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Interaction-induced localization-delocalization transition in the double-layer quantum Hall system
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We report on numerical studies of the energy spectrum and the localization properties in the double-layer
quantum Hall system at=1. The Coulomb interaction is treated by the Hartree-Fock approximation, and the
localization properties in the presence of disorder are studied by evaluating participation ratios for the Hartree-
Fock eigenfunctions. We show that the extended states seem to exist only near each center of the two subbands
split by the exchange-enhanced energy gap. It is also shown that the self-consistent orbitals whose energies are
close to the Fermi energy appear to become extended together with the reduction in the energy gap as the layer
separation increases. The collapse of the energy gap expected from our results is consistent with the
incompressible-compressible transition observed in recent experiments, and the change of the localization
properties near the Fermi energy can explain the disappearance of the quantum Hall effect for large layer
separations very well.

[. INTRODUCTION the Coulomb interaction plays an important role on the
ground-state properties and low-lying excitations. berl,

When the integer quantum Hall effe@HE) is studied the phase diagram against the layer separatjavhich con-
theoretically, it is usually assumed without justification thattrols the strength of the interlayer interactions, aghs is
the Coulomb interaction between electrons can be safely igebtained experimentall{/The phase diagram shows that the
nored. In a strong magnetic field, the eigenfunctions of theQH state disappears for>d. and that the critical separation
single-particle Hamiltonian for two-dimensional noninteract-d. increases ag,g increases.
ing electron systems are localized by a disorder potential at In a more recent experiment using high-mobility samples
almost all energies except for a discrete set of critical enerwith weak interlayer tunneling, the zero in the longitudinal
gies {ec.n} near the center of each disorder-broadenedesistivity is replaced fod>d. by a broad minimum similar
Landau level. Theoretical studies suggest thaf a0, the  to that observed in the single-layer QH systemvat1/28
Hall conductivity jumps bye?/h each time the Fermi energy This suggests a transition from an incompressible QH state
e crosses one of the critical energies, and that the longituwith strong interlayer correlations to compressible state con-
dinal conductivity is zero ikg# £.y. These suggestions are sisting of two(weakly correlatefllayers, where the metallic
supported by many experimental studtes. states of composite fermions are formed.

However, such localization properties are not always Theoretically, the pseudospin formalism is often intro-
guaranteed when two different Landau levels are nearly deduced to describe the layer degrees of freedom in double-
generate. In fact, the numerical studies of the double-layelayer systems. This is done by assigning the upper/lower
qguantum Hall (QH) system in the absence of electron- layers to the pseudospiri|. At v=1/m (m an odd integer
electron interactiorfs’ could not obtain the reasonable local- the pseudospin ferromagnetism results from the interlayer
ization properties in cases of nearly degenerate Landau levelgnneling and exchange interactions between electrdine
(i.e., in the weak interlayer-tunneling cas&his is a typical phase boundary between the QHE and the non-QHE phase
case where the Coulomb interaction should be consideredtas determined theoretically by assuming that the QHE
even for understanding the integer QHE qualitatively. Thugpphase is destroyed together with the collapse of the
we consider this system in the presence of interactions in thipseudospin ferromagnetisht®  The pseudospin-
paper. We show that the exchange-enhanced enerdyagap ferromagnetic ground state is shown to evolve continuously
pears in this interacting system and that the localizatiorfrom tunneling dominated to correlation dominated Aag.g
properties consistent with the observation of the QHE can bdecreases
obtained for small layer separations even in the weak The Hartree-Fock calculations have also been done to
interlayer-tunneling case. study the QH systems, and this approximation is expected to

In double-layer QH systentsthe interlayer tunneling of describe the electronic properties well especially for the in-
electrons brings about the mixing of the Landau levels in théeger filling factors. In fact, this approximation has been used
two layers, and the Landau levels split into symmetric andor the study of the double-layes=1 QH system in the
antisymmetric combinations about the center of the doubleabsence of random disorder potentfat®

layer structure. The energy gapgas, between them is pro- In this paper, we investigate the energy spectrum and the
portional to the tunneling amplitude, and it needs to be smallocalization properties in disordered double-layer QH sys-
for the nearby degeneracy of the Landau levels. tems atv=1. The Coulomb interaction is treated by the

