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Inhomogeneous broadening of tunneling conductance in double quantum wells
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The line shape of the tunneling conductance in double quantum wells with a large-scale roughness of
heterointerfaces is investigated. Large-scale variations of coupled energy levels and scattering due to the
short-range potential are taken into account. The interplay between the inhomogeneous broadening, induced by
the nonscreened part of large-scale potential, and the homogeneous broadening due to scattering by short-range
potentials is considered. It is shown that the large inhomogeneous broadening can be strongly modified by
nonlocal effects involved in the proposed mechanism of inhomogeneity. The related change of the line shape
of the resonant tunneling conductance between Gaussian and Lorentzian peaks is described. The theoretical
results agree quite well with experimental data.
h
s

d
lle

te
lls

t
ea
ro

m

um
on

th
n
o

, t
s
is
u

ge
’s
l

he
te
a
m
o
de

ar
we
ub

ble
s
rge-
9.
ed
ith

ing
ed
oge-
to

ine
oad-
sen-

in
s of

e
ec-
se
ling
n’s
e
. III

d

by
I. INTRODUCTION

Resonant tunneling in semiconductor heterostructures
been widely investigated ever since Tsu and Esaki propo
the double-barrier resonant-tunneling diode1 ~see Ref. 2 for a
recent review!. New developments came through from stu
ies of interlayer tunneling spectroscopy between para
two-dimensional~2D! electron systems~2DES! using the
technique of independent contacts to closely loca
2DES.3,4 The 2DES are formed in two GaAs quantum we
~QW’s! separated by an AlxGa12xAs barrier. Because the
in-plane momentum and the energy are conserved,
2D-2D tunneling current exhibits sharp resonance p
whose broadening is determined by different collision p
cesses in the nonideal double-quantum-well~DQW! struc-
ture. This property allows us to study scattering mechanis
through tunneling spectroscopy method.5 Furthermore,
broadening effects may be important in a novel quant
transistor based on 2D-2D tunneling in independently c
tacted DQW’s.6

The aim of this paper is to describe the line shape of
resonant tunneling current in nonideal DQW’s with indepe
dent contacts to each QW, when, in addition to usual hom
geneous broadening induced by short-range scattering
inhomogeneous broadening due to large-scale variation
heterointerfaces is taken into account. The latter mechan
has an essential effect on the form of the peak, beca
smooth variations of the DQW energy levels due to lar
scale random variations of the widths of right and left QW
cannot be screened, even though the screening potentia
volves all possible redistributions of electrons within t
DQW structure. Even though the averaged large-scale po
tial is screened in heavily doped structures, the intersubb
energy is still nonuniform over the plane of the quantu
well. In Fig. 1, a schematic view of the band diagram
DQW’s and spatial variations of the energy levels are
picted for illustration. Our theory is valid when the DQW
width is smaller than the correlation lengthl c for nonunifor-
mities of the heterointerfaces in the DQW. A very simil
mechanism was recently proposed in a single quantum
for describing the inhomogeneous broadening of inters
PRB 620163-1829/2000/62~19!/12940~9!/$15.00
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band transitions, with one subband occupancy,7 and for new
effects in classical magnetotransport in the case of dou
subband occupancy.8 The possibility of inhomogeneou
broadening of the tunneling conductance peak due to la
scale impurity potential was briefly introduced in Ref.
However, in this work the construction of the nonscreen
potential in DQWs is not discussed and comparison w
experiment is absent.

We show that the Lorentzian line shape for the tunnel
current peak, in the case of short-range collision-induc
broadening, assumes a Gaussian shape due to inhom
neous broadening if nonlocal effects are discarded due
sufficiently largel c . However, for not too largel c , we ob-
tain the transformation from a Gaussian to Lorentzian l
shape due to nonlocal effects on the inhomogeneous br
ening. Moreover, inhomogeneous and nonlocal effects es
tially modify the half width at half maximum~HWHM! of
the peak. As is shown below, our theoretical results are
quite reasonable agreement with the experimental one
Ref. 5.

The paper is organized in the following way. In Sec. II w
evaluate the expression for the tunneling current up to s
ond order in the weak interwell tunneling coupling and u
the path-integral representation to calculate the tunne
conductance in terms of the averaged product of Gree
functions for electron in left and right QW’s. The line shap
of the resonant tunneling conductance is analyzed in Sec

FIG. 1. ~a! Spatial variations of the energy levels in left an
right QW’s along thex direction without screening~dotted curves!
and with screening~solid curves!; ~b! band diagram of DQW’s,
along the z direction, with nonideal heterointerfaces shown
dashed lines.
12 940 ©2000 The American Physical Society
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in a quasiclassical approximation. The list of assumptio
and concluding remarks are given in Sec. IV. Appendix
contains estimates of the parameters used in the nonscre
potential, due to large-scale nonuniformities of the hetero
erfaces, and in Appendix B we briefly discuss the optim
fluctuation method and the straightforward trajectory a
proximation used in Sec. III.

