leads to a new type of resonances, Fano
where the currentk,,,!, andl, are the same as in the three resonance® which are situated at the same energy as the
terminal case, Eq933)—(35). Noting the relationd,(—V) Andreev resonance&ee left inset in Fig. 19 The Fano

+|int (76)
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resonances in the current density give rise to a currgpt  rent.~eA D/ independent on the junction length. This
periodically oscillating around zer¢rather than stepwise enhancement of the critical current persists even in the long
growing as a function of applied voltage and having sharpjunction limit L> &;. Such behavior is in sharp contrast to
peaks, as shown on Fig. 19, the height of the peaks of ththe effect of nonequilibrium population of the Andreev
order ofe In e. For bias voltages between the resonances, thstates, which merely induces oscillations and sign reversal of
conductance is of the order ef which is much larger than the Josephson current as a function of applied injection volt-
the conductance at the current plateaus for the three-terminafje. The enhancement of the critical current in this case is
junctions,~ €2. It is interesting to mention that the interfer- strongly length dependent: at best it can be as bid cas
ence current does not turn to zerodat 7, in contrast to the  ~1/L at eV>A in long junctions and it decays with the
three-terminal injection currerfsee Eq.(D3)]. The current junction length.
lint is plotted in Fig. 19 for a particularly interesting bias  The long-range effect in the anomalous Josephson current
arrangementV,=—-V,=V, when the second term in Eg. is microscopically connected to the similar property of the
(76) disappears due to the symmetry relatigp(—V)= injection current: the injection current oscillates with the su-
—linj(V) [see Eq.(66)], and the interference curret, perconducting phase differen@exhibiting full-scale oscilla-
fully accounts for the current oscillations with voltage andtion for symmetric injection in a three-terminal junctions,
superconducting phase. with zero at¢= ), with the amplitude of the oscillation not
With increasing temperature, the oscillations of the inter-depending on the junction length.
ference current are suppressed and disappear completely atThe current-voltage characteristics of both the Josephson
temperatures larger than the distance between the resand injection currents have pronounced steplike features, due
nanceskT>#%vg /L. Thus the amplitude of the oscillations to the effect of Andreev resonances, with the position and
of the total current in this limit approaches zero \;  height of the current features strongly dependent on the su-
=—V,, while it remains finite in the general cas¥;+ perconducting phase difference. These features are washed
—V,, due to oscillations of the curreht,; . This is shownin out by temperature. In long junctions with asymmetric injec-
the right inset in Fig. 19, where the amplitude of the conduction the superconducting phase dependence of the
tance oscillations with the phase difference at zero voltaggemperature-smeared current-voltage characteristics becomes
8G=G,,2x— Gmin is plotted as a function of temperature. In 7 periodic. In the presence of electron back scattering at the
the temperature intervadily - /L <kT<<A, the total current of NS interfaces, the current oscillates strongly as a function of
a long junction is independent of temperature and length ofhe junction length due to the effect of normal electron Breit-

the junction and obeys the equation Wigner resonances. The Josephson effect is qualitatively
similar in three- and four-terminal junctions, while the injec-
I 2e? (D (Vi) cog(pl2) tion current in four-terminal junctions exhibits a specific
= + € - rte——F— i
14~ L 17 Vs 1-D sir? ¢/2 resonant behavior due to Fano resonances.
ACKNOWLEDGMENTS
This work has been supported by research grants from

It follows from this equation that the differential conduc- NFR, TFR, NUTEK(Sweden, and by a NEDO International

tancedl,/dV, (anddl,/dV,) is always smaller tharfor ~ Joint Research Grarifapai.
equal to, for¢=0) the conductance of the normal junction

Gszezlh(Di‘FZE). The effect of SUperCOﬂdUCtiVity in APPENDIX A: CONTINUUM STATE CURRENT
this temperature regime is thus alwaysdecreasehe con-
ductance. Here we present formulas for the continuum current for a
symmetric (=0) three-terminal junction without barriers at
IX. CONCLUSIONS the NS interfaces. The continuum current consists of par-

ticles injected from both the normal reservoir and the super-
We have presented a detailed study of the nonequilibriunconducting reservoirs. The current density in lead 2 from all
Josephson effect in quantum three- and four-terminal SNSnjected quasiparticles from the superconductors is
devices. A prominent feature of open nonequilibrium quan-

tum SNS structures is the anomalous dc Josephson current. e 2 sinBsinhy,

This current results from a modification of the current carry- igzﬁ Z—C{sin [ (4D —2D e— €?)coshy,

ing Andreev states in the SNS junction, due to connection of ¢

the junction to a normal electron reservoir. The anomalous —2Dee" 70]—4oemsin2(¢/2)coshy }
current is revealed under nonequilibrium conditions created o

by applying a voltage between the normal reservoir and the (A1)

