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Effects of boson dispersion in fermion-boson coupled systems
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We study the nonlinear feedback in a fermion-boson system using an extension of dynamical mean-field
theory and the quantum Monte Carlo method. In the perturbative regimes~weak-coupling and atomic limits!
the effective interaction among fermions increases as the width of the boson dispersion increases. In the
strong-coupling regime away from the antiadiabatic limit, the effective interaction decreases as we increase the
width of the boson dispersion. This behavior is closely related to complete softening of the boson field. We
elucidate the parameters that control this nonperturbative region where fluctuations of the dispersive bosons
enhance the delocalization of fermions.
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I. INTRODUCTION

Interacting fermion-boson systems are very importan
condensed matter physics and have been stu
intensively.1 They are directly relevant to the description
electron-lattice interaction. Other problems can be map
onto interacting fermions and bosons by means of
Hubbard-Stratonovich transformation.2,3 While the problem
of a single fermion interacting with a boson field, i.e., t
polaron problem, is well understood,1 a lot less is known
about the many-fermion problem in interaction with a bos
field; it is a full interacting many-body problem that is tra
table analytically only in the adiabatic4 and the atomic
limits.5,6,1

In this paper we revisit the interacting and dispers
fermion-boson problem using dynamical mean-field~DMF!
theory.7 This method reduces the quantum many-body pr
lem to a quantum impurity model obeying a self-consisten
condition. This method has been useful in describing stro
coupling problems such as the Mott transition. There
several motivations for our work.

First, a DMF treatment of the bosonic and fermionic d
grees of freedom taking into account the boson dispers
requires an extension of the DMF equations where
bosonic propagator degrees of freedom are determined
consistently. This represents a type of self-consistent D
equation, that so far has not been investigated to our kno
edge. These equations are relevant to many proble
electron-phonon interactions, fermions interacting with s
fluctuations8 or among themselves via the long-ranged Co
lomb interactions,9 and to the boson-fermion model.10

Second, while the Mott transition in the Hubbard mode
well understood using DMF methods, it is interesting to u
derstand how it is modified by the variation of the frequen
of the mode that mediates the interaction, or how the res
are changed by the electron-phonon interactions. Comp
tion and cooperation in the coexistence of interactions w
different frequencies are also interesting.11,12 The approach
discussed in this paper is a step in this direction.

Finally, phonon dispersion effects are relevant to ma
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systems. The Jahn-Teller or breathing-type phonons, for
stance, seen in manganese oxides should be dispersive d
intersite coupling. A distortion of a MnO6 octahedron affects
distortions of the neighbor octahedra, since the MnO6 octa-
hedra share their oxygen atoms, which leads to an inter
coupling. This may be relevant to fascinating orderings
lattice and charge in doped manganites.13–16

We study the mutual feedback of fermionic and boso
degrees of freedom in a very simple system of fermions
teracting with one branch of bosons at half filling. Howev
the methodology can be extended to other problems wh
similar DMF equations occur, such as electron proble
with long-ranged Coulomb interactions and the competit
of magnetic order and the heavy fermion state, and to
boson-fermion mixture of high temperature superconduc
ity.

This paper is organized as follows. In the next section
discuss how DMF theory needs to be extended to fully
clude the feedback effects through fermion-boson inter
tion. The quantum Monte Carlo~QMC! method is introduced
to solve the DMF equations in a wide region of paramete
We also discuss some technical points of the QMC met
relevant to this problem. The formalism is applied to de
onstrate effects of boson dispersion in a wide region of
rameters and the results are summarized in Sec. III. In S
IV, we discuss our main result: the existence of two distin
regimes of the DMF solutions. In the first regime, the fee
back effects increase the fermion-boson coupling. In the s
ond regime, which is strongly fluctuating, the boson disp
sion accelerates the delocalization of fermions. Comp
softening of the boson fields characterizes the crossover
tween these regimes. Section V is devoted to a summar

II. DYNAMICAL MEAN-FIELD FORMALISM AND
HAMILTONIAN

In this work, we discuss feedback effects caused by
fermion-boson interaction using DMF theory. DMF theo
provides a local view of a many-body problem in terms of
impurity model that satisfies a self-consistency conditio7
12 800 ©2000 The American Physical Society
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For general fermion-boson problems with a local interacti
the local action has the form

Seff5E dt dt8(
a

ca
†~t!G 0a

21~t2t8!ca~t8!

1E dt dt8(
n

xn~t!D 0n
21~t2t8!xn~t8!

1E dt (
a1a2n

la1a2nca1

† ~t!ca2
~t!xn~t!, ~1!

whereG0 andD0 are the bare impurity Green’s functions fo
fermion and boson, respectively, which contain the in
grated dynamical information of the other sites. Hereca is
the fermion annihilation operator andxn is the boson field.
la1a2n denotes the coupling between fermions and boso

The indexa (n) denotes internal degrees of freedom of fe
mions~bosons! such as spins or orbitals of electrons~normal
modes of phonons!. We do not explicitly write the contribu-
tion from fermion interactions such as the Coulomb inter
tion since we focus on the effects of boson dispersions in
paper. However, the action~1! is quite general and contain
such fermion interactions through the Hubbard-Stratonov
transformation2,3 with continuous fields. Of course, altern
tively, one can include additionally the fermion interactio
according to the DMF theory for Hubbard-type models.7

The full Green’s functions are related to the bare ones

G a
21~ ivn!5G 0a

21~ ivn!2Sa~ ivn!, ~2!