II. TUNNELING CURRENT

Electron states in left~l! and right~r! QW’s are described
by the Hamiltonians

Ĥ l5D1
p̂2

2m
1Ū lx1Ũ lx1Vx ,

~1!

Ĥr5
p̂2

2m
1Ūrx1Ũrx1Vx ,

whereD is the interlevel splitting without tunneling andm is
the effective mass. The effect of fluctuations of heteroint
faces and scattering processes are described by large-
and short-range potentialsŪ l ,rx and Ũ l ,rx in left and right
QW’s. The screening potential,Vx , included inĤ l ,r , is de-
termined from the Poisson equation~see Appendix A! and
only the averaged large-scale potential is screened as

Ū lx1Ūrx

2
1Vx50. ~2!

Taking into account the interwell tunneling coupling, we u
a 232 one-electron Hamiltonian matrix as

U ĥl T

T ĥr
U , ~3!

where the diagonal terms are given by

ĥl5D1
p̂2

2m
1Ũ lx1

dUx

2
,

ĥr5
p̂2

2m
1Ũrx2

dUx

2
,

ro

-
d

s

ned
t-
l
-

r-
ale

the nonscreening part of the large-scale potential isdUx

5Ū lx2Ūrx, and the nondiagonal terms are given by the tu
neling matrix elementT ~the coupling energy!. In the follow-
ing, we assume that the random potentials introduced ab
are statistically independent and described by Gaussian
relation functions

^Ũ j xŨ j 8x&5d j j 8W̃j~ ux2x8u!, ^Ū j xŪ j 8x&5d j j 8W̄j~ ux2x8u!,
~4!

^dUxdUx8&5W̄l~ ux2x8u!1W̄r~ ux2x8u![w~ ux2x8u!,

where the functionsW̄l ,r(x) andw(x) are discussed in Ap-
pendix A. We also neglect here the in-plane variations of
matrix elementT ~see discussion in Ref. 10!.

The interwell tunneling current is expressed in terms
the density matrixr̂ t according to10,11

J'5
ueuT

\

2

L2
tr~ ŝyr̂ t!, r̂ t5U r̂ l t r̃ t

r̃ t
1 r̂ rt

U , ~5!

where ŝy is the y component of the Pauli matrix and th
trace includes both the average over large-scale and s
range random potentials and the summation over elec
states. Nondiagonal and diagonal components of
density matrix in Eq.~5! are connected by the relation (d
→10)

r̃ t5
iT

\ E
2`

t

dt8edt8e2 i ĥ l (t2t8)/\~ r̂ l t 82 r̂ rt 8!e
iĥr (t2t8)/\.

~6!

Using a set of wave functions (xu j l)[c j x
l that are deter-

mined by the eigenvalue problems in thej th QW ĥ jc j x
l

5« j lc j x
l we rewrite the tunneling current~5! as

J'5 i
ueuT

\

2

L2 K K (l
@~rlur̃ turl!2~ llur̃ t

1u ll!#L L . ~7!

Here^^•••&& means the average over short-range and lar
scale potentials. After substitution of Eq.~6! in Eq. ~7!, we
obtain
J'5
2pueuT2

\

2

L2 K K (
ll8

u~rlu ll8!u2d~« rl2« ll8!~ f rl2 f ll8!L L
5

2pueuT2

\

2

L2E«Fl

«Fr
d«K K (

ll8
u~rlu ll8!u2d~« rl2«!d~«2« ll8!L L , ~8!
where the second equation above is written for the ze
temperature case and«F j is the quasi-Fermi-level in thej th
QW.

In order to calculateJ' , it is convenient to use the re
tarded ~R! Green’s functions for the electron in left an
right QW’s, which are defined as
-

G j «
R ~x,x8!5(

l

c j x8
l* c j x

l

~« j l2«2 id!
, ~9!

and the advanced~A! Green’s functions given byG j «
A (x,x8)
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5G j «
R (x8,x)* . The tunneling current assumes the form

J'5
ueuT2

2p\

2

L2E«Fl

«Fr
d«E dxE dx8

3 (
ab5RA

~21!k^^G l«
a ~x,x8!G r«

b ~x8,x!&&, ~10!

wherek51 for a5b andk50 for aÞb. For small applied
voltages satisfyingu«Fl2«Fr u!«Fr ,l.«F , we introduce the
tunneling conductance,G(D), through the relationJ'

5G(D)V. The interwell voltageV is connected with the
quasi-Fermi-level difference by the relationV5(«Fl
2«Fr)/e. Then from Eq.~10! it follows that the tunneling
conductance can be written as

G~D!5
~eT!2

2p\

2

L2E dxE dx8

3 (
ab5RA

~21!k^^Gl«F

a ~x,x8!Gr«F

b ~x8,x!&&. ~11!

