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Eikonal approximation in atom-surface scattering: Effects of a corrugated attractive well
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~Received 7 March 2000!

The eikonal approximation, which is an extremely useful method of calculating intensities for the scattering
of atomic beams from surfaces, is extended to include a periodic corrugation of the leading edge of an
attractive square-well potential placed in front of the hard repulsive wall. This provides a method for estimating
small effects of corrugation of the attractive physisorption potential on the diffraction spectra. Calculations
indicate that the relative phase of the attractive well corrugations, with respect to those of the hard repulsive
wall, has a distinctive and characteristic effect on the diffraction intensities.
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I. INTRODUCTION

The eikonal approximation is one of the earliest semicl
sical approaches that was applied to quantum-mechan
problems, and has been useful ever since for scatte
calculations.1 The eikonal approximation has been especia
useful in atomic scattering from surfaces since its initial
troduction to that field by Garibaldiet al.2 for the case of
scattering from a hard corrugated repulsive wall. It was i
mediately recognized that, in spite of its severe approxim
tive nature, the combination of the eikonal approximati
with a hard repulsive wall was capable of producing use
qualitative predictions of experimental diffraction spec
with very little calculation effort. When extended to includ
a square attractive well in front of the repulsive wall
mimic the effects of the physisorption potential, this mod
was shown early on to be capable of giving reasonable qu
titative agreement with experimentally measured diffract
peak intensities.3

The eikonal approximation has been applied to b
elastic4–7 and inelastic scattering of atoms from surface8

and it can be adapted to describe scattering from either p
odic or nonperiodic surfaces.9–12

Since the initial introduction of the eikonal approximatio
other theoretical methods have been developed to prod
numerically exact solutions to the problem of atom diffra
tion from a corrugated repulsive hard wall.13 There also now
exist several methods for obtaining numerically exact so
tions to the problem of diffractive scattering from a com
pletely realistic periodic surface potential, including t
coupled-channels method,14 summing the perturbation serie
to high orders,15 and wave-packet propagation.16 Neverthe-
less, despite its seemingly apparent drawbacks due to it
vere approximative nature, the eikonal approximation
mains a useful tool because of its calculational ease an
remarkable ability to predict qualitative responses to chan
in experimental parameters.7,12,17,18

In this paper we wish to address the question of how
corrugation appearing in the attractive physisorption w
will affect the overall diffraction pattern in atom-surfac
scattering. The question of possible corrugations of the w
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and their effect on the diffraction pattern has a long history19

and it has been argued that the effects could be particul
strong in the case of bound-state resonances~selective
absorption!.20

Examples of crystal surfaces where the adsorption w
might be strongly corrugated are molecular crystals conta
ing strongly polarizable atoms. A case in particular is t
~001! surface of MgO, which is strongly corrugated but th
corrugation is dominated by the oxygen ions and not by
smaller Mg ions. Since the repulsive force on an incom
atomic scattering projectile is due to Pauli exclusion of t
overlapping electronic distributions, the repulsive corrug
tion will be due mostly to the oxygen atom. However, in t
well one would also expect a strong corrugation of the
tractive potential due to the large polarizability of the oxyg
ions. In fact, one could expect that the polarization-induc
corrugation in the well might be out of phase with the rep
sive corrugation, i.e., the well might have a deeper minim
directly in front of an oxygen ion at the same lateral positi
where, closer to the surface, the repulsive corrugation wo
have its maximum.

The particular question addressed here is to show how
eikonal method can be extended to include a corrugatio
the attractive potential well in front of the repulsive ha
wall. In particular, we show how the eikonal method can
readily extended to include a corrugation of the leading e
of a square-well potential. Although a square well is a rat
crude approximation to the correct form of the adsorpt
potential, which has a long-range attractive part behaving
1/z3 wherez is the perpendicular distance from the surface
is expected that such a model will provide useful estima
of the characteristic behavior to be expected from change
the physical parameters of the well.

