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Bond-disordered Anderson model on a two-dimensional square lattice: Chiral symmetry
and restoration of one-parameter scaling
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The bond-disordered Anderson model in two dimensions on a square lattice is studied numerically near the
band center by calculating the density of states~DOS!, multifractal properties of eigenstates, and the localiza-
tion length. The DOS divergence at the band center is studied and compared with Gade’s result and power law.
Although Gade’s form describes accurately the DOS of finite-size systems near the band center, it fails to
describe the calculated part of the DOS of the infinite system, and a different expression is proposed. Study of
the level spacing distributions reveals that the state closest to the band center and the next one have a different
level spacing distribution than pairs of states away from the band center. Multifractal properties of finite
systems furthermore show that the scaling of eigenstates changes discontinuously near the band center. This
unusual behavior suggests the existence of a divergent length scale, whose existence is explained as the
finite-size manifestation of the band center critical point of the infinite system, and the critical exponent of the
correlation length is calculated by a finite-size scaling. Furthermore, study of the scaling of the Lyapunov
exponents of transfer matrices of long stripes indicates that for a long stripe of any width there is an energy
region around the band center within which the Lyapunov exponents cannot be described by one-parameter
scaling. This region vanishes, however, in the limit of the infinite square lattice, when one-parameter scaling is
restored, and the scaling exponent calculated is in agreement with the result of the finite-size scaling analysis.
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I. INTRODUCTION

A quantum particle moving in a random potential und
goes the Anderson localization quantum phase transitio
three dimensions with increasing strength of disorder.1–4 The
order parameter characterizing the localized phase is the
verse localization lengthj21,5 describing the exponentia
decay of the envelope of eigenstates. When the critical p
is approached from the localized phase, the localiza
length, which depends for a given energy only on t
strength of the disorder, increases with decreasing diso
strength and finally diverges as a power law at a particu
disorder strength. Further decrease of disorder strength
makes the eigenstate extended throughout the whole sys
Simultaneously, on length scales smaller than the local
tion length, eigenstates exhibit multifractal scaling behav
characterized by anomalous scaling of the inverse partic
tion numbers~for definitions and references, see Sec. V!.

This basic phenomenon, together with the work of L
ciardello and Thouless on the scaling of conductance
finite-size systems,6 led to the scaling theory o
localization,7,8 one of the main consequences of which is t
absence of extended states in two-dimensional disord
systems, with two dimensions being the lower critical dime
sion of the transition. If spin-orbit interaction is prese
however, the picture changes and systems from symple
ensembles exhibit the localization transition even in two
mensions as opposed to systems from orthogonal ensem
which have all states localized.3 The presence of a stron
magnetic field in two-dimensional disordered systems, on
other hand, leads to a completely different behavior—
integer quantum Hall effect—where critical states are pres
PRB 620163-1829/2000/62~19!/12775~10!/$15.00
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at the middle of each of the disorder-broadened Lan
levels.9

Another class of model exhibiting localization properti
different from the systems mentioned above are systems
chiral ~particle-hole! symmetry. Such systems are defined
a bipartite lattice with only hopping~off diagonal or bond!
disorder. Wegner first realized the importance of this sy
metry in disordered systems,10–12 and even one-dimensiona
systems with this symmetry are known to have pecu
properties, such as diverging densities of states~DOS’s! at
the band center,13 where the eigenstate decays as e
(2gAr ),14,15 in contrast to one-dimensional site-disorder
systems which have the DOS bounded16 and all states local-
ized.

There are several models with chiral symmetry that ha
been extensively studied. The simplest two, in the sense
only one orbital per site and nearest-neighbor hopp
are included, time-reversal symmetry is present, and
spin is not relevant, are the Anderson bond-disorde
model13–15,17,18~ABD! and the random Dirac fermion mode
~RDF!.19,20The main difference between these two models
that, in the nondisordered case, the ABD model has a lin
points as the Fermi surface at half filling while the RD
model has a point Fermi surface and linear dispersion
energies.

This work is concerned with the ABD model on a squa
lattice of sizeL and periodic boundary conditions, defined b
the Hamiltonian

H52e0(
^ i , j &

~ t i , j ci
†cj1H.c.!, ~1!
12 775 ©2000 The American Physical Society
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12 776 PRB 62VIKTOR Z. CEROVSKI
where angular brackets denote neighboring sites on the
tice, ci is the annihilation operator of the electron at sitei,
and t ’s are uniformly distributed random variablest i , jP(1
22w,1), with 0,w<1. They represent random hoppin
energies between nearest neighbors, expressed in uni
energye0, which is set to 1 hereafter.

