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Inhomogeneous broadening of tunneling conductance in double quantum wells
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The line shape of the tunneling conductance in double quantum wells with a large-scale roughness of
heterointerfaces is investigated. Large-scale variations of coupled energy levels and scattering due to the
short-range potential are taken into account. The interplay between the inhomogeneous broadening, induced by
the nonscreened part of large-scale potential, and the homogeneous broadening due to scattering by short-range
potentials is considered. It is shown that the large inhomogeneous broadening can be strongly modified by
nonlocal effects involved in the proposed mechanism of inhomogeneity. The related change of the line shape
of the resonant tunneling conductance between Gaussian and Lorentzian peaks is described. The theoretical
results agree quite well with experimental data.

[. INTRODUCTION band transitions, with one subband occupahapgd for new
effects in classical magnetotransport in the case of double
Resonant tunneling in semiconductor heterostructures hagibband occupanéy.The possibility of inhomogeneous
been widely investigated ever since Tsu and Esaki propose@f0adening of the tunneling conductance peak due to large-
the double-barrier resonant-tunneling dibésee Ref. 2 fora  Scale impurity potential was briefly introduced in Ref. 9.
recent review. New developments came through from stud-However, in this work the construction of the nonscreened

ies of interlayer tunneling spectroscopy between |oaraII<:;EOtentlal in DQWS is not discussed and comparison with

. . . Xperiment is absent.
two-dimensional(2D) electron systems2DES using the We show that the Lorentzian line shape for the tunneling

technique of independent contacts to closely locaterent peak, in the case of short-range collision-induced
2DES™" The 2DES are formed in two GaAs quantum wells proadening, assumes a Gaussian shape due to inhomoge-
(QW's) separated by an ABa _,As barrier. Because the neous broadening if nonlocal effects are discarded due to
in-plane momentum and the energy are conserved, theyfficiently largel .. However, for not too largé,, we ob-
2D-2D tunneling current exhibits sharp resonance pealain the transformation from a Gaussian to Lorentzian line
whose broadening is determined by different collision pro-shape due to nonlocal effects on the inhomogeneous broad-
cesses in the nonideal double-quantum-wBIQW) struc-  ening. Moreover, inhomogeneous and nonlocal effects essen-
ture. This property allows us to study scattering mechanismgally modify the half width at half maximuniHWHM) of
through tunneling spectroscopy methodFurthermore, the peak. As is shown below, our theoretical results are in
broadening effects may be important in a novel quantunguite reasonable agreement with the experimental ones of
transistor based on 2D-2D tunneling in independently conRef. 5.
tacted DQW'S The paper is organized in the following way. In Sec. Il we
The aim of this paper is to describe the line shape of thevaluate the expression for the tunneling current up to sec-
resonant tunneling current in nonideal DQW’s with indepen-ond order in the weak interwell tunneling coupling and use
dent contacts to each QW, when, in addition to usual homothe path-integral representation to calculate the tunneling
geneous broadening induced by short-range scattering, tf@@nductance in terms of the averaged product of Green’s
inhomogeneous broadening due to large-scale variations dfinctions for electron in left and right QW’s. The line shape
heterointerfaces is taken into account. The latter mechanis®f the resonant tunneling conductance is analyzed in Sec. llI
has an essential effect on the form of the peak, because . - —
smooth variations of the DQW energy levels due to large-
scale random variations of the widths of right and left QW’s
cannot be screened, even though the screening potential in- : :
volves all possible redistributions of electrons within the —— —
DQW structure. Even though the averaged large-scale poten-

tial is screened in heavily doped structures, the intersubband .; Boon :
energy is still nonuniform over the plane of the quantum i R SR
well. In Fig. 1, a schematic view of the band diagram of a) b)

DQW'’s and spatial variations of the energy levels are de-
picted for illustration. Our theory is valid when the DOQW  FiG. 1. (a) Spatial variations of the energy levels in left and
width is smaller than the correlation lendthfor nonunifor-  right QwW’s along thex direction without screeningdotted curves
mities of the heterointerfaces in the DQW. A very similar and with screeningsolid curve$; (b) band diagram of DQW'’s,
mechanism was recently proposed in a single quantum wellong the z direction, with nonideal heterointerfaces shown by
for describing the inhomogeneous broadening of intersubeashed lines.
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in a quasiclassical approximation. The list of assumptionghe nonscreening part of the large-scale potentiabls,

