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Effects of boson dispersion in fermion-boson coupled systems
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We study the nonlinear feedback in a fermion-boson system using an extension of dynamical mean-field
theory and the quantum Monte Carlo method. In the perturbative rediwesk-coupling and atomic limits
the effective interaction among fermions increases as the width of the boson dispersion increases. In the
strong-coupling regime away from the antiadiabatic limit, the effective interaction decreases as we increase the
width of the boson dispersion. This behavior is closely related to complete softening of the boson field. We
elucidate the parameters that control this nonperturbative region where fluctuations of the dispersive bosons
enhance the delocalization of fermions.

[. INTRODUCTION systems. The Jahn-Teller or breathing-type phonons, for in-
Interacting fermion-boson systems are very important i stanc_e, seen in manganese oxides should be dispersive due to
. Nntersite coupling. A distortion of a Mngoctahedron affects
_conde_nsedl matter p_hy5|cs and have been _Swd'egistortions of the neighbor octahedra, since the mGta-
intensively: They are directly relevant to the description of hedra share their oxygen atoms, which leads to an intersite

electron-lattice interaction. Other problems can be mappegoup”ng This may be relevant to fascinating orderings of
onto interacting fermions and bosons by means of thesice and charge in doped mangani&<s

Hubbard-Stratonovich transformatiéa.While the problem We study the mutual feedback of fermionic and bosonic
of a single fermion interacting with a boson field, i.e., the degrees of freedom in a very simple system of fermions in-
polaron problem, is well understodda lot less is known teracting with one branch of bosons at half filling. However,
about the many-fermion problem in interaction with a bosonthe methodology can be extended to other problems where
field; it is a full interacting many-body problem that is trac- similar DMF equations occur, such as electron problems
table analytically only in the adiabaficand the atomic with long-ranged Coulomb interactions and the competition
limits.>®? of magnetic order and the heavy fermion state, and to the
In this paper we revisit the interacting and dispersiveboson-fermion mixture of high temperature superconductiv-
fermion-boson problem using dynamical mean-fibkMF)  ity.
theory! This method reduces the quantum many-body prob- This paper is organized as follows. In the next section we
lem to a quantum impurity model obeying a self-consistencyfiscuss how DMF theory needs to be extended to fully in-
condition. This method has been useful in describing strongclude the feedback effects through fermion-boson interac-
coupling problems such as the Mott transition. There ardion. The quantum Monte Carl@MC) method is introduced
several motivations for our work. to solve the DMF equations in a wide region of parameters.
First, a DMF treatment of the bosonic and fermionic de-We also discuss some technical points of the QMC method
grees of freedom taking into account the boson dispersiof¢levant to this problem. The formalism is applied to dem-
requires an extension of the DMF equations where thénstrate effects of boson dispersion in a wide region of pa-
bosonic propagator degrees of freedom are determined sefi@meters and the results are summarized in Sec. Ill. In Sec.
consistently. This represents a type of self-consistent DMRV, We discuss our main result: the existence of two distinct
equation, that so far has not been investigated to our knowregimes of the DMF solutions. In the first regime, the feed-
edge. These equations are relevant to many problem&ack effects increase the fermion-boson coupling. In the sec-
electron-phonon interactions, fermions interacting with spirond regime, which is strongly fluctuating, the boson disper-
fluctuation§ or among themselves via the long-ranged Cou-Sion accelerates the delocalization of fermions. Complete
lomb interactiong, and to the boson-fermion mod¥l. softening of the boson fields characterizes the crossover be-
Second, while the Mott transition in the Hubbard model istween these regimes. Section V is devoted to a summary.
well understood using DMF methods, it is interesting to un-
derstand how it is modified by t_he varigtion of the frequency Il. DYNAMICAL MEAN-FIELD FORMALISM AND
of the mode that mediates the interaction, or how the results HAMILTONIAN
are changed by the electron-phonon interactions. Competi-
tion and cooperation in the coexistence of interactions with In this work, we discuss feedback effects caused by the
different frequencies are also interestiid? The approach fermion-boson interaction using DMF theory. DMF theory
discussed in this paper is a step in this direction. provides a local view of a many-body problem in terms of an
Finally, phonon dispersion effects are relevant to manyimpurity model that satisfies a self-consistency condifion.
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For general fermion-boson problems with a local interactionfunctions G, and D, to obtain the full Green’s function§

the local action has the form andD. The self-energy, andIl are calculated by the rela-
tions (2) and (3), and used to obtain the Green’s functions
Seri— f deT/E 02(7)95;(7_ 7)c, (1) f[hrough the self-consis_tency conditio/s and(5). New t_)are
« impurity Green'’s functions are calculated by the relati®)s
and(3) again. This loop is iterated until all the quantities are
+f drdr' > x,( Do =7 )X,(7) cpnverged. In this way, both fermionic an.d bosonic Qisper—
v sions are renormalized through the fermion-boson interac-
tion, and the mutual feedback effects are fully included.
+f d7 D Ng €l (1)Ca(T)X,(7), (1) The above DMF equations assume that no symmetry
ajagy 12N 2 breaking is present in the system although the extension to

phases with broken symmetry is straightforward. The equa-

whereG, andD, are the bare impurity Green’s functions for [ . .
Y0 0 purtty tions can be derived from a fermion-boson coupled model:

fermion and boson, respectively, which contain the inte
grated dynamical information of the other sites. Hepeis H=He+Hg+H, , (6)
the fermion annihilation operator ang, is the boson field.