SNS junction. The anomalous Josephson current is sensitive

to the scattering phase shift at the injection point while othewhere Z,={cosg[cosh 2y(1— )+ esinh 2y.]—R—D cos¢}’
junction properties(asymmetric position of the injection +{SinB(sinh2y(1—e€)+ecosh2.]}* and y.=arccoshg/
point, transmissivity of the injector and NS interfacds not ~ A). In lead 3 we get5(¢)=—i5(— ¢). This current density
qualitatively affect the current. The current grows with ap-is an oscillating function of energy with largest amplitude for
plied voltage and saturates @vV>A at a magnitude corre- energies close t&=A and is given at negative energies by
sponding to the current of a short junction, with critical cur- ijS(E): —ijs(— E).
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For the particles injected from the normal reservoir, the

sum current in lead 2 becomes - € . ,
Z [(1-e€)cos29—Rcosy—D cos¢]?+ €’ sir? 20
, eesingcoshy, , (B1)
2 =2y Z. {sin¢[2D coshy.+ e sinhy] in the limit of zero couplinge—0. We can conveniently
rewrite
+40RD— €%/4 sirf( $/2)sinhy.} (A2)
€ 1 €
with i3 (¢)=—i, (— ¢) in lead 3. The difference current in Z s 20Fri e (B2

lead 2 has the form
with F(E,¢)=[(1—€)cos —Rcosy—D cos¢]/sin 26. In

e ecosh the limit of zero coupling the expression becomes
i2_=ZHZ—yc(—coshyc(ecos¢+2m/RD— 2 sing) Ping P
C -1
. € d .
+(1— €)[sinhy,—sinh 3y,]— e cosh 3y, l'ino Téfwﬁ(l:):;i m-gF| AE-Ey)
+cosB{2 sinhy,(R+D cos¢) + coshy,(e(1+ cose) (B3)
+20VRD— eZasing]}) (A3)  With the energie€,, , given by
with i5 (¢)=—i, (— ¢) in lead 3. For negative energies we cos 29— Rcosy —D cos¢=0, (B4)
getij*(E) = —ij*(— E) andi; (E)=i; (—E). being the energies of the bound Andreev states. By rewriting
In the limit of weak coupling,i3=i3=i° and the total _
continuum current is given by, inserting EGA1) into Eq. L _d¢ 9 d¢Dsing (85)
(29), JE dE 9o dE sin 260

the expressioriB3) becomes

el (-5 (=
ngzﬁ(f +L dEn(E) . o dE
o M 7 =2 Blsing sinze] |dg "= En)- (B9
» 4D sin¢ sin B sinh 2y,
(COSB cosh2y.— R— D cos)2+ (sin B sinh 2y,)? : From Eq.(B4), the derivative of energy with respect to phase
becomes
(Ad)
. ) ) o D sing
Following the methods in Ref. 18 one can rewrite this inte- d : .
gral as a sum over the residues, ¢ 2 sin 20 1 n LJF'_R Sinx
JAZ—EZ fvg hvp sin20
c b, © , (B7)
leq= —leqt 74KT7D sing ) )
h Using the relationB4) and the fact thaR+D=1 we can
o 't
y 2 wp "((Dpl_ . n o, 2 - pr) 2 rewrite
112N %op A) M Fue |sin 26| = (D + R)2— (D cosé+ R cos)?
_ -1 = \D?sir? ¢+ R?sir? y+2DR(1— cos¢ cosy)
+1-Dsir?(¢l2)} (A5) 88)

where the first term results from the poles of the currentvhich shows thatsin 26/>Rlsiny|. This gives that, since
density in Eq(A4) and the second term from the poles at the=| by.deflnmon, _the factor in thg parentheS|s.|n the denomi-
Matsubara frequencies, =2k Tm(1/2+ p). The firstterm in ~ nator in Eq.(B7) is always positive. The relation

Eqg. (Ab) is the current carried by the bound states with nega- dE
tive sign. The total equilibrium curreit is then just given sgr(—sin¢ sin 29) =—1 (B9)
by the second termt For ziv /L<kT<A only the first term dé

in the sum is important, giving the current in E@d4). For  hen follows from Eq(B7). EquationsB6) and(B9) are the
T=0, the sum ovew is converted to an integral, giving the tachnical result of this appendix.

current in Eq.(43).