and concluding remarks are given in Sec. IV. Appendix A=y, —U,,, and the nondiagonal terms are given by the tun-
contains estimates of the parameters used in the nonscreengsling matrix elemerf (the coupling energy In the follow-
pOtentia|, due to Iarge'scale nonunifOI’mitieS Of the heterointing' we assume that the random potentia's introduced above

erfaces, and in Appendix B we briefly discuss the optimalare statistically independent and described by Gaussian cor-
fluctuation method and the straightforward trajectory ap-elation functions

proximation used in Sec. Il
U,0.,0=58:"W.(|x=x']), (U,U:,)=8:"W:(|x—x']),
IIl. TUNNELING CURRENT (Updina = Wil D (U310 = 8 Wi |(4)
Electron states in lefl) and right(r) QW’s are described (8U,8U ) =W,(|x—x']) +W,(|x—x'|) =w(|x—x|),
by the Hamiltonians _
where the function®V, ;(x) andw(x) are discussed in Ap-

p2 pendix A. We also neglect here the in-plane variations of the

Hi=A+ 5o+ Ut Ut Vi, matrix elemenfT (see discussion in Ref. 10
(1) The interwell tunneling current is expressed in terms of
A the density matriyp, according t6%**
Hr:ﬁ+UrX+UrX+VXv
. : B : : lelT2 .. .~ |Pt Pt
whereA is the interlevel splitting without tunneling amdis JLZT —trloypd, p=|~, ~ |, (5
the effective mass. The effect of fluctuations of heterointer- L Pt Prt

faces and scattering processes are described by large-scale

and short-range potentia@ . andU, ,, in left and right where_ay is they component of the Pauli matrix and the
) . " - .~ . trace includes both the average over large-scale and short-
QW's. The screening potentiaV,,, included inH, ;, is de-

ormined f the Poi i A di q range random potentials and the summation over electron
ermined from the FoiSson equa |<(me_e APpenaix Aan states. Nondiagonal and diagonal components of the
only the averaged large-scale potential is screened as

density matrix in Eq.5) are connected by the relatiord (

Ut U —+0)
T+Vx= 0. (2 -
~ T [t I’ - - o
— radt’ a—ih(t=t")/% —5.)elh (t—t")/h
Taking into account the interwell tunneling coupling, we use = _mdt e e (P = pri)e7 '
a 2X 2 one-electron Hamiltonian matrix as (6)
hy T Using a set of wave functions><|(j>\)E¢//jkX that are deter-
T Bl @) mined by the eigenvalue problems in thith QW ﬁjz/;jﬁ(
;

=ijz,/;}‘x we rewrite the tunneling currelf) as
where the diagonal terms are given by

- eT 2 ~ ~
. Z U J='|—— I pdrN) = (INpfINT) ). (7
e i 2 = 2 TRy = e 0T) ) ()
~ Here((- - -)) means the average over short-range and large-
P g %Y scale potentials. After substitution of E) in Eq. (7), we
'2m "™ 27 obtain

27|e|T? 2
J = W|he| <<E |(I’)\||)\’)|25(8rx_SIA’)(frh_f'x’)>>

F AN
27le|T? 2 (e i
=T—2J de( { 2 [(N\IN)28(en—2)8(s—en) | ), (®)
L=/ ep A
|

where the second equation above is written for the zero- N
temperature case ang; is the quasi-Fermi-level in thgth GRxx)=3S Vi Uix ©
Qw. Jeim ~ (ej—e—i0)’

In order to calculatel, , it is convenient to use the re-
tarded (R) Green’s functions for the electron in left and . . A
right QW’s, which are defined as and the advance@®) Green’s functions given bg . (x,x")
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=GR (x',x)*. The tunneling current assumes the form and Gf,(x,x')=G(x',x)*. The average over the non-
screened large- scale potential in Edl), for a Gaussian-
|e|T2 type random potentiabU,, is performed using the well-
J = J dsJ de dx’ known exact formula
27k |2

XabgRA(_1)k<<g?£(x'x,)gPS(X,’X)»’ (10 <exp(fdxf sU )> F{ fdxf dx fow(|x—x") |,

wherek=1 for a=b andk=0 for a#b. For small applied
voltages satisfyinger| — &g |<eg, j=e¢, we introduce the
tunneling conductance®(A), through the relationd; . ) , .
=®(A)V. The interwell voltageV is connected with the for some arbitrary fur}ctlorix. Since random potentlals_ are
quasi-Fermi-level difference by the relatio/=(eg, involved in both path integrals, we choose these functions as
—e&g)/e. Then from Eq.(10) it follows that the tunneling
conductance can be written as

