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Low-frequency impedance of quantized Hall conductors
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The longitudinal and the Hall impedances have been measured as a function of the frequency in a two-
dimensional electron gas at low temperatures. The frequency dependence of the longitudinal impedance can be
explained in terms of an equivalent parallelLCR circuit. An effective inductance term arises due to the
capacitive coupling between edge states and is shown to scale as 1/n2 for different filling factors. In the
low-frequency range the relative difference between the ac and dc values of the Hall impedance is found to
depend quadratically on the frequency and to scale as 1/n3. These results are shown to be consistent with the
existing theoretical model based on the edge-state picture. Finally, the observed symmetry relations when
exchanging current contacts or reversing magnetic field are discussed.
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I. INTRODUCTION

The transport properties of a two-dimensional elect
gas~2DEG! have been extensively investigated, leading n
tably to the discovery of the integer and fractional quant
Hall effects.1,2 Typical transport measurements are carr
out under quasi-dc conditions with a low-frequen
(;10 Hz) alternating current in the range 1–100 nA. Micr
wave frequencies have been employed to study e
magnetoplasmons3–6 and finite-frequency scaling.7,8 Low-
frequency~0–10 kHz! measurements have concentrated
the small deviation of the quantized Hall resistance from
dc value9 with a view to defining a new ac resistanc
standard10 and to investigations involving a capacitive
coupled gate11,12 or inductive probing of edge stat
transport.13

In this paper, we present the frequency dependence~0–50
kHz! of the longitudinal impedanceZxx and the Hall imped-
anceZxy for samples with a Hall bar geometry and ohm
contacts as used in normal quasi-dc investigations of
quantum Hall effect. This work is stimulated by the theor
ical paper of Christen and Bu¨ttiker,14 who calculated the
low-frequency admittance of quantized Hall conductors
ing an edge-state formalism. Section II deals with the f
quency dependence of the longitudinal and the Hall imp
ances. We fit the longitudinal impedance versus freque
using the characteristic equation of a parallelLCR circuit. In
this model, which is valid for all filling factors we show tha
the inductance scales as 1/n2 and the resistance as 1/n. The
PRB 620163-1829/2000/62~19!/12990~7!/$15.00
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Hall impedance is shown to decrease with increasing
quency, and in the low-frequency regime this decrease
pends quadratically on the frequency and scales as 1/n3. In
Sec. III we recall the approximated expressions ofZxx(v)
andZxy(v) developed by Christen and Bu¨ttiker and discuss
the limit of the validity of these equations by comparis
with the experimental data. In the edge-state picture
physical origin of the inductive behavior of the longitudin
impedance is well explained by the capacitive coupling
tween edge channels. Keeping higher-order terms lead
generalized equations of which theLCR model is an ap-
proximation. The theory of Christen and Bu¨ttiker success-
fully predicts the observed scaling of the equivalent-circ
parameters, both for the longitudinal and the Hall impe
ances. Finally, in Sec. IV we show results for a four-termin
cross sample for which all possible permutations of conta
and magnetic field direction have been measured. The la
asymmetry in the equivalent-circuit parameters obser
when inverting the magnetic field or inverting the curre
contacts can be understood when the direction of propa
tion of the edge states is taken into account.

II. FREQUENCY MEASUREMENTS

For the investigation a number of GaAs/~Al,Ga!As
modulation-doped heterojunction~HJ! and single-quantum-
well ~QW! structures were grown by molecular beam e
taxy. We present results for two samples but stress that qu
tatively similar frequency dependences have been obta
12 990 ©2000 The American Physical Society
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on a number of both electron and hole 2D systems. The
sample has a carrier density of 1.3531011 cm22 with a mo-
bility of 36 m2 V21 s21. The QW sample has a well width o
8.2 nm and a carrier density of 7.531011 cm22 with a mo-
bility of 11 m2 V21 s21. Hall bars were patterned to have
width d5250 mm with 750m m between voltage probes
The geometry is indicated schematically in the inset of F
1. Typical magnetoresistance traces measured at 50 mK
under quasi-dc conditions~10.7 Hz! with a current of 100 nA
are shown in Fig. 1 for the HJ and QW sample. Millikelv
temperatures are used in order to have the maximum num
of filling factors in a dissipationless state and for the
sample to have access to fractional filling factors. Such
temperatures are, however, not essential as the quantit
form of frequency dependence turns out to be almost t
perature independent, provided the temperature is s
ciently low so that the conductance is almost dissipation
under quasi-dc conditions.