Interest in this model mainly comes from its unusual sc
ing properties at the band center, where Soukouliset al.17

have found a critical state using the Green’s function8 and
transfer matrix method~TMM !.21 More recent TMM calcu-
lation by Eilmeset al.18 confirmed this result with a highe
accuracy and showed the validity of one-parameter sca
not too close to the band center. Nevertheless, Miler
Wang22 have found in their study of two models with chir
symmetry an apparent band of extended states near the
center, and it remained unclear what is the fate of these s
in the infinite two-dimensional~2D! system. Yet anothe
study23 showed that the scaling exponent of the average
ticipation number changed discontinuously near the b
center, and the explicit dependence of this energy on
system size proposed by the authors implied the existenc
another diverging length scale in the problem. The last ef
is rather subtle to calculate and led to a different participat
number scaling exponent of the ABD model at the ba
center in Ref. 18 compared to the one caluclated here
discussed in detail in Sec. V below. Furthermore, Brouw
et al.24 have calculated the conductance distribution of qu
tum wires described by Eq.~1!, and showed its nonuniver
sality and the necessity of introducing an additional mic
scopic parameter.

It is thus the goal of this paper to present a detailed st
of the scaling of the localization length on the approach
the band center for an infinite 2D square lattice, and test
validity of one-parameter scaling, as well as to calculate
multifractal properties of the electron probability density
length scales smaller than the localization length. Also
analytical expression for the DOS of the infinite tw
dimensional system near the band center is proposed.
paper is organized as follows. Some general properties
exact results are presented in Sec. II, Calculation of the D
is presented and analyzed in Sec. III. Section IV conta
analysis of level spacing distributions between the nea
neighbors; multifractal properties of eigenstates are stud
in Sec. V; scaling of the Lyapunov exponents of trans
matrices of long strips and the scaling of localization len
are studied in Sec. VI. Finally, Sec. VII summarizes the
sults of this work.

II. SOME GENERAL PROPERTIES OF LATTICE
HAMILTONIANS WITH CHIRAL SYMMETRY

Suppose that the lattice is composed of two sublatticeA
andB with, respectively,NA andNB sites. The correspond
ing bond-disordered Hamiltonian with chiral symmetry th
has the form

H5 (
i PA, j PB

~ t i , j ci
†cj1H.c.!. ~2!

It is easy to show that for every eigenstateuc& with energyE
there is an eigenstate with energy2E with a wave function
t-
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that has the opposite sign at each site of one of the
sublattices.

If the total number of sitesN5NA1NB is odd and open
bounday conditions are applied~in order to keep the symme
try!, then, since all eigenstates come in opposite ene
pairs, there will be exactly one state with eigenenergy
This can be further generalized, and ifm5NA2NB.0,
there exist exactlym zero-energy eigenstates that have va
ishing amplitude on the sublatticeB.12,25

On the other hand, ifm50, the electron has equal prob
ability of occupying each of the two sublattices. To sho
this, Eq. ~2! is represented in the basis where the first a
second halves of the basis vectors are eigenstates of the
sition operator on sites of sublatticeA and B, respectively.
The Hamiltonian is then represented as

H5S 0 M

M† 0 D , ~3!

whereM is a square matrix of hopping elements from o
sublattice to the other. Eigenstate

uc&5S ucA&

ucB&
D

satisfies

E5^cuHuc&52 Rê cAuM ucB&. ~4!

On the other hand,

Huc&5S M ucB&

M†ucA&
D 5S EucA&

EucB&
D . ~5!

From Eqs.~4! and ~5! it now follows that, for the ABD
model,^cAucA&51/2.

Here only evenL finite-size systems on a square latti
with periodic boundary conditions are studied, because
of the main goals of this work is to understand the vicinity
the critical point of the ABD model on the infinite squa
lattice, which in turn hasm50, while the limit L→` for
odd L and open boundary conditions hasm51.

III. DENSITY OF STATES NEAR THE BAND CENTER

The density of states is calculated by exact numerical
agonalization of finite-size Hamiltonians for variousL for
many configurations of disorder and binning of eigenen
gies. The DOS’s obtained for each system size,rL(E), are
normalized to 1. TheL-dependent parts of suchrL(E) are
then removed, leaving theL-independent DOSr(E), which
is therefore expected to be correct in theL→` limit. The
removal of finite-size dependency is based on the obse
tion that the DOS converges quickly away from the ba
center with increasingL. Thus, only a small number o
eigenenergies~up to 20! closest to the band center and th
corresponding DOS histograms have been calculated
eachL. The calculatedrL(E) plotted on a single graph re
vealed that the three bins closest to the band center are w
the system size dependence sets in. Their removal thus le
the DOSr(E) of the infinite system.

