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Interaction-induced localization-delocalization transition in the double-layer quantum Hall system
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~Received 11 January 2000; revised manuscript received 30 June 2000!

We report on numerical studies of the energy spectrum and the localization properties in the double-layer
quantum Hall system atn51. The Coulomb interaction is treated by the Hartree-Fock approximation, and the
localization properties in the presence of disorder are studied by evaluating participation ratios for the Hartree-
Fock eigenfunctions. We show that the extended states seem to exist only near each center of the two subbands
split by the exchange-enhanced energy gap. It is also shown that the self-consistent orbitals whose energies are
close to the Fermi energy appear to become extended together with the reduction in the energy gap as the layer
separation increases. The collapse of the energy gap expected from our results is consistent with the
incompressible-compressible transition observed in recent experiments, and the change of the localization
properties near the Fermi energy can explain the disappearance of the quantum Hall effect for large layer
separations very well.
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I. INTRODUCTION

When the integer quantum Hall effect~QHE! is studied
theoretically, it is usually assumed without justification th
the Coulomb interaction between electrons can be safely
nored. In a strong magnetic field, the eigenfunctions of
single-particle Hamiltonian for two-dimensional nonintera
ing electron systems are localized by a disorder potentia
almost all energies except for a discrete set of critical en
gies $«cN% near the center of each disorder-broaden
Landau level. Theoretical studies suggest that atT50, the
Hall conductivity jumps bye2/h each time the Fermi energ
«F crosses one of the critical energies, and that the long
dinal conductivity is zero if«FÞ«cN . These suggestions ar
supported by many experimental studies.1

However, such localization properties are not alwa
guaranteed when two different Landau levels are nearly
generate. In fact, the numerical studies of the double-la
quantum Hall ~QH! system in the absence of electro
electron interactions2,3 could not obtain the reasonable loca
ization properties in cases of nearly degenerate Landau le
~i.e., in the weak interlayer-tunneling case!. This is a typical
case where the Coulomb interaction should be conside
even for understanding the integer QHE qualitatively. Th
we consider this system in the presence of interactions in
paper. We show that the exchange-enhanced energy gap4 ap-
pears in this interacting system and that the localizat
properties consistent with the observation of the QHE can
obtained for small layer separations even in the we
interlayer-tunneling case.

In double-layer QH systems,5 the interlayer tunneling of
electrons brings about the mixing of the Landau levels in
two layers, and the Landau levels split into symmetric a
antisymmetric combinations about the center of the dou
layer structure. The energy gap,DSAS, between them is pro
portional to the tunneling amplitude, and it needs to be sm
for the nearby degeneracy of the Landau levels.

Such samples are realized experimentally and the tr
port properties have been investigated.6,7 In these experi-
ments using high-mobility samples, it has been reported
PRB 620163-1829/2000/62~19!/12997~7!/$15.00
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the Coulomb interaction plays an important role on t
ground-state properties and low-lying excitations. Forn51,
the phase diagram against the layer separationd, which con-
trols the strength of the interlayer interactions, andDSAS is
obtained experimentally.7 The phase diagram shows that th
QH state disappears ford.dc and that the critical separatio
dc increases asDSAS increases.

In a more recent experiment using high-mobility samp
with weak interlayer tunneling, the zero in the longitudin
resistivity is replaced ford.dc by a broad minimum similar
to that observed in the single-layer QH system atn51/2.8

This suggests a transition from an incompressible QH s
with strong interlayer correlations to compressible state c
sisting of two~weakly correlated! layers, where the metallic
states of composite fermions are formed.