We begin by presenting results for the HJ sample. Fig
2~a! shows the frequency dependence of the modulus of
longitudinal impedanceuZxxu for n51. For the study an
EG&G 5210 lock-in amplifier was used with theRu option,
which allows to simultaneously measure the magnitude
the impedance and the phase. The ac current used was
nA at all frequencies. The impedanceuZxxu increases linearly
from zero at low frequencies, and reaches a maximum be
decreasing at higher frequencies. This form of the freque
dependence is reminiscent of a driven simple harmonic
cillator with strong damping, the electrical equivalent
which is a parallelLCR circuit, which is shown schemati
cally in Fig. 2~c!. The complex impedance of such a circuit
given by

FIG. 1. Magnetoresistance trace measured atT550 mK and
under quasi-dc conditions (I 5100 nA at 10.7 Hz! for ~a! the HJ
sample and~b! the QW sample. The inset shows a schematic of
Hall bar geometry used.
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Zxx~v!5
j vL

11 j vL/R2v2CL
, ~1!

where v52p f is the angular frequency. In the low
frequency linear regime the longitudinal impedance is pur
inductive and can be approximated byZxx52p f L. From the
slopeduZxxu/d f it is possible to extract the value of the in
ductanceL5314 mH of the equivalentLCR circuit. Reso-
nance occurs whenv2CL51, conditions under which the
impedance is purely resistive. The maximum ofuZxxu there-
fore allows us to deduce the value of the resistanceR
56.94 kV. At high frequencies it is the capacitance th
dominates and the equivalent capacitanceC53.75 nF can be
deduced from the 1/vC decrease. The solid line in Fig. 2~a!
is the characteristic of the equivalent parallelLCR circuit,
and the agreement with the experimental data is good
particular the circuit parameters correctly predict the o
served resonance frequency. The validity of theLCR model
is further confirmed by the measured phase of the volt
with respect to the injected current shown in Fig. 2~b!. At
low frequency the voltage leads the current by1p/2 as ex-
pected for an inductive behavior. As the frequency is
creased the phase decreases, passing through zero on
nance before saturating at a value of2p/2 at high frequency
where the impedance is dominated by the capacitance.
solid line is the predicted phase for theLCR circuit model,
i.e.,

e FIG. 2. ~a! Magnitude of the longitudinal impedanceuZxxu ver-
sus frequency atn51 for the HJ sample measured atT550 mK.
The solid line is the predicted frequency dependence of the ma
tude of the impedance for the equivalent parallelLCR circuit with
L5314 mH, R56.94 kV, andC53.75 nF as described in the tex
~b! Frequency dependence of the measured phase. The solid li
the predicted phase for the equivalentLCR circuit. ~c! Schematic of
the equivalentLCR circuit.
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u5arctan@R~12v2CL!/vL#, ~2!

calculated using the previously determined values orL, C,
andR.

Having demonstrated the validity of theLCR equivalent-
circuit model for the case ofn51 we now turn our attention
to other filling factors. The measured frequency depende
of the longitudinal impedance is shown in Fig. 3~a! for both
odd,n51,3,5, even,n52,4, and fractionaln52/3,4/3 filling
factors. Other filling factors are either not dissipationless
der quasi-dc conditions or out of field range (n51/3). All
the curves present a similar shape with a linear regime at
frequencies, a maximum at the resonance and a decrea
high frequency. However, the parameters of the equiva
LCR circuit model are obviously filling-factor dependent. A
for filling factor n51 we have determined the valuesL, C,
andR for each filling factor. As can be seen from Fig. 3~b!,
which plots the measured inductance as a function of inve
filling factor squared, a remarkably simple scaling law exi
with L(n)5L0 /n2. A least-squares fit to the data gives