Na,a,» denotes the coupling between fermions and bosongVhere

The indexa (v) denotes internal degrees of freedom of fer-
mions (bosons such as spins or orbitals of electramormal He=2, 2 tic] Cia—n2 cliCia, 7
modes of phononsWe do not explicitly write the contribu- « al
tion from fermion interactions such as the Coulomb interac- 1 0?
tion since we focus on the effects of boson dispersions in this _ iv 2

. . X . Hg=% —+ M, X, Xi, |, 8
paper. However, the actiaf) is quite general and contains 82 zy 2 M, ; @i ®
such fermion interactions through the Hubbard-Stratonovich
transformatior® with continuous fields. Of course, alterna-
. . e . . . H:z 2)\ C.T Ci . X (9)
tively, one can include additionally the fermion interactions Gy T aseria Tl
according to the DMF theory for Hubbard-type models. _ _ _

The full Green’s functions are related to the bare ones bylerep, is the conjugate momentum of the boson coordinate
Xi,, andM, is the boson mass of the modae

G iw)=Go o)~ (iwy), (2 The model(6) has been intensively studied using DMF
methods in the limit of zero boson dispersion, i.e., in the
D, Yiwy) =Dy Niwy)—TI,(io,), (3)  Holstein modeP:® Bosons with the same index have the

same frequencyEinstein phononsas
at each Matsubara frequeney,= (2n+1) /B for fermions quencyEi skl s

andw,,= 2n7/ B for bosons, respectivelyn(is an integer. 8 1

is the inverse temperatur®. and Il are the self-energy for HB=§ E
fermions and bosons, respectively. The Green’s functions for "
both fermions and bosons are determined in a self-consistemthere the index denotes a lattice site. In the ground state,
way. This is achieved by the following set of self- the possibility of charge-ordered or superconducting states

p?
v
MM ngvxfy), (10

consistency conditions: has been intensively discussed for this mddet! Above the
critical temperatures of these states, crossover behavior is
; ; - bserved from the Fermi liquid with a mass enhancement in
= o+ p— €qq— 2 4(i L 4 9 . . o
Ga % [lont = €gu=2alion)] @ the weak-coupling region to the so-called polaron, which is a

combined obj?}cgﬁgl; fermions and bosons in the strong-
) . B coupling region:>*
D=2 [(wp)?= g, — T, (iwy)] 7, (5) It is instructive to compare the present framework with
a the DMF theory for the problem without boson dispersion,
wheree,, andwg, give the dispersion relations for fermions such as the Holstein model. If bosons have no dispersion,
and bosons, respectively, as a function of the wave numbehat is, allo, take the same value, independent of, Eq.
g. w is the chemical potential to control the density of fer- (5) is rewritten as
mions. Here the bosons are described as harmonic oscilla-
tors. The condition(5) is modified according to the boson D=[(iwy)?— wi—(iw,)] (11

degreeg of freedom. Although the full Green’s functiorD contains a feedback

) . : &ffect in the self-energ¥l, the bare impurity Green’s func-
rgsults .Of the DMF theory can give useful |n5|g'hts |nt'o three'tion Dy is fixed at the noninteracting Green’s function given
dimensional systemsWe therefore take the dispersioeg

- X b
and oy that correspond to a semicircular density of states y

(see the details in Sec. llII)AThese DMF equations are ex- Dgee=[(iwn)2—w§]*1 (12)
act for a model where the fermions and bosons have random
hopping on lattice sites. throughout the self-consistency iterations when we start from

The self-consistency loop is closed as follows: The effec-Do="D U, This is equivalent to the ordinary DMF theory
tive action (1) is solved for given bare impurity Green’s for the Holstein model which does not need E¢®. and
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(5).2222 Compared to this, for the cases with finite bosonic There are two sources of error in the QMC calculations.
dispersion, the bare impurity Green’s functi®r is renor- One is a systematic error due to the discretization of the
malized frongree in the iterations in our formalism. imaginary time, and the other is a statistical error from the

The renormalization 0P, plays a crucial role becaugd®, random sampling. The former error is known to be propor-
is related to the effective interaction between fermions. If wetional to (A 7°). Measurement is divided into several bins to
integrate out the boson variablgsthe effective interaction estimate the latter statistical error by variance among the
between fermions takes the form bins. The magnitude of each error depends on the specific

form of model and parameters.
r T AT ’ ’

w2, | 97T (e (MU 7= 1)l (710, (7), I RESULTS

(13 A. Model and parameters

where We apply the DMF framework proposed in the previous

(14) section to the case where the general Hamiltorincon-
tains two species of fermions and one branch of bosons. We

In the absence of boson dispersion, sifiggis unchanged setthe masdl=1. The model is a straightforward extension

through the self-consistency loop as mentioned above, thef the Holstein model to include dispersive bosons, whose

effective interaction(14) is also unrenormalized. On the fermion-boson interaction is explicitly given by

other hand,D, is renormalized in our formalism for finite

dispersion, which means that the effective interaction be-

tween fermions is renormalized by the mutual feedback of H= _)‘2 E

the fermion-boson coupling.

There are several techniques for solving the effective imwhere the indexr takes two values, like the spin degrees of
purity problem with the actioril). In this work, we employ freedom of electrons. The interaction is diagonal in the fer-
the QMC method?® because it is an unbiased calculation mion indexa so that the QMC method does not suffer from
and suitable for investigating a wide region of parametershe negative sign problem mentioned in Sec. Il. The term
beyond the perturbative regim&sin the QMC approach, the (16) favors a doubly occupied or an empty state on each site.
imaginary time is discretized into slices with the widthA7  Note that the model has particle-hole symmetryuat0.

Uer( ) =N\>Dy(7).

L1
CiaCia™ 5% (16)

T a=12 2

(Ar=p/L). Continuous variables,=x,(7) (n=IA7,| The boson dispersion is taken into account through Eq.