B(A )—(T)2 f fdx

x 2 (= DX(GR (xx)GE (') (1D)

(15

t t
f = t(iIZh)j 1d715(x—x71)t(i/2ﬁ)f “dr,8(x-x,).
0 0

Using these transformations in the correlation functions of
Eq. (12), we finally obtain

Furthermore, according to E¢), the short-range potentials (- KGR (%X NGP, (x’ X))

in the left and right QW'’s are statistically independent, then ab=Ra

the two-particle correlation functiof{- - -)) in Eq. (11) can L

be rewritten exactly in terms of the Green’'s functions 0 vimem [© o [T
Gi.(x,x")=(G{.(x,x")) averaged over the short-range po- _f dte 1o f dtpe’r LO DX
tentials. The Dyson equation for this Green’s functions is
written as

x[eiSF“l“zW f " Dly dexi — S, (tatalx.y)]

Yo=X
(h —e)G (X, X )+f dx12 (X, xl)G (X1, X") = 8(x—=x"). _ V=X
(12) +eilsF(tlit2)mJ ’ ,D{y,}expf—S(t1t2|x7,yf)]}

Yo=X
Here the HamiItonianE,,, coincide with those given in Eq. +c.c., (16)
(3), without the short-range potentiaT_s, X andEa (x,x")

is the self-energy function. Fos-correlated potentlals We \where the two-particle actionS. (t;t,|x,,y,) are written in
have to useEa (x,x")ec 8(x—x"). Neglecting the renormal- the form

ization of energy spectra, we rewrite E@2) in terms of the
broadening energy; of the jth QW as

B imf (., .,
('ﬁj_in,yj)GEéA(X’X/):é(X_X/)’ (13) Si(tlt2|xfiyf)_ Zﬁ[J’O dTXri fO dTyT

where the upper sign correspond<@B and the lower one to 1 (4 ty
—f drf dr'w(|x,—x|)

GA.
It is convenient to write the Green’s functions through
path integrals d$*3

+1ft2d ftzd’<| )

— | “dr| “dr'w(ly,~y,

Ry w— [0 gt eiterin—syun [ gh?lo  Jo =y

G|8(x,x)=%J’ dte e+ J; xj){xf}
. -

+w dTJ dr'w(|x,—y.[). (17

i [t )
_ 2_
xexr{ thodT(mXT 5UX7)},

i o o Substituting Eq(_16) intc_> Eqg.(11) and making conyenient
R (x,x")= _J dt efi(eriyr)t/hJ' ! Dix,} change of variableén particular, separating the straight path
hl)-w xo=x' according tox,—[ur/t;+x,] and y,—[u(t,— 7)/t,+Yy.],
for integral from expt-S. ), ory,—[ur/t,+y.], for integral
. (19 from exp(~=S_)), we can expres®(A) in terms of contour
integrals as

i [t .
—_—— 2
Xexp{ thodT(mXT+ 6UXT)
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(

eT)? 0 A
&(A)= T)a J duf dtle(7|+|A)t1/h
h —o

x| atertn dpix) §oiys S

. . im _ -
> r e |s,:(t1—t2)/ﬁex;{ - ﬁuz(tl 1it2 1)}

o g5 [

Xexd — K+(t1,t2,x7,y7)]] +c.c.,

im

i 2+
o7 drxc+

T

(18

whereu=x—x". The contributions of nonscreened potentials

to the correlation function is given by the factors

Ki(tlitZIX‘rvyr)

1 (4 EU ,
:@ . dTJO dr'w(X,— X, +u(7—7")/t4])
1 (t I .
= | Car [ Farwdy, -y sutr—rng)
SIK | Farw -y, ruttE )
- 4 W+ XT_ ! u -
+4h2 o T 0 T + y TIL1Z T 2

(19

with w_(|z])=w(|z]) and w_(|z])=w(|z—u|). Note that
K, comes from averaging both retarded or both advance
Green’s functions whileK_ corresponds to averaging the
product of retarded and advanced Green'’s functions.

lll. LINE SHAPE OF THE CONDUCTANCE PEAK

In order to calculate the path integrals in E§8), we will
neglect in Egs.(18) and (19) deviationsx, andy. in the
arguments of the correlation functiev(|- - -|) by supposing
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where the factor& .. are reduced to

1 (u EU .
Ki(tl'tz’u):@fo deO dr'w(u|7—7'|/ty)

t2

to
72 dfjo dr'w(u|7—7'|/ty)

1 (u to , ,
+Wfo deO dr'w.(u(r/ti = 7'1t)]).