D n
21~ ivn!5D 0n

21~ ivn!2Pn~ ivn!, ~3!

at each Matsubara frequencyvn5(2n11)p/b for fermions
andvn52np/b for bosons, respectively (n is an integer!. b
is the inverse temperature.S and P are the self-energy fo
fermions and bosons, respectively. The Green’s functions
both fermions and bosons are determined in a self-consis
way. This is achieved by the following set of sel
consistency conditions:

Ga5(
q

@ ivn1m2eqa2Sa~ ivn!#21, ~4!

Dn5(
q

@~ ivn!22vqn
2 2Pn~ ivn!#21, ~5!

whereeqa andvqn give the dispersion relations for fermion
and bosons, respectively, as a function of the wave num
q. m is the chemical potential to control the density of fe
mions. Here the bosons are described as harmonic osc
tors. The condition~5! is modified according to the boso
degrees of freedom.

Previous studies of other models have indicated that
results of the DMF theory can give useful insights into thre
dimensional systems.7 We therefore take the dispersionseq
and vq that correspond to a semicircular density of sta
~see the details in Sec. III A!. These DMF equations are ex
act for a model where the fermions and bosons have ran
hopping on lattice sites.

The self-consistency loop is closed as follows: The eff
tive action ~1! is solved for given bare impurity Green’
,
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functionsG0 and D0 to obtain the full Green’s functionsG
andD. The self-energyS andP are calculated by the rela
tions ~2! and ~3!, and used to obtain the Green’s functio
through the self-consistency conditions~4! and~5!. New bare
impurity Green’s functions are calculated by the relations~2!
and~3! again. This loop is iterated until all the quantities a
converged. In this way, both fermionic and bosonic disp
sions are renormalized through the fermion-boson inter
tion, and the mutual feedback effects are fully included.

The above DMF equations assume that no symme
breaking is present in the system although the extensio
phases with broken symmetry is straightforward. The eq
tions can be derived from a fermion-boson coupled mod

H5HF1HB1HI , ~6!

where

HF5(
a

(
i j

t i j
a cia

† cj a2m(
a i

cia
† cia , ~7!

HB5
1

2 (
n

S (
i

pin
2

M n
1(

i j
M nv i j n

2 xinxj nD , ~8!

HI5 (
a1a2n

(
i

la1a2ncia1

† cia2
xin . ~9!

Herepin is the conjugate momentum of the boson coordin
xin , andM n is the boson mass of the moden.

The model~6! has been intensively studied using DM
methods in the limit of zero boson dispersion, i.e., in t
Holstein model.5,6 Bosons with the same indexn have the
same frequency~Einstein phonons! as

HB5
1

2 (
n i

S pin
2

M n
1M nv0n

2 xin
2 D , ~10!

where the indexi denotes a lattice site. In the ground sta
the possibility of charge-ordered or superconducting sta
has been intensively discussed for this model.17–21Above the
critical temperatures of these states, crossover behavio
observed from the Fermi liquid with a mass enhancemen
the weak-coupling region to the so-called polaron, which i
combined object of fermions and bosons in the stro
coupling region.1,5,6,22

It is instructive to compare the present framework w
the DMF theory for the problem without boson dispersio
such as the Holstein model. If bosons have no dispers
that is, allvq take the same valuev0 independent ofq, Eq.
~5! is rewritten as

D5@~ ivn!22v0
22P~ ivn!#21. ~11!

Although the full Green’s functionD contains a feedback
effect in the self-energyP, the bare impurity Green’s func
tion D0 is fixed at the noninteracting Green’s function give
by

D 0
free5@~ ivn!22v0

2#21 ~12!

throughout the self-consistency iterations when we start fr
D05D 0

free. This is equivalent to the ordinary DMF theor
for the Holstein model which does not need Eqs.~3! and
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12 802 PRB 62YUKITOSHI MOTOME AND GABRIEL KOTLIAR
~5!.21,22 Compared to this, for the cases with finite boson
dispersion, the bare impurity Green’s functionD0 is renor-
malized fromD 0

free in the iterations in our formalism.
The renormalization ofD0 plays a crucial role becauseD0

is related to the effective interaction between fermions. If
integrate out the boson variablesx, the effective interaction
between fermions takes the form

(
a1a2a3a4

E dt dt8ca1

† ~t!ca2
~t!Ueff~t2t8!ca3

† ~t8!ca4
~t8!,

~13!

where

Ueff~t!5l2D0~t!. ~14!

In the absence of boson dispersion, sinceD0 is unchanged
through the self-consistency loop as mentioned above,
effective interaction~14! is also unrenormalized. On th
other hand,D0 is renormalized in our formalism for finite
dispersion, which means that the effective interaction
tween fermions is renormalized by the mutual feedback
the fermion-boson coupling.

There are several techniques for solving the effective
purity problem with the action~1!. In this work, we employ
the QMC method7,23 because it is an unbiased calculati
and suitable for investigating a wide region of paramet
beyond the perturbative regimes.24 In the QMC approach, the
imaginary time is discretized intoL slices with the widthDt
(Dt5b/L). Continuous variablesxn l5xn(t l) (t l5 lDt,l
51,2, . . . ,L) are randomly updated toxn l8 with the probabil-
ity

)
a

detGa

detGa8

exp@2DtB~xn l8 !#

exp@2DtB~xn l !#
, ~15!

where B(xn l)5( j 51
L xn jD 0n j l

21 xn l with D0n j l 5D0n(t j2t l).
The fermion Green’s functionsG and G8 are calculated by
the standard algorithm23 for the configurations withxn l and
xn l8 , respectively.

