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Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential
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The potential energies of interaction between two parallel, infinitely long carbon nanotubes of the same
diameter, and between C60 and a nanotube in various arrangements, were computed by assuming a continuous
distribution of atoms on the tube and ball surfaces and using a Lennard-Jones~LJ! carbon-carbon potential. The
constants in the LJ potential are different for graphene-graphene and C60-C60 interactions. From these, the
constants for tube-C60 interactions were estimated using averaging rules from the theory of dispersion forces.
For tubes in ropes, the cohesive energy per unit length, the compressibility, and the equilibrium separation
distance were computed as a function of tube radius. For a C60 molecule interacting with tubes, the binding
energy inside a tube was much higher than on a tube or at the tube mouth. Within a tube, the binding energy
was highest at a spherically capped end. The potential energies for tubes of all radii, as well as for interactions
between C60 molecules, for a C60 molecule outside of a nanotube, between a C60 molecule and a graphene
sheet, and between graphene sheets, all fell on the same curve when plotted in terms of certain reduced
parameters. Because of this, all the potentials can be represented by a simple analytic form, thereby greatly
simplifying all computations of van der Waals interactions in graphitic systems. Binding-energy results were
all consistent with the recently proposed mechanism of peapod formation based on transmission electron
microscopy experiments.
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I. INTRODUCTION AND BACKGROUND

The Lennard-Jones~LJ! potential for two atoms a distanc
x apart is

u~x!52
A

x6 1
B

x12, ~1!

or, equivalently

u~x!54eF2S s

x D 6

1S s

x D 12G . ~2!

The equilibrium distancex0 is given by

x0521/6s5S 2B

A D 1/6

~3!

and the well depthe is

e5
A2

4B
, ~4!

A and B being the attractive and repulsive constants in
Lennard-Jones potential.

Because of the clear separation of covalent and phys
binding in graphitic solids, simple models based on this
tential can describe those cohesive properties of such s
that depend on van der Waals interactions. These mo
have been widely used. A calculation of the interlayer co
sive properties of graphite successfully accounted for the
ergy of interlayer cohesion andc-axis compressibility of
graphite using lattice sums of the LJ potential centered
atomic sites.1 In a calculation of the molecular properties
PRB 620163-1829/2000/62~19!/13104~7!/$15.00
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C60 the model was simplified by treating the molecules as
they were perfect spheres and averaging the potential
their surfaces.2

This continuum model was also applied to a calculation
the thermal expansion3 of solid C60, to the cohesive and
anharmonic properties4 of solid C70, and to fullerene
alloys.5,6 It was also used to analyze the growth of fullere
clusters,7,8 screw dislocations9 in solid C60, the interaction of
C60 with a graphite surface in which graphene sheets, as w
as C60 molecules, were treated as surfaces with a unifo
distribution of centers of the LJ potential10 and to a study of
C60 stage-one intercalated graphite.11 Recently, the con-
tinuum model has been extended to a calculation of the
tential between carbon nanotubes12 and used to study the
vibrational modes in nanotube bundles.13 For C60-C60,
graphene-graphene, and C60-graphene interactions, the con
tinuum model yielded potentials in terms of simple analy
functions. For interactions involving tubes this is not t
case. The LJ interaction of a point with a continuous cylind
can be written in terms of the hypergeometric function13 but
even this simplification is lost when averaging over anot
surface and the potential contains integrals which must
evaluated numerically.

The true potential must recognize the correct charge
tribution and the relative orientations of the interacting m
ecules. Several attempts to account for this have been m
in which the molecule was treated as having discrete p
charges at points on the molecular surface other than
atomic sites.14–16 These ‘‘bond charge’’ models were no
successful in reproducing the structural details of solid C60.
To remedy this, a model was introduced,17 in which the po-
tential was required to have the full symmetry of the m
ecule, using an electron distribution obtained from a loc
density approximation to compute distributed Coulomb a
13 104 ©2000 The American Physical Society
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LJ interactions. This model gave reasonable agreement
experiment for both the high- and low-temperature phase

Because of its simplicity, the continuum LJ model h
been widely used. It has been shown to be quite successf
describing those cohesive properties of graphitic systems
are not sensitive to the details of orientational structure or
covalent binding. These properties include the molecular
hesive energy~which we define to be the energy required
separate the physically interacting graphitic structures w
out breaking covalent bonds!, the lattice spacing, compres
ibility, thermal expansion, and equation of state, and the m
lecular contribution to the lattice vibrations and specific he
They do not include such properties as librational spectra
the most stable orientational configurations of interact
graphitic structures which depend on the precise symm
of the electron distribution.