Results forrL(uEu) are given in Fig. 1, for system size
L510,20, . . . ,60 andnumber of disordered configuration
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FIG. 1. Density of statesrL(E) of the ABD
model forw51 near the band center for syste
sizesL510, . . . ,60 in alog-log plot. Full lines
are fits to Gade’s form~6!, while dotted lines are
fits to the power law. The fit to Gade’s form i
done for all the points except the one closest
the band center, while the fit to the power law
done for all the bins except the three bins clos
to the band center, which are theL-dependent
parts ofrL(E).
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ranging, respectively, from 160 000 to 4100. They are fit
to a power law divergencerL(E)5CLuEu2aL, as well as to
Gade’s result11

rL~E!5CL

1

uEu
exp~2kLA2 lnuEu!. ~6!

All the calculations were done for several different numb
of bins, and the values obtained for the fitting paramet
were the same within error bars.

Figure 1 shows that Eq.~6! describesrL very accurately
for L>40, including the size-dependent part. The power la
on the other hand, also describes the data accurately fo
same system sizes, but fails to describe theL-dependent par
of rL . Despite this, neither of the two forms describes
wholer(E) accurately. Instead, the expression found to b
fit the L-independent DOS obtained, given in Fig. 2, is

r~E!5C
1

AuEu
exp~2kA2 lnuEu!, ~7!

FIG. 2. Density of states of the ABD model forw51 near the
band center. The graph is obtained from the data in Fig. 1 by
moving the three bins closest to the band center, leaving
L-independentr(E). The fit is r(E)5C exp(2kA2 lnuEu)/AuEu,
with k51.34560.005 andC51.3060.03.
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with k51.34560.005 andC51.3060.03, represented by
the full line in the same figure. The observed range in wh
Eq. ~7! is accurate is for all the energies studied smaller th
631022.

IV. DISTRIBUTION OF THE NEAREST-NEIGHBOR
LEVEL SPACINGS

In the localized regime, an eigenstate is determin
mainly by a local configuration of disorder where the wa
function is localized, and two eigenstates close in energy
spatially far apart. Level repulsion is therefore absent and
distribution of the nearest-neighbor level spacingss[Ei 11
2Ei is Poissonian,26

DP~s!5
1

d
expS 2

s

d D , ~8!

whered[^s& is the mean level spacing.
In the delocalized phase, on the other hand, eigenst

are extended throughout the system and level repulsion
comes significant for eigenstates with close energies. In
infinite 3D Anderson site-disordered~ASD! model,

H5(
i

e ini2(
^ i , j &

~ci
†cj1cj

†ci !, ~9!

with uniformly distributede iP(2W/2,W/2), the distribution
of level spacings becomes that of the Gaussian orthog
ensemble,26 very accurately described by the Wigner surm

DW~s!5
p

2

s

d2
expF2

p

4 S s

d D 2G . ~10!

In finite-size systems, localized states are on average
distanceL rather than infinitely far apart. This leads to
repulsion between adjacent energy levels and a nonunive
distribution DL(s). Shklovskii et al.26 have shown that
DL(s) of the 3D site-disordered Anderson model exhibits
linear dependence ons characteristic forDW(s) for small s
and an exponential tail characteristic forDP(s) for large s.
They were able, from a finite-size scaling analysis of the t
to accurately determine the critical point and exponent.

e-
e
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FIG. 3. Distributions of level spacings~after
unfolding of the spectrum! Di(s) between the
levels i and i 11, counted from the band cente
D1(s) is distinctly different from other distribu-
tions due to the presence of symmetry.
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the infinite size limit, they recovered not onlyDP(s) in the
insulating phase andDW(s) in the conducting phase, but als
a system-size-independent nonuniversal distribution at
critical point, which was further shown by Braunet al.27 to
be dependent on boundary conditions. This method was
used for an accurate determination of the localization len
in the two-dimensional ASD model,28 confirming the ab-
sence of delocalized states following the scenario of the
sulating phase from Ref. 26 described above.

