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The potential energies of interaction between two parallel, infinitely long carbon nanotubes of the same
diameter, and betweenggand a nanotube in various arrangements, were computed by assuming a continuous
distribution of atoms on the tube and ball surfaces and using a Lennard{ldhearbon-carbon potential. The
constants in the LJ potential are different for graphene-graphene gp@gginteractions. From these, the
constants for tube-§g interactions were estimated using averaging rules from the theory of dispersion forces.
For tubes in ropes, the cohesive energy per unit length, the compressibility, and the equilibrium separation
distance were computed as a function of tube radius. FogyanGlecule interacting with tubes, the binding
energy inside a tube was much higher than on a tube or at the tube mouth. Within a tube, the binding energy
was highest at a spherically capped end. The potential energies for tubes of all radii, as well as for interactions
between G, molecules, for a g molecule outside of a nanotube, between g @olecule and a graphene
sheet, and between graphene sheets, all fell on the same curve when plotted in terms of certain reduced
parameters. Because of this, all the potentials can be represented by a simple analytic form, thereby greatly
simplifying all computations of van der Waals interactions in graphitic systems. Binding-energy results were
all consistent with the recently proposed mechanism of peapod formation based on transmission electron
microscopy experiments.

. INTRODUCTION AND BACKGROUND Ceo the model was simplified by treating the molecules as if

they were perfect spheres and averaging the potential over
The Lennard-Jone4.J) potential for two atoms a distance their surface.

X apart is This continuum model was also applied to a calculation of
the thermal expansidnof solid Gy, to the cohesive and
A B anharmonic propertiésof solid G,,, and to fullerene
ux)=— -5+ -3, 1)

alloys®® It was also used to analyze the growth of fullerene
clusters’® screw dislocatiortsin solid Cgy, the interaction of
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or, equivalently Cso With a graphite surface in which graphene sheets, as well
as Gy molecules, were treated as surfaces with a uniform
- ( o (2  distribution of centers of the LJ potentidkand to a study of
X Cqo Stage-one intercalated graphiteRecently, the con-
tinuum model has been extended to a calculation of the po-
The equilibrium distance, is given by tential between carbon nanotubesnd used to study the
U6 vibrational modes in nanotube bundl’é’qur Gso-Coo,
x0=21’60=<2—8> graphene-graphene, an%@;raphgne mteracthns, the con-
A tinuum model yielded potentials in terms of simple analytic
functions. For interactions involving tubes this is not the
and the well deptte is case. The LJ interaction of a point with a continuous cylinder
can be written in terms of the hypergeometric functidout
A? even this simplification is lost when averaging over another
4B’ (4) surface and the potential contains integrals which must be
evaluated numerically.
A and B being the attractive and repulsive constants in the The true potential must recognize the correct charge dis-
Lennard-Jones potential. tribution and the relative orientations of the interacting mol-
Because of the clear separation of covalent and physicacules. Several attempts to account for this have been made
binding in graphitic solids, simple models based on this poin which the molecule was treated as having discrete point
tential can describe those cohesive properties of such solidharges at points on the molecular surface other than at
that depend on van der Waals interactions. These modelgomic sites*~® These “bond charge” models were not
have been widely used. A calculation of the interlayer cohesuccessful in reproducing the structural details of solig. C
sive properties of graphite successfully accounted for the eriFo remedy this, a model was introducEdn which the po-
ergy of interlayer cohesion and-axis compressibility of tential was required to have the full symmetry of the mol-

graphite using lattice sums of the LJ potential centered orcule, using an electron distribution obtained from a local-
atomic sites. In a calculation of the molecular properties of density approximation to compute distributed Coulomb and
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LJ interactions. This model gave reasonable agreement with  TABLE I. Lennard-Jones constants in graphitic systems.
experiment for both the high- and low-temperature phases.