In actual QMC samplings, we consider both local a
global updates for the continuous fieldsxn l . The local update
consists of sequential updates of the fields on each
cretized point; a change fromxn l to xn l8 5xn l1rd is at-
tempted, wherer is a random number between21 and 1 and
d is a given amplitude. The global update is a simultane
movement of all the fields by the same amountrd. The latter
becomes important especially in the strong-coupling reg
and/or at low temperatures where the fieldsx show some
ordering or are nearly ordered. The update amplituded is
chosen to give an appropriate value of the acceptance r
which is defined as the ratio of the number of accep
samples to the total number of trials.

QMC calculations generally have a negative sign pr
lem; the MC weight~15! can be negative for the gener
action ~1!, which leads to numerical instability in the QMC
measurements. However, if fermions couple to bosons o
in the diagonal form, that is, the coupling parameterla1a2n

is nonzero only for the case ofa15a2, the MC weight~15!
becomes positive definite.25 In this case, there is no negativ
sign problem.
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There are two sources of error in the QMC calculatio
One is a systematic error due to the discretization of
imaginary time, and the other is a statistical error from t
random sampling. The former error is known to be prop
tional to (Dt2). Measurement is divided into several bins
estimate the latter statistical error by variance among
bins. The magnitude of each error depends on the spe
form of model and parameters.

III. RESULTS

A. Model and parameters

We apply the DMF framework proposed in the previo
section to the case where the general Hamiltonian~6! con-
tains two species of fermions and one branch of bosons.
set the massM51. The model is a straightforward extensio
of the Holstein model to include dispersive bosons, who
fermion-boson interaction is explicitly given by

HI52l(
i

(
a51,2

S cia
† cia2

1

2D xi , ~16!

where the indexa takes two values, like the spin degrees
freedom of electrons. The interaction is diagonal in the f
mion indexa so that the QMC method does not suffer fro
the negative sign problem mentioned in Sec. II. The te
~16! favors a doubly occupied or an empty state on each s
Note that the model has particle-hole symmetry atm50.

The boson dispersion is taken into account through
~5! in the present framework. We replace the summatio
over the wave numberq in Eqs.~4! and ~5! by energy inte-
grations as

G~ ivn!5E DF~«!d«

ivn1m2«2S~ ivn!
, ~17!

D~ ivn!5E DB~«!d«

~ ivn!22«22P~ ivn!
, ~18!

whereDF andDB are the the densities of states for fermio
and bosons, respectively. In the following calculations,
assume a semicircular density of states as

DF~«!5
2

pW2
AW22«2, ~19!

DB~«!5
2

pv1
2
Av1

22~«2v0!2, ~20!

where W is the half bandwidth of the fermion density, o
states, which is taken as unity hereafter (W51); v0 andv1
are the center and the half bandwidth of the boson densit
states, respectively (v0.0, v02v1.0). For a semicircular
density of states, the integrations~17! and~18! are performed
analytically7 and give

G5
z2Az224t2

2t2
, ~21!
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D5
1

j F 1

j21Aj2
2 2v1

2
1

1

j11Aj1
2 2v1

2G , ~22!

wherez5 ivn1m andj65j6v0 with j25( ivn)22P.
The shape of the boson density of states near the bo

is important because bosons at the band edge can be e
excited and interact strongly with fermions. The semicircu
density of states~20! has an«1/2 singularity, which is ex-
pected for bosons with ordinary cosine dispersions in th
dimensions. Therefore we believe that the following resu
are qualitatively unchanged in realistic three-dimensio
models. Results would be different for the two-dimensio
density of states, which has a step discontinuity at the b
edges and results in very different DMF solutions.

In the absence of the boson dispersion (v150), the
model with the interaction~16! ~the ordinary Holstein
model! shows a charge ordering around half filling (m50)
and superconductivity in doped regions at very lo
temperatures.17–21 In the following, we examine the effect
of boson dispersion in the low temperature region above
around these transition temperatures at half filling (m50)
assuming no symmetry breaking. The calculations
mainly performed atb58. We takeDt51/4, for which all
the measured quantities are converged to the limit ofDt
→0 within the statistical errors. We have typically ru
1 000 000 MC steps for measurements; one MC samp
means a set of a sweep of local updates over all the
cretized points and a global update. Convergence in the
consistency loop is usually rapid; typically 10 iterations a
required to converge within the statistical error bars when
start from the noninteracting Green’s functions. However
the strong-coupling case, the iteration often suffers from
oscillation between two solutions. To avoid the oscillatio
we make the iteration proceed by mixing the previous so
tions.

B. Dispersionless boson

First, we reconsider the limit without boson dispersio
that is,v150. In this case, we use the two parametersv0

and U5l2/Mv0
2 to characterize the basic properties of t

system. The first parameterv0 describes the adiabaticity. I
the adiabatic limit ofv0→0, the boson fields do not chang
in imaginary time, that is, they behave as classical fields
the opposite limit ofv0→`, the bosons react instanta
neously to fermion motion. Between these two limits, boso
with a finite v0 mediate a retarded effective interactio
which is given byUeff in Eq. ~14!. The second parameterU
describes the magnitude of the effective interaction betw
fermions. Note thatU5uUeff(vn50)u in this dispersionless
case, since the bare impurity Green’s function is given by
noninteracting one~12!.