Furthermore, according to Eq.~4!, the short-range potential
in the left and right QW’s are statistically independent, th
the two-particle correlation function̂̂ •••&& in Eq. ~11! can
be rewritten exactly in terms of the Green’s functio
Gj «

a (x,x8)5^G j «
a (x,x8)& averaged over the short-range p

tentials. The Dyson equation for this Green’s functions
written as

~ h̃ j2«!Gj «
a ~x,x8!1E dx1S j «

a ~x,x1!Gj «
a ~x1 ,x8!5d~x2x8!.

~12!

Here the Hamiltoniansh̃l ,r coincide with those given in Eq
~3!, without the short-range potentialsŨ l ,rx , andS j «

a (x,x8)
is the self-energy function. Ford-correlated potentials, we
have to useS j «

a (x,x8)}d(x2x8). Neglecting the renormal
ization of energy spectra, we rewrite Eq.~12! in terms of the
broadening energyg j of the j th QW as

~ h̃ j2«7 ig j !Gj «
R,A~x,x8!5d~x2x8!, ~13!

where the upper sign corresponds toGR and the lower one to
GA.

It is convenient to write the Green’s functions throu
path integrals as12,13

Gl«
R ~x,x8!5

i

\E2`

0

dt e2 i («1 ig l2D)t/\E
x05x8

xt5x
D$xt%

3expF2
i

2\E0

t

dt~mẋt
22dUxt

!G ,
Gr«

R ~x,x8!5
i

\E2`

0

dt e2 i («1 igr )t/\E
x05x8

xt5x
D$xt%

3expF2
i

2\E0

t

dt~mẋt
21dUxt

!G , ~14!
n

s

and Gj «
A (x,x8)5Gj «

R (x8,x)* . The average over the non
screened large-scale potential in Eq.~11!, for a Gaussian-
type random potentialdUx , is performed using the well-
known exact formula

K expS E dx f xdUxD L 5expF1

2E dxE dx8f xw~ ux2x8u! f x8G ,
~15!

for some arbitrary functionf x . Since random potentials ar
involved in both path integrals, we choose these functions

f x56~ i /2\!E
0

t1
dt1d~x2xt1

!6~ i /2\!E
0

t2
dt2d~x2xt2

!.

Using these transformations in the correlation functions
Eq. ~11!, we finally obtain

(
ab5RA

~21!k^Gl«F

a ~x,x8!Gr«F

b ~x8,x!&

5
1

\2E2`

0

dt1e(g l1 iD)t1 /\E
2`

0

dt2egr t2 /\E
x05x8

xt1
5x

D$xt%

3H e2 i«F(t11t2)/\E
y05x

yt2
5x8D$yt%exp@2S1~ t1t2uxt ,yt!#

1e2 i«F(t12t2)/\E
y05x8

yt2
5x

D$yt%exp@2S2~ t1t2uxt ,yt!#J
1c.c., ~16!

where the two-particle actionsS6(t1t2uxt ,yt) are written in
the form

S6~ t1t2uxt ,yt!5
im

2\ F E
0

t1
dt ẋt

26E
0

t2
dt ẏt

2G
1

1

8\2E0

t1
dtE

0

t1
dt8w~ uxt2xt8u!

1
1

8\2E0

t2
dtE

0

t2
dt8w~ uyt2yt8u!

7
1

4\2E0

t1
dtE

0

t2
dt8w~ uxt2yt8u!. ~17!

Substituting Eq.~16! into Eq.~11! and making convenien
change of variables„in particular, separating the straight pa
according toxt→@ut/t11xt# and yt→@u(t22t)/t21yt#,
for integral from exp(2S1), or yt→@ut/t21yt#, for integral
from exp(2S2)…, we can expressG(D) in terms of contour
integrals as
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G~D!5
~eT!2

p\3 E duE
2`

0

dt1e(g l1 iD)t1 /\

3E
2`

0

dt2egr t2 /\ R D$xt% R D$yt%(
6

3H e2 i«F(t16t2)/\expF2
im

2\
u2~ t1

216t2
21!G

3expF2
im

2\ S E
0

t1
dt ẋt

26E
0

t2
dt ẏt

2D G
3exp@2K6~ t1 ,t2 ,xt ,yt!#J 1c.c., ~18!

whereu5x2x8. The contributions of nonscreened potentia
to the correlation function is given by the factors

K6~ t1 ,t2 ,xt ,yt!