(21)

Let us for a moment ignore the contribution from the terms
with the upper sign in Eq(20). Defining new variablex
=1/ty ;andx’ = 7'/t; ,in the factorK _(t,,t,,u), we obtain
the conductance in the form

2 0
(e;-)sJ'duf_xdtle(leriA)tl/h

T

&(A)=

2
(2] teett-ca

g
22

where the large-scale correlation function is transformed as
W(u/l )= 8e 2f5dx[ 5dx ex — (Wl)?(x—x")?] and can be
rewritten as

d

0
X f dtyerte/t

xexp{—

+c.c.,

v

z B (ty+1y)?

8h2

i _ u
Zn (i) I

le

W(x)/6e 2= Jmx " terf(x)—x [1-e X], (23

and erf) is the error function. Introducing new time vari-
ablest=t;—t, andt=(t;+1,)/2 it follows that

eT)? 0 —2t
Cud W
ah3 —o 2t

(m/27h)?

6(A)=

XdTe(yt+AyT)/h ei[A(t‘FT/Z)*SFT]/ﬁ

that these deviations are smaller than i.e., using the ap- t2— 72/4
proach of straightforward trajectory in EGL9). We justify
such an approximation in Appendix B, where the optimal imu 7 t2

+c.c.,, (29

u
fluctuation methotf is used, in order to extract the optimal Xex;{ﬁ T _2W(|_
trajectories that give the maximal contribution to the path =74 2k ¢
integrals. With this approximation, we can calculate the pathyhere y=v+7v and Ay=(y—1y,)/2 are the total
integrals for the free motion exactly and the conductancegollision-induced broadening and the broadening difference
given by Eq.(18), is rewritten as in left and right QW’s, respectively. Since the time scale-of

is of the order offi/er and a typicalt is of the order of

em)? d 0 dt,e(n+id)t /4 #il yet1 In the integrals of Eq(24), we can replaceé®— r2/4

h3 j uf_x Le by t?, due to the quasiclassical conditio¢<er, and the
integration overr gives us 2rh8(ep—m(u/t)?/2). After

@(A):(

« f 0 dt,ertz/h (m/27h)? straightforward integration over we finally obtain
- e eT|2 (o 2 (vt
. imu2 G(A)= 7) PZDJ dt ey Himvh ex;{——ZW(I—F>
< Z Ie"sF(tlitZ)/hexp< T (tl—litz—l) —o 2h c
- +c.c., (25)
- Ki(tl,tz,u)) +c.c., (200  wherep,p=m/7%? is the 2D density of states, the correla-
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tion function is given by Eq(23), andvg is the Fermi ve-
locity.

Consider first the limiting case of the local response, as-

suming
(Vefil yeril o) ?<1, (26)

where the effective HWHM due to both contribution from

collision processes and inhomogeneous broadening is deter-

mined by&( yef) = &(0)/2. Under such a condition the cor-
relation function (23) assumes the fornwW(u/l;)~W(0)

= e2 and for conductance line shape from EB5) it fol-
lows that®

eT 2 0 Coot] BEN2
6(A)=2| - pZDf dt /"= (2" cog (A/h)t]

(eT)?
:TPZD
291 (A2+9?), Se<y
X - I
(N2l Se)exd — (AIN28€)?], Se>v,
(27
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1.0 T

B)G, (0)

FIG. 2. Modified line shape&(A), taken from Eq.(27), nor-
malized by®, (0)=2(eT)?p,p /%y, when nonlocal effects are neg-
ligible, for different contributions of short-range scattering, charac-
terized by the phenomenological broadening parameterland
nonscreened large-scale disorder, characterize@cbgndl .. The
solid, dashed, dotted, dot-dashed, and dot-dot-dashed curves corre-
spond tode/y=0.3, 0.6, 1, 3, and 6, respectively. The solid curve
is almost a Lorentzian line shape, while the dot-dot-dashed curve is

where the limiting cases determine the Lorentzian or Gause/€"Y ¢lose to a Gaussian curve.
ian line shape. Notice that the Lorentzian shape of the peak

tails is always found for big enougi|.