For a fixed value ofv0, the system behaves quite diffe
ently in the regions withU!1 andU@1. For small values
of U, fermions are nearly free and each lattice site is in
empty, a singly occupied, or a doubly occupied state w
almost equal probability at half filling (m50). If we define
the probabilityP(x) that the boson fieldx lies in the interval
betweenx andx1Dx, P(x) shows a single broad peak ce
tered atx50. Compared to this, ifU becomes large, fermi
ons strongly interact with each other to form a combin
m
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state between fermion and boson, which is called a pola
The polaron consists of double occupancy of fermions
the model with the interaction~16! ~bipolaron!. Thus, the
probability P(x) displays a double peak atx56l/Mv0

2,
which corresponds to the doubly occupied and empty sta
Figure 1 shows this behavior by changing the value ofU for
the case ofv050.5. The single peak of the probabilityP(x)
appears for smallU, while the double peaks are develope
for U*1 as shown in Fig. 1~a!. At the same time, in Fig.
1~b!, the probability of double occupancyPD increases from
1/4 for the noninteracting case to 1/2 for the situation
which the system consists of only empty and doubly oc
pied sites. The self-energy for fermionsS is also enhanced
by the effective interaction between fermionsU. Figure 1~c!
shows that the absolute value of the imaginary part of
self-energy as a function of Matsubara frequency is stron
enhanced byU. Note that the data forvn.1/Dt contain no
unbiased information. These clearly indicate the crosso
from weakly correlated fermions in the smallU region to
polarons in the largeU region.22

A similar crossover is found for other values ofv0. Fig-
ures 2 and 3 show the results forv052 and 8, respectively
The value ofU for the crossover, which we callU* hereaf-

FIG. 1. Results for the dispersionless model withv050.5 atb
58; ~a! the probability function of the boson fieldsx, ~b! the prob-
ability of double occupancy, and~c! the imaginary part of the self-
energy for fermions as a function of Matsubara frequency. In~a!,
the typical error bars are shown at the peaks of the distributio
The lines in~b! and ~c! are guides to the eye.
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ter, depends on the value ofv0. For example, for the case o
v050.5 in Fig. 1, the double-peak structure ofP(x) appears
atU;1; on the other hand, it does not appear up toU;3 for
v058. This can be understood as follows: In the limit
v0→`, since the effective interaction becomes spontane
Ueff(t)52Ud(t), the model maps onto an attractive Hu
bard model26 in which the boson field corresponds to th
continuous Hubbard-Stratonovich field.2,3 In the Hubbard
model, it is known that the continuous field develops
double-peak distribution atU;3, which corresponds to th
opening of the Hubbard gap in the case of a repuls
interaction.7 On the other hand, in the opposite limit ofv0

→0, the effective interaction becomes constant in imagin
time, Ueff(t)52U. This case is identical to an attractiv
Falicov-Kimball model in the limit of a continuous numbe
of configurations for the static fields.21 In the adiabatic limit,
the fermions are localized at a smaller value ofU since fluc-
tuation of the boson field is smaller in this case than in
antiadiabatic limit. Thus the splitting of the distribution ofx
should appear at a lower value ofU. In the Falicov-Kimball
model with a discrete static field, the critical value ofU is
estimated to be 1.27,28 The finite value ofv0 can interpolate
between these two limits. Thus the value ofU* may change
smoothly fromU* ;3 in the limit of v0→` to U* ;1 in
the limit of v0→0. This crossover will be discussed in th
phase diagrams in Sec. IV.

FIG. 2. Results for the dispersionless model withv052.
s,

e

y

e

C. Dispersive boson: weak-coupling limit

Now we discuss the cases with finite bosonic dispersi
v1Þ0. First, we study the weak-coupling limit ofW@v0

andU that has been studied by perturbation theory.4

In this region, the finite width of the boson dispersionv1

enhances the effective interaction between fermions. Fig
4~a! shows the bare impurity Green’s function for bosonsD0

as a function of Matsubara frequency for various values
v1 for the case ofv050.5 andU50.16 (l50.2). D0 is
enhanced by the width of the dispersionv1, which indicates
that, through the relation~14!, the effective interaction be
tween fermionsUeff is enhanced byv1. This enhancement is
also observed in the imaginary part of the fermion se
energy as shown in Fig. 4~b!. At the same time, the probabil
ity of double occupancy becomes large as shown in Fig. 4~c!.
These features are similar to those in Figs. 1–3 when
parameterU increases in the smallU region. These results
can be understood using a perturbative argument~Sec. IV!.

D. Dispersive boson: atomic limit

Next, we consider the limit ofW!v0 andU, which has
been studied based on so-called small-polaron theory.5,6,1 In
this limit, the coherent band motion of fermions in Eq.~7! is
a perturbation of other terms of Eqs.~8! and ~9!. The small
polaron theory is a perturbative approach from the atom
limit. The strong interaction between fermions and boso

FIG. 3. Results for the dispersionless model withv058.
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leads to the formation of the small polaron state as m
tioned in the dispersionless case in Sec. III B.