One reason for the utility of the continuum LJ model
that there are instances in which the effect of the corr
electron distribution is not important. An example of this
the C60 molecule at temperatures high enough that the m
ecules are rotating so that the instantaneous nonspherica
tribution averages out to a spherical distribution. Anoth
example is in carbon nanotube ropes in which the tube-t
interactions are an average over an ensemble of nanotub
different chiralities and different relative orientations. A
other reason is that some experimental results are use
compute the disposable parameters in the model, whic
then applied to an analysis of other properties. Fixing
potential near the equilibrium position with experimen
data gives good results for other properties that also dep
on the potential near its minimum.

From a physical point of view, the discrete atom-ato
model is not necessarily preferable to a continuum mo
The discrete model assumes that each atom is the cente
spherically symmetric electron distribution while the co
tinuum model assumes that the electron distribution is u
form over the surface. Both these assumptions are incor
and a case can even be made that the continuum mod
closer to reality than a set of discrete LJ centers.

The properties of ropes consisting of single walled carb
nanotubes have been investigated theoretically using a
ety of methods.18–20 The recent discovery of peapods21

~which consist of C60 molecules encapsulated in carbo
nanotubes! lends added importance to analyses of the in
action energies among tubes and C60. In this paper, we ex-
tend the analysis of the continuum model to interactions
systems that include nanotubes and C60 molecules and we
use the model to compute the properties of ropes.

Also, we show that potential energies of interactions
the continuum model for many graphitic structures fall
the same universal energy curve when plotted in terms
certain reduced parameters, thereby avoiding the need
numerical integrations in any future work.

There is an important point concerning which values
the LJ parameters to choose for the various systems.
constants for the graphite system differ substantially fr
those for the C60 system while each set of constants giv
good results for the systems for which they were compu
Also, calculations using the continuum and the discrete
proximations give similar results~see below! so the differ-
ences between the graphite system and the C60 system are
ith
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not primarily the result of using a continuum rather than
discrete model. It seems clear that in systems with resona
p binding the constants obtained for graphite are prefera
while in bucky balls, those derived from solid C60 data
should be used.

However, many systems of interest include bothp bond
structures and fullerenes. For the interaction of unlike ato
the constants can be computed from the approximations
the attractive constant and the equilibrium distance betw
atoms for two unlike molecules are the geometric and ar
metic mean, respectively.22 Thus

Abg5AAbAg, x0
bg5

x0
b1x0

g

2
. ~5!

The labelbg refers to the interaction of atoms in a C60 mol-
ecule with atoms in graphene or nanotubes, while the lab
b and g refer to the interaction between atoms in C60 mol-
ecules and between atoms in graphene or nanotubes, re
tively.

The values of interatomic Lennard-Jones constants for
oms in graphene-graphene, C60-C60, and C60-graphene are
shown in Table I.

Only the lattice parameter of graphite was used in co
puting the constants for the interactions in graphite; the
tractive constantAg was computed by Kraus.23 The excellent
agreement of the graphite calculations with experiment us
these constants is probably fortuitous. The Lennard-Jo
parameters for the interaction in solid C60 were computed by
matching the calculated values of the cohesive energy
lattice constant to experimental data2 and those for the
C60-graphene potential were computed from Eq.~5!.

We note that in Eq.~3!, although the well depth and th
equilibrium distance are related, the equilibrium distance
rather insensitive function of the original constantsA andB
in the LJ potential because it varies as the sixth root of th
ratio. The difference between equilibrium distances for
atom-atom interactions for the graphite-based and C60-based
potentials is less than 2%. This difference is small beca
the repulsive part of the potential is very steep and its diff
ences for the three potentials has only a small effect on c
puted properties since these depend primarily on the form
the potential near the equilibrium distance.

II. TUBE-TUBE INTERACTION POTENTIAL

In the continuum model the potential between two iden
cal, parallel tubes is

f~R!5ns
2E u~x!dS1dS2 , ~6!

TABLE I. Lennard-Jones constants in graphitic systems.

A (eV3Å 6) B (eV3Å 12) x0 ~Å!
ueu

~meV!