FIG. 3. ~a! Magnitude of the longitudinal impedance as a fun
tion of frequency for even, odd, and fractional filling factors me
sured for the HJ sample measured atT550 mK. The solid lines
have been generated using Eq.~3! with L05314 mH,
R056.94 kV, and C053.75 nF.~b! The measured equivalent in
ductanceL versus inverse filling factor squared. The solid line is
least squares fit to the data.~c! The measured equivalent resistan
R as a function of the inverse filling factor.
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slopeL05314 mH. The very similar value of the measure
impedance for all filling factors at high frequencies sugge
that the equivalent-circuit capacitance,C0.3.75 nF, is inde-
pendent of filling factor. The equivalent-circuit resistance
each filling factor,R(n), can be determined directly from th
impedance at resonance. A plot of the impedance on re
nance versus 1/n @Fig. 3~c!# reveals thatR(n) shifts linearly
with inverse filling factor according toR(n)5R0 /n with
R056.94 kV. Incorporating the experimentally determine
scaling into Eq.~1!, a generalized expression for the magn
tude of the impedance can be written

uZxx~v,n!u215A 1

@R0 /n#2
1FvC02

1

vL0 /n2G 2

. ~3!

The fits generated using Eq.~3! are indicated by the solid
lines in Fig. 3~a!. The good agreement for odd, even, a
fractional filling factors is notable and appears to validate
analysis. The simple scaling law that is able to correc
predict the behavior for all filling factors suggests that t
size of the gap in the density of states at the Fermi le
plays no role in determining the equivalent-circuit para
eters.

The frequency dependence of the longitudinal impeda
for the QW sample at odd and even filling factors shown
Fig. 4~a! is qualitatively identical to the frequency depe
dence of the HJ sample. The equivalent-circuit parame
have been deduced for each filling factor and the 1/n2 depen-
dence ofL(n) is shown in Fig. 4~b!. The solid lines in Fig.
4~a! show the predicted behavior of the equivalentLCR cir-
cuit model that is computed using Eq.~3! with L0
552 mH, R051.3 kV, and C0.29 nF. A good agreemen

-

FIG. 4. ~a! Magnitude of the longitudinal impedance as a fun
tion of frequency for even filling factorsn52,4, . . . ,14~closed
circles! and odd filling factorsn53,5 ~open circles! for the QW
sample measured atT550 mK. The solid lines are calculated fo
the equivalentLCR circuit using Eq.~3! as described in the text.~b!
The measured equivalent circuit inductance versus inverse fil
factor squared. The solid line is a least-squares fit to the data
slope of which givesL0553 mH.
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between experiment and the predictions of the equival
circuit model is observed for all filling factors. While th
existence of a single scaling law for odd, even, and fractio
filling factors is at first sight surprising given their very di
ferent nature, we will see in Sec. III that the scaling of t
inductance with filling factor has its origin in the quantize
Hall resistance and is thus independent of the size of the
in the density of states at the Fermi energy.

We emphasize that qualitatively identical results ha
been obtained for all possible combinations of voltage c
tacts and for several samples of different mobilities and c
rier densities. In all cases a good fit to an equivalentLCR
circuit model with the same scaling between filling factors
observed. The characteristic values ofL, C, andR can vary
by approximately an order of magnitude for different co
tacts for the same sample and between samples. Invertin
magnetic field for a given pair of voltage contacts also ty
cally leads to an order of magnitude change in the obser
LCR parameters. There seems to be no systematic rela
between theLCR fitting parameters obtained and the elect
cal characteristics~carrier density or mobility! of the sample.
The measurements have been carried out in both a dilu
refrigerator and in a variable temperature cryostat. The w
ing of both systems is very different, notably the dilutio
refrigerator has a;200 V lead resistance in series with th
sample ~current and voltage probes!. Nevertheless, the
equivalent-circuit parameters determined for a given sam
voltage probe combination are identical in both system
which indicates that they have an intrinsic, sample-rela
origin. A more detailed discussion of the symmetry relatio
when permuting current or voltage probes or inverting m
netic field direction can be found in Sec. IV.