=1,2,...L) are randomly updated td, with the probabil-  (5) in the present framework. We replace the summations

ity over the wave numbeg in Eqgs.(4) and(5) by energy inte-
grations as

1 detG, exd —ArB(x},)]

« detg, exd —ATB(x,)]’ (15 Q(iwn):J — +EF—(Z)—d§(iw 1 (17

where B(X,)) = 2{_1X,;D g5 X, With Do, =Dy, (7= 7).

The fermion Green’s function§ and G’ are calculated by

the standard algorithff for the configurations with,; and D(iwn)=J
X, , respectively.

In actual QMC samplings, we consider both local and
global updates for the continuous fiekls. The local update
consists of sequential updates of the fields on each di
cretized point; a change from, to x,,=x,+rd is at-
tempted, where is a random number betweenl and 1 and

Dg(e)de

(iwy)?—e?~M(iw,)

(18

whereD andDyg are the the densities of states for fermions
and bosons, respectively. In the following calculations, we
Sissume a semicircular density of states as

d is a given amplitude. The global update is a simultaneous De(e)= i W2—¢2, (19)
movement of all the fields by the same amoufit The latter mW?

becomes important especially in the strong-coupling region

and/or at low temperatures where the fieldshow some 2

ordering or are nearly ordered. The update amplitddis Dg(e)= —2\/w§—(s—w0)2, (20

chosen to give an appropriate value of the acceptance ratio, TWY
which is defined as the ratio of the number of accepted . . . .
samples to the total number of trials. where W is the half bandwidth of the fermion density, of

- : ; states, which is taken as unity hereafté/<€1); wg andw;
IemQ'I\{lr?e cl\jlccu\llséli(;r;?(f;ng;ilI)éeha;]\geg;[i\?ee gfgurlvtﬁ eSISQnFe)rrglb are the center and the half bandwidth of the boson density of

action (1), which leads to numerical instability in the QMC St&tes, respectivelyp>0, wo—w;>0). For a semicircular
measurements. However, if fermions couple to bosons onl ensity of states, the integratio(is/) and(18) are performed

in the diagonal form, that is, the coupling paramexer,,, nalytically and give

is nonzero only for the case of;= a5, the MC weight(15) N i
becomes positive definif@.In this case, there is no negative G= ﬂ

21
sign problem. 2t? @
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D—E 1 N 1
CEle B -w? g+ E -l

wherel=iw,+u and . = £+ wg with 2= (iw,)>—11.

The shape of the boson density of states near the bottom
is important because bosons at the band edge can be easily
excited and interact strongly with fermions. The semicircular
density of stateg20) has ane'? singularity, which is ex-
pected for bosons with ordinary cosine dispersions in three
dimensions. Therefore we believe that the following results

(22)

are qualitatively unchanged in realistic three-dimensional 0.55
models. Results would be different for the two-dimensional 0.50
density of states, which has a step discontinuity at the band 045
edges and results in very different DMF solutions. Py 040

In the absence of the boson dispersion;€0), the
model with the interaction(16) (the ordinary Holstein
mode) shows a charge ordering around half filling € 0)
and superconductivity in doped regions at very low 0.25
temperature$’~?! In the following, we examine the effects
of boson dispersion in the low temperature region above and

0.35
0.30

around these transition temperatures at half filling=0) 10" fe
assuming no symmetry breaking. The calculations are F ¥ U
mainly performed a3=8. We takeA 7= 1/4, for which all 100 p° gl 5 56

A 1.96
1.44
1.00
o 0.64
9 0.36
0.16
d 0.04

the measured quantities are converged to the limit\ef
—0 within the statistical errors. We have typically run
1000000 MC steps for measurements; one MC sampling
means a set of a sweep of local updates over all the dis-
cretized points and a global update. Convergence in the self-
consistency loop is usually rapid; typically 10 iterations are
required to converge within the statistical error bars when we
start from the noninteracting G_reen_s functions. However, in FIG. 1. Results for the dispersionless model wit—0.5 at 8
the strong-coupling case, the iteration often suffers from an _. . . , Wity

I . ; .. =8; (a) the probability function of the boson fields (b) the prob-
oscillation between two solutions. To avoid the oscillation,

ke the i . db o h . | ability of double occupancy, an@) the imaginary part of the self-
;’iv:n;na e the iteration proceed by mixing the previous so u'energy for fermions as a function of Matsubara frequencyaln

the typical error bars are shown at the peaks of the distributions.
The lines in(b) and(c) are guides to the eye.

-ImZ 10" [

102

10

B. Dispersionless boson

First, we reconsider the limit without boson dispersion,state between fermion and boson, which is called a polaron.
that is, w;=0. In this case, we use the two parametegs The polaron consists of double occupancy of fermions for
andU=\%/M wé to characterize the basic properties of thethe model with the interactioil6) (bipolaron. Thus, the
system. The first parameter, describes the adiabaticity. In probability P(x) displays a double peak at=*\/M wg,
the adiabatic limit ofwy— 0, the boson fields do not change which corresponds to the doubly occupied and empty states.
in imaginary time, that is, they behave as classical fields. IrFigure 1 shows this behavior by changing the valu& dbr
the opposite limit ofwg—oe, the bosons react instanta- the case ofvy=0.5. The single peak of the probabiliB(x)
neously to fermion motion. Between these two limits, bosonsappears for small, while the double peaks are developed
with a finite wy mediate a retarded effective interaction for U=1 as shown in Fig. (). At the same time, in Fig.
which is given byUg¢ in Eq. (14). The second parameter  1(b), the probability of double occupand®, increases from
describes the magnitude of the effective interaction between/4 for the noninteracting case to 1/2 for the situation in
fermions. Note that) = |Uq(w,=0)| in this dispersionless which the system consists of only empty and doubly occu-
case, since the bare impurity Green'’s function is given by theied sites. The self-energy for fermiolisis also enhanced
noninteracting ong12). by the effective interaction between fermiods Figure Xc)