Now, consider the variablef , in the integral with the
upper sign in Eq(20). They are estimated of the order of
fileg . Thusuis of the order ofi/\meg<l., and as a result,
we can replace the factor gxpK,(t;,t;,u)] by the expres-
sion exp— (t;—t,)°w(0)/(8%2)] where the exponential factor

is of the order of §s/eg)?<1 and the expression can be

approximated by the unity. After straightforward integrations

overu and r, we are left with an integral ovdrgiven by
2
—i MJO dt en+ MR g=i2egt/h | ¢ o
wh? —o

(eT)2pap
2mheg

(28)

Such a contribution can be discarded in comparison with the

results from Eqs(25) and (27) because this term leads to
corrections of the order ofq¢i/er .
In Fig. 2, we plot®(A), using Eg.(27), as function of

(eT)? 2 Ve
G(A)= P2D (29
h A2+ 52

where the effective HWHM is now defined b?effz v1

+ (\/2) (8¢ A Ifivey)]. So, by increasing, a transition
from the Lorentzian to a Gaussian line shape is obtained for

oe>y.

This peak modification is illustrated in Fig. 3, where
®(A), calculated from Eq(25), is displayed forSe/y=4.6.
In Fig. 3, the solid, dashed, dotted, and dot-dashed curves
correspond tdhvg/l.y=15, 3.5, 0.7, and 0.2, respectively.

A/ vy for different relative contributions of the scattering pro-

BO)S,(0)

cesses and of the inhomogeneous broadening, i.e., for differ-
ent ratiosde/y. The solid, dashed, dotted, dot-dashed, and

dot-dot-dashed curves in Fig. 2 correspondste y=0.3,
0.6, 1, 3, and 6, respectively. The facto® (0)
=2(eT)?p,p/hy is obtained by puttingg=0 andde =0 in
Eq. (27). We see in Fig. 2 that the change from a Lorentzian
and a Gaussian line shapes depends also on the dimension- s 3 Modified line shap@(A), calculated from Eq(25)
less ratio|A|/y. ' — ’
If we take the opposite limit to the inequalifg6), i.e., we
are dealing now with relatively sholt, thenW(vgt/1.) in
Eq. (25) has to be approximated W/(x)/ 8e 2~ Jmx 1. As
a result, the Lorentzian line shape is obtained, from(g8§),
as

when nonlocal effects are taken into account, &z y=4.6 and
different values offivg/l.y. The solid, dashed, dotted, and dot-
dashed curves correspond @ /l.y=15, 3.5, 0.7, and 0.2, re-
spectively and represents, for instance, the increasg. dfiote that
the line shape evolves practically from a Lorentz{anlid curve,
given by Eq.(29), to a Gaussian on@ot-dashed curye
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B)G, (0)

A (meV)

thI'Yzc FIG. 5. Modified line shap&(A), for data of sample B of Ref.

5, calculated from Eq(25), in which temperature effects were in-
cluded. The solid, dashed, dotted, and dot-dashed curves correspond
to temperatures 0.7, 5, 7, and 10 K, respectively®|r{0) it was
usedy=0.2 meV corresponding to the solid curve.

FIG. 4. Dimensionless tunnel resonance wigth;/y as func-
tion of Zivg /1.y, calculated from Eq(25). The solid curves from
top to bottom correspond tée/y=4.6, 2.3, 1.5, 1.1, 0.8, and 0.3.
For ivg /1. y=0, nonlocal effects are negligible.

results is found for the case of single-side variations of het-
Notice that the solid curve corresponds very closely to theerointerfacegsee Ref. 17 about the case of two-side varia-
Lorentzian given by Eq(29), while the dotted and the dot- tions).. _ _
dashed curves are practically coincident Gaussians. In Fig. 4, Notice that the change from a local regime of tunneling
we plot v/, calculated from Eq(25), as a function of (for long-range fluctuations of QW widthdo the general
. — nonlocal case may be found by varying the temperature that
hivg !l y for decreasing values afe/y=4.6 (top), 2.3, 1.5, . Lo .
1108 and 0.2bott W int out that all . controls the relative contributions of homogeneous and inho-
-+ -0, an x o-om). € point out that afl curves give mogeneous broadening. In Fig. 5 we plot the line shapes
vets IN the local regime fotivg /I, y=0. Thus, from Fig. 4,

e g ®(A), for temperature® in the range 0.7 K-10 K, calcu-
it is seen that nonlocal effects essentially make; decrease  |5ted from Eq(25), for sample B parameters taken from Ref.