Theoretically, the pseudospin formalism is often intr
duced to describe the layer degrees of freedom in dou
layer systems. This is done by assigning the upper/lo
layers to the pseudospin↑/↓. At n51/m (m an odd integer!,
the pseudospin ferromagnetism results from the interla
tunneling and exchange interactions between electrons.5 The
phase boundary between the QHE and the non-QHE ph
was determined theoretically by assuming that the Q
phase is destroyed together with the collapse of
pseudospin ferromagnetism.9,10 The pseudospin-
ferromagnetic ground state is shown to evolve continuou
from tunneling dominated to correlation dominated, asDSAS
decreases.11

The Hartree-Fock calculations have also been done
study the QH systems, and this approximation is expecte
describe the electronic properties well especially for the
teger filling factors. In fact, this approximation has been us
for the study of the double-layern51 QH system in the
absence of random disorder potential.12,13

In this paper, we investigate the energy spectrum and
localization properties in disordered double-layer QH s
tems atn51. The Coulomb interaction is treated by th
Hartree-Fock approximation, and the localization propert
are studied by evaluating participation ratios for the Hartr
Fock eigenfunctions. This method has been used in the s
12 997 ©2000 The American Physical Society
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ies on the interaction effects in the single-layer Q
system.14,15 We show that the localization properties chan
qualitatively because of the interaction effects.16

Our paper is organized as follows. In Sec. II, we expla
the model and calculation methods which we use in t
study. In Sec. III, we first discuss the results of the numer
calculations in the absence of Coulomb interactio
Through this discussion about the previous results2,3 and
ours, it is shown that the Coulomb interaction should
considered to understand then51 QHE in double-layer sys
tem with weak interlayer tunneling. After this discussion, w
show our numerical results in the presence of Coulomb
teractions. These are our main results in this paper, and
shown that the localization properties change together w
the reduction in the exchange-enhanced energy gap as
layer separation increases. Finally in Sec. IV, we brie
summarize our findings.

II. MODEL AND METHOD

We consider a double-layer system of spin-polarized e
trons in a strong magnetic field perpendicular to the laye
In double-layer systems, there exists the interlayer tunne
of electrons. The single-particle wave functions then s
into symmetric and antisymmetric ones about the cente
the double-layer structure, and the energy gap between th
DSAS, enters as an energy scale. The thickness of the w
function in each layer is neglected for simplicity.

The two-dimensional coordinates in the two paral
planes are denoted byr5(x,y), and the layer degrees o
freedom are described by the pseudospins5↑,↓. The Cou-
lomb interaction between electrons is then dependent
pseudospins for a finite layer separationd. Its Fourier trans-
form Vss8(q) is 2pe2/eq if s5s8 ~i.e., for the intralayer
interaction! and (2pe2/eq)e2qd if sÞs8 ~i.e., for the inter-
layer one!, where e is the dielectric constant of the ho
material. The Coulomb interaction is treated self-consiste
within the Hartree-Fock~HF! approximation.

In the strong-magnetic-field limit, it is enough to consid
only the lowest Landau level because one can neglect
Landau level mixing by interactions or disorders. The r
spin degrees of freedom are also ignored by assuming
spin polarization due to the Zeeman energy. Our attentio
restricted to this strong-field limit. We apply the period
boundary condition to the single-particle wave functions
side the two parallel rectangles of dimensionsLx , Ly , and
use the Landau gaugeA(r )5(0,Bx,0). One canthen use the
following set of basis functions for the lowest Landau lev

f j~r !5S 1

LyAp l
D 1/2

3 (
k52`

`

expF i
Xj1kLx

l 2
y2

~Xj1kLx2x!2

2l 2 G , ~1!

where l[Ac\/eB is the magnetic length, andXj
52p l 2 j /Ly is the center coordinate of thej th Landau
orbit.17 The orbital degrees of freedom in each layer are
scribed by this set of the Landau orbits, and the two lay
can be distinguished by the pseudospin indexs. Thus the set
$u j s&% ( j 51,2, . . . ,NL ,s5↑,↓) can be used as a basis s
s
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.
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for representing the Hartree-Fock Hamiltonian, whereNL
5LxLy /2p l 2 is the Landau level degeneracy in each laye

In terms of the set of basis functions,$u j s&%, the matrix
element of the Hartree-Fock Hamiltonian is given by

^ j suHHFu j 8s8&52
DSAS

2
d j j 8ds,2s8

1dss8^ j suv impu j 8s&1^ j suVHFu j 8s8&,

~2!

whered j j 8 is a usual Kronecker delta; the first term in th
right-hand side of Eq.~2! is due to the interlayer tunneling
The second and third terms in Eq.~2! result from the impu-
rity scattering and the Coulomb interaction between el
trons, respectively. The amplitudes of interlayer impur
scatterings are neglected because of their small values
for simplicity.