Such samples are realized experimentally and the tranddartree-Fock approximation, and the localization properties
port properties have been investigafddin these experi- are studied by evaluating participation ratios for the Hartree-
ments using high-mobility samples, it has been reported thatock eigenfunctions. This method has been used in the stud-
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ies on the interaction effects in the single-layer QHfor representing the Hartree-Fock Hamiltonian, whéte

system:**>We show that the localization properties change=L,L, /22 is the Landau level degeneracy in each layer.

qualitatively because of the interaction effet&s. In terms of the set of basis functiongj o)}, the matrix
Our paper is organized as follows. In Sec. Il, we explainelement of the Hartree-Fock Hamiltonian is given by

the model and calculation methods which we use in this

study. In Sec. I, we first discuss the results of the numerical Agps

calculations in the absence of Coulomb interactions. {(jo|Hudj o'y=— 5 3ij' 8o — o

Through this discussion about the previous reédltand

ours, it is shown that the Coulomb interaction should be +5W,<jg|vimp|j’g>+<jg|VHF|j'U’>,
considered to understand tire= 1 QHE in double-layer sys-

tem with weak interlayer tunneling. After this discussion, we 2)

show our numerical results in the presence of Coulomb in- . ) ' .
teractions. These are our main results in this paper, and it iyne"€ dij+ 1S @ usual Kronecker delta; the first term in the
X Paper, right-hand side of Eq(2) is due to the interlayer tunneling.

shown that the localization properties change together Witl:l_he second and third terms in E@) result from the impu-

the reduction in the exchange-enhanced energy gap as trIJI y scattering and the Coulomb interaction between elec-

layer separation increases. Finally in Sec. 1V, we briefly . . . : )
. . trons, respectively. The amplitudes of interlayer impurity
summarize our findings. . .
scatterings are neglected because of their small values and
for simplicity.

IIl. MODEL AND METHOD The Hartree-Fock single-particle equation is given by
We consider a double-layer system of spin-polarized elec-
trons in a strong magnetic field perpendicular to the layers. Hur eo) =€l ¢a), ()

In double-layer systems, there exists the interlayer tunneling
of electrons. The single-particle wave functions then splitvheree, and|¢,) are an eigenvalue and corresponding ei-
into symmetric and antisymmetric ones about the center ogenstate of this equation, respectively. Because the third
the double-layer structure, and the energy gap between therd®m, (jo|Vigj’o’), in Eq. (2) is dependent on the set,
Asas, enters as an energy scale. The thickness of the wavide.)}, as seen in Eq6), this single-particle equation must
function in each layer is neglected for simplicity. be solved self-consistently. This is done by diagonalizing the
The two-dimensional coordinates in the two parallel2N; X 2N, matrix(jo|Hyelj’ ') in Eq.(2) numerically and
planes are denoted by=(x,y), and the layer degrees of solving Eq.(3) iteratively until self-consistency is achieved.
freedom are described by the pseudospint,|. The Cou- Among the obtained eigenstate$p,)} in Eq. (3), the N
lomb interaction between electrons is then dependent olpwest-energy ones are occupiedNrelectron systems, and
pseudospirr for a finite layer separatiod. Its Fourier trans- N=N_ in the case oy=1.
form V,,.(q) is 2me?/eq if o=0' (i.e., for the intralayer The matrix element of the impurity scattering, which is
interaction and (2re?/eq)e 9 if o+ o' (i.e., for the inter-  the second term in Ed2), is given by
layer on@, where € is the dielectric constant of the host

material. The Coulomb interaction is treated self-consistently ) 1 .., Oyl
within the Hartree-FockHF) approximation. (jolvimplj o) = < Vo]~ ',ﬁ)