To see the effect of the symmetry of the Hamiltonian~2!
on the distribution of level spacings, let us for a mome
consider thei th eigenenergyEi of the ASD model. Upon
averaging over disorder, theEi will be distributed between
Ei

min andEi
max according to some distribution. Some of th

eigenenergies, fori close to N/2, will have Ei
min,0

,Ei
max. This is, however, forbidden for eigenstates of t

ABD model since everyEi of Eq. ~2! is negative for i
,N/2 and positive fori .N/2. This means that eigenene
gies of Eq.~2! close to the band center are effectively push
away from it due to the symmetry. IfL is much smaller than
the localization length, states will be repelled among the
selves due to their large spatial overlap. But the two sta
closest to the band center, being simply related to each
other by the symmetry, will not repel at all, i.e., the sta
closest to the band center is at the~high energy! end of the
spectrum. Thus, these two states are distributed around
where distributions of all other individual levels go to zer

To explore the consequences of this simple analysis,
level spacing distribution is calculated between each pai
adjacent levels separately. Let us denote byDi(s) the level
spacing distribution between the energy levelsi and i 11
after unfolding of the spectrum,29 i.e., expressing level ener
gies in units of the mean level spacing, where 0,E1,E2
,•••,EN/2 . Figure 3 showsD1(s), . . . ,D5(s), for L
520,40, and, respectively 150 000,120 000 configuratio
and it can be seen thatD1(s) is distinctly different from
D2(s), . . . ,D5(s). The same effect was also present forL
510,30, while for L550 and 60 the number of disorde
configurations was insufficient for an accurate enough de
mination of the individualDi(s).30 This illustrates how the
presence of chiral symmetry can profoundly influence sp
tral characteristics near the band center, despite the fact
the DOS’s of the ABD and ASD models seem to have
same shape for adequately chosen pairs of disorder pa
etersw andW away from the band center~and after rescaling
of e0).18

V. MULTIFRACTALITY OF EIGENSTATES

The eigenstate of an electron in a random potential fl
tuates from site to site and it has been proposed that
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eigenstate at the mobility edge in disordered systems in g
eral should have a fractal structure,31 and shown that even
localized states in one and two dimensions exhibit frac
character on length scales smaller than the localiza
length.32–34

Inverse participation numbersZq ~IPN’s! are particularly
convenient quantities to describe scaling properties of pr
ability distribution of the electron. The IPN’s of an eigen
stateC are defined as

Zq~C![ (
i 51

L3L

uC~r i !u2q. ~11!

Intuitively, their meaning can be seen by looking at the p
ticipation numberZ2(C)21: it is equal to 1 for a state local
ized at one site and toN for plane waves. The participatio
number thus gives generally the number of sites at which
wave function is significantly different from zero. The pa
ticipation numbersZq(C)21 generalize this by giving the
number of sites where the probability distribution of ele
trons is very high~for large positiveq’s!, very low ~for large
negativeq’s!, and in between these extrema is continuou
parametrized byq.

More convenient, with the advantage of being defined
averages over disorder at a given energyE, are IPN’s defined
as functions ofE and system sizeL,

Zq~L,E![^ Zq~C!d„E~C!2E…&, ~12!

where the angular brackets denote averaging over disor
Zq(E,L) can be numerically calculated by averaging E
~11! over all eigenstates fromM configurations of disorder
belonging to an energy interval of widthDE aroundE, and
studying the limitDE→0 for largeM.23

Wegner35 pioneered this kind of investigation, and Caste
lani and Peliti36 proposed that eigenstates near the criti
point are multifractal on length scales smaller thanj. The
most important feature of IPN’s of eigenstates is their scal
with system size and energy:35,36

Zq~L,E!;L2tq, ~13!

Zq~L,E!;uE2Ecupq, ~14!

whereEc is the critical energy. The former scaling is prese
at anyE for L!j(E), while the latter holds in the critica
region of the transition.37

Within the framework of multifractality,38,39 the electron
probability density is characterized by several quantities t
can be derived fromtq—the generalized dimensionDq and
the singularity strengthaq of the qth singularity with the
fractal dimensionf q :
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FIG. 4. Dependence of the average IPN f
several differentq’s and L580 on the bin size
DE. The vertical dashed lines represent energ
E2(L)/2 ~see text for discussion!.
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~q21!Dq[tq , aq[
dtq

dq
, f q~aq![aqq2tq .

~15!

Dq represents a generalization of the fractal dimension,
it is constant and equal to the fractal dimension for ordin
fractals, while f q(aq) is the singularity strength spectrum
describing a multifractal as an interlaced set of fractals w
fractal dimensionsf q , where the measure on theqth fractal
scales as a power law with exponentaq . These quantities
have several general properties:D0 is the fractal dimension
of the support~2 in this work!; D1 is called the information
dimension since it describes scaling of the entropy of
measure,40 and there exist finiteDmin5Dq→` and Dmax
5Dq→2` .