The Hartree-Fock single-particle equation is given by

HHFuwa&5«auwa&, ~3!

where«a and uwa& are an eigenvalue and corresponding
genstate of this equation, respectively. Because the t
term, ^ j suVHFu j 8s8&, in Eq. ~2! is dependent on the se
$uwa&%, as seen in Eq.~6!, this single-particle equation mus
be solved self-consistently. This is done by diagonalizing
2NL32NL matrix ^ j suHHFu j 8s8& in Eq. ~2! numerically and
solving Eq.~3! iteratively until self-consistency is achieved
Among the obtained eigenstates,$uwa&% in Eq. ~3!, the N
lowest-energy ones are occupied inN-electron systems, and
N5NL in the case ofn51.

The matrix element of the impurity scattering, which
the second term in Eq.~2!, is given by

^ j suv impu j 8s&5
1

LxLy
(

q
vs~q!dS j 2 j 8,

qyLy

2p D
3expF2

q2l 2

4
1 i S qxXj2

qxqyl
2

2 D G ,
~4!

wherevs(q) is the Fourier transform of the impurity poten
tial vs(r ) in the layers, d( j , j 8) is 1 if j 5 j 8 ~modNL) and
0 otherwise. The sum over the wave vectorq is over qx
5(2p/Lx)nx , qy5(2p/Ly)ny (nx andny are integers!, be-
cause the periodic boundary condition is used.

Our model disorder consists of randomly locat
d-function scatterers with a random strength uniformly d
tributed between2V0 andV0. The disorder potential is then
given by

vs~r !5(
i

Vi
sd~r2Ri

s!, ~5!

where Vi
s and Ri

s are the strength and position of thei th
impurity in the layers, respectively. There existNimp impu-
rities in each layer, and we assume that the disorder po
tials in the two layers areuncorrelated, i.e., there is no cor-
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relation about$Ri
s% and $Vi

s% between the two layers.3 For
this model disorder, the energy scale that characterizes
Landau subband width is given byG5(V0

2Nimp / l 2LxLy)
1/2.18

We choose to work withNimp /NL52p l 2Nimp /LxLy55, and
keepV0 / l 2 constant in order to useG as the unit of energy

The matrix element of the Coulomb interactio
^ j suVHFu j 8s8&, which is the third term in Eq.~2!, is given by

^ j suVHFu j 8s8&5(
a

u~«F2«a!

3 (
j 1 , j 2

Fdss8(
s9

^ j j 1uVss9u j 8 j 2&^wau j 1s9&

3^ j 2s9uwa&2^ j j 1uVss8u j 2 j 8&^wau j 1s8&

3^ j 2suwa&G
5 (

qPBZ
eiqxXjdS j 2 j 8,

qyLy

2p D
3Fdss8(

s9
Ds9s9~q!UH

ss9~q!

2Ds8s~q!UF
ss8~q!G , ~6!

UH
ss8~q!5

1

2p l 2 (
q8Þ0

dS qxLx

2p
,
qx8Lx

2p D
3dS qyLy

2p
,
qy8Ly

2p DVss8~q8!e2q82l 2/2, ~7!

UF
ss8~q!5

1

LxLy
(

q8Þ0
Vss8~q8!

3expF2
q82l 2

2
1 i ~qx8qy2qy8qx!l

2G , ~8!

Dss8~q![
1

NL
expS q2l 2

4
2 i

qxqyl
2

2 D ^r̂ss8~q!&

5
1

NL
(
j , j 8

e2 iqxXj 8dS j 82 j ,
qyLy

2p D
3(

a
u~«F2«a!^wau j s&^ j 8s8uwa&, ~9!