We have also measured the frequency dependence o
Hall impedanceZxy in the same frequency range. At ve
low frequencyZxy(v) is equal to the dc quantized resistan
h/ne2, but as the frequency is increased the Hall impeda
decreases monotonically and tends to zero at high freque
Hartlandet al.10 measured the frequency dependence of
differenceDZxy(v)5uZxy(v)u2uZxy(0)u obtained by sub-
tracting the dc componentuZxy(0)u. They showed that in the
frequency range 0–5 kHz,DZxy(v) increased quadratically
with the frequency. In Fig. 5~a! DZxy(v) measured for the
QW sample is plotted as a function of the frequency squa
we see that in the low-frequency regimeDZxy(v) decreases
linearly with f 2. In addition to the different sign for
dDZxy(v)/dv2 the variation observed by Hartland and c
workers was also considerably smaller than that repo
here. It is possible to measure the low-frequency slo
dDZxy(v)/dv2 and to plot them against the inverse fillin
factor. This is shown in Fig. 5~b! where duDZxy(v)u/dv2

measured for the QW sample is plotted versus 1/n3. Note
that a logarithmic scale for both axes has been used for c
ity. The solid line drawn through the data points has a slo
of 1, indicating thatduDZxy(v)u/dv2 scales as 1/n3 over
more than two orders of magnitude. As we will see in S
III the scaling ofdZxy(v)/dv2 with 1/n3 is predicted by the
theory of Christen and Bu¨ttiker.

III. EXPRESSIONS FOR THE LONGITUDINAL
AND HALL IMPEDANCES

In Sec. II we have seen that the frequency dependenc
the longitudinal impedance is empirically well explained
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an equivalent parallelLCR circuit. In this model an induc-
tancelike term appears but it cannot be directly linked to
physical inductance in the 2DEG. This inductive behav
has already been predicted theoretically by Christen
Büttiker.14 They studied the dynamic transport properties
a two-dimensional electron gas within the edge-state pic
and calculated the low-frequency admittance of quanti
Hall conductors. Here we recall the essential points of th
theory. The work of Christen and Bu¨ttiker is based on the
adaptation of the existing edge-state theory15 dealing with
the dc transport problem to the ac case.

If one considers an ideal four-terminal cross as rep
sented in Fig. 6 with the current contactsk and l and the
voltage probes,m andn, the resistance is given by15

Rkl,mn5
GmkGnl2GmlGnk

Dkn
, ~4!

FIG. 5. ~a! Variation of the magnitude of the Hall impedanc
DZxy(v)5uZxy(v)u2uZxy(0)u as a function of frequency square
for the QW sample for different filling factors measured atT
550 mK. The solid lines are least squares fits to the data, the s
of which is dDZxy(v)/dv2. ~b! udDZxy(v)/dv2u determined from
the low-frequency slopes in~a! versus inverse filling factor cubed
and plotted on a log-log scale. The solid line through the data po
has a slope of 1.

FIG. 6. Ideal four-terminal cross connecting electron reservo
at electrochemical potentialm i , i 51,2,3,4. The dashed lines repre
sent the edge channels for the casen52.
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where the termsGab are the dc conductances and are e
pressed in terms of the quantized conductance (ne2)/h and
Dkn is the 333 subdeterminant of the conductance matrixG
with row k and columnn omitted. In order to describe the a
transport in the 2DEG, capacitive terms have to be taken
account. This consideration leads to the notion of ac cond
tances~admittances! Gab(v) that can be written as a deve
opment inv terms up to the first14 or second16 order. By
inserting these ac conductances in Eq.~4! one can calculate
the expression of the low-frequency impedanceZkl,mn(v).
Christen and Bu¨ttiker showed that for an ideal four-termina
cross the longitudinal and the Hall impedances can be w
ten up to first order as follows:

Zxx~v!5Z12,345 j v
cm,13

g2
, ~5!