In the strong-magnetic-field limit, it is enough to consider Xy A
only the lowest Landau level because one can neglect the 212 Oxlyl 2
Landau level mixing by interactions or disorders. The real xex;{— 7 Ox X — > ”

spin degrees of freedom are also ignored by assuming the
spin polarization due to the Zeeman energy. Our attention is (4)
restricted to this strong-field limit. We apply the periodic ) ) . ]
boundary condition to the single-particle wave functions in-Wherev,(q) is the Fourier transform of the impurity poten-
side the two parallel rectangles of dimensidns L,, and ~ fial v,(r) in the layera, 5(j,j") is 1if j=j’ (modN,) and
use the Landau gauge(r) = (0,Bx,0). One carthen use the 0 otherwise. The sum over the wave vectpiis over gy

following set of basis functions for the lowest Landau level: = (27/L)ny, ay=(2=/L,)n, (n, andn, are integers be-
cause the periodic boundary condition is used.

1\ Our model disorder consists of randomly located
oi(r)= N o-function scatterers with a random strength uniformly dis-
Lyl tributed between-V, andV,. The disorder potential is then
) i Xk kL] given by
exp i - ,
k== 12 212

ArN=2, VI8(r—R?), 5
where |=\cfi/eB is the magnetic length, andX; vol1) Z ol ) 2

=2l 2j/Ly is the center coordinate of thgth Landau

orbit.!” The orbital degrees of freedom in each layer are dewhere V7 and R{ are the strength and position of tith
scribed by this set of the Landau orbits, and the two layersmpurity in the layero, respectively. There exi®y, impu-

can be distinguished by the pseudospin indeX hus the set rities in each layer, and we assume that the disorder poten-
{lio)} (i=1,2,...N_,0=1,]) can be used as a basis settials in the two layers arencorrelated i.e., there is no cor-
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relation abouf{ R’} and{V’} between the two layersFor - Lx by .
this model diEorld}er thi ér}1ergy scale that characterizes the Poo(Q)= fo dxfo dye WDV, (1D
Landau subband width is given b= (VO imp/12LLy) 218 _ _ -
We choose to work W|t|1N|mp/NL 2712 Nimp/LxLy 5 and Wwhere the sum oveq in Eq. (6) is over “the Brillouin
keepV,/I? constant in order to usE as the unit of energy. zone”,  q,=(2m/Ly)ny,  gy=(2@/Ly)ny  (ny,ny
The matrix element of the Coulomb interaction, =1,2,...N,), and the quantitiesug"/(q) and Ug"/(q)
(Jo[Vuelj' o), which is the third term in Eq2), is given by correspond to the Hartree and Fock potential, respectively.
The quantity A, (q) is proportional to the expectation
(jo|Vielj 'o">=z Oep—e,) value of t_h(_a density Qpe_ratérm,/(q). _The two—t_)ody matrix
a element(j1j,|V,,|isj4) in Eq. (10) is determined by the
Fourier transfornV . (q) of the Coulomb interaction, and a
, i it o field operatorV ,(r) for pseudospinr is considered within
Oas 2 WalVorll 2N gallzo") the subspace of the lowest Landau level. In By.and Eq.

X 2,

J1.]2

, B o ) (9), 6(x) and e are the Heaviside step function and the
X(j20"|@a) = (ii1/Voorlial N @aliro") Fermi energy, respectively, and only tie lowest-energy
eigenstates in E{3) contribute to the sum over. About the
quantitiesug"'(q), ﬂ"'(q), andA,,(q), it is enough to
consider them only within “the Brillouin zone” because of
( qy y) their periodicity.

X(J 20-| @a)

= > €uig

When the HF single-particle equation is solved, the quan-

qaeBz " 27 tity A,,-(q) can be used to check the self-consistency of the
. calculated results. We have judged the convergence of the
X[ 8,0 20 A (UL (q) calculated ones by the following condition:
’ k+1 _
Aro(QUE” (q)}, ©®) 4Ng 2, 2, Ao @8, (@l<10, (2

wherek represents each iteration step. We note that our cal-

) OyLy ayly culations have been done under the constraint that the aver-
Ui (Q):z 2 > 5( om 2 ) age numbers of electrons are the same in the two layers, i.e.,
arl q'#0 ™ ™ A _ _ _ 12
eo(Q)=v/2=1/2 foro=1,].
a,Ly ayly 22 In order to investigate the localization properties, we
X0\ 55— |Veor(d')e @Yz (7)  evaluate the participation ratios for the self-consistent
Toem Hartree-Fock eigenstaté3The participation ratio is given
by
(CI)—L L oo’ (q )