For a fixed value ofwg, the system behaves quite differ- shows that the absolute value of the imaginary part of the
ently in the regions wittU<1 andU>1. For small values self-energy as a function of Matsubara frequency is strongly
of U, fermions are nearly free and each lattice site is in arenhanced byJ. Note that the data fow®,> 1/A 7 contain no
empty, a singly occupied, or a doubly occupied state withunbiased information. These clearly indicate the crossover
almost equal probability at half fillingg=0). If we define  from weakly correlated fermions in the small region to
the probabilityP(x) that the boson field lies in the interval  polarons in the largé region??
betweerx andx+ Ax, P(x) shows a single broad peak cen- A similar crossover is found for other values @f. Fig-
tered atx=0. Compared to this, iy becomes large, fermi- ures 2 and 3 show the results fop=2 and 8, respectively.
ons strongly interact with each other to form a combinedThe value ofU for the crossover, which we cdl* hereaf-
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FIG. 2. Results for the dispersionless model wit—2. FIG. 3. Results for the dispersionless model witf=8.

C. Dispersive boson: weak-coupling limit

ter, depends on the value @f. For example, for the case of Now we discuss the cases with finite bosonic dispersion;
wo=0.5 in Fig. 1, the double-peak structurerfx) appears w;#0. First, we study the weak-coupling limit &k/> w
atU~1; on the other hand, it does not appear upite3 for ~ andU that has been studied by perturbation thebry.

wo=8. This can be understood as follows: In the limit of  In this region, the finite width of the boson dispersion
wo— %, since the effective interaction becomes spontaneougnhances the effective interaction between fermions. Figure
Uer(7)=—US(7), the model maps onto an attractive Hub- 4(a) shows the bare impurity Green's function for bos@hs
bard model® in which the boson field corresponds to the as a function of Matsubara frequency for various values of
continuous Hubbard-Stratonovich fild.In the Hubbard ®; for the case ofwy=0.5 andU=0.16 \=0.2). D, is
model, it is known that the continuous field develops aenhanced by the width of the dispersien, which indicates
double-peak distribution df ~3, which corresponds to the that, through the relationl4), the effective interaction be-
opening of the Hubbard gap in the case of a repulsivéween fermiond) is enhanced bw,. This enhancement is
interaction’ On the other hand, in the opposite limit of,  also observed in the imaginary part of the fermion self-
—0, the effective interaction becomes constant in imaginangnergy as shown in Fig(d). At the same time, the probabil-
time, Ugr(7)=—U. This case is identical to an attractive ity of double occupancy becomes large as shown in Kig). 4
Falicov-Kimball model in the limit of a continuous number These features are similar to those in Figs. 1-3 when the
of configurations for the static field3.In the adiabatic limit, Parametet increases in the small region. These results
the fermions are localized at a smaller valudJogince fluc-  ¢an be understood using a perturbative arguni@at. V).
tuation of the boson field is smaller in this case than in the
antiadiabatic limit. Thus the splitting of the distribution of
should appear at a lower value Of In the Falicov-Kimball
model with a discrete static field, the critical value Wfis Next, we consider the limit oW<wy and U, which has
estimated to be #/? The finite value ofw, can interpolate  been studied based on so-called small-polaron thebtyn
between these two limits. Thus the valueldf may change this limit, the coherent band motion of fermions in E@) is
smoothly fromU* ~3 in the limit of wg—® to U*~1 in  a perturbation of other terms of Eq®8) and(9). The small
the limit of wy— 0. This crossover will be discussed in the polaron theory is a perturbative approach from the atomic
phase diagrams in Sec. IV. limit. The strong interaction between fermions and bosons

D. Dispersive boson: atomic limit
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FIG. 5. Results for the dispersive boson model in the atomic
0.270 FOTTTITTITTTITITIRIRIRRITIOY regime withwy=8 andU=9 (A=24) atB=8; (a) the bare impu-
B 3 (c) % E rity Green’s function for bosons at zero Matsubara frequency and
3 / 3 (b) the imaginary part of the self-energy for fermions at the smallest
= 0.265 | / 4 Matsubara frequency. The lines are guides to the eye.
D : / 3
/ away from the antiadiabatic limit, that i4)>W and wg
0.260 E Y 3 ~W. It is difficult to study this regime by any perturbative
- - 3 and analytical approach because of strong fluctuations. Our
5 ks L L DMF method including fluctuation effects is applied to this

, nonperturbative regime without any difficulty.
Figure 6 shows the results fas,=0.5 andU=2.56 (\

FIG. 4. Results for the dispersive boson model in the Weak-:o_g)_ As shown in Fig. @), the absolute value of the bare
coupling regime withw,=0.5 andU=0.16 A =0.2) atf=8; (@  impurity Green’s function for boson®, decreases a®;
the bare impurity Green'’s function for bosons as a function of Mat-jncreases. The imaginary part of the self-energy for fermions
subara frequencyb) the imaginary part of the self-energy for fer- also decreases in absolute value as shown in Fixj. At the
mions, and(c) the probability of double occupancy as a function of same time, the probability of double occupary decreases
the width of the boson dispersion. The lines are guides to the eyefrom 1/2 as shown in Fig. (6). Figure &d) shows that the
leads to the formation of the small polaron state as mengouble-peak structure Qf the probabilig(x) becomes un-
tioned in the dispersionless case in Sec. Il B. clear, merging mFo a S|r!gle peak. All the-se fegtures show