Because of its simplicity, the continuum LJ model has ] ) el
been widely used. It has been shown to be quite successful in A (eVxA®) B (eVXA™) xo (A) (meV)
describing those cohesive properties of graphitic systems th&§raphene-graphene 15.2 o%10° 383 2.39
are not sensitive to the details of orientational structure or the, ¢, 20.0 348106 389 286
covalent binding. These properties include the molecular COc, -graphene 17.4 200108 386 2.62

hesive energywhich we define to be the energy required to

separate the physically interacting graphitic structures with-

out breaking covalent bongshe lattice spacing, compress- not primarily the result of using a continuum rather than a

ibility, thermal expansion, and equation of state, and the modiscrete model. It seems clear that in systems with resonance

lecular contribution to the lattice vibrations and specific heats binding the constants obtained for graphite are preferable

They do not include such properties as librational spectra ohile in bucky balls, those derived from solidgfdata

the most stable orientational configurations of interactingshould be used.

graphitic structures which depend on the precise symmetry However, many systems of interest include battbond

of the electron distribution. structures and fullerenes. For the interaction of unlike atoms,
One reason for the utility of the continuum LJ model is the constants can be computed from the approximations that

that there are instances in which the effect of the correcthe attractive constant and the equilibrium distance between

electron distribution is not important. An example of this is atoms for two unlike molecules are the geometric and arith-

the Gso molecule at temperatures high enough that the molmetic mean, respectiveﬁ?.Thus

ecules are rotating so that the instantaneous nonspherical dis-

tribution averages out to a spherical distribution. Another xP+ x4

example is in carbon nanotube ropes in which the tube-tube Apg= VALA,, x59= 02 . (5

interactions are an average over an ensemble of nanotubes of

different chiralities and different relative orientations. An-

other reason is that some experimental results are used

compute the disposable parameters in the model, which i

then applied to an analysis of other properties. Fixing th

potential near the equilibrium position with experimenta

data gives good results for other properties that also depeﬁa’?llﬁ' | f interatomic L 4-J tants for at
on the potential near its minimum. e values of interatomic Lennard-Jones constants for at-

From a physical point of view, the discrete atom-atom®™S IN graphene-grapheneg(Ceo, and (gorgraphene are

model is not necessarily preferable to a continuum modelS10Wn in Table 1.

The discrete model assumes that each atom is the center of a O"lY the lattice parameter of graphite was used .|n com-
spherically symmetric electron distribution while the con-PUting the constants for the interactions in graphite; the at-

tinuum model assumes that the electron distribution is unitfactive constan, was computed by Krau€. The excellent

form over the surface. Both these assumptions are incorre@@r€ement of the graphite calculations with experiment using

and a case can even be made that the continuum model tilgese constants is probably fortuitous. The Lennard-Jones

closer to reality than a set of discrete LJ centers. parameters for the interaction in soligdvere computed by

The properties of ropes consisting of single walled carboj'i;atcmng the calculated values of the cohesive energy and

nanotubes have been investigated theoretically using a var@tice constant to experimental datand those for the
ety of methodd®2° The recent discovery of peapdds Ceographene potential were computed from Es).

(which consist of @, molecules encapsulated in carbon W_e |_10te that in Eq(3), although the vy_ell_depth and th_e
nanotubeslends added importance to analyses of the inter €auilibrium distance are related, the equilibrium distance is a
action energies among tubes ang, Cin this paper, we ex- rather insensitive function of the original constaAteind B
tend the analysis of the continuum model to interactions id" t.he LJ po?entlal because it varies as the S.'Xth root of their
systems that include nanotubes ang) Golecules and we ratio. The difference between equilibrium distances for the
use the model to compute the properties of ropes. atom-atom interactions for the_graphlte-basgd apgloased
Also, we show that potential energies of interactions forpotennals is less than 2%. This difference is small because
the continuum model for many graphitic structures fall Onthe repulsive part of the potential is very steep and its differ-

the same universal energy curve when plotted in terms ofCes for the 'threg potentials has only e}smgll effect on com-
certain reduced parameters, thereby avoiding the need f ted properties since thefs_e qlepen_d primarily on the form of
numerical integrations in any future work. the potential near the equilibrium distance.