The approach taken here is based on methods use
classical diffraction of sound or electromagnetic waves,
either transmission or reflection mode, from a tw
dimensional optical ‘‘phase grating.’’ This phase grating a
proach provides an alternative method for deriving the w
known theoretical expressions for the eikonal approximati

The paper is organized as follows. In the next section
phase grating approach is discussed and a derivation o
13 142 ©2000 The American Physical Society
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PRB 62 13 143EIKONAL APPROXIMATION IN ATOM-SURFACE . . .
eikonal approximation is developed in that context. In S
III the eikonal formalism is extended to include a gene
periodic corrugation of the leading edge of the well. In S
IV results are presented for the special case of sinuso
corrugations where all expressions can be evaluated ana
cally. In Sec. V we carry out example calculations and
Sec. VI discuss some conclusions.

II. THE EIKONAL APPROXIMATION

For simplicity, we will consider a hard repulsive wall wit
a one-dimensional corrugation; thez coordinate is perpen
dicular and thex coordinate parallel to the surface. The e
tension to higher-dimensional corrugations is trivial. T
corrugation of the surface is defined byz5j(x) wherej(x)
is the corrugation function, and the condition of periodic
is j(x1na)5j(x) wheren is an arbitrary integer anda is
the corrugation period. Thus the interaction potential is
fined by

V~x,z!5H `, z<j~x!

0, z,j~x!
. ~1!

The asymptotic form of the Schro¨dinger wave function
for a scattered particle with incident plane-wave bound
conditions must be in the form of a Bloch function and c
be written as

C~x,z!→eiK ix2 ikizz1(
G

C~G!ei ~Ki1G!x1 ikGzz, ~2!

whereKi andkiz are thex andz components of the inciden
momentum, respectively, and the translational energy isEi

5\2(Ki
21kiz

2 )/2m, wherem is the projectile mass. The re
ciprocal lattice vectorsG are given byG52pn/a wheren
50,61,62,.... The final perpendicular wave-vector comp
nentskGz are determined by conservation of energy and p
allel momentum and are given by kGz

5AKi
21kiz

2 2(Ki1G)2, where the positive value of th
square root is taken. Because of the extreme short-range
ture of the hard corrugated wall potential, the asympto
form of Eq. ~2! is valid for all z outside the selvedge region
i.e., for z.Maxuj(x)u.

The traditional manner of developing the eikonal appro
mation is to first apply the Rayleigh ansatz,2,21 which is to
assume that the asymptotic solution of Eq.~2! can be ex-
tended into the selvedge region right up to the hard repul
wall. Then application of the boundary condition

C„x,z5j~x!…50 ~3!

and making the eikonal assumption thatkGz varies slowly
with G leads immediately to a simple evaluation of the d
fraction amplitude given by

C~G!5
21

a E
0

a

dx e2 iGxe2 i ~Kiz1KGz!j~x!. ~4!

The overall factor of21 on the right-hand side of Eq.~4! is
the phase factor exp(ip) expected from a hard-mirror colli
.
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sion, andkiz1kGz is the normal momentum transfer in th
collision. Evanescent diffraction beams are ignored in
eikonal approximation.

An alternative approach to the eikonal approximatio
which leads to the same result as Eq.~4!, is to regard the
surface as a classic Fraunhofer diffraction problem of sc
tering from a phase grating. This will be the approach dev
oped for the attractive square well in Sec. III below. In t
scattering of a scalar wave field from a one-dimensional
riodic diffraction grating of perioda, the asymptotic form of
either the transmitted or reflected wave is given by22

C~x,z!→(
G

A~G!ei ~Ki1G!x6 ikGzz, ~5!

where the diffraction amplitude is given by

A~G!5
1

a E0

a

dx e2 iGxt~x!, ~6!

and t(x) is the transmission function. As an example, for
periodic transmission grating in the primitive Kirchhoff ap
proximationt(x)5t(x1na) with n50,61,62,..., andt(x)
takes only two values,t(x)50 at the positions of the opaqu
grating bars andt(x)51 at the positions of the transpare
slits. Alternatively, one can writet(x)5exp@if(x)#, where
f(x) is the phase gained by the wave at each pointx along
the grating. This alternative approach is called a phase g
ing, and the amplitude of Eq.~6! becomes

A~G!5
1

a E0

a

dx e2 iGxeif~x!. ~7!