In this region, as in the weak-coupling case in Sec. III
the effective interaction between fermions is enhanced by
finite width of the boson dispersion. Figure 5~a! plots the
bare impurity Green’s function for bosons at zero Matsub
frequency forv058 andU59 (l524). A finite width of
the boson dispersionv1 enhancesD0(vn50). D0 shows the
largest change at zero frequency, as in Fig. 4~a!. At the same
time, the absolute value of the imaginary part of the ferm
self-energy increases as shown in Fig. 5~b!. We plot here the
data at the smallest Matsubara frequency to show the be
ior clearly. The double-peak structure of the probabil
function P(x) shown in Fig. 3~a! at v150 does not change
for v1 within statistical error bars. This suggests that t
finite width of the boson dispersion enhances the effec
interaction while the polaron state remains stable. These
tures will be discussed based on small polaron theory in S
IV.

E. Dispersive boson: strong-fluctuation regime

Here we go beyond the perturbative regimes studied
Secs. III C and III D. We consider the strong-coupling ca

FIG. 4. Results for the dispersive boson model in the we
coupling regime withv050.5 andU50.16 (l50.2) atb58; ~a!
the bare impurity Green’s function for bosons as a function of M
subara frequency,~b! the imaginary part of the self-energy for fe
mions, and~c! the probability of double occupancy as a function
the width of the boson dispersion. The lines are guides to the
-

,
e

a

n

v-

e
e
a-
c.

in
e

away from the antiadiabatic limit, that is,U.W and v0
;W. It is difficult to study this regime by any perturbativ
and analytical approach because of strong fluctuations.
DMF method including fluctuation effects is applied to th
nonperturbative regime without any difficulty.

Figure 6 shows the results forv050.5 andU52.56 (l
50.8). As shown in Fig. 6~a!, the absolute value of the bar
impurity Green’s function for bosonsD0 decreases asv1
increases. The imaginary part of the self-energy for fermio
also decreases in absolute value as shown in Fig. 6~b!. At the
same time, the probability of double occupancyPD decreases
from 1/2 as shown in Fig. 6~c!. Figure 6~d! shows that the
double-peak structure of the probabilityP(x) becomes un-
clear, merging into a single peak. All these features sh
that the effective interaction between fermionsUeff is weak-
ened and the polaron state becomes unstable forv1. This is
a striking contrast to the previous results in Secs. III C a
III D. We will discuss a physical picture for this behavior i
Sec. IV.

In the intermediate region, we find a crossover as
value ofv1 increases. Figure 7 shows this crossover forv0
50.5 andU50.64 (l50.4). For small values ofv1, we find
a similar behavior as seen in Fig. 4; the bare impur
Green’s function for bosons is enhanced and both the a
lute value of the self-energy and the double occupancy
crease asv1. However, for v1*0.2, the behavior is re-
versed; all three quantities begin to decrease as in Fig
Therefore in this intermediate region, as the value ofv1
increases, the effective interaction between fermions is
hanced for small values ofv1, but begins to be weakened fo
large values ofv1.

This crossover is closely related to complete softening
the boson field. Figure 8 shows the effective frequency of
boson fieldv* , given by a pole of the Green’s function fo
bosons as

-

-

e.

FIG. 5. Results for the dispersive boson model in the atom
regime withv058 andU59 (l524) atb58; ~a! the bare impu-
rity Green’s function for bosons at zero Matsubara frequency
~b! the imaginary part of the self-energy for fermions at the smal
Matsubara frequency. The lines are guides to the eye.
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v* 5A~v02v1!21P~ ivn50!, ~23!

where P is the self-energy for bosons. The frequencyv*
goes to zero at the value ofv1 where the crossover from
enhancement to weakening of the effective interaction is
hibited in Fig. 7.

F. Phase diagram

We systematically investigate the crossover found in
previous section by changing the parametersv0 andU. Fig-
ure 9 shows the values ofv* as a function ofU for the cases
of ~a! v050.5 and~b! v052.0, for instance. For finite val
ues of the widthv1, the frequencyv* goes to zero in both

FIG. 6. Results for the dispersive boson model withv050.5
andU52.56 (l50.8) atb58; ~a! the bare impurity Green’s func
tion for bosons at zero Matsubara frequency,~b! the imaginary part
of the self-energy for fermions,~c! the probability of double occu-
pancy, and~d! the probability function of the boson fieldsx. The
lines in ~a!–~c! are guides to the eye. In~d!, the typical error bars
are shown at the peaks of the distributions.
x-

e

cases. We determine the crossover values ofU for different
values ofv0 andv1 by this complete softening ofv* .

Figure 10 summarizes the phase diagram for the cro
overs determined by the above criterion. This identifies
boundary between the weak-fluctuation and stro
fluctuation regimes as discussed in Sec. IV. The most imp
tant point in this phase diagram is that, especially for la
v0, the energy scale ofU for this crossover is quite differen
from U* determined in Sec. III B. This suggests that there
another parameter that controls the onset of strong fluc
tions as discussed in the next section.