Yy q'#0

LLJ dxf dy|e.(r)|*

for a normalized eigenstatep,(r)=(r|¢,), and P,
~§§/LxLy, whereé,, is the localization length of an eigen-
1 q2I2 qqu state,¢,(r). As the eigenstate becomes more extended, the
Aso (q)=N—ex 7 (Poor (@) participation ratio becomes larger. That is, the participation
ratio shows how extended the eigenstate is.
_ z i, 5 Qy y For our numerical calculations\gas and e?/el can be
N, < € i’ ]’ used as the energy scales for the interlayer tunneling and the
Coulomb interaction, respectively. As the unit of energy, the
NP strengthl” of the impurity potential is used, and we consider
X2 Oer=ea(eadio)(i'o"lea) 9 e following casesh gue/T = 0.1, @/el)/I' =20, anddl]
=1.2,1.5, and 1.8. For these values of the parameters, the
amplitude of the interlayer tunneling is very small and the

(13

/2|2
Xex;{ — +|(qqu qux)l} (8)

o(jiti2.st]a)

(j1i2|Voorlizia)= ———— > V,(q) Coulomb interaction is much stronger than the disorder po-
Lily a#0 tential (e%/el~100 K for typical GaAs samplésThus we
q can compare the calculated results with the experimental
X6 j1— 32— 2y7_ry) ones for high mobility samples with weak interlayer tunnel-
ing.

solve Eq.(3) in the absence of Coulomb interactions, i.e., for
(e?/el)IT' =0, where no self-consistency is required. By in-
(10 creasing the ratiog?/el)/T" gradually to the required value

2|2 In the process of our self-consistent calculations, we first
q .
Xexr{ - 7+|qx(le—x )}
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the noninteracting double-layer
QH system atv=1 are shown in
both strong Qgas/T'=1) and
weak (Asas/I'=0.1) interlayer-
tunneling cases. In the figures of
the DOS, the numbers of eigen-
states within a finite width of en-
Asas /T =0.1 Asas /T=0.1 ergy, AE, are plotted. Each of the
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. 04F N | 8 ]
g .
52 ol ;‘: | L4a ]
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& £ K- | FIG. 1. The density of states
A & | K ] (DOS) and participation ratio in
Q
A |

105 0 05 1

35 AR RS AAE A T 0.5 e T vertical broken lines in the figures
30k ] [ of the participation ratio indicate
0.4F ] the highest-energy eigenvalue
25k 1 o among those of the occupied
§ 0.35 ] eigenstates. The Landau level de-
o 2OF ] g [ generacyN, is 256, and the en-
8 15k 1 € [ ergy E in the figures is given in
) 0.2 ] units of T".
10F 1 5
A oaf h
5t ] [
0 ol e e "
-0.8 06 -04 02 0 02 04 06 08 08 -06 -04 -02 0 02 04 06 08
Energy Energy

and using the latest results as input data in a new calculatioggses ofAgas/I'=1 and 0.1. In the noninteracting case, the

step,* we have obtained the self-consistent solution ofparameterds,o/T is needed to characterize the disordered

Eq. (3). . _ double-layer QH system. The layer separation, which con-
We also show the results in the absence of Coulomb ing|s interlayer interactions, does not need to be specified in

teractions, because the comparison between them and thos':ﬁte of its importance in the real experiments.

in the presence of interactions clarifies the importance of = | o figures of the DOS in Fig. 1, the numbers of eigen-

Coulomb interactions for the localization propertie; in thestates within a finite width of energgE are plotted. The
double-layer QH system at=1. The calculations in the iy AE is several times as large as the average energy-
absence of interactions are done fogys/T'=1 and 0.1, 1., |gye| spacing. We note that the enerByin the figures is
in both strong- and weak-tunneling cases. given in units ofl" all through this paper and that each of the
vertical broken lines indicates the highest-energy eigenvalue
Ill. NUMERICAL RESULT AND DISCUSSION among those of the occupied eigenstates.