APPENDIX C: CURRENTS FOR DIFFERENT JUNCTION
APPENDIX B: SPECTRAL DENSITIES OF BOUND STATE LENGTHS

CURRENTS . . .
Here we list all expressions for the partial bound state

In this appendix we analyze the central quantity in thecurrents in different junction length limits. The junction con-
current density expressior$7)—(19), given by sidered is a symmetrid € 0) three terminal junction without
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barriers at the NS interfaces, in the weak-coupling limit

<1.
1. Short junction limit (L<€&;)

b _% D sing
®9 fi 21-D sirf(/2)

tanh(E; /2kT),  (C1)

| eA D sing ) 2

" h 4J1-DsA$2) 9o

e oD JRsin|sin( ¢/2)|

"R 1 De(gl) ©9
e e\D[sin( /2)| h(Ey). 4

i 1—-D sirk(¢/2)

When there are two Andreev levels, with<D, /2
> D andEj ~E, ~A, the currents become

b eA L \/BSIH(¢) )
~ T & 2k
'™ & 2lsin g2 V1 D sitgin o KD

—tanh(Eq /2kT)], (5
= € .
3 fMIsM/zﬂm[g 0)~9(Eo)],
(Co)
eA L JRDsing N )
'a U?z_gom[h(Elo(Eo)],
(C7)
I (G ey
h & \1-D si(¢12)
(C)

2. Long junction limit (L>§&g)

p_Shue _ \Bsing)
AL 2lsin(¢/2)| V1-D sirf(¢/2)

N
X ZO [tanr(E;/ZkT)—tanr(E,lekT)])

* tanh( A/2KT), (C9
e ive /D cog ¢/2) (N )
"R oL To e | o 9 TIED]
—l—i?g(A), (C10)
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e ﬁUF
a:

DRsing &
5T2[1—Dsin2(¢/2]nz [M(En)+h(E)],
(c11)

coS($l2)
hi 2L 1-DsinX(/2) 1

e ehvg

l1=

N
2, [h(E)+h(Ey)],
. (C12
where
h(E)=tanH (E—eV)/2kT]—tanH (E+eV)/2kT]
and
g(E)=tanH (E+eV)/2kT]+tanH (E—eV)/2kT]
— 2 taniE/2KT).

APPENDIX D: FOUR-TERMINAL INJECTION CURRENT

The full expression for the subgap injection current pre-
sented in Eq(76) is given by using the symmetry relations

i$=—150) andily=—i33),

* e
l1@)= fﬁmd E (D, +e)[n®'—n""—(n®4—n"%]

+i in]_[ne,l_ nh,1+ ne|4_ nh,4] + ig[ne,l_ ne,4]

—ibrnhi—nhd4, (D1)

The current density;,; is the injection current density in the
horisontal leads 2 and 3, given by E&6) when changing
e—2e. The interference current densities are

5=+ SRe((r, —d,)[r+d cosé—(r +d)exti20)]

X (cos#—R—D cos¢+ie2 sin20)}, (D2)

with i§=—ig(r,d,r, ,d, —r*,d*,r* ,d*). For a long junc-
tion at zero temperature, the interference current in the weak-
coupling limit is given by

=2 [(RL D)~ FE@(ev EX)- V}

hog Im(rd*)Im(r  d¥)|sin(¢/2)|

'L /DJ1-Dsi(¢2)

‘\/1 Dsm2(¢>/2)5|n0+\/_|sm(¢/2|cos€‘
J1—D sirA(#/2)sin 6— D |sin( ¢/2)|cosd|

(D3)

whereV=V,= -V, and ¢ [defined in Eq(13)] is given at
energyE=eV. The expressioriD3) strictly applies only at
|eV—E, |>ehvg /L. The current at the resonances saturates
at magnitude of the order afln e.
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