In this region, as in the weak-coupling case in Sec. Il C,that the effective interaction between fermiddg; is weak-

the effective interaction between fermions is enhanced by thened and the polaron state becomes unstablefofThis is
finite width of the boson dispersion. Figuréab plots the & striking contrast to the previous results in Secs. Il C and
bare impurity Green’s function for bosons at zero Matsubarall D. We will discuss a physical picture for this behavior in
frequency forwo=8 andU=9 (A=24). A finite width of ~ Sec. IV.

the boson dispersion, enhance®y(w,=0). D, shows the In the intermediate region, we find a crossover as the
largest change at zero frequency, as in Fig).4At the same value ofw; increases. Figure 7 shows this crossoverdgr
time, the absolute value of the imaginary part of the fermion=0.5 andU=0.64 (\ =0.4). For small values ab,, we find
self-energy increases as shown in Fi)5We plot here the a similar behavior as seen in Fig. 4; the bare impurity
data at the smallest Matsubara frequency to show the behaGreen’s function for bosons is enhanced and both the abso-
ior clearly. The double-peak structure of the probability|ute value of the self-energy and the double occupancy in-
function P(x) shown in Fig. 8a) at w;=0 does not change crease asw,;. However, for w;=0.2, the behavior is re-
for w; within statistical error bars. This suggests that theyersed; all three quantities begin to decrease as in Fig. 6.
finite width of the boson dispersion enhances the effectiverherefore in this intermediate region, as the valuecqf
interaction while the pOIaron state remains stable. These fe&i’ncreaseS, the effective interaction between fermions is en-
tures will be discussed based on small polaron theory in Seganced for small values af;, but begins to be weakened for
V. large values ofo;.

This crossover is closely related to complete softening of
the boson field. Figure 8 shows the effective frequency of the
Here we go beyond the perturbative regimes studied ifboson fieldw*, given by a pole of the Green'’s function for

Secs. Il C and 1ll D. We consider the strong-coupling casebosons as

E. Dispersive boson: strong-fluctuation regime



12 806 YUKITOSHI MOTOME AND GABRIEL KOTLIAR PRB 62

LY SA 50 prerr
F N - 3
. : ] ~45F - N (a) 3
- ~N E e -
? 3.5 : N : ?'c ] // N ]
S 30fF N 3 S40F o 3
= AN S o5 | A
S 25 F ~ 4 R N r
s © : AN
X T T TS P T 30 F ° <
0 01 02 03 04 b o bl e g o s bl oo b a1l o
w 0 0.1 0.2 0.3 0.4
1
W4
10F
C 0.25
8 [ &
6 : 020 F o\
-imz CF E s
4 F 015 kg .
- g
i -ImZ N
2 b 0.10 - R
oL 0.05 £
0 ;
0.00 L
055 E T T Ty 0 1
TE (€) 3
F 3 FTr Tl
p_ 050 & — 9P~ -~ 3 0310 F
D E ~ 3 ; &
E ~$ E 0s00F 7
3 ~ 3 . -
I IS T T - 0.290:—
0 01 02 03 04 1
04 0.280 |
T IRARLBRARARRIEAN RIRRS RARY MEPEPE BEEP AT BPEP AT BT
0 0.1 0.2 0.3 0.4
d
( ) o w4
0.0
p g; FIG. 7. Crossover in the intermediate coupling region véih
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X 02/ M cases. We determine the crossover valuet é6r different
0 values ofw, and w; by this complete softening ab*.
FIG. 6. Results for the dispersive boson model with=0.5 Figure 10 summarizes the phase diagram for the cross-

andU=2.56 (\ =0.8) atB=8; (a) the bare impurity Green’s func- overs determined by the above criterion. This identifies the
tion for bosons at zero Matsubara frequeny),the imaginary part boundary between the weak-fluctuation and strong-
of the self-energy for fermiongg) the probability of double occu- fluctuation regimes as discussed in Sec. IV. The most impor-
pancy, and(d) the probability function of the boson fields The  tant point in this phase diagram is that, especially for large
lines in (@—(c) are guides to the eye. If), the typical error bars  w,, the energy scale df for this crossover is quite different

are shown at the peaks of the distributions. from U* determined in Sec. Il B. This suggests that there is
another parameter that controls the onset of strong fluctua-
w* = (wy—w1)?+1(iw,=0), (23)  tions as discussed in the next section.
wherell is the self-energy for bosons. The frequenay IV. DISCUSSION

goes to zero at the value @f; where the crossover from

enhancement to weakening of the effective interaction is ex- In this section, we discuss the results obtained in Sec. Ill.
hibited in Fig. 7. Perturbative arguments are applied to discuss the enhance-

ment of the effective interaction between fermions in the
weak-couplind and atomic region3®! In the strong-
coupling regime away from the antiadiabatic limit, the weak-
We systematically investigate the crossover found in theening of the effective interaction and the instability of the

previous section by changing the parametegsandU. Fig-  polaron state are discussed as a consequence of the strong
ure 9 shows the values af* as a function olJ for the cases fluctuations of the boson fields accompanied by complete
of (a) wg=0.5 and(b) wy=2.0, for instance. For finite val- softening. The phase diagram is examined to clarify the pa-
ues of the widthw,, the frequencyw* goes to zero in both rameters that control the onset of the strong fluctuations.