Graphene-graphene 15.2 24.13103 3.83 2.39
C60-C60 20.0 34.83103 3.89 2.86
C60-graphene 17.4 29.03103 3.86 2.62
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wherens is the mean surface density of carbon atoms anx
is the distance between two surface elementsdS1 anddS2
on two different tubes. The surface integral can be simplifi
to give

f~R!5
3pns

2

8r 3 S 2AIA1
21B

32r 6 I BD , ~7!

whereR is the perpendicular distance between tube cent
f(R) is the potential energy of interaction per unit leng
and

I A5E @~cosu22cosu1!2

1~sinu22sinu11R8!2#25/2du1du2 , ~8!

I B5E @~cosu22cosu1!2

1~sinu22sinu11R8!2#211/2du1du2 , ~9!

with R85R/r . Both variables in these integrals range fro
0 to 2p.

The integrals are independent of the tube radius and n
to be evaluated only once as a function ofR8 to be used in
Eq. ~7!. They assume that the tubes are perfectly cylindri
and of infinite extent. The results therefore apply to tub
without faceting, and long enough that end effects can
neglected.

The potentials were computed for tubes of the type (n,n),
wheren ranges from 4 to 29 and are shown for three diff
ent tube radii in Fig. 1. As expected, the potential ha
longer range, and the energy minimum occurs at a hig
separation distance~in units of the tube diameter!, the
smaller the tube diameter. The repulsive component of
potential is close to that of a hard core model.

III. BALL-TUBE INTERACTION POTENTIALS

The interaction between a C60 molecule and a tube in th
continuum approximation is obtained by averaging over
surface of each entity. Performing the average of the LJ

FIG. 1. Tube-tube interaction potentials for three different ra
in units of the well depth and the ratio of distance to tube radiu
d
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tential over the sphere first, gives the potential betwee
tube and a C60 molecule as

fbt~ l !52pans
2E F2

A

4 S 1

d~d2a!4
2

1

d~d1a!4D
1

B

10S 1

d~d2a!10
2

1

d~d1a!10D GdS t , ~10!

whered is the distance of the tube surface elementdS t from
the center of the ball,l is the perpendicular distance betwe
the axis of the cylinder and the center of the sphere, anda is
the radius of C60 molecule. The integration over the tub
depends on the configuration and tube radius under con
eration.

Numerical integration of Eq.~10! is most easily done in
cylindrical coordinates (r ,w,z), z being taken along the tub
axis. If the C60 molecule is outside the nanotube, thend
5Ar 21 l 21z222rl cosw, where variabler is equal to the
tube radius. If the C60 molecule is on the tube axis, thend
5Ar 21z2. This latter expression is valid for both finite an
infinite tubes—only the range of integration is changed
Eq. ~10!.

For an infinite~10,10! tube, in which the C60 molecule is
on the tube axis, the potential is independent ofz and the
calculation yields the binding energy of the molecule ins

FIG. 2. The entrance potential for a C60 molecule near the open
end of a~10,10! nanotube.

FIG. 3. The interaction potential of a C60 molecule inside a
~10,10! and a ~15,15! nanotube versus distance of C60 molecule
from the tube center measured in nanotube radius units.
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the tube. For a semi-infinite~10,10! tube in which the mol-
ecule is on the tube axis, but may be either inside or outs
the open end of the tube, the calculation yields the poten
energy as a function of distance as it enters the tube. We
this the entrance potential and it is shown in Fig. 2. Note t
at a distance of 10 Å into the tube, the cohesive energ
very close to that of a C60 molecule in an infinite tube.

It is of interest to compute the binding energy of C60 to a
spherical cap in a closed~10,10! tube. This is done by aver
aging over the cylinder and over the capping hemisphere

The above ball-tube calculations are for a C60 molecule
with a ~10,10! tube so the interaction of the molecule wi
the tube is radially symmetric with a minimum at the tu
axis. A number of calculations were made of the interact
of the C60 molecule with tubes of greater radii as a functi
of the radial distance from the tube axis. As expected, th
showed that the potential had a minimum at the tube w
with a maximum at the tube center. Our calculations sh
that this is the case for tubes with radii higher than 7.3
This is shown in Fig. 3 for a~10,10! and a~15,15! tube.

Figure 4 displays the binding energy of a C60 molecule at
a tube wall as a function of tube radius. The curve ha
maximum at 6.781 Å, which is almost exactly the radius
the ~10,10! tube. Note that as the tube radius increases,
binding energy decreases and approaches the value for
ing to a graphene sheet.