To apply this to the eikonal problem, we need to det
mine the appropriate phase function. In order to do this,
picks a point (x1 ,z1) above the surface and allows the i
coming wave to propagate toward the surface, collide w
the surface, and then propagate back to that same point.
total phase gained by a plane wave in such a process is

f~x!5~kiz1kGz!z12~kiz1kGz!j~x!1p. ~8!

The final termp on the right-hand side of Eq.~8! arises from
the reflection from a hard-mirror surface, and the first term
a trivial constant. Thus when Eq.~8! for the phase factor is
inserted back into the amplitude~7!, apart from a trivial
phase the result is identical with the standard eikonal re
of Eq. ~4!. It is this ‘‘phase grating’’ approach that is use
below to develop the eikonal approximation for a corruga
attractive well in front of the surface.

III. CORRUGATED ATTRACTIVE WELL

We now wish to extend the eikonal approximation of Se
II to include an attractive well of uniform depthD in front of
the corrugated hard wall, and to allow for the leading edge
this attractive well to also be corrugated with a corrugat
function h(x). Such a potential is defined by

V~x,z!5H 0, z.b1h~x!

2D, b1h~x!>z.j~x!

`, z<j~x!,

~9!
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13 144 PRB 62J. R. MANSON AND K.-H. RIEDER
whereb is the width of the attractive well. If both corruga
tion functionsh(x) andj(x) are periodic with perioda then
the asymptotic form of the wave function forz.b
1Maxuh(x)u is the same as Eq.~2!. The wave function in
the region inside the well will also be of Bloch form, but wi
consist of diffraction beams traveling in both the positive a
negativez directions,

C~x,z!5(
G

F~G!ei ~Ki1G!x2 i k̃Gzz

1(
G

H~G!ei ~Ki1G!x1 i k̃Gzz, ~10!

where k̃Gz5AKi
21kiz

2 2(Ki1G)212mD/\2 is the perpen-
dicular wave vector inside the well. In the eikonal appro
mation, backward scattering of the wave by the leading e
of the attractive square well is ignored. The transmiss
amplitude coefficientF(G) is then calculated using th
phase grating approach developed in Sec. II above.
phase change for transmission across the leading edge o
corrugated well isfW(x)5( k̃Gz2kiz)h(x), which gives
from Eq. ~7!

F~G!5
1

a E0

a

dx e2 iGxei ~ k̃Gz2kiz!h~x!. ~11!

The incoming wave in the attractive well~10! now con-
sists of all possible real diffraction beams, and each of th
diffraction beams upon collision with the corrugated ha
wall acts as the source of a new series of backscattered
fraction beams. Summing all of these outgoing diffracti
beams gives the outgoing amplitude in the well as

H~G!5(
G8

eik̃G8zbF~G8!E~G,G8!, ~12!

where the scattering amplitude generated by each of the
coming diffraction beams is determined from the phase g
ing expression of Eq.~7! to be

E~G,G8!5
21

a E
0

a

dx e2 i ~G2G8!xe2 i ~ k̃Gz1 k̃G8z!j~x!.

~13!

The final operation is to allow the outgoing diffractio
beams in the well to traverse the leading edge where, o
again, each diffraction beam acts as the source of a comp
series of outgoing beams. As before, consistent with the
konal approximation, only transmission across the lead
edge is considered and reflection of waves back into the
is ignored. Again applying the phase grating method~7!, the
final outgoing scattering amplitude of the asymptotic wa
function ~2! is found to be

C~G!5(
G8

eik̃G8zbH~G8!D~G,G8!, ~14!

where

D~G,G8!5
1

a E0

a

dx e2 i ~G2G8!xe2 i ~ k̃G8z2kGz!h~x!. ~15!
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The final scattered intensities in each diffraction be
I (G) are given by the usual expression

I ~G!5
kGz

kiz
uC~G!u2, ~16!

and the unitarity sum is

U5(
G

I ~G!, ~17!

where the summation over reciprocal lattice vectors is li
ited to real open diffraction beams. For an exact theoryU
51, but for approximate theories this will not necessar
hold. Nevertheless, when the eikonal theory is a reason
approximation,U will be a number close to 1, and this serv
as a useful check on the validity of the approximation.2