There is an important point concerning which values of
the LJ parameters to choose for the various systems. The Il. TUBE-TUBE INTERACTION POTENTIAL
constants for the graphite system differ substantially from
those for the G, system while each set of constants gives i
good results for the systems for which they were computedt@): parallel tubes is
Also, calculations using the continuum and the discrete ap-
proximations give similar resultésee below so the differ-
ences between the graphite system and thes@stem are

il'cpe labelbg refers to the interaction of atoms in gd@nol-
cule with atoms in graphene or nanotubes, while the labels
and g refer to the interaction between atoms igy@ol-
Iecules and between atoms in graphene or nanotubes, respec-

In the continuum model the potential between two identi-

¢(R)=n§f u(x)d,d=,, (6)
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FIG. 1. Tube-tube interaction potentials for three different radiitential over the sphere first, gives the potential between a
in units of the well depth and the ratio of distance to tube radius. tube and a g molecule as '

wheren,, is the mean surface density of carbon atomsand A 1 1
is the distance between two surface elemetds andd>, ¢bt(|)=2wan§f - -
on two different tubes. The surface integral can be simplified 4ld(d-a)* d(d+a)*
to give
B ! ! dx 10)
3mn; 218 10| ga—a)® da@ram |4 (
¢(R):W<_A|A+WIB): (7

whered is the distance of the tube surface elemabt from
whereR is the perpendicular distance between tube centerdl® center of the ball,is the perpendicular distance between
#(R) is the potential energy of interaction per unit Iength,the axis of the cylinder and the center of the sphere,zaisd
and the radius of Gy molecule. The integration over the tube
depends on the configuration and tube radius under consid-
eration.
IA:J' [(cosf,—cosf)? Numerical integration of Eq(10) is most easily done in
cylindrical coordinatesr(,¢,z), z being taken along the tube
+(sin@,—sin6;+R’")?]~%?d6,d6,, (8)  axis. If the G, molecule is outside the nanotube, thén
=r?+12+z?—2rl cose, where variabler is equal to the

) tube radius. If the g molecule is on the tube axis, theh
'B:J [(cos#,—cosb) = r?+Z%. This latter expression is valid for both finite and
) ) infinite tubes—only the range of integration is changed in
+(sin#,—sin6;+R’")?] Y 6,d6,, 9  Eq.(10).

. , . . . For an infinite(10,10 tube, in which the g molecule is
\(I)VIEZ ?77_ Rir . Both vaniables in these integrals range from on the tube axis, the potential is independentzaind the

The integrals are independent of the tube radius and nee%alculatlon yields the binding energy of the molecule inside

to be evaluated only once as a functionRif to be used in

Eq. (7). They assume that the tubes are perfectly cylindrical 8 \ i
and of infinite extent. The results therefore apply to tubes 611 |
without faceting, and long enough that end effects can be : :
neglected. 41! l'

The potentials were computed for tubes of the typg], E ‘| —(10,10)
wheren ranges from 4 to 29 and are shown for three differ- 2|t _ _(15’15)

. . . = \ ,
ent tube radii in Fig. 1. As expected, the potential has a 2 \ |
longer range, and the energy minimum occurs at a higher wo \ !
separation distancéin units of the tube diametgr the 5
smaller the tube diameter. The repulsive component of the
potential is close to that of a hard core model. " ‘
-0.5 -0.25 0 0.25 0.5