Zxy~v!5Z13,245
1

g
1 j v

cm,242cm,13

g2
, ~6!

where g5(ne2)/h is the quantized conductance at fillin
factorn andcm,kl is the electrochemical capacitance betwe
edge statesk andl. We see that Eq.~5!, which is an approxi-
mation including only terms up to first order and cons
quently only valid in the low-frequency range, predicts th
Zxx(v) varies linearly with frequency and scales as 1/n2 in
perfect agreement with our results. For the equivalentLCR
circuit model the characteristic inductance can be written
L05cm,13(h/e2)2. The physical origin of the inductive term
in the Christen and Bu¨ttiker model can be simply understoo
as the capacitive coupling between the edge states assoc
with the current path and the edge states between the vo
contacts via the diagonal chemical capacitancecm,13.

When invoking the predicted scalingZxx(v) with 1/n2 we
have implicitly assumed that the electrochemical capacita
is magnetic field independent. However, in the edge-s
picture the electrochemical capacitance is given bycm

21

5c0
211D1

211D2
21 , wherec0 is the geometrical capacitanc

in series with the quantum capacitancesD1 and D2.14 This
poses a number of problems; notably both the geometric
the quantum capacitances are predicted to be weakly m
netic field dependent while the simple 1/n2 scaling ofZxx(v)
observed experimentally suggests that they are rigoro
field independent. The microscopic description of the el
trostatics of edge states is far from trivial17 but a simple
estimate of the size of the geometric capacitance givescm
'10214 F, which is much smaller than the experimenta
determined values ofcm'10210-10212 F, corresponding to
characteristic inductancesL0'12100 mH. This suggests
that something is either missing from the model or that
detailed microscopic picture of edge-state transport need
fining in order to obtain a quantitative agreement. It has b
suggested5 that the capacitive coupling can arise because
charge accumulation at the edge due to the Hall effect w
out invoking the presence of metallic edge channels. Furt
more, inductive imaging of the edge channels13 have re-
vealed that significant charge buildup can occur along
edge of the sample, the extent of which is too large to
consistent with the usual quantum-mechanical descriptio
edge states.17 However, the transmission formalism of Chri
-

to
c-

t-

n

-
t

s

ted
ge

ce
te

nd
g-

ly
-

e
re-
n
f
-
r-

e
e
of

ten and Bu¨ttiker can be considered as quite general a
therefore independent of the actual physical origin of
capacitances that couple the edges of the sample.

We now turn our attention to the frequency dependence
the magnitude of the Hall impedance. Both our results a
those of Hartland and co-workers10 show that DZxy(v)
5uZxy(v)u2uZxy(0)u depends quadratically on the fre
quency, i.e., DZxy(v)}v2. From Eq. ~6!, uZxy(v)u
5A1/g21v2(cm,242cm,13)

2/g4. Performing a Taylor expan
sion aroundv50 gives DZxy(v)' 1

2 v2(cm,242cm,13)
2/g3.

Thus uDZxy(v)u is predicted toincreasequadratically with
frequency in agreement with the results of Hartland a
co-workers10 but in disagreement with the quadratic decrea
shown in Fig. 5. However, for the case of an ideal fou
terminal cross presenting a perfect symmetry the diago
capacitancescm,13 andcm,24 are expected to be almost equa
suggesting that Eq.~6! should be modified to incorporate th
higher-order terms.