IV. THE UNIVERSAL GRAPHITIC POTENTIAL

The numerical integrations for the potential energy of
teraction between two infinitely long tubes of the same
dius, and between an infinitely long~10,10! tube with a mol-
ecule outside of the tube, showed that if the energy

FIG. 4. The binding energy of a C60 molecule to the inside wal
of a nanotube as a function of tube radius.
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expressed in units of the well depth, and the distance
terms of a reduced parameter, all potential plots fell on
same curve. That is, a plot off̃[f(R)/uf(R0)u againstR̃
[(R2%)/(R02%) gave the same curve for all tube-tub
interactions and for interactions of a ball located outside
infinite ~10,10! tube. R0 is the equilibrium spacing at the
minimum energy for the two interacting entities. If% is the
sum of the radii of the interacting objects than the definiti
of units above is natural: All the curves have a minimu
equal to21 atR̃51 and the potential energy goes to infini
as the the distance approaches the sum of their radii bec
then the atoms on the considered objects start to over
However, in some systems a% that is somewhat differen
than the sum of the radii must be used to fit the univer
curve precisely.

For tube-tube interactions,%52r , the diameter of the
tube, gives excellent results. For the tube-ball interacti
taking% to be the sum of the tube radius and the C60 radius,
%510.33 Å gives a reasonably good fit to the numerica
computed curve, but decreasing this to%510.12 Å im-
proved the fit considerably.

This result can be generalized to include potentials
tween two graphene sheets, between two C60 molecules, and
between a graphene sheet and a C60 molecule. Figure 5
shows that the superposition of the reduced potential for
various systems is very close and that a universal poten
exists for these graphitic structures. The values that gave
best fit to the universal potential are given in Table II for t
various interactions, except for the tube-tube interactio
For tube-tube interactions, the values of% are just the tube

FIG. 5. The universal potential for graphitic structures.
ntial.
TABLE II. Energy and distance constants for the reduced parameters of the universal graphitic pote

System Distance parameter Well depth Equilibrium spacing
% ~Å! uf(R0)u R0 ~Å!

Graphene-graphene 0.28 15.36 meV/Å2 3.414
Ball-ball 7.10 0.278 eV 10.05
Ball-~10,10! tube 10.12 0.537 eV 13.28
Ball-graphene 3.25 0.738 eV 6.508
~10,10! tube-~10,10! tube 13.57 95.16 meV/Å 16.724
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TABLE III. Properties of ropes.

Tube type Radius Equilibrium spacing Cohesive energy Bulk modu
~Å! ~Å! ~eV/Å! (eV/Å3)

~4,4! 2.714 8.550 20.1793 0.1827
~6,6! 4.071 11.281 20.2201 0.2198
~8,8! 5.428 14.004 20.2547 0.2514
~10,10! 6.785 16.723 20.2855 0.2808
~12,12! 8.142 19.441 20.3136 0.3073
~14,14! 9.499 22.157 20.3396 0.3318
~16,16! 10.856 24.873 20.3639 0.3568
~18,18! 12.213 27.588 20.3869 0.3764
~20,20! 13.570 30.303 20.4085 0.3969
~22,22! 14.927 33.018 20.4292 0.4163
~24,24! 16.283 35.733 20.4490 0.4350
~26,26! 17.640 38.447 20.4679 0.4529
~28,28! 18.997 41.162 20.4862 0.4701
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diameters that are obtained from Table III.
In Fig. 5, the curves for the graphene-graphene and tu

tube interactions were computed using the Lennard-Jones
rameters fitted to the properties of graphite, the curve for
C60-C60 interaction used the constants from the continu
model C60 study, while the constants used to get the C60-
tube, and C60-graphene interactions were obtained from t
averaging rules.

Results for graphite show that there is not much diff
ence between the discrete atom and the continuum mo
when the same LJ parameters are used. In fact, calcula
from the continuum model11 gives 2334 erg/cm2 for the
cleavage energy and 3.0310212 cm2/dyn for thec axis com-
pressibility while the corresponding numbers from t
discrete calculation1 are 2330 erg/cm2 and 3.18
310212 cm2/dyn. Song and Cappelletti11 reported a cohe-
sive energy value which they claimed was over 18% hig
than that of Girifalco and Lad.1 However, the number com
puted from the discrete calculation was for cleavage ene
not the total cohesive energy of separating graphite
planes an infinite distance apart, which is higher than
cleavage energy. The conclusion is that the discrete and
tinuum models give nearly the same results if the same
parameters are used.