5
1

8\2E0

t1
dtE

0

t1
dt8w„uxt2xt81u~t2t8!/t1u…

1
1

8\2E0

t2
dtE

0

t2
dt8w„uyt2yt86u~t2t8!/t2u…

7
1

4\2E0

t1
dtE

0

t2
dt8w6„uxt2yt81u~t/t16t8/t2!u…

~19!

with w2(uzu)5w(uzu) and w1(uzu)5w(uz2uu). Note that
K1 comes from averaging both retarded or both advan
Green’s functions whileK2 corresponds to averaging th
product of retarded and advanced Green’s functions.

III. LINE SHAPE OF THE CONDUCTANCE PEAK

In order to calculate the path integrals in Eq.~18!, we will
neglect in Eqs.~18! and ~19! deviationsxt and yt in the
arguments of the correlation functionw(u•••u) by supposing
that these deviations are smaller thanl c , i.e., using the ap-
proach of straightforward trajectory in Eq.~19!. We justify
such an approximation in Appendix B, where the optim
fluctuation method14 is used, in order to extract the optim
trajectories that give the maximal contribution to the pa
integrals. With this approximation, we can calculate the p
integrals for the free motion exactly and the conductan
given by Eq.~18!, is rewritten as

G~D!5
~eT!2

p\3 E duE
2`

0

dt1e(g l1 iD)t1 /\

3E
2`

0

dt2egr t2 /\
~m/2p\!2

t1t2

3(
6

F7e2 i«F(t16t2)/\expS 2
imu2

2\
~ t1

216t2
21!

2K6~ t1 ,t2 ,u! D G1c.c., ~20!
d

l

h
e,

where the factorsK6 are reduced to

K6~ t1 ,t2 ,u!5
1

8\2E0

t1
dtE

0

t1
dt8w~uut2t8u/t1!

1
1

8\2E0

t2
dtE

0

t2
dt8w~uut2t8u/t2!

7
1

4\2E0

t1
dtE

0

t2
dt8w6„uu~t/t16t8/t2!u….

~21!

Let us for a moment ignore the contribution from the term
with the upper sign in Eq.~20!. Defining new variablesx
5t/t1,2 andx85t8/t1,2 in the factorK2(t1 ,t2 ,u), we obtain
the conductance in the form

G~D!5
~eT!2

p\3 E duE
2`

0

dt1e(g l1 iD)t1 /\

3E
2`

0

dt2egr t2 /\
~m/2p\!2

t1t2
e2 i«F(t12t2)/\

3expF2
imu2

2\
~ t1

212t2
21!2

~ t11t2!2

8\2
WS u

l c
D G

1c.c., ~22!

where the large-scale correlation function is transformed
W(u/ l c)5d«̄ 2*0

1dx*0
1dx8exp@2(u/lc)

2(x2x8)2# and can be
rewritten as

W~x!/d«̄ 25Apx21 erf~x!2x22@12e2x2
#, ~23!

and erf(x) is the error function. Introducing new time var
ablest5t12t2 and t5(t11t2)/2 it follows that

G~D!5
~eT!2

p\3 E duE
2`

0

dtE
2t

22t

3dt e(gt1Dgt)/\
~m/2p\!2

t22t2/4
ei [D(t1t/2)2«Ft]/\

3expF imu2

2\

t

t22t2/4
2

t2

2\2
WS u

l c
D G1c.c., ~24!

where g5g l1g r and Dg5(g l2g r)/2 are the total
collision-induced broadening and the broadening differe
in left and right QW’s, respectively. Since the time scale ot
is of the order of\/«F and a typicalt is of the order of
\/ge f f in the integrals of Eq.~24!, we can replacet22t2/4
by t2, due to the quasiclassical conditionge f f!«F , and the
integration overt gives us 2p\d„«F2m(u/t)2/2…. After
straightforward integration overu we finally obtain

G~D!.S eT

\ D 2

r2DE
2`

0

dt e(g1 iD)t/\ expF2
t2

2\2
WS vFt

l c
D G

1c.c., ~25!

wherer2D5m/p\2 is the 2D density of states, the correl
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tion function is given by Eq.~23!, andvF is the Fermi ve-
locity.

Consider first the limiting case of the local response,
suming

~vF\/ge f fl c!
2!1, ~26!

where the effective HWHM due to both contribution fro
collision processes and inhomogeneous broadening is d
mined byG(ge f f)5G(0)/2. Under such a condition the co
relation function ~23! assumes the formW(u/ l c)'W(0)
5d«̄2 and for conductance line shape from Eq.~25! it fol-
lows that15

G~D!52S eT

\ D 2

r2DE
2`

0

dt egt/\2(d«̄t/A2\)2
cos@~D/\!t#

5
~eT!2

\
r2D

3H 2g/~D21g2!, d«̄!g

~A2p/d«̄!exp@2~D/A2d«̄!2#, d«̄@g,

~27!

where the limiting cases determine the Lorentzian or Gau
ian line shape. Notice that the Lorentzian shape of the p
tails is always found for big enoughuDu.