IV. SINUSOIDAL CORRUGATION FUNCTIONS

A particularly useful expression of historical importan
in problems involving hard corrugated potentials is the sin
soidal function.2,21,23In this case the corrugation function o
the hard repulsive wall is given by

j5hRa cosS 2p

a
xD , ~18!

wherehR is the dimensionless corrugation amplitude of t
hard wall in units of the perioda, and that of the leading
edge of the well is given by

h5hWa cosS 2p

a
xD , ~19!

wherehW is the corrugation amplitude of the well. This form
of the corrugation allows exploitation of the integral repr
sentation for the Bessel function,

Jn~y!5
i n

2p E
0

2p

du exp@2 i ~y cosu6nu!#, ~20!

where n is a positive integer andJ2n(y)5Jn(2y)5
(21)nJn(y).

For the corrugation functions of Eq.~19! the scattering
amplitudeF(G) of Eq. ~11! becomes

F~G!5 i gJg~@ k̃Gz2kiz#hWa!, ~21!

where the integerg is related to the reciprocal lattice vecto
by G52pg/a, and if eitherg,0 or k̃Gz2kiz,0 the right-
hand side of Eq.~21! is to be multiplied by (21)g.

Similarly, the amplitudeE(G,G8) of Eq. ~13! is given by

E~G,G8!52 i g82gJg2g8~@ k̃Gz1 k̃G8z#hRa!, ~22!

and if g2g8,0 then the right-hand side of Eq.~22! is to be
multiplied by (21)g2g8.

Finally, the amplitudeD(G,G8) of Eq. ~15! is given by

D~G,G8!5 i g82gJg2g8~@ k̃G8z2kGz#hWa!, ~23!

where once again the right-hand side of Eq.~22! is to be
multiplied by (21)g2g8 if g2g8,0 or if k̃G8z2kGz,0.
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Thus in the case of sinusoidal corrugations Eqs.~21!–~23!
permit the solution to be written in compact form in terms
simple Bessel functions.

V. CALCULATIONS

For carrying out example calculations, a very use
model is the application of the eikonal approximation to t
scattering of He and Ne from the~001! face of LiF carried
out by Boato, Cantini, and Mattera.3 This calculation was
used to determine the corrugation function of the LiF surfa
for the two different atomic projectiles. In the case of He
Ne atom scattering from cleaved LiF~001! the corrugation of
the repulsive potential is caused nearly entirely by the la
F2 ions with negligible effect of the much smaller Li1 ions.
The corrugation appears as a square two-dimensional s
soidal corrugation with a perioda52.84 Å. For He scatter-
ing with an incident energyEi563 meV, Boatoet al. found
a well depth ofD55 meV and a one-dimensional cut acro
the surface in the direction of a close-packed row had a
rugation amplitudehR50.023.

Calculations using the parameters of Boatoet al. for a
one-dimensional corrugation are shown in Fig. 1 for He at
scattering with incident energyEi563 meV, perpendicular
incidence, and a well widthb53 Å. The solid vertical bars
in Fig. 1 show the diffraction peak intensities as a function
diffraction order for an uncorrugated well. The cross-hatch
vertical bars are diffraction intensities for a well corrugati
equal to that of the hard corrugated wall,hW5hR50.023,
and both corrugations are in phase. The hatched vertical
are intensities calculated with the same well corrugation a
plitude but of opposite phase from that of the hard wall, i
hW52hR520.023. The unitarity summation in all of thes
calculations wasU50.96. This is a rather large corrugatio
and the diffraction is quite strong, with the61 order diffrac-
tion peak intensities larger than that of the specular. T

FIG. 1. Diffraction intensities for a one-dimensional sinusoid
corrugation with parameters corresponding to He atom scatte
from LiF~001!. The beam is normally incident and the energy
Ei563 meV. The solid vertical bars are calculations for no cor
gation of the well, the cross-hatched bars are for the well corru
tion the same as that of the hard wall and in phase, and the hat
bars are for the same well corrugation amplitude but out of pha
f
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effect of the well corrugation is seen to be a small pertur
tion on the intensities of'10% or less. However, on each o
the peaks there is a very distinct difference in the effect of
‘‘in-phase’’ and an ‘‘out-of-phase’’ well corrugation. If the
‘‘in-phase’’ well corrugation increases the intensity of a pa
ticular peak, then reversing the phase of the well corruga
decreases the intensity of that same peak, and vice ve
This effect is clearly observed in the specular as well as
first- and second-order peaks in Fig. 1. Numerous calc
tions with varying incident energies, different angles of in
dence, and different corrugation amplitudes have confirm
that this is a general characteristic effect.