The superposition of the potentials when expressed
terms of the reduced parameters allows us to write an a
lytic equation for all the continuum model potentials, inclu
ing the tube-tube potentials, since it is also valid for t
graphene-graphene, ball-ball, and ball-graphene potent
all of which have simple analytic forms. Any of these can
chosen to give an analytic representation of the unive
potential. Because it is the simplest, we choose the graph
graphene potential which, per unit area of interacting she
is

f~R!52
2pns

2A

4R0
4 F S R0

R D 4

20.4S R0

R D 10G , ~11!

or, dividing through by the well depthuf(R0)u,
e-
a-
e

-
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f~R!

uf~R0!u
52

1

0.6F S R0

R D 4

20.4S R0

R D 10G , ~12!

the prefactor 0.6 being necessary to ensure that the red
potential equals -1 at its minimum. Equation~12! is readily
expressed in terms of the reduced parameterR̃ since, from its
definition, the distance in the graphene-graphene potenti

R5R̃~R02% !1%53.13R̃10.28, ~13!

the numbers being taken from Table II for the graphe
graphene interaction, so that Eq.~12! is

f̃~R̃!5
f~R!

uf~R0!u

52
1

0.6F S 3.41

3.13R̃10.28
D 4

20.4S 3.41

3.13R̃10.28
D 10G .

~14!

This equation then gives the reduced potential for the s
tems listed in Table I when the appropriate values forR0 and
% are used to compute the reduced distance.

The universal potential for graphitic structures is remin
cent of the universal energy curve of Roseet al.24 However,
the graphitic potentials could not be accurately represen
by the equation of Roseet al. for the universal energy. This
is not surprising since the graphitic potential is more anh
monic and much less symmetric about the minimum ene
than the energy curve of Roseet al. Therefore the physica
interpretation of the universal graphitic potential is differe
from that of Roseet al. Normalizing the energy by the wel
depth and the distance parameter by its value at equilibr
brings all curves into coincidence at the minimum ener
and equilibrium distance just as for the curve of Roseet al.
But the repulsive part of the graphitic potential is very ste
and approximates a hard-sphere potential. It is there
more accurate to correct the distance by hard-sphere
than by a quasisymmetric deviation from harmonicity. Th
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this is not exact is shown by the fact that for unlike graph
structures, the distance parameter is not quite the sum o
radii of the two structures.

V. PROPERTIES OF ROPES

The tube-tube interactions are negligible~less than 1% of
the binding energy! at distances between centers that
twice the radius, so the ropes can be treated as if only
nearest neighbor were interacting. Table III shows the co
sive energy, the nearest-neighbor distance and the
modulus, all at the energy minimum, computed for ropes
a function of tube radius. These calculations refer to the r
properties that are parallel to the tube diameters.

The energy was well represented by the square-root fi

f0~r !520.1135Ar 19.3931023 eV/Å, ~15!

f0(r ) being the energy of interaction in eV/Å at the min
mum separation of parallel tubes each having a radiusr in
Angstroms.

The equilibrium distanceR0 at minimum energy varied
linearly with radius according to the equation

R0~r !52.00r 13.13 Å. ~16!

Experimental data for the equilibrium distance is availa
for tubes with a diameter of 13.8 Å.5 By minimizing our
potential we get 16.95 Å, which is the same as the exp
mental result.

The best fit of the bulk modulus variation with radiu
according to the numbers in Table III is

B~r !50.106Ar 15.2531023 meV/Å3. ~17!

The bulk modulus increases less than three times as the
radius is increased by a factor of 7. The reason for this is
for larger tubes, atoms on a tube surface are farther a
from the atoms on the far side of the adjacent tube and
less of their attractive potential so the compressibility go
down. The compressibility of a rope was recently measu
by Tang et al.25 Their value is 0.024 GPa21 for a rope of
lattice constant 17.16 Å. Our theoretical calculation yie
0.022 GPa21 for this rope.

The effect of intratube chemical bond energies has b
ignored in this work. Calculations that include the valen
forces20 show that at tube diameters larger than 25 Å,
tubes in a rope become faceted and assume a quasihexa
cross section. These calculations also show that as the d
eter decreases, the tubes can be described by a mod
which the van der Waals intertube interactions domina
They found the same type of functional dependence for
hesive energy per Å, the bulk modulus, and equilibrium d
tance for radii below 25 Å.