IIl. BALL-TUBE INTERACTION POTENTIALS Distance from tube center / tube radius

The interaction between aggmolecule and a tube inthe  FIG. 3. The interaction potential of aggmolecule inside a
continuum approximation is obtained by averaging over th€10,10 and a(15,15 nanotube versus distance of,Gnolecule
surface of each entity. Performing the average of the LJ pofrom the tube center measured in nanotube radius units.
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(R-p)/(Ry - p)
the tube. For a semi-infinit€L0,10 tube in which the mol- _ ) -
ecule is on the tube axis, but may be either inside or outside ~ FIG. 5. The universal potential for graphitic structures.
tehneeropen en? of the tube_, the caIcuI_auon yields the pOtem'a(::]xpressed in units of the well depth, and the distance in
gy as a function of distance as it enters the tube. We ¢ f duced ter. all potential olots fell on th
this the entrance potential and it is shown in Fig. 2. Note tha erms ot a reduce _ parameter, afl potential piots _e on the
at a distance of 10 A into the tube, the cohesive energy i§aMe curve. That is, a plot @f=$(R)/|$(Ro)| againstR
very close to that of a £ molecule in an infinite tube. =(R-0)/(Ro—¢) gave the same curve for all tube-tube
It is of interest to compute the binding energy of,® a interactions and for interactions of_a} b_all Iocatepl outside an
spherical cap in a closed0,10 tube. This is done by aver- infinite (10,10 tube. R, is the equilibrium spacing at the
aging over the cylinder and over the capping hemisphere. MinNimum energy for th_e two interacting entities.dfis the_ _
The above ball-tube calculations are for g, @olecule  SUM (_)f the radu_of the interacting objects than the d(_afl_mtmn
with a (10,10 tube so the interaction of the molecule with of units abovci is natural: All the curves have a minimum
the tube is radially symmetric with a minimum at the tube equal to—1 atR=1 and the potential energy goes to infinity
axis. A number of calculations were made of the interactioras the the distance approaches the sum of their radii because
of the G, molecule with tubes of greater radii as a functionthen the atoms on the considered objects start to overlap.
of the radial distance from the tube axis. As expected, thesHowever, in some systems @ that is somewhat different
showed that the potential had a minimum at the tube walthan the sum of the radii must be used to fit the universal
with a maximum at the tube center. Our calculations showgurve precisely.
that this is the case for tubes with radii higher than 7.3 A.  For tube-tube interactiongg =2r, the diameter of the
This is shown in Fig. 3 for 410,10 and a(15,15 tube. tube, gives excellent results. For the tube-ball interaction,
Figure 4 displays the binding energy of g,@nolecule at taking e to be the sum of the tube radius and thg &dius,
a tube wall as a function of tube radius. The curve has @ =10.33 A gives a reasonably good fit to the numerically
maximum at 6.781 A, which is almost exactly the radius ofcomputed curve, but decreasing this ¢o=10.12 A im-
the (10,10 tube. Note that as the tube radius increases, thgroved the fit considerably.
binding energy decreases and approaches the value for bind- This result can be generalized to include potentials be-

ing to a graphene sheet. tween two graphene sheets, between twgr@olecules, and
between a graphene sheet and g @olecule. Figure 5
IV. THE UNIVERSAL GRAPHITIC POTENTIAL shows that the superposition of the reduced potential for the

various systems is very close and that a universal potential
The numerical integrations for the potential energy of in-exists for these graphitic structures. The values that gave the
teraction between two infinitely long tubes of the same rabest fit to the universal potential are given in Table Il for the
dius, and between an infinitely lor{0,10 tube with a mol-  various interactions, except for the tube-tube interactions.
ecule outside of the tube, showed that if the energy id-or tube-tube interactions, the valuesgfare just the tube

TABLE Il. Energy and distance constants for the reduced parameters of the universal graphitic potential.

System Distance parameter Well depth Equilibrium spacing
e R) |6(Ro)| Ro (R)

Graphene-graphene 0.28 15.36 me¥/A 3.414

Ball-ball 7.10 0.278 eV 10.05

Ball-(10,10 tube 10.12 0.537 eV 13.28

Ball-graphene 3.25 0.738 eV 6.508

(10,10 tube{10,10 tube 13.57 95.16 meV/A 16.724
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TABLE lll. Properties of ropes.