IV. DISCUSSION

In this section, we discuss the results obtained in Sec.
Perturbative arguments are applied to discuss the enha
ment of the effective interaction between fermions in t
weak-coupling4 and atomic regions.5,6,1 In the strong-
coupling regime away from the antiadiabatic limit, the wea
ening of the effective interaction and the instability of th
polaron state are discussed as a consequence of the s
fluctuations of the boson fields accompanied by comp
softening. The phase diagram is examined to clarify the
rameters that control the onset of the strong fluctuations

FIG. 7. Crossover in the intermediate coupling region withv0

50.5 andU50.64 (l50.4) atb58; ~a! the bare impurity Green’s
function for bosons at zero Matsubara frequency,~b! the imaginary
part of the self-energy for fermions, and~c! the probability of
double occupancy. The lines are guides to the eye.
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In the weak-coupling region, the dispersion widthv1 en-
hances the effective interaction between fermions in
DMF solutions. The absolute value of the self-energy
fermions is enhanced. A first-order perturbation in the c
pling parameterl shows that the self-energyS becomes
larger as the widthv1 increases sinceD0 increases asv1.4

Thus, perturbation theory suggests that the boson disper
increases the effective interaction between fermions in
weak-coupling limit. This enhancement can be underst
intuitively as follows: In the weak-coupling region, the de
sities of states for both fermions and bosons are not alte
drastically by the fermion-boson interaction; a rigid-ba
picture should be justified. For a finitev1, the band edge o
the boson density of states is lowered linearly. Then the
fective interaction~14! is mainly mediated by the boson
near the band edge as

Ueff~ ivn!;
l2

~ ivn!22~v02v1!2
. ~24!

FIG. 8. The effective frequency of bosons in the case
v050.5 andU50.64 atb58. The line is a guide to the eye.

FIG. 9. The softening of the effective boson frequency for~a!
v050.5 and~b! v052.0 atb58. The lines are guides to the ey
r
r
-

ion
e
d

ed

f-

Thus the absolute valueuUeffu becomes large as the value
v1 increases. Therefore, the enhancement of the effec
interaction in the weak-coupling region can be understood
a decrease of the effective boson frequency. Our result
Sec. III C are consistent with this perturbative argument.

We now turn to the atomic limit,W!v0 andU. Now the
fermion hopping term in Eq.~7! is a perturbation to the term
~8! and ~9!. If we apply the canonical transformation to d
agonalize the unperturbed terms according to small pola
theory,5,6,1 we obtain the expression of the Hamiltonian a

H5HB2(
ia

cia
† ciaD1(

i j ,a
t i j cia

† cj aXi
†Xj , ~25!

whereD is the stabilization energy of polarons given by

D5(
q

l2

vq
, ~26!

and the operatorXi takes the form

Xi5expF2 i(
q

eiq•r i
l

vq
A 2

Mvq
pqG . ~27!

The third term of the Hamiltonian~25! indicates that the
hopping occurs not as a bare fermion but as a combi
object between fermions and bosons. Each fermion is a
ciated with local bosons. This is called the small polar
state.

In the unperturbed state (t i j 50), the polarons are almos
localized in real space with the stabilization energyD given
by Eq. ~26!. When one increases the width of the bos
dispersionv1, the stabilization energyD increases. This
makes the polarons more strongly localized. The delocal
tion of the polarons is a second-order perturbation int terms
in Eq. ~25! since the polarons correspond to double oc
pancy of fermions in this model. The hopping matrix b
second-order processes is suppressed byv1 because the in-
termediate state in the perturbation costs energyD. The op-
eratorXi does not change the result in this limit ofv0@W.
Therefore, the finite width of the boson dispersion suppres
the band motion of the polarons and enhances the effec

f

FIG. 10. The phase diagram of the crossover for various va
of v0. The boundaries are determined by the complete softenin
the effective boson frequency. The lines are guides to the eye.
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interaction in this limit. Our results in Sec. III D are in goo
agreement with this argument based on small polaron the

We now discuss the strong-coupling regime away fr
the antiadiabatic limit studied in Sec. III E. In this regim
the polaron state is formed by strong coupling; however,
boson fields are loosely bound to the fermions due to a fi
v0, compared to the previous atomic limit withv0@W,
where the boson fields react instantaneously to fermion
tions. This leads to large fluctuations in the boson fie
caused by the hopping of fermions. These fluctuations m
in turn accelerate the delocalization of fermions through
mutual feedback effects of the fermion-boson coupling. Th
this regime is characterized by these strong fluctuatio
which is the reason why a perturbation cannot be applie

The finite width of the boson dispersionv1 introduced in
our calculations increases the fluctuations of the boson fie
The bosons are not localized and gain their kinetic ene
through dispersion. By tuning the widthv1, we can control
the fluctuations of the boson fields by hand. Our results
Sec. III E clearly exhibited that the effective interaction b
tween fermions is weakened byv1. This is considered to be
a consequence of the strong fluctuations of the boson fi
enhanced byv1, which tend to make fermions more delo
calized. This behavior is elucidated by our method, wh
fully includes the mutual feedback in many-body system

In the intermediate region, a sharp crossover was fo
by changing the value ofv1 in Sec. III E. For smallv1, the
effective interaction is enhanced byv1. Since the fluctua-
tions are small there, this may be smoothly connected to
behavior discussed in the weak-coupling or atomic regio
The effective frequencyv* defined by Eq.~23! becomes
small but remains finite as in the perturbative regime,
though the reduction ofv* is large and nonlinear in this
nonperturbative regime. When the value ofv1 becomes
large enough to soften the boson field completely (v*
→0), fluctuations play a crucial role in enhancing the de
calization of fermions. Therefore the boundaries in the ph
diagram in Fig. 10 are the crossovers between the we
fluctuation and strong-fluctuation regimes. The latter regi
is characterized by the weakening of the effective interac
between fermions by the dispersive bosons, which so
completely.