Now, consider the variablest1,2 in the integral with the
upper sign in Eq.~20!. They are estimated of the order o
\/«F . Thusu is of the order of\/Am«F! l c , and as a result
we can replace the factor exp@2K1(t1,t2,u)# by the expres-
sion exp@2(t12t2)

2w(0)/(8\2)# where the exponential facto
is of the order of (d«̄/«F)2!1 and the expression can b
approximated by the unity. After straightforward integratio
over u andt, we are left with an integral overt given by

2 i
~eT!2r2D

p\2 E
2`

0

dt e(g l1gr1 iD)t/\e2 i2«Ft/\1c.c.

'
~eT!2r2D

2p\«F
. ~28!

Such a contribution can be discarded in comparison with
results from Eqs.~25! and ~27! because this term leads t
corrections of the order ofge f f /«F .

In Fig. 2, we plotG(D), using Eq.~27!, as function of
D/g for different relative contributions of the scattering pr
cesses and of the inhomogeneous broadening, i.e., for di
ent ratiosd«̄/g. The solid, dashed, dotted, dot-dashed, a
dot-dot-dashed curves in Fig. 2 correspond tod«̄/g50.3,
0.6, 1, 3, and 6, respectively. The factorGL(0)
52(eT)2r2D /\g is obtained by puttingD50 andd«̄50 in
Eq. ~27!. We see in Fig. 2 that the change from a Lorentz
and a Gaussian line shapes depends also on the dimen
less ratiouDu/g.

If we take the opposite limit to the inequality~26!, i.e., we
are dealing now with relatively shortl c , thenW(vFt/ l c) in
Eq. ~25! has to be approximated byW(x)/d«̄ 2'Apx21. As
a result, the Lorentzian line shape is obtained, from Eq.~25!,
as
-

er-

s-
ak

e

r-
d

n
on-

G~D!5
~eT!2

\
r2D

2ḡe f f

D21ḡe f f
2

~29!

where the effective HWHM is now defined byḡe f f5g@1
1(Ap/2)(d«̄ 2l c /\vFg)#. So, by increasingl c , a transition
from the Lorentzian to a Gaussian line shape is obtained
d«̄.g.

This peak modification is illustrated in Fig. 3, whe
G(D), calculated from Eq.~25!, is displayed ford«̄/g54.6.
In Fig. 3, the solid, dashed, dotted, and dot-dashed cu
correspond to\vF / l cg515, 3.5, 0.7, and 0.2, respectivel

FIG. 3. Modified line shapeG(D), calculated from Eq.~25!,

when nonlocal effects are taken into account, ford«̄/g54.6 and
different values of\vF / l cg. The solid, dashed, dotted, and do
dashed curves correspond to\vF / l cg515, 3.5, 0.7, and 0.2, re
spectively and represents, for instance, the increase ofl c . Note that
the line shape evolves practically from a Lorentzian~solid curve!,
given by Eq.~29!, to a Gaussian one~dot-dashed curve!.

FIG. 2. Modified line shapesG(D), taken from Eq.~27!, nor-
malized byGL(0)52(eT)2r2D /\g, when nonlocal effects are neg
ligible, for different contributions of short-range scattering, char
terized by the phenomenological broadening parameterg, and

nonscreened large-scale disorder, characterized byd«̄ and l c . The
solid, dashed, dotted, dot-dashed, and dot-dot-dashed curves c

spond tod«̄/g50.3, 0.6, 1, 3, and 6, respectively. The solid cur
is almost a Lorentzian line shape, while the dot-dot-dashed curv
very close to a Gaussian curve.
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Notice that the solid curve corresponds very closely to
Lorentzian given by Eq.~29!, while the dotted and the dot
dashed curves are practically coincident Gaussians. In Fi
we plot ge f f /g, calculated from Eq.~25!, as a function of

\vF / l cg for decreasing values ofd«̄/g54.6 ~top!, 2.3, 1.5,
1.1, 0.8, and 0.3~bottom!. We point out that all curves give
ge f f in the local regime for\vF / l cg50. Thus, from Fig. 4,
it is seen that nonlocal effects essentially makege f f decrease

for d«̄/g*1.
Now we apply the present model calculation to interp

the experimental data of Ref. 5. First, we consider the res
in the low-temperature regime~less than 2 K!, where the
measured HWHMge f f is practically independent of the tem
perature. We assume that only the inverted heterointer
for each QW has essential roughness16 due to one-monolaye