Tube type Radius Equilibrium spacing Cohesive energy Bulk modulus

R R (eVIA) (eVIA®)
(4,9 2.714 8.550 —0.1793 0.1827
(6,6) 4.071 11.281 —0.2201 0.2198
(8,8 5.428 14.004 —0.2547 0.2514
(10,10 6.785 16.723 —0.2855 0.2808
(12,12 8.142 19.441 —0.3136 0.3073
(14,14 9.499 22.157 —0.3396 0.3318
(16,16 10.856 24.873 —0.3639 0.3568
(18,18 12.213 27.588 —0.3869 0.3764
(20,20 13.570 30.303 —0.4085 0.3969
(22,22 14.927 33.018 —0.4292 0.4163
(24,24 16.283 35.733 —0.4490 0.4350
(26,29 17.640 38.447 —0.4679 0.4529
(28,28 18.997 41.162 —0.4862 0.4701

diameters that are obtained from Table . #(R) 1

: (12

RO 4 RO 10
In Fig. 5, the curves for the graphene-graphene and tube- W: “06 (E) _O'A(E)
tube interactions were computed using the Lennard-Jones pa- 0 '

rameters fitted to the properties of graphite, the curve for the,e prefactor 0.6 being necessary to ensure that the reduced
Ceo-Cso interaction used the constants from the Cont'n““”botential equals -1 at its minimum. Equati¢te) is readily

model Gy study, while the constants used to get thg-C . = . .
tube, and Gg-graphene interactions were obtained from theexprggsed in terms of the reduced paramtsince, from its
definition, the distance in the graphene-graphene potential is

averaging rules.

Results for graphite show that there is not much differ- _ _
ence between the discrete atom and the continuum models R=R(Ry—0)+0=3.13R+0.28, (13
when the same LJ parameters are used. In fact, calculations
from the continuum modé&t gives —334 erg/cri for the  the numbers being taken from Table Il for the graphene-
cleavage energy and 30 *? cm?/dyn for thec axis com-  graphene interaction, so that EG2) is
pressibility while the corresponding numbers from the
discrete calculatioh are —330 erg/lcd and 3.18 - d(R)

x 10" 2 cm?/dyn. Song and Cappellettireported a cohe-  ¢(R)= Té(Ro)l
sive energy value which they claimed was over 18% higher 0

than that of Girifalco and Lad However, the number com- 1 341 \* 341 \*
puted from the discrete calculation was for cleavage energy, =706l | 3 7B 0 s 04 ————
not the total cohesive energy of separating graphite into ' 3.1R+0.28 3.1R+0.28

planes an infinite distance apart, which is higher than the (14)
cleavage energy. The conclusion is that the discrete and con-
tinuum models give nearly the same results if the same LThis equation then gives the reduced potential for the sys-
parameters are used. tems listed in Table | when the appropriate valuesRgand
The superposition of the potentials when expressed ip are used to compute the reduced distance.
terms of the reduced parameters allows us to write an ana- The universal potential for graphitic structures is reminis-
lytic equation for all the continuum model potentials, includ- cent of the universal energy curve of Rasteal>* However,
ing the tube-tube potentials, since it is also valid for thethe graphitic potentials could not be accurately represented
graphene-graphene, ball-ball, and ball-graphene potentialby the equation of Roset al. for the universal energy. This
all of which have simple analytic forms. Any of these can beis not surprising since the graphitic potential is more anhar-
chosen to give an analytic representation of the universahonic and much less symmetric about the minimum energy
potential. Because it is the simplest, we choose the graphenghan the energy curve of Rost al. Therefore the physical
graphene potential which, per unit area of interacting sheetsaterpretation of the universal graphitic potential is different
is from that of Roseet al. Normalizing the energy by the well
depth and the distance parameter by its value at equilibrium
brings all curves into coincidence at the minimum energy
Ro\|* Ro| 0 and equilibrium distance just as for the curve of Reseal.