Büttiker and Christen have expressed the equations
Zxx(v) andZxy(v) up to the second order two16 by writing
the dynamical conductanceGab(v) with a second-order
term Kab(v), which represents the charge relaxation. He
we propose to consider only first-order ac conductances
to retain the higher-order terms. The complex expressions
the longitudinal and the Hall impedances including
higher-order terms are given by14

Zxx~v!5Z12,34~v!5
j va11v2a2

11 j va31v2a41 j v3a5

~7!

and

Zxy~v!5Z13,24~v!5
1/g1 j vb11v2b2

11 j vb31v2b41 j v3b5

, ~8!

where the coefficientsa i and b i are combinations of the
electrochemical capacitancescab ~the m subscript has been
omitted for simplicity! and the quantized resistanceh/ne2

[1/g:

a15c13/g2, b152@c111c33#/g
2,

a25@c12c232c13c22#/g
3, b25@c11c332c13

2 #/g3,

a35b35@c111c121c131c221c231c33#/g,

a45b45@c12
2 1c13

2 1c23
2 1c13~c121c23!2c33~c121c22!

2c11~c221c231c33!]/g
2,

a55b55@c11c23
2 1c22c13

2 1c33c12
2 2c11c22c33

22c12c13c23]/g
3.

Comparing Eqs.~1! and ~7! we see that the equivalen
LCR circuit model and the Christen and Bu¨ttiker model are
formally identical provided thata25a550. In addition the
predicted scaling ofL, C, andR is in agreement with experi
ment. Comparing equivalent terms we see that the ind
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FIG. 7. Longitudinal imped-
ance as a function of the fre
quency measured atT51.5 K for
~a! and ~b! a positive magnetic
field and ~c! and ~d! a negative
magnetic field. Panels~a!,~b! and
~c!,~d! differ in the relative posi-
tion of source and sink~ground!
current contacts as illustrated fo
the schematic cross in the inset o
each figure. For each configura
tion uZxxu has been measured fo
all four possible positions for the
sink current contact. The pair o
current contacts used is denote
by the different symbols as fol-
lows 12 or 21 (,), 23 or 32 (h),
34 or 43 (s), 41 or 14 (n).
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tanceL[a1}1/n2, the resistanceR[a1 /a3}1/n, and the
capacitanceC[2a4 /a1 is independent of filling factor.

Taking the magnitude of the Hall impedance and perfor
ing a Taylor expansion aroundv50, we obtain after some
algebra an expression of the form

uZxy~v!u51/g2
g

g3
v21u~v4!,

where g has the dimensions of capacitance squared. T
demonstrates that when all terms are included the Hall
pedance is predicted to vary quadratically at low frequenc
in agreement with experiment. In addition the model a
correctly predicts the experimentally observed scaling of
low-frequency Hall impedancedDZxy(v)/dv2}1/n3 shown
in Fig. 5. Asg is a complicated combination of the sums a
differences of the capacitance terms of the fo
cklcmn (k,l ,m,n51,2,3,4) it is not possible to determine u
ambiguously from a theoretical viewpoint the sign ofg. We
speculate that depending on the values of the sample spe
electrochemical capacitancesg can be either positive o
negative, which would explain the different signs f
dDZxy(v)/dv2 observed by Hartland and co-workers a
ourselves.

Here we propose to explain how Eq.~5!, which results
from the edge-state-based theory, could be found more i
itively by assuming the local picture of electronic transpo
Let consider a 2DEG with a dc currentI x flowing along the
x axis and a magnetic fieldBz applied perpendicular to th
electron plane. A Hall electric fieldEH appears along they
direction, resulting in the accumulation of static charges
the edges. The injection of an ac current in the sample le
to an oscillating Hall electric field whose direction chang
periodically and induces a dynamic transport of charges fr
one edge to the other. In this capacitorlike behavior the
sulting displacement current can be written in the gene
form I y(v)52 ivCVy(v). Finally the dynamic transport in
-
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ds
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the 2DEG can be viewed as a mixing of the transverse
the longitudinal Hall voltages due toI x(v) and I y(v), re-
spectively, via the capacitive coupling. This considerat
leads to the expressionVx(v)5 ivC(h/ne2)2I x(v), which
confirms the prediction thatZxx(v) is proportional to the
quantized resistance squared at low frequency.