^ j 1 j 2uVss8u j 3 j 4&5
d~ j 11 j 2 , j 31 j 4!

LxLy
(
qÞ0

Vss8~q!

3dS j 12 j 3 ,
qyLy

2p D
3expF2

q2l 2

2
1 iqx~Xj 1

2Xj 4
!G ,

~10!
he r̂ss8~q!5E
0

Lx
dxE

0

Ly
dye2 iq•rCs

†~r !Cs8~r !, ~11!

where the sum overq in Eq. ~6! is over ‘‘the Brillouin
zone’’, qx5(2p/Lx)nx , qy5(2p/Ly)ny (nx ,ny

51,2, . . . ,NL), and the quantitiesUH
ss8(q) and UF

ss8(q)
correspond to the Hartree and Fock potential, respective19

The quantity Dss8(q) is proportional to the expectatio
value of the density operatorr̂ss8(q). The two-body matrix
element^ j 1 j 2uVss8u j 3 j 4& in Eq. ~10! is determined by the
Fourier transformVss8(q) of the Coulomb interaction, and
field operatorCs(r ) for pseudospins is considered within
the subspace of the lowest Landau level. In Eq.~6! and Eq.
~9!, u(x) and «F are the Heaviside step function and th
Fermi energy, respectively, and only theN lowest-energy
eigenstates in Eq.~3! contribute to the sum overa. About the

quantitiesUF
ss8(q), UH

ss8(q), andDss8(q), it is enough to
consider them only within ‘‘the Brillouin zone’’ because o
their periodicity.

When the HF single-particle equation is solved, the qu
tity Dss8(q) can be used to check the self-consistency of
calculated results. We have judged the convergence of
calculated ones by the following condition:

d[
1

4NL
2 (

s,s8
(

qPBZ
uDss8

k11
~q!2Dss8

k
~q!u,1026, ~12!

wherek represents each iteration step. We note that our
culations have been done under the constraint that the a
age numbers of electrons are the same in the two layers,
Dss(0)5n/251/2 for s5↑,↓.12

In order to investigate the localization properties, w
evaluate the participation ratios for the self-consist
Hartree-Fock eigenstates.15 The participation ratio is given
by

Pa[FLxLyE
0

Lx
dxE

0

Ly
dyuwa~r !u4G21

~13!

for a normalized eigenstatewa(r )5^r uwa&, and Pa

;ja
2/LxLy , whereja is the localization length of an eigen

state,wa(r ). As the eigenstate becomes more extended,
participation ratio becomes larger. That is, the participat
ratio shows how extended the eigenstate is.

For our numerical calculations,DSAS and e2/e l can be
used as the energy scales for the interlayer tunneling and
Coulomb interaction, respectively. As the unit of energy, t
strengthG of the impurity potential is used, and we consid
the following cases:DSAS/G50.1, (e2/e l )/G520, andd/ l
51.2,1.5, and 1.8. For these values of the parameters,
amplitude of the interlayer tunneling is very small and t
Coulomb interaction is much stronger than the disorder
tential (e2/e l;100 K for typical GaAs samples!. Thus we
can compare the calculated results with the experime
ones for high mobility samples with weak interlayer tunn
ing.

In the process of our self-consistent calculations, we fi
solve Eq.~3! in the absence of Coulomb interactions, i.e., f
(e2/e l )/G50, where no self-consistency is required. By i
creasing the ratio (e2/e l )/G gradually to the required value
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FIG. 1. The density of states
~DOS! and participation ratio in
the noninteracting double-laye
QH system atn51 are shown in
both strong (DSAS/G51) and
weak (DSAS/G50.1) interlayer-
tunneling cases. In the figures o
the DOS, the numbers of eigen
states within a finite width of en-
ergy,DE, are plotted. Each of the
vertical broken lines in the figures
of the participation ratio indicate
the highest-energy eigenvalu
among those of the occupie
eigenstates. The Landau level d
generacyNL is 256, and the en-
ergy E in the figures is given in
units of G.
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and using the latest results as input data in a new calcula
step,14 we have obtained the self-consistent solution
Eq. ~3!.