Figure 2 is a calculation similar to Fig. 1, also at norm
incidence and withEi563 meV but with no corrugation o
the hard repulsive wall,hR50. The corrugation of the wel
has been increased by an order of magnitude,hW50.23, in
order to show the effect of the well corrugation alone. T
61 order peaks have intensities of approximately 5% of
specular intensity, and all other diffraction peaks are nea
negligible. By contrast, a very similar diffraction pattern
obtained with the well corrugation set to zero and a ha
wall corrugation of onlyhR50.008. This comparison indi
cates that the corrugation of the repulsive hard wall
roughly 30 times as effective in creating intensity in the d
fraction peaks as a corrugation in the attractive well. T
effect can be clearly understood from a comparison of
scattering amplitude of Eq.~11!, which describes traversal o
the wave across the leading edge of the well, and that of
~13!, which describes the backward reflection from the rep
sive wall. In the case of the reflection from the repulsive w
the total perpendicular momentum transfer is the sum of
initial and final perpendicular momenta and this gives a v
large phase in the integrand of Eq.~13!. However, in the case
of traversal of the well, the perpendicular momentum tra
fer is the difference of the final and initial perpendicul
momenta and hence leads to a much more slowly vary
phase in the integrands of Eqs.~11! and ~15!.

It is of interest to explore the limits of validity of the

l
g

-
a-
ed
e.

FIG. 2. Diffraction intensities for a one-dimensional sinusoid
corrugated well. The beam is normally incident and the energ
Ei563 meV as in Fig. 1. The repulsive hard wall is flat and unc
rugated and the leading edge of the well has a large corruga
amplitudehW50.23.
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13 146 PRB 62J. R. MANSON AND K.-H. RIEDER
eikonal approximation with respect to the size of the cor
gation amplitude. This can be tested by increasing the co
gation amplitude until the unitarity begins to differ substa
tially from the value 1. SettinghW5hR50.06 gives a
unitarity value of 0.8. For larger corrugation parameters
unitarity value rapidly becomes substantially worse than
so this appears to be a crude upper limit on the validity
these calculations.

VI. CONCLUSIONS

In this paper the eikonal approximation as applied to e
tic atom-surface scattering has been reformulated in term
the theory of scattering by a phase grating as commo
applied in sound wave or optical wave scattering. This f
mulation of the eikonal approximation has been used to so
for the diffraction intensities generated by a monoenerg
incident beam of atoms scattering from a hard corruga
wall having an attractive square adsorption well with a c
rugated leading edge. This solution is used as a mode
estimating the effects of corrugation within the attractive a
sorption well and to compare effects of the well corrugat
with those of the corrugation of the repulsive part of t
potential.

Such a corrugated square-well model is expected to o
estimate the effects on the intensity of a more realistic c
rugated well potential with the correct 1/z3 behavior of the
long-range Van der Waals attraction. However, because
the simplicity of this formalism and the ease of calculatio
it is expected that this solution will be useful for predictin
g
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physical trends, just as the ordinary eikonal approximation
still very useful for obtaining crude theoretical estimates.
even simpler formalism, expressed entirely in terms
Bessel functions, results in the case of purely sinusoidal c
rugations for the repulsive wall and leading edge of the w

Several example calculations were carried out, wh
demonstrate that the corrugation of the leading edge of
square well has an effect on the diffraction intensities tha
about 5% as strong as that of an equally large corrugatio
the repulsive wall. An interesting question that can be
swered with this formulation concerns the effect of a w
corrugation that is in or out of phase with the corrugation
the repulsive wall. The present calculations show that th
is a very characteristic signature of the relative phase of
well corrugation with respect to the corrugation of the rep
sive wall. If, when compared to a calculation with an unco
rugated well, the addition of corrugation to the well increas
~or decreases! the intensity of a particular diffraction peak
then changing the phase of the well corrugation by 180° w
reduce~or increase! the intensity of that same peak.