A calculation of the elastic constants, equilibrium spa
ing, and cohesive energy has been performed by Lu25 in
which the intratube interaction was taken from a force c
stant model for graphite26 and the intertube interaction was
sum of Lennard-Jones potentials with parameters chose
fit the interlayer distance and elastic constants of graph
He computed the same value as ours for equilibrium tu
tube separation for a rope of~10,10! nanotubes (16.7 Å).
However, his value for the magnitude of the cohesive ene
he
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of ropes, 0.383 eV/Å was over 30% larger than our value
0.285 eV/Å and his result for the bulk modulus was smal
than ours by a factor of 2 (0.280 eV/Å3 versus
0.137 eV/Å3). His calculation included the volume chang
arising from changes in covalent bond length, as well
from van der Waals interactions, but the effect of the int
tube interaction should not be important for~10,10! tubes.
Lu’s result for bulk modulus is probably incorrect since in
similar paper Tersoff and Ruoff20 computed 0.22 eV/Å3,
taking into account intratube covalent binding, but for a rig
cylinders they found a bulk modulus of 0.26 eV/Å3. Their
value for cohesive energy, 0.29 eV/Å, is in good agreem
with ours.

VI. BINDING ENERGIES

We have computed the energy of interaction for tw
nanotubes per unit length. Considering the typical h
length of nanotubes, the total van der Waals interaction
tween tubes becomes very strong. Because of this effect
nanotubes in the samples will orient themselves to be par
whenever possible, therefore forming crystalline ropes.

The binding energy of a ball inside a~10,10! tube is six
times higher than the energy for C60 outside the tube. This is
in accord with the existence of the recently discover
nanopeapods21 which form easily and are quite stable.

Since the potential for entering the tube is highly attra
tive, any C60 molecule near the mouth of an open tube w
be drawn into it. However, this potential is short-ranged~see
Fig. 2!, so the balls have to get into the nanotube mai
through defects in the tube wall. The formation mechani
can be described as follows: When an external ball in the
phase gets close to the tube wall it forms a relatively sta
configuration, since the binding energy to a tube is twice
interaction between C60 molecules. Once bound to an out
wall, a ball can slide relatively easily since the energy barr
for sliding is of the order of 0.1% of the binding energy
the wall,27 until it finds a hole in the tube wall and eventual
gets in. This is in accord with the mechanism of peap
formation proposed by Smith and Luzzi.28

Once the ball is inside the tube it can further increase
binding energy by interacting with the other internal balls
with a cap. The latter interaction is stronger. For a sph
cally capped~10,10! tube, the binding energy of a ball to th
cap is 1.14 eV greater than the binding energy in an infin
tube. For nanotubes with large radii, the minimum of pote
tial energy is shifted from its center to the walls. As a resu
the regular distribution of bucky balls along the tube a
will disappear and balls will preferentially be found at th
tube walls. For high concentrations, balls will also be fou
at other positions, provided the tube has a minimum diam
greater than about 31 Å, which is the sum of the effect
diameters of three adjacent C60 molecules. This phenomeno
was recently experimentally observed.28

The binding energies given in Table IV will be the maj
contribution to the free energies of formation. Assuming th
the ordering of the free energies will be the same as that
the energies given in Table IV, it can be inferred that pe
pods are the most stable arrangement of C60 molecules in
~10,10! tubes. It can also be concluded that intercalated60
molecules, in which the balls are at interstitial positions b
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tween tubes in a rope, are probably less stable relative to
gas phase. The reason for this is that the cohesive energ
intercalated C60 molecule is21.61 eV, whereas the corre
sponding cohesive energy for a rope of~10,10! tubes is
10.05 Å x20.2855 eV/Å522.87 eV (10.05 Å is the effec
tive diameter of a C60 molecule!. This is physically reason
able since tube-tube interactions involve more atoms per
length than tube-ball interactions.

VII. SUMMARY AND CONCLUSIONS

The van der Waals potential energy of interactions in g
phitic structures was computed for various configurations
C60 molecules interacting with carbon single walled nan
tubes, based on assuming a Lennard-Jones potential fo
interaction between carbon atoms in the continuum mode
was found that, when the energy is expressed in units of
well depth and the distance in terms of a reduced param
related to the diameters of the interacting entities, the tu
tube and ball-tube potentials all fell on the same curve
was further found that the potential functions for graphe

*Present address: Laboratoire d’Etudes des Microstructures, 9
Chatillon Cedex, France.
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