variations (ā'2.5 Å! and, according to Appendix A, th

characteristic energy is estimated asd«̄'0.46 meV. The

hard-wall model for a QW is used here to calculate«̄ from
Eq. ~A6!. For sample A, with electron density 1.
31011 cm22, we assume thatg'0.1 meV ~from mobility
data! andl c'700 Å and obtain from the pertinent curve, fo

d«̄/g54.6, in Fig. 4, thatge f f'0.22 meV, which coincides
with the experimental data and corresponds to\vF / l cg
515 ~the solid square in Fig. 4!. As a consequence, th
Lorentzian line shape given by the solid curve in Fig. 3,
appropriate for sample A. Furthermore, for sample B, w
density 1.531011 cm22, by assuming thatg'0.2 meV and
l c'1400 Å, we obtainge f f'0.45 meV from the pertinen

curve, for d«̄/g52.3, in Fig. 4, after using the calculate
value \vF / l cg53.8 ~the solid triangle!. This value is in
good agreement with the experimental result of Ref. 5.
sample C, with density 0.831011 cm22 and assumingg
'0.2 meV andl c'1000 Å, we havege f f'0.45 meV~indi-
cated by the solid triangle in Fig. 4!, i.e., the same as fo
sample B and also coincident with experimen
observations.5 Then a good agreement with the experimen

FIG. 4. Dimensionless tunnel resonance widthge f f /g as func-
tion of \vF / l cg, calculated from Eq.~25!. The solid curves from

top to bottom correspond tod«̄/g54.6, 2.3, 1.5, 1.1, 0.8, and 0.3
For \vF / l cg50, nonlocal effects are negligible.
e

4,

t
lts

ce

r

l
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results is found for the case of single-side variations of h
erointerfaces~see Ref. 17 about the case of two-side var
tions!.

Notice that the change from a local regime of tunneli
~for long-range fluctuations of QW widths! to the general
nonlocal case may be found by varying the temperature
controls the relative contributions of homogeneous and in
mogeneous broadening. In Fig. 5 we plot the line sha
G~D!, for temperaturesQ in the range 0.7 K–10 K, calcu
lated from Eq.~25!, for sample B parameters taken from Re
5. Now we have to add the thermale-e scattering contribu-
tion to g, leading to a renormalized valueg~Q!, which we
approximate in the same way as in Ref. 5~see the solid curve
in Fig. 3 of Ref. 5!. In Fig. 5, the solid, dashed, dotted an
dot-dashed curves correspond toQ50.7, 5, 7, and 10 K,
respectively. One can see that by decreasing the tempera
the linewidth becomes smaller and the shape of peak
changed. While forQ50.7 K, we observe a Lorentzian form
of the peak due to strong nonlocal effects, manifested
inhomogeneous broadening induced by nonscreened la
scale fluctuations, nonlocal effects are quite weak
Q510 K. At this temperature the local regime prevails a
the line shape is the interplay of Gaussian and Lorentz
forms, given by Eq.~27!, because in this cased«̄/g(Q)
'0.5 and\vF / l cg(Q)'0.8 the peak behavior is slightly
more Lorentzian than Gaussian.

IV. CONCLUDING REMARKS

In the present work, we have introduced an alternat
electron scattering mechanism by long-scale nonscree
roughness of heterointerfaces that contributes to the inho
geneous broadening of the tunneling conductance pea
coupled DQW’s. We have done a systematic analysis of
peak shape by taking into account the interplay between
introduced mechanism and the usual homogeneous scatt
broadening. A detailed comparison of the HWHM of th
peak with experimental results revealed that the conside
mechanism is relevant to interpret the data of Ref. 5, beca
in the experimental conditions strong nonlocal effects

FIG. 5. Modified line shapeG(D), for data of sample B of Ref.
5, calculated from Eq.~25!, in which temperature effects were in
cluded. The solid, dashed, dotted, and dot-dashed curves corres
to temperatures 0.7, 5, 7, and 10 K, respectively. InGL(0) it was
usedg50.2 meV corresponding to the solid curve.
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manifested, through the proposed mechanism of inhomo
neous broadening, which modify drastically the line sha
~from the Gaussian to a Lorentzian! and the HWHM of the
peaks. We call attention to general considerations for
mechanism of appearance of nonscreened long-wavele
variations of the scattering potential, given in Appendix
which should be relevant not only for the problem
inter-QW tunneling current, addressed here, but also for
study of general transport and optical properties of do
DQW’s.