For Agas/I'=1, which corresponds to the strong
interlayer-tunneling case, there exist two subbands that
We first discuss the double-layer QH system in the abmainly consist of symmetric and antisymmetric combina-
sence of Coulomb interactions. The localization properties inions of isolated layer states, respectively. The localization
this noninteracting system were studied previodshyAl- properties within each subband are similar to those in the

though our numerical results in the noninteracting case argingle-layer QH systems as pointed out previodsifhat is,
almost similar to previous onésyve show them in Fig. 1 to the eigenfunctions are extended only near the center of each
make our discussion easy to understand. The importance disorder-broadened subband.
Coulomb interactions in double-layer QH systems can be For Agas/I'=0.1, however, the symmetric and antisym-
understood by comparing these results with ones in the presaetric subbands are not well developed in the DOS, and the
ence of interactions, which will be given in the next subsecdocalization properties are quite different from those for
tion. Agas/T'=1. In fact, the peak in the participation ratios has a
We calculated the density of statd30S) and participa- much broader width than that faxgas/I'=1, and the par-
tion ratio for several impurity configurations in the noninter- ticipation ratios near the Fermi energy take much larger val-
acting double-layer QH system with the Landau level degenues than those fakgag/I'=1.
eracy N =256. Because the squaré,&L,=L) systems In the previous study the finite-size scaling method was
are now considered, the dimensidn is given by L  also used for the noninteracting system with weak interlayer
=127N_ =40 (I is the magnetic lengihFigure 1 shows tunneling. Then it was claimed that the extended states exist
the result for one of these impurity configurations in theonly at the two energies, which are split by somewhat larger

A. In the absence of Coulomb interactions
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thanAg,s, rather than across a band of finite width betweerninteractions, as well as the interlayer tunneling amplitude
the low- and high-energy mobility edges in the thermody-Asas/I', in order to characterize the disordered double-layer
namic limit. In the energy interval between the two QH system. In this subsection, we consider the double-layer
extended-state energies, however, their numerical values @H system withAg,s/I'=0.1, i.e., the weak interlayer-
the localization length in the weak-tunneling case are muchunneling case. The localization properties in this case re-
larger than those in the strong-tunneling case. Moreover it isnain unclear as seen in the previous subsection. About the
not clear from the system-size dependence of their resultayer separation, we consider the three casetlef 1.2, 1.5,
whether the extended states do not exist across a band ghd 1.8. By using these values, we can see that the localiza-
finite width in the thermodynamic limit either. Thus, their tion properties change qualitatively as the layer separation
claim seems to be controversial as far as one judges frofincreases.

their numerical results. Therefore we consider the effects of We calculated the DOS and participation ratio for several
the Coulomb interaction ignored in their study, and showimpurity configurations in the double-layer QH system with
that the extended states seem to exist only near each cent@e Landau level degenerady; =80. The dimensiorL is

of the two subbands split by the interaction. then given byL=1y27N,=22. Figure 2 shows the result
) _ for one of these impurity configurations in the cases of
B. In the presence of Coulomb interactions Agas/T=0.1, d/I=1.2, 1.5, and 1.8. In the figures of the