In the dispersionless case in Sec. III B, we found anot
crossover caused by the formation of bipolarons, which
characterized by the development of the double-peak st
ture in the probabilityP(x). The critical value ofU for this
crossover,U* , changes fromU* ;3 in the limit of v0@W
~antiadiabatic limit! to U* ;1 in the limit of v0!W ~adia-
batic limit! as shown in the schematic phase diagram in
plane (1/v0 ,U) in Fig. 11 ~dotted gray line!. On the other
hand, the crossover to the strong-fluctuation regime in F
10 appears at much larger values ofU thanU* , especially in
the antiadiabatic regime with large but finitev0. This
strongly suggests the importance of another energy sca
characterizing the strong-fluctuation regime which is n
found in our calculations for the dispersionless case.

The importance of such a characteristic energy scale
also pointed out in a previous mean-field study.29 The param-
eter is defined by the ratio of the fermion-boson interact
to the spring constant of the boson fields,h5l/Mv0

2. In the
case ofh,1, since the fermion-boson interaction is we
ry.
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compared to the stored energy in the boson field, sing
boson processes should be important. In the case ofh.1,
the fermion-boson interaction is strong enough to excit
large numbers of bosons, i.e., multiboson processes bec
important. The previous study29 suggested the importance o
fluctuations of the boson fields in the latter multiboson
gime.

In the plane (1/v0 ,U), the crossoverh51 between the
single-boson and multiboson regimes corresponds toU
5v0

2 as shown in Fig. 11~solid line!. The line of h51
becomes much larger thanU* in the antiadiabatic regime. I
we plot these values ofU(h51) on the axis ofv150 in
Fig. 10, the crossover boundaries seem to be smoothly
trapolated to these values in the antiadiabatic region.
demonstrate this behavior in Fig. 12 forv054 and 2~gray
lines!. This indicates that in the antiadiabatic regime the li
of h51 corresponds to the crossover between the we
fluctuation and strong-fluctuation regimes in the dispersi
less case.

On the other hand, in the adiabatic regime with small b
finite v0, the value ofU for the boundary in Fig. 10 is no

FIG. 11. Schematic phase diagram for the dispersionless c
The critical value for the formation of the small polaron stateU* is
shown as the dotted gray line. The solid line indicates the bound
h51. The hatched area is the strong-fluctuation region. See the
for details.

FIG. 12. The values ofU andv1 at which the crossover from
the weak-fluctuation to the strong-fluctuation regime takes pla
Notice that these values extrapolate smoothly to the values ofU at
h51 for v054 and 2 ~antiadiabatic regime! and to U* for v0

50.5 and 0.25~adiabatic regime! in the limit of v150. See the text
for details.
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smoothly connected to the value ofU for h51. For instance,
in the case ofv050.5, h51 givesU51/4, which is much
smaller than the boundary value. This suggests that the
dition of h.1 does not characterize the strong-fluctuat
regime in this adiabatic region.

To understand this behavior in the adiabatic regime, le
discuss the adiabatic limit ofv0→0. In this limit, the boson
fields behave as classical fields which do not fluctuate in
imaginary time direction. Boson fluctuations come only fro
the fluctuation of the value of the fieldx, which is constant in
time. Thus, even if the system is in the region ofh.1, the
fluctuations of the boson fields are small whenU is smaller
than U* , since the fields experience a deep single-well
tential as indicated in the probabilityP(x). The boson fields
begin to fluctuate whenU becomes comparable toU* ,
where the potential forx softens aroundx50. Therefore in
the adiabatic limit, the strong-fluctuation regime should
characterized not byh.1 but byU.U* .

Based on this argument, if we plot the value ofU* on the
axis of v150 in the adiabatic regime, the crossover boun
aries seem to be smoothly extrapolated to these values.
ure 12 exhibits this behavior for the cases ofv050.5 and
0.25 ~dashed lines!.

These results show that boson fluctuations that are st
enough to accelerate the delocalization of fermions appea
a different way in the antiadiabatic and adiabatic regimes
the antiadiabatic regime (v0.W), the bipolaron state is
formed atU*U* . In the region withU.U* and h,1,
however, the fluctuations of the boson fields are small in
sense that the single-boson process is the main contrib
and the effective boson frequency is finite. Ifh becomes
larger than 1, the boson field is softened and the boson fl
tuations play a crucial role through multiboson processes.
the other hand, in the adiabatic regime (v0,W), the fluc-
tuations do not become large untilU;U* even ifh is larger
than 1. The fluctuations are mainly of classical origin the

To summarize, strong fluctuations of the boson fields
come important only when the conditionsU.U* and h
.1 are both satisfied. These conditions are shown as
hatched area in Fig. 11. This area is the strongly correla
region for both fermions and bosons. The criterion for t
formation of bipolarons,U;U* , corresponds to a compet
tion between the kinetic energy of fermionsW and the effec-
tive interactionU.30 On the other hand, the criterionh;1
corresponds to a competition between the stored energ
the boson field and the coupling energy to fermions. Thus
hatched area in Fig. 11 is the region where correlations
come strong from the standpoint of both fermions a
bosons.

We note that the fluctuation effects are most conspicu
near the boundariesU5U* andh51 in the hatched area in
Fig. 11. The reduction ofuD0u and uImSu becomes smalle
when the system goes away from these boundaries. It is q
reasonable that the polaron state becomes stable when
less affected by fluctuations away from the boundaries. T
has been indicated by a mean-field study29 and also by a
Monte Carlo study of the single-fermion problem.31,32 Even
though the magnitude of the fluctuation changes, it should
stressed that its role in the hatched area in Fig. 11 dif
essentially from the perturbative regime described above

The criteriaU.U* andh.1 have been discussed for th
n-
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formation of the small polaron in a system with a sing
fermion interacting with a boson field.33,34 In the single-
fermion problem, the boson field is not affected by fermio
boson coupling in the thermodynamic limit. There is n
feedback to bosons from changes of the fermion state
other words, the self-energy for bosons is always zero.
present study successfully describes such feedback effec
many-body fermion systems.