We also show the results in the absence of Coulomb
teractions, because the comparison between them and
in the presence of interactions clarifies the importance
Coulomb interactions for the localization properties in t
double-layer QH system atn51. The calculations in the
absence of interactions are done forDSAS/G51 and 0.1, i.e.,
in both strong- and weak-tunneling cases.

III. NUMERICAL RESULT AND DISCUSSION

A. In the absence of Coulomb interactions

We first discuss the double-layer QH system in the
sence of Coulomb interactions. The localization propertie
this noninteracting system were studied previously.2,3 Al-
though our numerical results in the noninteracting case
almost similar to previous ones,3 we show them in Fig. 1 to
make our discussion easy to understand. The importanc
Coulomb interactions in double-layer QH systems can
understood by comparing these results with ones in the p
ence of interactions, which will be given in the next subs
tion.

We calculated the density of states~DOS! and participa-
tion ratio for several impurity configurations in the noninte
acting double-layer QH system with the Landau level deg
eracy NL5256. Because the square (Lx5Ly5L) systems
are now considered, the dimensionL is given by L
5 lA2pNL.40l ( l is the magnetic length!. Figure 1 shows
the result for one of these impurity configurations in t
on
f

-
ose
f

-
in

re
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e
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cases ofDSAS/G51 and 0.1. In the noninteracting case, t
parameterDSAS/G is needed to characterize the disorder
double-layer QH system. The layer separation, which c
trols interlayer interactions, does not need to be specifie
spite of its importance in the real experiments.

In the figures of the DOS in Fig. 1, the numbers of eige
states within a finite width of energyDE are plotted. The
width DE is several times as large as the average ene
level spacing. We note that the energyE in the figures is
given in units ofG all through this paper and that each of th
vertical broken lines indicates the highest-energy eigenva
among those of the occupied eigenstates.

For DSAS/G51, which corresponds to the stron
interlayer-tunneling case, there exist two subbands
mainly consist of symmetric and antisymmetric combin
tions of isolated layer states, respectively. The localizat
properties within each subband are similar to those in
single-layer QH systems as pointed out previously.2,3 That is,
the eigenfunctions are extended only near the center of e
disorder-broadened subband.

For DSAS/G50.1, however, the symmetric and antisym
metric subbands are not well developed in the DOS, and
localization properties are quite different from those f
DSAS/G51. In fact, the peak in the participation ratios has
much broader width than that forDSAS/G51, and the par-
ticipation ratios near the Fermi energy take much larger v
ues than those forDSAS/G51.

In the previous study,3 the finite-size scaling method wa
also used for the noninteracting system with weak interla
tunneling. Then it was claimed that the extended states e
only at the two energies, which are split by somewhat lar
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FIG. 2. The density of states
~DOS! and participation ratio for
the self-consistent eigenstates
the interacting double-layer QH
system atn51 are shown in the
weak interlayer-tunneling cas
(DSAS/G50.1). As the layer
separation increases, the ener
gap decreases and the electron
eigenstates whose energies a
close to the Fermi energy seem
become extended. The value
used for the layer separationd/ l
are 1.2, 1.5, and 1.8, and the Lan
dau level degeneracyNL is 80.
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thanDSAS, rather than across a band of finite width betwe
the low- and high-energy mobility edges in the thermod
namic limit. In the energy interval between the tw
extended-state energies, however, their numerical value
the localization length in the weak-tunneling case are m
larger than those in the strong-tunneling case. Moreover
not clear from the system-size dependence of their res
whether the extended states do not exist across a ban
finite width in the thermodynamic limit either. Thus, the
claim seems to be controversial as far as one judges f
their numerical results. Therefore we consider the effects
the Coulomb interaction ignored in their study, and sh
that the extended states seem to exist only near each c
of the two subbands split by the interaction.