for de/y=1. 5. Now we have to add the thermade scattering contribu-
Now we apply the present model calculation to interprettion to vy, leading to a renormalized valug®), which we

the experimental data of Ref. 5. First, we consider the resultapproximate in the same way as in Refsge the solid curve

in the low-temperature regiméess than 2 K where the in Fig. 3 of Ref. 5. In Fig. 5, the solid, dashed, dotted and

measured HWHMy,; is practically independent of the tem- dot-dashed curves correspond @=0.7, 5, 7, and 10 K,

perature. We assume that only the inverted heterointerfad&spectively. One can see that by decreasing the temperature,

for each QW has essential roughﬁéme to one_mono|ayer the linewidth becomes smaller and the Shape of peak is

variations @~2.5 A) and, according to Appendix A, the changed. While fo®=0.7 K, we observe a Lorentzian form

o ) ) = of the peak due to strong nonlocal effects, manifested by
characteristic energy is estimated 8s~0.46 meV. The ihnomogeneous broadening induced by nonscreened large-

hard-wall model for a QW is used here to calculatérom  scale fluctuations, nonlocal effects are quite weak for
Eq. (A6). For sample A, with electron density 1.6 ®=10 K. At this temperature the local regime prevails and
X 10"t cm™2, we assume thay~0.1 meV (from mobility ~ the line shape is the interplay of Gaussian and Lorentzian
datg andl.~700 A and obtain from the pertinent curve, for forms, given by Eq.(27), because in this casée/y(0)
el y=4.6, in Fig. 4, thaty.;;~0.22 meV, which coincides ~0.5 andzvg/l;y(0©)~0.8 the peak behavior is slightly
with the experimental data and correspondsfio: /I,y  More Lorentzian than Gaussian.

=15 (the solid square in Fig.)4 As a consequence, the

Lorentzian line shape given by the solid curve in Fig. 3, is IV. CONCLUDING REMARKS

appropriate for sample A. Furthermore, for sample B, with

density 1.5<10' cm 2, by assuming thay~0.2 meV and . .

| ~1400 A we obtainv...~0.45 meV from the pertinent electron scattering .mechamsm by Ion_g-scale nons_creened
¢ ! Yeif P roughness of heterointerfaces that contributes to the inhomo-
curve, for oe/y=2.3, in Fig. 4, after using the calculated geneous broadening of the tunneling conductance peak in
value 7ivg /I y=3.8 (the solid trianglg This value is in  coupled DQW’s. We have done a systematic analysis of this
good agreement with the experimental result of Ref. 5. Fopeak shape by taking into account the interplay between the
sample C, with density 0:810'' cm 2 and assumingy introduced mechanism and the usual homogeneous scattering
~0.2 meV and .~1000 A, we havey.;;~0.45 meV(indi-  broadening. A detailed comparison of the HWHM of the
cated by the solid triangle in Fig.)4i.e., the same as for peak with experimental results revealed that the considered
sample B and also coincident with experimentalmechanism is relevant to interpret the data of Ref. 5, because
observations.Then a good agreement with the experimentalin the experimental conditions strong nonlocal effects are

In the present work, we have introduced an alternative
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manifested, through the proposed mechanism of inhomogeNacional de Desenvolvimento Ciéiito e Tecnolgico
neous broadening, which modify drastically the line shapgCNPq for financial support.

(from the Gaussian to a Lorentziaand the HWHM of the

peaks. We call attention to general considerations for the APPENDIX A: NONSCREENED VARIATIONS
mechanism of appearance of nonscreened long-wavelength OF THE RANDOM POTENTIAL

variations of th rin ntial, given in A ndix A _
ariations of the scattering potential, give ppend ' Below we evaluate the nonscreened random contributions

WhICh should pe relevant not only for the problem of 0 the potentiat 8U, that appears in Eq€2)—(4). The 2D
inter-QW tunneling current, addressed here, but also for thEOurier transform of the screening potentidl,, is deter-

study of general transport and optical properties of dOPeﬁInined by the Poisson equation

DQW's.

Let us discuss the approximations used in our treatment. d2 4re?
The single-electron approximation for the tunneling Hamil- (—2—q2)VqZ= ——— 8Ny, (A1)
tonian in Sec. Il is a generally accepted model and the ex- dz €

pression for the tunneling current in the homogeneous ca
corresponds to the Bardeen’s appro&tHere smooth varia-
tions of boundaries lead to changes of the levels of left an
right QW’s in the tunneling Hamiltonian, and we assume
that small modifications of the tunneling matrix element can
be neglected. For a discussion of the latter approximation, 5nqz=‘2 5nqj<pjzz, (A2)
see Ref. 10. The approximation for considering the screening J=hr