A subtle problem remains open concerning the bos
softening in the dispersionless case. As shown in Fig.
when v1 is zero, the effective frequencyv* becomes very
small but remains finite for large values ofU. We note that
there are finite-temperature effects;v* is more suppressed
for lower temperatures. Unfortunately we cannot conclu
from this study whetherv* goes to zero even whenv1
50. In this dispersionless case, the boson density of stat
a d function at «5v0, which is a special case since th
shape of the boson density of states at the bottom is im
tant, as mentioned in Sec. III A. For instance, a steplike s
gularity in the two-dimensional density of states might p
vent the boson field from complete softening at fin
temperatures. Although further studies are necessary of
properties of DMF equations for various types of density
states, we believe from the results in Figs. 11 and 12
even whenv150 the nonlinear suppression ofv* is rel-
evant to strong fluctuations of bosons and that there are
important energy scales.

V. SUMMARY AND CONCLUDING REMARKS

We have investigated the effects of boson dispersion
system of dynamical mean-field equations describ
coupled fermion-boson systems. The analysis of the eq
tions revealed that the boson dispersion plays a crucial
in a wide region of parameters. By introducing a parame
for the width of the dispersion in the model, we can cont
the fluctuations of the boson fields. To handle the bos
fluctuations and the feedback effects, we have extended
dynamical mean-field theory to determine the Green’s fu
tions for both fermions and bosons in a self-consistent w
In the ordinary framework for the dispersionless case,
channel for the boson Green’s function is frozen in the se
that the bare impurity Green’s function is fixed and unren
malized from the noninteracting one. The renormalization
the bare impurity Green’s function for bosons is very impo
tant since the bare impurity Green’s function is directly r
lated to the effective interaction between fermions. T
equations in extended dynamical mean-field theory
solved by using the quantum Monte Carlo technique.

The main result in models with dispersive bosons is t
in the strong-coupling regime away from the antiadiaba
limit the fluctuations of the boson fields become relevant
accelerating the delocalization of fermions. The effective
teraction between fermions is weakened as the width of
boson dispersion increases in this regime. This behavio
explicitly shown by our method, which fully includes th
mutual feedback effects in many-body systems. The cro
over to this nonperturbative regime is closely correlated w
softening of the boson field. We have examined the ph
diagram where this strong fluctuation occurs by tuning
coupling parameter and the width of the dispersion. T
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strong fluctuations that delocalize fermions become relev
when the bipolaron state is formed and multiboson proce
become important. The bipolarons become stable when
effective interaction between fermions overcomes the
mion band energy. The multiboson regime is characteri
by a coupling parameter larger than the boson energy. T
the strong-fluctuation regime is the strongly correlated reg
for both fermions and bosons. As the coupling parame
increases, the boson fluctuations accompanied by the so
ing of the boson fields appear in a different way in the ad
batic and the antiadiabatic regimes. In the adiabatic regi
the fluctuations are mainly classical and are enhanced by
softening of the potential for the boson fields in the form
tion of the small polaron state. On the other hand, in
antiadiabatic regime, the bipolarons are formed in the sin
boson regime, where the dynamical fluctuations are sm
and the effective boson frequency is finite. The boson fl
tuations do not play a crucial role until the system enters
multiboson regime by complete softening of bosons.

The onset of the strong fluctuations occurs near the reg
where the boson degrees of freedom soften. In this pape
have studied the dynamical mean-field equations in the
sence of any freezing of the boson degrees of freedom. T
effects together with generalizations to states with differ
symmetries and other generalizations are currently unde
vestigation.

Our results imply that the behavior of the boson fluctu
tions may depend on the specific form of the boson den
of states. Different forms of the density of states should
tested in the present dynamical mean-field framework i
future study. In particular, we are interested in the tw
dimensional case with a steplike singularity at the ed
which might be free from complete softening at finite te
peratures. Boson fluctuations in this case may lead to lig
ev
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mass bipolaronic states, which would give some insights i
the high temperature superconductivity in Cu oxide mater
where fermions strongly couple with spin fluctuations. W
plan to examine this two-dimensional case in a later pu
cation.

The dynamical mean-field equations allow us to vary
width of the boson dispersion in the calculations. This
veals interesting properties in the strong-fluctuation regim
Tuning of the electronic bandwidth has been the subject
great deal of theoretical and experimental work.35 Our work
suggests the possible interest of varying the boson disper
experimentally. This may be easier in systems where
bosons are spin fluctuations whose dispersion~determined by
exchange interactions! can be controlled more easily tha
optical phonon dispersions. Another possibility may be
realization of the dynamical mean-field theory in a rando
model.

There are many materials that satisfy the above conditi
for the strong-fluctuation regime. In many physical situ
tions, the fermion bandwidthW is large or comparable tov0,
which makes it possible to access the strong-fluctuation
gime by a relatively weak coupling. Our method provides
powerful theoretical tool for examining the physical prope
ties in this regime. We can apply it to more realistic mod
including orbital degrees of freedom of electrons, differe
normal modes of phonons, or interactions between fermio
Such extensions are now under investigation.
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