Let us discuss the approximations used in our treatm
The single-electron approximation for the tunneling Ham
tonian in Sec. II is a generally accepted model and the
pression for the tunneling current in the homogeneous c
corresponds to the Bardeen’s approach.18 Here smooth varia-
tions of boundaries lead to changes of the levels of left
right QW’s in the tunneling Hamiltonian, and we assum
that small modifications of the tunneling matrix element c
be neglected. For a discussion of the latter approximat
see Ref. 10. The approximation for considering the screen
‘‘on average’’ in the introduced large-scale potential i
volves supposing that the correlation lengthl c is large in
comparison with the Bohr radius and with transverse dim
sions of the DQW structure as well. SinceG(D) depends on
the sum of the scattering broadening of different levels,
believe that the introduction of phenomenological para
etersg l ,r instead of a detailed consideration the self-ene
functions, does not lead to the omission of important con
butions. We have also used the quasiclassical description
longitudinal motion that is valid when«F@ge f f in the cal-
culation of the path integrals in Eq.~18! and for integration
overu andt in Eq. ~24!. We have assumed that variations
potential are sufficiently weak such that the acceleration
an electron due to a long-scale random force~quasielectric
field! on a length of the order ofl c is insignificant. We have
considered that the inverted AlxGa12xAs-GaAs heterointer-
face is much more rougher than the normal GaA
Al xGa12xAs heterointerface based on the results of Ref.
for QW’s similar to those used in DQW structures of Ref.

To conclude, we now discuss the possibility of a mo
reliable test of the described mechanism of inhomogene
broadening. In further experimental studies of the tunnel
conductance it is necessary to make a more detailed ana
of the line-shape transition~from the Lorentzian to Gaussia
form!, and comparison between HWHM data measured
samples grown in different conditions. Because the con
ered mechanism modifies also in-plane transport coeffici
and optical properties of DQW’s with long-wavelength inh
mogeneities, further measurements as well theoretical stu
of these phenomena are necessary.

We believe that the present work establishes an esse
contribution of large-scale nonscreened fluctuations to
broadening of the tunneling conductance peak in DQW’s
agreement with experimental results.5
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APPENDIX A: NONSCREENED VARIATIONS
OF THE RANDOM POTENTIAL

Below we evaluate the nonscreened random contributi
to the potential6dUx that appears in Eqs.~2!–~4!. The 2D
Fourier transform of the screening potential,Vqz , is deter-
mined by the Poisson equation

S d2

dz2
2q2D Vqz52

4pe2

e
dnqz , ~A1!

wherednqz is the concentration induced by the total larg
scale potential. Neglecting the overlap of left and right orb
als w jz ( j 5 l ,r ) we use in Eq.~A1! the expansion

dnqz5 (
j 5 l ,r

dnqjw jz
2 , ~A2!

wherednqj52r2D(Ūqj1Vqj ) is the in-plane induced con
centration in thej th QW due to slow variations of the poten
tial while the nondiagonal components ofdn̂x are small due
to weak overlap of left and right orbitals. Note that, for th
general case of slowly varying heterointerfaces,w j xz should
depend on the in-plane coordinatex but for the 2D case
(«F!« j ) such in-plane variations of orbitals are not impo
tant.

The solution of Eq.~A1! assumes the form

Vqz5
2pe2

eq E dz8e2quz2z8udnqz8 , ~A3!

where for the caseq& l c
21!d21 we have exp(2quz2z8u).1.

Then the diagonal componentsVqj , j 5 l ,r , are expressed in
terms of the total concentration as

Vqj5E dzw jz
2 Vqz5

2pe2

eq (
s5 l ,r

dnqs . ~A4!

Substitutingdnqj in Eq. ~A4!, we have

Vqj52
2

qaB
(

s5 l ,r
~Ūqs1Vqs!, ~A5!

where aB is the Bohr radius. Since the right-hand side
Eq. ~A5! does not depend onj we obtain Vql ,r5Vq and
we deal with an averaged screened potentialVq across the
DQW’s. If we assume large-scale variations, and a t
DQW, we derive Eq.~2!, Vq.2(( j Ūqj )/2.

Now we present explicit expressions for the large-sc
addends to the matrix Hamiltonian~1! due to the random
variations of the DQW heterointerfaces. Statistically ind
pendent boundaries variations are described by random f
tionsdx

, anddx
. @see Fig. 1~b!# so that large-scale potentia

take the formŪ l ,rx.2« l ,r(dx
,2dx

.)/dl ,r , where« l ,r are the
energies of levels in left and right QW’s with widthdl ,r . As
it was shown in Ref. 8, the weak contributions due to var
tions of the tunneling matrix element may be neglected in
evaluation of Eq.~8! up to second-order inT. Substituting
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Ū l ,rx into the correlation functions in Eq.~4! and supposing
that all interfaces are statistically equivalents, we obtain
correlation functions as

W̄l ,r~ ux2x8u!52S 2«̄ā

d̄
D 2

expF2S x2x8

l c
D 2G , ~A6!

where «̄.« l ,r , d̄.dl ,r , ā is the averaged deviation of he
erointerfaces andl c is the correlation length. Finally, th
correlation functionw(u•••u) in Eq. ~4! takes the form
w(ux2x8u)5(d«̄)2exp@2(x2x8)2/ l c

2# with a characteristic

energyd«̄54«̄ā/d̄ for the case of two-side variations. How
-

-
ng
e
ever,d«̄52A2«̄ā/d̄ for the one-side variation case in a QW
whendx

, or dx
. is equal to zero and one of the two correl

tion functions given by Eq.~A6! is set to zero.