In the presence of Coulomb interactions, it is necessary t&OS, the numbers of eigenstates within a finite width of
specify the layer separatiot/l, which controls interlayer energyAE are plotted, and the enerdy in the figures is
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given in units ofl". Each of the vertical broken lines in the results that are similar to those fag,s/T'=0.1. The energy
figures of the participation ratio indicates the highest-energyap then survives for larger layer separations than that in the
eigenvalue among those of the occupied eigenstates. case ofAgas/I'=0.1. This corresponds to the experimehtal
Let us first consider the case @fl =1.2 in Fig. 2. We can  and theoretical resufts® that the critical separatiod, in-
see that the DOS has a large energy gap near the Ferieases ad s g increases.
energy. The participation ratios take small vallegarly Thus the exchange-enhanced energy gap under the
zerg at the edges of each subband, and take much larggjseudospin-ferromagnetic order appears between the two
values around the center of each subband. These localizatigbbands, and the existence of the extended states only near
properties are almost similar to those fdgas/I'=1 in Fig.  the center of each subband seems to be realized for small
1, and are quite different from those fAgas/I'=0.1in Fig.  |ayer separations by the electron correlation effects. Unfor-
1. This difference results from the electron correlation ef-tunately our Hartree-Fock calculations in this paper are lim-
fects, and the energy gap in Fig. 2 is due to the exchangged to those for small system sizes and relatively small layer
interactions between electrons. In fact, for small layer sepaseparations, because it is difficult to obtain the numerical
rationsd/l, the ground state is a pseudospin-ferromagneti¢onvergence for larger system sizes or larger layer separa-
onel* and the symmetric and antisymmetric combinations oftions. Therefore, for the confirmation of our claim about the
isolated layer states are separated from each other by adcalization properties in weak interlayer-tunneling cases,
exchange-enhanced energy gap. Then the localization propurther numerical studies are needed for larger systems. The
erties within each subband are expected to be similar to thossize-scaling calculations should especially be done to discuss
in the single-layer QH systems and be consistent with theéhe change of the localization properties quantitatively.
observation of the integer QHE.
For larger layer separationsi/| =1.5,1.8), however, the IV. SUMMARY
localization properties become complicated. The participa- . . .
tion ratios for the electronic eigenstates whose energies are € investigated the disordered double-layer QH system
close to the Fermi energy take larger values than those in t VZ} numenc;ally, and theh the Coulomb interaction was
case ofd/|=1.2, i.e., they are more extended than the oned2Ken into consideration within the Hartree-Fock approxima-
for d/l=1.2. Moreover, the energy gap seen in the DO ion. We examined the density of states and the participation

seems to decrease as the layer separation increases. This ios for the self-consistent eigenstates of the Hartree-Fock
crease in the energy gap corresponds to the theoretical resu miltonian. By co_nS|der|ng the interaction effects in this
from the viewpoint of the pseudospin ferromagnefidfihat Isordered system, it was found that the extended states seem

the pseudospin-ferromagnetic order are broken graduallf? existhonly nearheachdcenter of the ;WO subﬁ)e}nds split by
with the increase of layer separation. If the energy gap cont '€ €Xchange-enhanced energy gap for small layer separa-

tinues to decrease and eventually collapses with the incread@ns: It was shown that the eigenstates whose energies are

of layer separation, it is consistent with the incompressibleC1oSe t0 the Fermi energy appear to become extended to-

compressible transition reported in recent experimeénts. gether.with the decrease in the energy gap as the layer sepa-
Although the size-scaling calculations are needed to mak tion increases. The collapse of the energy gap expected

the localization properties clear, we claim the existence o rom our results is also consistent with the incompressible-

the extended states only near the center of each subband qﬁmpressible transi.tion_ reported if‘ recent experiments. The
the case ofl/| =1.2, from the following facts. One is that the change of the localization properties near the Fermi energy

dependence of such localization properties on the layer sep an especially explain the disappearance of the QHE phase

ration is consistent with the transition observed experimen-Or large layer separations very well.
tally between the QHE and the non-QHE ph&&&he other
is that the localization properties in the casedfif=1.2 are
almost similar to those in the case 8f,5/I'=1 in Fig. 1, We would like to thank Professor Komajiro Niizeki for
although the origins of the energy gap are different. We exsome useful comments and valuable discussions. We are also
pect that our claim will be confirmed by the size-scalinggrateful to Nobuhisa Fujita for valuable discussions about
calculations. the Coulomb gap. One of 3.W) would like to thank Eigo

We also performed numerical calculations in the cases oYagi and Masaki lwasawa for some useful advice on the
Agps/T'=1, d/I=1.5, 1.8, 2.0, and 2.3. Although these re- numerical calculations. One of {3.N.) was supported by
sults are not shown graphically in this paper, we obtainedlapan Society for the Promotion of Science.
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