on average” in the introduced large-scale potential in- Where5nq1=—p2D(qu+qu) is the in-plane induced con-

volves supposing that the cqrrelanon _Ienggh|s large N centration in thgth QW due to slow variations of the poten-
comparison with the Bohr radius and with transverse dimen-

sions of the DQW structure as well. Siné¢A) depends on tial while the nondiagonal components &, are small due
the sum of the scattering broadening of different levels, we© weak overlap of left and .r|ght orbngls. Note that, for the
believe that the introduction of phenomenological paramgeneral case of _slowly varying .heteromterfacegoz should
etersvy, , instead of a detailed consideration the self-energ)ﬂepend on thg in-plane c.oo.rdlnaXebut .for the 2D case
functions, does not lead to the omission of important contri-(6F <€j) such in-plane variations of orbitals are not impor-
butions. We have also used the quasiclassical description fé&Rnt. .

longitudinal motion that is valid wheng> vy, in the cal- The solution of Eq(A1) assumes the form

Shere dng, is the concentration induced by the total large-
cale potential. Neglecting the overlap of left and right orbit-
Is ¢j, (j=1,r) we use in Eq(Al) the expansion

culation of the path integrals in E¢L8) and for integration 2 a2
overu andr in Eq. (24). We have assumed that variations of = f dzfe—q|z—z/\5nqz, , (A3)
potential are sufficiently weak such that the acceleration of €q

an electron due to a long-scale random fofgaasielectric

field) on a length of the order df, is insignificant. We have ; i ;

considered that the inverted Ma_,As-GaAs heterointer- :;T?nnstgf tﬁ:ea ?&g?lcg%?grﬁ?st?gﬁ] aé .1, are expressed in

face is much more rougher than the normal GaAs-

Al,Ga_,As heterointerface based on the results of Ref. 16

for QW'’s similar to those used in DQW structures of Ref. 5. Vo= f dZ‘Pszqu:
To conclude, we now discuss the possibility of a more

reliable test of the described mechanism of inhomogeneou§pstitutingsn,; in Eq. (A4), we have

broadening. In further experimental studies of the tunneling 4

conductance it is necessary to make a more detailed analysis 2 _

of the line-shape transitiotirom the Lorentzian to Gaussian Vo=~ qam > (Ugs+Vee), (A5)

form), and comparison between HWHM data measured in 48 s=Tr

samples grown in different conditions. Because the considwhere a; is the Bohr radius. Since the right-hand side of

ered mechanism modifies also in-plane transport coefficientsq. (A5) does not depend oj we obtain Vg .=V, and

and optical properties of DQW's with long-wavelength inho- we deal with an averaged screened potenfialacross the

mogeneities, further measurements as well theoretical studigsQw’s. If we assume large-scale variations, and a thin

of these phenomena are necessary. ; T
: _ DQW, we derive Eq(2), Vq=—(Z;Uy)/2.
We believe that the present work establishes an essential ;v we present explicit expressions for the large-scale

where for the casg=<I|_'<d~* we have exptqlz—7')=1.

> Sngs. (A4)

agreement with experimental resuits. pendent boundaries variations are described by random func-

tions 8, and s, [see Fig. 1b)] so that large-scale potentials
take the formU, ,,=2¢, (85 — 8;)/d, ., wheree, , are the
energies of levels in left and right QW’s with width , . As
This work was supported by Grants Nos. 95/0789-3 andt was shown in Ref. 8, the weak contributions due to varia-
98/10192-2 from Fund@o de Amparo aPesquisa de ®a tions of the tunneling matrix element may be neglected in the
Paulo(FAPESBH. O.G.B. and N.S. are grateful to Conselho evaluation of Eq.(8) up to second-order iff. Substituting
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U, rx Into the correlation functions in E¢4) and supposing

INHOMOGENEOUS BROADENING OF TUNNELIN . . .
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ever,5e = 2+/2ea/d for the one-side variation case in a QW

that all interfaces are statistically equivalents, we obtain thavhen g or &, is equal to zero and one of the two correla-

correlation functions as

2
_ 2ea
Wl,r(|x_x/|):2(%) ex;{ —(

wheree=¢, ,, d=d, , a is the averaged deviation of het-
erointerfaces and; is the correlation length. Finally, the
correlation functionw(|---|) in Eq. (4) takes the form

w(|x—x'|)=(8e)%exd —(x—x")?/I2] with a characteristic
energyde =4eald for the case of two-side variations. How-

X—

X' 2
) . (AB)

le

tion functlons given by Eq(A6) is set to zero.