F. Phase diagram
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FIG. 8. The effective frequency of bosons in the case of -
wo=0.5 andU=0.64 at=8. The line is a guide to the eye. oL

In the weak-coupling region, the dispersion widsh en-
gﬂ;egorﬂt?o:je%\ée;;S;iﬁglovgﬁeet\gf ?r?e f(:rerlr;_lceJEZrln ?Ourr FIG. 10. The phase diagram of the crossover for various values
f . . h d. A first-ord turbation i thgy of wy. The boundaries are determined by the complete softening of
e,rm'ons IS eénhanced. Irst-oraer perturbation In the CoUs, o oftective boson frequency. The lines are guides to the eye.
pling parameterx shows that the self-energyy becomes
larger as the widthw, increases sinc®, inCreases as1.” 5 the absolute valdl | becomes large as the value of

Thus, perturbation theory sugggsts that the boson d|sper5|oar)11 increases. Therefore, the enhancement of the effective
increases the effective interaction between fermions in th

. e . teraction in the weak-coupling region can be understood as
weak-coupling limit. This enhancement can be understoo

ntuitivel ol I th K i on. the d decrease of the effective boson frequency. Our results in
INtuitively as foflows. In the weak-coupling region, the den- gec. Il C are consistent with this perturbative argument.
sities of states for both fermions and bosons are not altere

drastically by the fermion-boson interaction; a rigid-band We now turn to the atomic limitW< wo andu. Now the
) e L ' ) fermion hopping term in Eq7) is a perturbation to the terms
picture should be justified. For a finite;, the band edge of ! ppIng in Eq.7) is & perturbali

the b density of states is | 4l \v. Then th f(8) and (9). If we apply the canonical transformation to di-
€ boson density of states 1S lowered linearly. Then the € agonalize the unperturbed terms according to small polaron
fective interaction(14) is mainly mediated by the bosons

theory>®! we obtain the expression of the Hamiltonian as
near the band edge as

)\2 H:HB_Z CiTaCiaA—i_z tijCiTaCjaxiTXj, (25)
o ila

. (24)
H 2 2
(i) = (wp— 1) whereA is the stabilization energy of polarons given by

Uer(i wq) ~

)\2
A=, —, 26
2 (26)

and the operatoX; takes the form

N 2
Xi=expg —i>, €9i—+/—p
l { q wq ¥ Mg

The third term of the Hamiltoniari25) indicates that the
hopping occurs not as a bare fermion but as a combined
object between fermions and bosons. Each fermion is asso-
ciated with local bosons. This is called the small polaron
state.

In the unperturbed state;(=0), the polarons are almost
localized in real space with the stabilization enefgygiven
by Eg. (26). When one increases the width of the boson
dispersionw;, the stabilization energy increases. This
makes the polarons more strongly localized. The delocaliza-
tion of the polarons is a second-order perturbatiohtgrms
in Eq. (25) since the polarons correspond to double occu-
pancy of fermions in this model. The hopping matrix by
second-order processes is suppressed ppecause the in-
termediate state in the perturbation costs enérgyrhe op-
eratorX; does not change the result in this limit @f>W.

FIG. 9. The softening of the effective boson frequency @r  Therefore, the finite width of the boson dispersion suppresses
we=0.5 and(b) wy=2.0 atB=8. The lines are guides to the eye. the band motion of the polarons and enhances the effective

. (27)

w
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interaction in this limit. Our results in Sec. Ill D are in good 8 prer
agreement with this argument based on small polaron theory. 7k

We now discuss the strong-coupling regime away from E
the antiadiabatic limit studied in Sec. Il E. In this regime,

the polaron state is formed by strong coupling; however, the 5F n=t
boson fields are loosely bound to the fermions due to a finite UasE

wg, compared to the previous atomic limit with,>W, g E
where the boson fields react instantaneously to fermion mo- ‘\
tions. This leads to large fluctuations in the boson fields 2 3 .

caused by the hopping of fermions. These fluctuations may 1E

in turn accelerate the delocalization of fermions through the E

mutual feedback effects of the fermion-boson coupling. Thus 0

this regime is characterized by these strong fluctuations,

which is the reason why a perturbation cannot be applied.
The finite width of the boson dispersias, introduced in

our calculations increases the fluctuations of the boson field

FIG. 11. Schematic phase diagram for the dispersionless case.
The critical value for the formation of the small polaron stdte is

The b | lized and gain their kineti hown as the dotted gray line. The solid line indicates the boundary
e Oso_ns are_‘ not loca '_Ze an 9""'” their kinetic energ¥7=l. The hatched area is the strong-fluctuation region. See the text
through dispersion. By tuning the width,, we can control ¢, jetails.

the fluctuations of the boson fields by hand. Our results in

Sec. lll E clearly exhibited that the effective interaction be-compared to the stored energy in the boson field, single-
tween fermions is weakened lay,. This is considered to be poson processes should be important. In the casg>et,
a consequence of the strong fluctuations of the boson fieldge fermion-boson interaction is strong enough to excite a
enhanced byw;, which tend to make fermions more delo- |arge numbers of bosons, i.e., multiboson processes become
calized. This behavior is elucidated by our method, WhiChimportant. The previous stuéfysuggested the importance of
fully includes the mutual feedback in many-body systems. fjyctuations of the boson fields in the latter multiboson re-