ACKNOWLEDGMENTS

One of us~J.R.M.! would like to express appreciation t
the Department of Physics of the Freie Universita¨t Berlin for
hospitality during part of this work. This work was supporte
by the U.S. Department of Energy, Basic Energy Scien
Division, by the National Science Foundation, Division
Materials Research, and by the Deutsche Forschungsgem
schaft, Sonderforschungsbereich 290~TP A5!.
,

n, J.

-

1L. S. Rodberg and R. M. Thaler,Quantum Theory of Scatterin
~Academic, New York, 1967!.

2U. Garibaldi, A. C. Levi, R. Spadacini, and G. E. Tommei, Su
Sci. 48, 649 ~1975!.

3G. Boato, P. Cantini, and L. Mattera, Surf. Sci.55, 141 ~1976!.
4K. J. McCann and V. Celli, Surf. Sci.61, 10 ~1976!.
5T. Engel and K.-H. Rieder, Surf. Sci.109, 140 ~1981!.
6K.-H. Rieder and W. Stocker, Surf. Sci.164, 55 ~1985!.
7T. Engel and K.-H. Rieder, ‘‘Structural Studies of Surfaces w

Atomic and Molecular Beam Diffraction,’’ Vol. 91 ofSpringer
Tracts in Modern Physics, edited by Gerhard Ho¨hler ~Springer,
Berlin, 1982!, p. 55.

8V. Bortolani and A. C. Levi, Riv. Nuovo Cimento9, 1 ~1986!.
9A. M. Lahee, J. R. Manson, J. P. Toennies, and Ch. Wo¨ll, Phys.

Rev. Lett.57, 471 ~1986!.
10A. M. Lahee, J. R. Manson, J. P. Toennies, and Ch. Wo¨ll, J.

Chem. Phys.86, 7194~1987!.
11B. J. Hinch, Phys. Rev. B38, 5260 ~1987!; Surf. Sci.221, 346

~1989!.
12S. Terreni, P. Cantini, M. Canepa, and L. Mattera, Phys. Rev

56, 6490~1997!.
13N. Garcia and N. Cabrera, inProceedings of the Third Interna

tional Conference on Solid State Surfaces, Vienna, 1977, edited
by R. Dobrozemsky, F. Rudenauer, F. P. Viehbo¨ck, and A.
B

Breth ~Berger, Vienna, 1977!, Vol. 1, p. 379; Phys. Rev. B18,
576 ~1978!.

14G. Wolken, Jr., J. Chem. Phys.58, 3047~1973!; 59, 1159~1973!.
15G. Armand and J. R. Manson, Surf. Sci.119, L299 ~1982!.
16D. Kosloff and R. Kosloff, J. Comput. Phys.52, 35 ~1983!; J.

Chem. Phys.79, 1823~1983!.
17J. Ellis, D. M. Rohlfing, B. J. Hinch, W. Allison, and R. F. Willis

Vacuum38, 347 ~1988!.
18A. P. Graham, F. Hofmann, J. P. Toennies, and J. R. Manso

Chem. Phys.105, 2093~1996!.
19V. Celli, in Many Body Phenomena at Surfaces, edited by D.

Langreth and H. Suhl~Academic, New York, 1984!, p. 315; in
Helium Atom Scattering from Surfaces, edited by E. Hulpke
~Springer-Verlag, Heidelberg, 1992!, p. 25.

20H. Hoinkes and H. Wilsh, inHelium Atom Scattering from Sur
faces~Ref. 19!, p. 113.

21J. W. Strutt~Lord Rayleigh!, Proc. R. Soc. London, Ser. A79,
399 ~1907!; The Theory of Sound~Dover, New York, 1945!,
Vol. II.

22M. Born and E. Wolf, Principles of Optics~Pergamon, New
York, 1975!.

23R. Petit and M. Cadilhac, C. R. Seances Acad. Sci., Ser. B262,
468 ~1966!; R. F. Millar, Proc. Cambridge Philos. Soc.65, 773
~1969!.