APPENDIX B: OPTIMAL FLUCTUATION METHOD

The evaluation of the Eq20) is based on the separation
of the optimal trajectorywith maximal contribution to the
path integral and on the comparison of typical variations to
such a trajectorypx, and 8y, with |.. First variations of
the actions in the exponential factors of E¢ES) and (19)
with respect to path variation8x, and 8y, are written as
follows:

i [t i ty A
7. dr ox,- [mx _ﬁf dr'[u(r— 7" )/t + X, — X w(u(7— 7" )/t + X, — X, |)_2ﬁ|§Jo dr u(a—g)
u u
+x7—y7,—§(1i1) W( UT/t1+xT—UT’/t2—yT,—E(lil)‘)], (B1)
and
I [t2
_%J‘ dT&/T {— Y-~ 2ﬁ|2 dT[+U(T 7-)/':2—’—y7' Yo ]W(|+U(T 7-)/tZ_’—yfr yT|)—2ﬁ|2

ty T T u u

xf dr'|u ———)—x,/+yr——(1i1) w| (ur'/ty+ X —url/t,—y,+ = (1x1) ) , (B2)
0 t, tg 2 2

where the uppetlower) signs correspond to uppéiower)

signs in Eqs(18) and (19) and we have transformed corre-

lation functions as follows:

w(|x+ 8X|) —w(|x]) = —2x- Sxw(x)/I2. (B3)

Since 6x, and 8y, are arbitrary variations, the optimal tra-

imyT f dT[+U(T T)/t2+y7 yT]

2112

Xw(xu Ito+y.—y.
(|xu(r—7")ty+y,—y~ |)+2ﬁ|2

t
X f A7 Ut 7 It — X + Y. — u(1 = 1)/2]
0

XW(|UT/t2+yT_UT’/tl_XT/—U(li 1)/2|) (B5)

jectories are determined by the system of Euler-Lagrange

equations as

mx,= Zﬁlzf d7'[u(7—7") /Ity +X,— X/ ]
XW(u(r— 7)1t + X, =X ) F—— 212
><f:dr’[u(rltl—T’/t2)+XT—yTr—u(1i 1)/2]
xXw(ur/t,+x,—ur'/t,—y., —u(1+1)/2]), (B4
and

In order to estimate the maximal deviations,,, and
Ymax» We suppose that71'51t; 2> |Xmay:|Ymax for typical pa-
rameters used in calculating(A) such thaumaxzx;lnax and
Ymax=Ymax Thus, the right-hand sides of Eq84) and(B5)
do not depend o, andy, and they can be easily integrated
with the boundary conditionxT:ml:O andy7:%=0. For
the upper-sign contributions, estimating/(|u|)|~I.0s? we
transform the right-hand sides of Eq®4) and (B5) into
i 8e2(|ty|+|to])/(2mkl,). Thus, the result for the maximal

deviations is
xm:j B
Ym

This satisfies the conditiofX ;a4 Ymad <! for the upper-sign
contributions becausg, , are estimated a#/er. Indeed,

— 2
e 2(|ty] +[to]) | 11

16mal, (B6)

t;
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then we have|Xy ./l and |Ymal/lc=(Seler)(eddes) <1, butionst> 7, as it was shown in Sec. IV, due to the fact that
where the characteristic energy= (%/l)%/2m<er . e> Yefs. Then solving Eq(B7), with boundary conditions
A more careful consideration is necessary for the lowerX,-or, =0, we obtain the maximal deviatioiX,4 as
sign contributions whent; —t,|<f%/eg, such thatt; ~t.
Thus, Eq.(B4) can be rewritten as g
iuds 2t |Xmaxl~ 16mﬁ|CFX(U/|C)' (88)

2
malg

1
X,~ fodz’(z—z’)ex;{—u2(z’—z)2/I§],
(B7) Where Fy(2)=[1-exp(-2))/z and F,(2)~z, for z°<1,
. while F,(z)~1/z, for z>>1 and the maximum ofF(2)
wherez= 7/t. Here, from Eq(B5), it follows thaty.~0, and  <0.65 corresponds ta close to the unity. This estimation
taking into account the boundary conditioys, o;,=0, we  practically coincides with Eq(B6) if u/l,~1, while the
are led toy,~0. It is easy to solve Eq(B7) taking into  maximal deviations are smaller than the results in %)
account in its right-hand side that for the lower-sign contri-both foru/l.<1 andu/l.>1.
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