In the intermediate region, a sharp crossover was foungime,
by changing the value ab; in Sec. Ill E. For smalk,, the In the plane (1by,U), the crossovem=1 between the
effective interaction is enhanced ly;,. Since the fluctua- sjngle-boson and multiboson regimes correspondsUto
tions are small there, this may be smoothly connected to the w? as shown in Fig. 1Xsolid ling. The line of n=1
behavior discussed in the weak-coupling or atomic regionsyecomes much larger thai* in the antiadiabatic regime. If
The effective frequency»* defined by Eq.(23) becomes ;e plot these values dfl(7=1) on the axis ofw,=0 in
small but remains_ finite as in the perturbatiye regime,_ a"Fig. 10, the crossover boundaries seem to be smoothly ex-
though the reduction ob* is large and nonlinear in this apolated to these values in the antiadiabatic region. We
nonperturbative regime. When the vglue of becomes  gemonstrate this behavior in Fig. 12 fop=4 and 2(gray
large enough to soften the boson field completely* (  |ineg). This indicates that in the antiadiabatic regime the line
—0), fluctuations play a crucial role in enhancing the delo-of ,,—1 corresponds to the crossover between the weak-
cghzaﬂon. of fgrmlons. Therefore the boundaries in the phas@,ctyation and strong-fluctuation regimes in the dispersion-
diagram in Fig. 10 are the crossovers between the weakags case.
fluctuation and strong-fluctuation regimes. The latter regime on the other hand, in the adiabatic regime with small but
is characterized by the weakening of the effective interactionjnite o, the value ofU for the boundary in Fig. 10 is not
between fermions by the dispersive bosons, which soften
completely. L ——————

In the dispersionless case in Sec. Ill B, we found another :
crossover caused by the formation of bipolarons, which is

14 F

characterized by the development of the double-peak struc- 12 |
ture in the probabilityP(x). The critical value ofU for this 10 E
crossoverU*, changes fronU* ~3 in the limit of wy>W :
(antiadiabatic limit to U* ~1 in the limit of wy<W (adia- Usg
batic limit) as shown in the schematic phase diagram in the s F
plane (1g,U) in Fig. 11 (dotted gray ling On the other 4+ F
hand, the crossover to the strong-fluctuation regime in Fig. !
10 appears at much larger valuedbthanU*, especially in 2E
the antiadiabatic regime with large but finitey. This ok
strongly suggests the importance of another energy scale in 0 0.05 0.1 8;5 02 025 03
1

characterizing the strong-fluctuation regime which is not

found in our calculations for the dispersionless case. FIG. 12. The values ol and w, at which the crossover from
The importance of such a characteristic energy scale Wage \weak-fluctuation to the strong-fluctuation regime takes place.

also pointed out in a previous mean-field stddiyhe param-  Notice that these values extrapolate smoothly to the valuds af

eter is de_flned by the ratio of the fe_rmlon—bosor; interaction,,— 1 for w,=4 and 2 (antiadiabatic regimeand to U* for wg

to the spring constant of the boson fieldss A\/M wg. Inthe  =0.5 and 0.25adiabatic regimkein the limit of w,=0. See the text

case ofyp<1, since the fermion-boson interaction is weak for details.
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smoothly connected to the valuedffor =1. For instance, formation of the small polaron in a system with a single
in the case ofvy=0.5, =1 givesU=1/4, which is much fermion interacting with a boson fief3* In the single-
smaller than the boundary value. This suggests that the cofermion problem, the boson field is not affected by fermion-
dition of »>1 does not characterize the strong-fluctuationboson coupling in the thermodynamic limit. There is no
regime in this adiabatic region. feedback to bosons from changes of the fermion state. In
To understand this behavior in the adiabatic regime, let usther words, the self-energy for bosons is always zero. The
discuss the adiabatic limit @bo,— 0. In this limit, the boson present study successfully describes such feedback effects in
fields behave as classical fields which do not fluctuate in thenany-body fermion systems.
imaginary time direction. Boson fluctuations come only from A subtle problem remains open concerning the boson
the fluctuation of the value of the field which is constant in  softening in the dispersionless case. As shown in Fig. 9,
time. Thus, even if the system is in the regionspf 1, the  whenw, is zero, the effective frequenay* becomes very
fluctuations of the boson fields are small whéris smaller  small but remains finite for large values 0f We note that
thanU*, since the fields experience a deep single-well pothere are finite-temperature effects¥ is more suppressed
tential as indicated in the probabili§(x). The boson fields for lower temperatures. Unfortunately we cannot conclude

begin to fluctuate wherlJ becomes comparable to*,  from this study whethew* goes to zero even whew,
where the potential fox softens arounck=0. Therefore in =0. In this dispersionless case, the boson density of states is
the adiabatic limit, the strong-fluctuation regime should bea § function ate=wg, which is a special case since the
characterized not byy>1 but byU>U*. shape of the boson density of states at the bottom is impor-

Based on this argument, if we plot the valuelf onthe  tant, as mentioned in Sec. Il A. For instance, a steplike sin-
axis of w;=0 in the adiabatic regime, the crossover bound-gularity in the two-dimensional density of states might pre-
aries seem to be smoothly extrapolated to these values. Figent the boson field from complete softening at finite
ure 12 exhibits this behavior for the casesaf=0.5 and temperatures. Although further studies are necessary of the
0.25(dashed lines properties of DMF equations for various types of density of

These results show that boson fluctuations that are strorgfates, we believe from the results in Figs. 11 and 12 that
enough to accelerate the delocalization of fermions appear iBven whenw,=0 the nonlinear suppression of* is rel-

a different way in the antiadiabatic and adiabatic regimes. Irevant to strong fluctuations of bosons and that there are two
the antiadiabatic regimea(,>W), the bipolaron state is important energy scales.

formed atU=U*. In the region withU>U* and <1,
however, the fluctuations of the boson fields are small in the
sense that the single-boson process is the main contributor

and the effective boson frequency is finite. #f becomes We have investigated the effects of boson dispersion in a
larger than 1, the boson field is softened and the boson fluGystem of dynamical mean-field equations describing
tuations play a crucial role through multiboson processes. OBoupled fermion-boson systems. The analysis of the equa-
the other hand, in the adiabatic regimey(<W), the fluc-  tions revealed that the boson dispersion plays a crucial role
tuations do not become large urlti~U* even if is larger  in a wide region of parameters. By introducing a parameter
than 1. The fluctuations are mainly of classical origin therefor the width of the dispersion in the model, we can control