B. In the presence of Coulomb interactions

In the presence of Coulomb interactions, it is necessar
specify the layer separationd/ l , which controls interlayer
n
-

of
h
is
lts
of

m
of

ter

to

interactions, as well as the interlayer tunneling amplitu
DSAS/G, in order to characterize the disordered double-la
QH system. In this subsection, we consider the double-la
QH system withDSAS/G50.1, i.e., the weak interlayer
tunneling case. The localization properties in this case
main unclear as seen in the previous subsection. About
layer separation, we consider the three cases ofd/ l 51.2, 1.5,
and 1.8. By using these values, we can see that the loca
tion properties change qualitatively as the layer separa
increases.

We calculated the DOS and participation ratio for seve
impurity configurations in the double-layer QH system w
the Landau level degeneracyNL580. The dimensionL is
then given byL5 lA2pNL.22l . Figure 2 shows the resul
for one of these impurity configurations in the cases
DSAS/G50.1, d/ l 51.2, 1.5, and 1.8. In the figures of th
DOS, the numbers of eigenstates within a finite width
energyDE are plotted, and the energyE in the figures is
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given in units ofG. Each of the vertical broken lines in th
figures of the participation ratio indicates the highest-ene
eigenvalue among those of the occupied eigenstates.

Let us first consider the case ofd/ l 51.2 in Fig. 2. We can
see that the DOS has a large energy gap near the F
energy. The participation ratios take small values~nearly
zero! at the edges of each subband, and take much la
values around the center of each subband. These localiz
properties are almost similar to those forDSAS/G51 in Fig.
1, and are quite different from those forDSAS/G50.1 in Fig.
1. This difference results from the electron correlation
fects, and the energy gap in Fig. 2 is due to the excha
interactions between electrons. In fact, for small layer se
rationsd/ l , the ground state is a pseudospin-ferromagn
one,11 and the symmetric and antisymmetric combinations
isolated layer states are separated from each other b
exchange-enhanced energy gap. Then the localization p
erties within each subband are expected to be similar to th
in the single-layer QH systems and be consistent with
observation of the integer QHE.

For larger layer separations (d/ l 51.5,1.8), however, the
localization properties become complicated. The partici
tion ratios for the electronic eigenstates whose energies
close to the Fermi energy take larger values than those in
case ofd/ l 51.2, i.e., they are more extended than the o
for d/ l 51.2. Moreover, the energy gap seen in the DO
seems to decrease as the layer separation increases. Th
crease in the energy gap corresponds to the theoretical re
from the viewpoint of the pseudospin ferromagnetism9,10 that
the pseudospin-ferromagnetic order are broken gradu
with the increase of layer separation. If the energy gap c
tinues to decrease and eventually collapses with the incr
of layer separation, it is consistent with the incompressib
compressible transition reported in recent experiments.8

Although the size-scaling calculations are needed to m
the localization properties clear, we claim the existence
the extended states only near the center of each subba
the case ofd/ l 51.2, from the following facts. One is that th
dependence of such localization properties on the layer s
ration is consistent with the transition observed experim
tally between the QHE and the non-QHE phase.7,8 The other
is that the localization properties in the case ofd/ l 51.2 are
almost similar to those in the case ofDSAS/G51 in Fig. 1,
although the origins of the energy gap are different. We
pect that our claim will be confirmed by the size-scali
calculations.

We also performed numerical calculations in the case
DSAS/G51, d/ l 51.5, 1.8, 2.0, and 2.3. Although these r
sults are not shown graphically in this paper, we obtain

*Present address: Central Research Laboratory, Hitachi L
1-280, Higashi-Koigakubo, Kokubunji 185-8601, Japan. Em
watajun@crl.hitachi.co.jp

†Present address: Department of Physics, University of Te
Austin, Texas 78712.
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results that are similar to those forDSAS/G50.1. The energy
gap then survives for larger layer separations than that in
case ofDSAS/G50.1. This corresponds to the experimenta7

and theoretical results9,10 that the critical separationdc in-
creases asDSAS increases.

Thus the exchange-enhanced energy gap under
pseudospin-ferromagnetic order appears between the
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IV. SUMMARY

We investigated the disordered double-layer QH syst
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