—0. ' (11 But the repulsive part of the graphitic potential is very steep
and approximates a hard-sphere potential. It is therefore
more accurate to correct the distance by hard-sphere radii

or, dividing through by the well depthp(Ry)|, than by a quasisymmetric deviation from harmonicity. That

2mn2A

4R}

R

(R)= .
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this is not exact is shown by the fact that for unlike graphiticof ropes, 0.383 eV/A was over 30% larger than our value of
structures, the distance parameter is not quite the sum of thg285 eV/A and his result for the bulk modulus was smaller

radii of the two structures. than ours by a factor of 2 (0.280 eVFA versus
0.137 eV/R). His calculation included the volume change
V. PROPERTIES OF ROPES arising from changes in covalent bond length, as well as

The tube-tube int i liai than 1% of from van der Waals interactions, but the effect of the intra-
e tube-tube interactions are negligiless than 1% o tube interaction should not be important fd0,10 tubes.

the binding energy at distances between centers that ar8 s result for bulk modulus is probably incorrect since in a

twice the radius, so the ropes can be treated as if only the; .- paper Tersoff and Rudff computed 0.22 eV/A
n_earest neighbor were |nteraqt|ng. Tab_le lll shows the coh faking into account intratube covalent binding, but for a rigid
sive energy, the nearest-neighbor distance and the bul linders they found a bulk modulus of 0.26 eVEATheir

modulqs, all at the energy minimum, colmputed for ropes 8Yalue for cohesive energy, 0.29 eV/A, is in good agreement
a function of tube radius. These calculations refer to the roP&ith ours

properties that are parallel to the tube diameters.
The energy was well represented by the square-root fit
VI. BINDING ENERGIES

=—0.1135/r+9.39x10 3 eV/A, 15 : .
olr) 20 © (19 We have computed the energy of interaction for two

¢o(r) being the energy of interaction in eV/A at the mini- nanotubes per unit length. Considering the typical high
mum separation of parallel tubes each having a radius  length of nanotubes, the total van der Waals interaction be-

Angstroms. tween tubes becomes very strong. Because of this effect, the
The equilibrium distancdr, at minimum energy varied nanotubes in the samples will orient themselves to be parallel
linearly with radius according to the equation whenever possible, therefore forming crystalline ropes.
The binding energy of a ball inside (40,10 tube is six
Ro(r)=2.00 +3.13 A. (16)  times higher than the energy fogbutside the tube. This is

Experimental data for the equilibrium distance is available” accord with the existence of the recently discovered

for tubes with a diameter of 13.8 A By minimizing our nanopeapods which form easily and are quite stable.

potential we get 16.95 A, which is the same as the experi- Since the potential for entering the tube is highly attra_c-
mental result tive, any Gg molecule near the mouth of an open tube will

The best fit of the bulk modulus variation with radius g?gdgwg(;nttﬁe'tbgl?s\’vﬁ\;sg ttr;'sgz?tﬁgga:r:z Sﬂg?:;fg‘gﬁgmly
according to the numbers in Table il is through defects in the tube wall. The formation mechanism
B(r)=0.106yr +5.25< 10~3 meV/A3. (17) can be described as follows: When. an external bqll in the gas
phase gets close to the tube wall it forms a relatively stable
The bulk modulus increases less than three times as the tulkenfiguration, since the binding energy to a tube is twice the
radius is increased by a factor of 7. The reason for this is thahteraction between £ molecules. Once bound to an outer
for larger tubes, atoms on a tube surface are farther awayall, a ball can slide relatively easily since the energy barrier
from the atoms on the far side of the adjacent tube and sefer sliding is of the order of 0.1% of the binding energy to
less of their attractive potential so the compressibility goeshe wall?’ until it finds a hole in the tube wall and eventually
down. The compressibility of a rope was recently measuredets in. This is in accord with the mechanism of peapod
by Tanget al?® Their value is 0.024 GP& for a rope of formation proposed by Smith and LuZZi.
lattice constant 17.16 A. Our theoretical calculation yields Once the ball is inside the tube it can further increase its
0.022 GPa* for this rope. binding energy by interacting with the other internal balls or
The effect of intratube chemical bond energies has beewith a cap. The latter interaction is stronger. For a spheri-
ignored in this work. Calculations that include the valencecally capped10,10 tube, the binding energy of a ball to the
force€® show that at tube diameters larger than 25 A, thecap is 1.14 eV greater than the binding energy in an infinite
tubes in a rope become faceted and assume a quasihexagondde. For nanotubes with large radii, the minimum of poten-
cross section. These calculations also show that as the diartial energy is shifted from its center to the walls. As a result,
eter decreases, the tubes can be described by a model time regular distribution of bucky balls along the tube axis
which the van der Waals intertube interactions dominatewill disappear and balls will preferentially be found at the
They found the same type of functional dependence for cotube walls. For high concentrations, balls will also be found
hesive energy per A, the bulk modulus, and equilibrium dis-at other positions, provided the tube has a minimum diameter
tance for radii below 25 A. greater than about 31 A, which is the sum of the effective
A calculation of the elastic constants, equilibrium spac-diameters of three adjacenggnolecules. This phenomenon
ing, and cohesive energy has been performed b im  was recently experimentally observéd.
which the intratube interaction was taken from a force con- The binding energies given in Table IV will be the major
stant model for graphif€ and the intertube interaction was a contribution to the free energies of formation. Assuming that
sum of Lennard-Jones potentials with parameters chosen tbe ordering of the free energies will be the same as that for
fit the interlayer distance and elastic constants of graphitehe energies given in Table IV, it can be inferred that pea-
He computed the same value as ours for equilibrium tubepods are the most stable arrangement gf @olecules in
tube separation for a rope ¢10,10 nanotubes (16.7 A). (10,10 tubes. It can also be concluded that intercalatggl C
However, his value for the magnitude of the cohesive energynolecules, in which the balls are at interstitial positions be-
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TABLE IV. Binding energies of a g molecule to a(10,10  graphene, ball-graphene, angy&q, interactions also fell