To summarize, strong fluctuations of the boson fields bethe fluctuations of the boson fields. To handle the boson
come important only when the condition$>U* and »  fluctuations and the feedback effects, we have extended the
>1 are both satisfied. These conditions are shown as th@éynamical mean-field theory to determine the Green’s func-
hatched area in Fig. 11. This area is the strongly correlategions for both fermions and bosons in a self-consistent way.
region for both fermions and bosons. The criterion for thein the ordinary framework for the dispersionless case, the
formation of bipolaronsp) ~U*, corresponds to a competi- channel for the boson Green'’s function is frozen in the sense
tion between the kinetic energy of fermiowsand the effec-  that the bare impurity Green’s function is fixed and unrenor-
tive interactionU.®° On the other hand, the criteriop~1  malized from the noninteracting one. The renormalization of
corresponds to a competition between the stored energy affie bare impurity Green’s function for bosons is very impor-
the boson field and the coupling energy to fermions. Thus theant since the bare impurity Green’s function is directly re-
hatched area in Fig. 11 is the region where correlations bdated to the effective interaction between fermions. The
come strong from the standpoint of both fermions andequations in extended dynamical mean-field theory are
bosons. solved by using the quantum Monte Carlo technique.

We note that the fluctuation effects are most conspicuous The main result in models with dispersive bosons is that
near the boundaried=U* and =1 in the hatched area in in the strong-coupling regime away from the antiadiabatic
Fig. 11. The reduction ofD,| and |Im3| becomes smaller [imit the fluctuations of the boson fields become relevant in
when the system goes away from these boundaries. It is quitgccelerating the delocalization of fermions. The effective in-
reasonable that the polaron state becomes stable when itteraction between fermions is weakened as the width of the
less affected by fluctuations away from the boundaries. Thi®oson dispersion increases in this regime. This behavior is
has been indicated by a mean-field sttidgnd also by a explicitly shown by our method, which fully includes the
Monte Carlo study of the single-fermion probléft?Even  mutual feedback effects in many-body systems. The cross-
though the magnitude of the fluctuation changes, it should bever to this nonperturbative regime is closely correlated with
stressed that its role in the hatched area in Fig. 11 differsoftening of the boson field. We have examined the phase
essentially from the perturbative regime described above. diagram where this strong fluctuation occurs by tuning the

The criteriaU>U* and7>1 have been discussed for the coupling parameter and the width of the dispersion. The

V. SUMMARY AND CONCLUDING REMARKS
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strong fluctuations that delocalize fermions become relevannass bipolaronic states, which would give some insights into
when the bipolaron state is formed and multiboson processdhe high temperature superconductivity in Cu oxide materials
become important. The bipolarons become stable when thehere fermions strongly couple with spin fluctuations. We
effective interaction between fermions overcomes the ferplan to examine this two-dimensional case in a later publi-
mion band energy. The multiboson regime is characterizedation.
by a coupling parameter larger than the boson energy. Thus The dynamical mean-field equations allow us to vary the
the strong-fluctuation regime is the strongly correlated regiorwidth of the boson dispersion in the calculations. This re-
for both fermions and bosons. As the coupling parameteveals interesting properties in the strong-fluctuation regime.
increases, the boson fluctuations accompanied by the softemuning of the electronic bandwidth has been the subject of a
ing of the boson fields appear in a different way in the adia-great deal of theoretical and experimental witlour work
batic and the antiadiabatic regimes. In the adiabatic regimesuggests the possible interest of varying the boson dispersion
the fluctuations are mainly classical and are enhanced by thexperimentally. This may be easier in systems where the
softening of the potential for the boson fields in the forma-bosons are spin fluctuations whose dispersit@termined by
tion of the small polaron state. On the other hand, in theexchange interactionscan be controlled more easily than
antiadiabatic regime, the bipolarons are formed in the singleeptical phonon dispersions. Another possibility may be the
boson regime, where the dynamical fluctuations are smallealization of the dynamical mean-field theory in a random
and the effective boson frequency is finite. The boson flucmodel.
tuations do not play a crucial role until the system enters the There are many materials that satisfy the above conditions
multiboson regime by complete softening of bosons. for the strong-fluctuation regime. In many physical situa-
The onset of the strong fluctuations occurs near the regiotions, the fermion bandwidtW is large or comparable @,
where the boson degrees of freedom soften. In this paper wghich makes it possible to access the strong-fluctuation re-
have studied the dynamical mean-field equations in the algime by a relatively weak coupling. Our method provides a
sence of any freezing of the boson degrees of freedom. Theg®mwerful theoretical tool for examining the physical proper-
effects together with generalizations to states with differenties in this regime. We can apply it to more realistic models
symmetries and other generalizations are currently under irincluding orbital degrees of freedom of electrons, different
vestigation. normal modes of phonons, or interactions between fermions.
Our results imply that the behavior of the boson fluctua-Such extensions are now under investigation.
tions may depend on the specific form of the boson density
of states. Different forms of the density of states should be
tested in the present dynamical mean-field framework in a
future study. In particular, we are interested in the two- Y.M. acknowledges the financial support of the Japan So-
dimensional case with a steplike singularity at the edgeciety for the Promotion of Science for Young Scientists.
which might be free from complete softening at finite tem-G.K. is supported by the NSF under Grant. No. DMR 95-
peratures. Boson fluctuations in this case may lead to light29138.
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