APPENDIX B: OPTIMAL FLUCTUATION METHOD

The evaluation of the Eq.~20! is based on the separatio
of the optimal trajectory~with maximal contribution to the
path integral! and on the comparison of typical variations
such a trajectory,dxt and dyt , with l c . First variations of
the actions in the exponential factors of Eqs.~18! and ~19!
with respect to path variationsdxt and dyt are written as
follows:
2
i

\E0

t1
dt dxt•H mẍt2

i

2\ l c
2E0

t1
dt8@u~t2t8!/t11xt2xt8#w„uu~t2t8!/t11xt2xt8u…6

i

2\ l c
2E0

t1
dt8FuS t

t1
2

t8

t2
D

1xt2yt82
u

2
~161!GwS Uut/t11xt2ut8/t22yt82

u

2
~161!U D J , ~B1!

and

2
i

\E0

t2
dtdyt•H 6mÿt2

i

2\ l c
2E0

t2
dt8@6u~t2t8!/t21yt2yt8#w„u6u~t2t8!/t21yt2yt8u…6

i

2\ l c
2

3E
0

t1
dt8FuS t

t2
2

t8

t1
D2xt81yt2

u

2
~161!GwS Uut8/t11xt82ut/t22yt1

u

2
~161!U D J , ~B2!
d

l

where the upper~lower! signs correspond to upper~lower!
signs in Eqs.~18! and ~19! and we have transformed corre
lation functions as follows:

w~ ux1dxu!2w~ uxu!.22x•dxw~x!/ l c
2 . ~B3!

Sincedxt and dyt are arbitrary variations, the optimal tra
jectories are determined by the system of Euler-Lagra
equations as

mẍt5
i

2\ l c
2E0

t1
dt8@u~t2t8!/t11xt2xt8#

3w„uu~t2t8!/t11xt2xt8u…7
i

2\ l c
2

3E
0

t2
dt8@u~t/t12t8/t2!1xt2yt82u~161!/2#

3w„uut/t11xt2ut8/t22yt82u~161!/2u…, ~B4!

and
e

6mÿt5
i

2\ l c
2E0

t2
dt8@6u~t2t8!/t21yt2yt8#

3w„u6u~t2t8!/t21yt2yt8u…7
i

2\ l c
2

3E
0

t1
dt8@u~t/t22t8/t1!2xt81yt2u~161!/2#

3w„uut/t21yt2ut8/t12xt82u~161!/2u…. ~B5!

In order to estimate the maximal deviations,xmax and
ymax, we suppose thatut1,2

max/t1,2@uxmaxu,uymaxu for typical pa-
rameters used in calculatingG(D) such thatxmax5xt

1
max and

ymax5yt
2
max. Thus, the right-hand sides of Eqs.~B4! and~B5!

do not depend onxt andyt and they can be easily integrate
with the boundary conditionsxt50,t1

50 andyt50,t2
50. For

the upper-sign contributions, estimatinguw(uuu)u' l cd«̄2 we
transform the right-hand sides of Eqs.~B4! and ~B5! into
id«̄2(ut1u1ut2u)/(2m\ l c). Thus, the result for the maxima
deviations is

Uxmax

ymax
U. d«̄ 2~ ut1u1ut2u!

16m\ l c
Ut1

2

t2
2U. ~B6!

This satisfies the conditionuxmaxu,uymaxu!lc for the upper-sign
contributions becauset1,2 are estimated as\/«F . Indeed,
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then we haveuxmaxu/lc and uymaxu/lc'(d«̄/«F)2(«c/4«F)!1,
where the characteristic energy«c5(\/ l c)

2/2m!«F .
A more careful consideration is necessary for the low

sign contributions whenut12t2u&\/«F , such thatt1,2't.
Thus, Eq.~B4! can be rewritten as

ẍt'
iud«̄ 2t

m\ l c
2 E

0

1

dz8~z2z8!exp@2u2~z82z!2/ l c
2#,

~B7!

wherez5t/t. Here, from Eq.~B5!, it follows thatÿt'0, and
taking into account the boundary conditions,yt50,t2

50, we

are led toyt'0. It is easy to solve Eq.~B7! taking into
account in its right-hand side that for the lower-sign con

*On leave from Institute of Semiconductor Physics, Kiev, Natio
Academy of Sciences of Ukraine, 252650, Ukraine.
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