tube. on the same curve when written in terms of the reduced
— parameters. The existence of this universal potential curve
System Binding energfeV) for graphitic structures allowed the potential functions to be
Ball on top of a tube 0.537 written as a simple analytic form, thereby obviating the fu-
Ball at the mouth of tube 1.63 ture need for .extensi_ve numerical calculation for tube-tube
Ball inside tube 3.6 and baII—tube.mteractlons.
Ball at a spherical cap 4.40 The cohesive energy and bulk modulus of nanotubes con-

sisting of ropes of the same diameter was each found to vary
as the square root of the radius, while the equilibrium spac-
tween tubes in a rope, are probably less stable relative to tH8g was a linear function of radius. The entrance potential,
gas phase. The reason for this is that the cohesive energy Which is the potential energy of aggmolecule along the
intercalated G, molecule is—1.61 eV, whereas the corre- axis of an oper(10,10 nanotube as a function of distance
sponding cohesive energy for a rope @0,10 tubes is from the open end, was also computed.

10.05 Ax—0.2855 eV/A= —2.87 eV (10.05 A is the effec- For the interaction of a ball inside a tube, calculations
tive diameter of a g moleculd. This is physically reason- Were performed for the potential energy as a function of
able since tube-tube interactions involve more atoms per unflistance from the tube center with the expected result that for

length than tube-ball interactions. tube diameters larger than that for(20,10 tube, the mini-
mum energy was for a g molecule against the tube wall.
VII. SUMMARY AND CONCLUSIONS The binding energy of a § molecule to the tube wall was

computed as a function of tube radius. Binding energy was

The van der Waals potential energy of interactions in graalso computed for a bucky ball interacting with nanotubes in
phitic structures was computed for various configurations oarious configurations. All results were consistent with ex-
Cgo Molecules interacting with carbon single walled nano-periment.
tubes, based on assuming a Lennard-Jones potential for the
interaction between carbon atoms in the continuum model. It
was found that, when the energy is expressed in units of the
well depth and the distance in terms of a reduced parameter We gratefully acknowledge support for M.H. through the
related to the diameters of the interacting entities, the tubeNational Science Foundation Grant No. 98-02560 and for
tube and ball-tube potentials all fell on the same curve. ItR.S.L. through the United States Department of Energy,
was further found that the potential functions for grapheneDEFG 02-87ER45254 and DEFG 02-98ER45701.
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