IV. SYMMETRY CONSIDERATIONS

In order to investigate the symmetry relations when p
muting voltage and current contacts we have fabrica
samples with a four-terminal cross geometry from some
the remaining QW material. Each of the four arms of t
cross were 250mm wide and approximately 750mm long.
The carrier concentration and mobility for the cross samp
are identical to that measured for the conventional QW H
bar samples. The simple cross geometry facilitates the in
tigation of all different possible current and voltage pro
configurations. We have verified that exchanging the volta
probes yields no change in the measured signal excep
expected 180° phase change. It is therefore sufficient to c
sider the effect of different permutations of the curre
source and sink contacts. This is summarized in Fig.
which shows the longitudinal impedance for all possible p
mutations of current contacts in both positive and nega
magnetic fields measured at filling factorn54. All curves
show the characteristic damped resonance consistent wit
equivalentLCR circuit. In Fig. 7 two distinct cases are ap
parent: in~b! and~c! we observe almost identical curves wi
a large characteristic inductance and resistance while in~a!
and ~d! the curves are all different and the characteristic
ductance and impedance are approximately an order of m
nitude smaller. In addition the resonant frequen
('12 kHz) corresponding to the conditionv2LC51 is the
same for all curves, which implies that the productLC is a
constant. The observed symmetry can be qualitatively s
marized as follows. Exchanging the source and sink for c
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rent contacts or inverting the magnetic field changes
characteristics by an order of magnitude. Simultaneously
changing the current contacts and inverting the magn
field does not change the order of magnitude. Individ
curves do, however, change as can most easily be seen
comparing Figs. 7~a! and 7~d!. In particular it can be seen
that Onsager-Casimir18 reciprocity relation Zkl,mn(1B)
5Zmn,kl(2B) is obeyed.

This rather large asymmetry observed when exchang
the current source and the current sink is at first sight s
prising, since the impedance is measured by applying an
ternating current that continuously reverses direction. Ho
ever, the symmetry of the problem is broken by the direct
of the edge-state propagation, which is determined solely
the direction of the applied magnetic field and not the dir
tion of the applied current. Although the Hall electric field
the bulk of the sample reverses when the current directio
reversed, the sign of the ‘‘renormalized’’ Hall electric field
the edge of the sample remains unchanged and hence
direction of propagation of the edge states remains
changed. In the ac transport measurement the sink cu
contact is constantly at ground potential while the sou
contact oscillates between6V. Therefore, the edge state th
leaves the sink contact is at ground potential while the e
state that leaves the source contact is at a potential6V. This
is illustrated schematically in the insets of Fig. 7 where
edge state leaving the current source is shown as a solid
This reasoning has been invoked11 to explain why capaci-
tance coefficients in multilead conductors are uneven un
magnetic field reversal. Similar observations for electrons
the surface of liquid helium have also been explained
terms of the direction of propagation of edge magne
plasmons.4
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V. CONCLUSION

The frequency dependence of the longitudinal impeda
of a two-dimensional electron gas at integer and fractio
filling factors has been empirically shown to resemble tha
a parallelLCR circuit. The parameters of the equivalen
circuit model scale with filling factorn. The inductance
scales as 1/n2, while the resistance scales as 1/n and the
capacitance is independent of filling factor. The observat
of an inductancelike behavior has been theoretically p
dicted by Christen and Bu¨ttiker,14 who calculated the imped
ance by extending the transmission probability formalism
the ac case. When higher-order terms are retained a fo
equivalence exists between theory and theLCR equivalent-
circuit model. The theory also correctly predicts the observ
scaling ofL, C, andR with filling factor. The Hall imped-
ance is found to vary quadratically with frequency as pre
ously reported.10 When higher-order terms are included th
Christen-Bu¨ttiker model predicts a quadratic variation of th
Hall impedance that scales as 1/n3 again in perfect agree
ment with experiment.

Even though the applicability of the edge-state pictu
over a wide range of experimental conditions seems do
ful, the transmission probability formalism15 provides valu-
able insight into the dc quantum Hall effect and wh
extended to the ac case correctly predicts the frequency
pendence of the impedance including the observed sca
with filling factor and therefore gives some theoretical ba
for the empirically determinedLCR equivalent-circuit
model.
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