This work is concerned mainly with the spectrum of ge
eralized dimensionsDq characterizing the spatial structure
eigenstates on length scales smaller than the localiza
length, while the properties ofpq will be discussed else
where. Before a detailed discussion of the results, an o
view of the main results of this part of the paper is give
The scaling of IPN’s at the band center is calculated first,
it is shown that scaling properties~that is, the whole spec
trum of generalized dimensionDq) changes discontinuousl
near the band center, at an energyE8(L) for the range ofL
studied. It is then shown thatE8 can be quite accuratel
identified with half of the width of the energy range arou
the band center within which two states occur on averag
the ensemble of disordered systems. The existence of
energy reveals the existence of a length scalej8(E), diverg-
ing whenE→0, which is the system size at which the IPN
change their scaling properties from one power law dep
dence onL to another. This change is then explained a
finite-size manifestation of the critical point, and the critic
exponent calculated by a finite-size analysis.

Calculation of Zq(E,L) starts with calculation of
Zq(E,L,DE), which is just the IPN averaged over all eige
d
y
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states from an energy interval (E2DE/2,E1DE/2), taken
from NV realizations of disorder, followed by studying th
limit DE→0.23 Results at the band center for the systemL
580 and several differentq’s are presented in Fig. 4. Th
error bars in the figure are taken to be the standard devia
of the average value.

The figure suggests the existence of an energyE8 inde-
pendent ofq ~and therefore defined by the whole multifract
measure! such that decreasingDE belowE8 does not change
Zq(E,L,DE) significantly. A decrease ofZq to a smaller
extent, however, is still present forDE,E8, and the main
source of this is the mismatch between the average and
cal values of the IPN at a given energy. Thus, the eff
should become smaller as the number of disorder config
tions that are averaged over is increased, andZq(E,L,DE
,E8)'Zq(E,L) up to the corresponding statistical erro
This can be seen in Figs. 4 and 5, where values ofZq for
DE,E8 are approximately constant within the error bars~as
indicated by the horizontal dashed lines!, while for DE
.E8 there is approximately a linear dependence ofZq on the
bin sizeDE. In this sense Fig. 5 suggests thatE8 exists for
all the systems studied~and can be shown to be independe
of q for each of them, analogously to Fig. 5!.

An analogous analysis is carried out for energies aw
from the band center andZq(E,L) determined accordingly
where it turns out that the convergence for these energie
slightly easier to establish and occurs at largerDE than at the
band center. Such energy intervals used in calculations
IPN’s for different E were small enough so that there w
essentially no overlap among them.

The vertical dashed lines in Fig. 4 and Fig. 5 repres
half of the energyE2(L), defined as the width of the energ
interval around zero in which every system from the e
semble of disordered systems has two states on average23

15L2E
E2/2

0

rL~e!de. ~16!
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FIG. 5. Dependence of the average IPN f
several differentL and q50.9 on the bin size
DE. The vertical dashed lines represent energ
E2(L)/2 ~see text for discussion!.
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From the figures one can see thatE8'E2/2 for all system
sizes studied exceptL540 ~the smallest system studied, n
shown in Fig. 5!, where the convergence seems to be som
what slower. Equation~16! defines a length scalej8(E) that
can be described as the system sizeL for a given energyE
such that the number of states within the energy inter
between2E andE is 2 on average. This can be defined

j8~E!5E2
21~E!, ~17!

where E2
21(E) is the inverse function ofE2(L), which is

defined by Eq.~16!. Since E2(L) goes to zero whenL
→`, this length scale diverges whenE→0.

It is tempting to integrate results forrL from Sec. III to
obtain j8(E) explicitly. This, however, does not give th
correct result since the whole analysis of the DOS from S
III is done for energies larger than the width of the distrib
tion of the two states closest to the band center, which in t
definesj8 in Eq. ~17!. In other words, there is an energ
cutoff, vanishing whenL→`, below which the fits are no
accurate, most obviously seen by noticing that all of the
sumed analytical forms ofrL are diverging at the band cen
ter, while the actualrL is not.

A nontrivial feature connected with the existence of t
length scalej8 is that the scaling exponentstq(E) are dif-
ferent forL&j8(E) andL*j8(E). This is a generalization
of findings from Ref. 23, where a deviation from the pow
law scaling of the average participation number for differe
DE at the band center appeared wheneverDE exceeded
e-

l

c.
-
rn

s-

r
t

E8(L) in several models with chiral symmetry. It can b
straightforwardly shown that the same happens with sca
of Zq(E50,L,DE). This suggests that a different scalin
characteristic should be attributed to the two states close
the band center, and thatE8 scales asE2, with a coefficient
of proportionality close to 1. This also implies that the co
rections to the constantZq(E,L,DE) for DE,E8 are small.
Therefore, the length at which the change of scaling occ
should be close to and depend on the energy proportion
to j8(E), while the change of scaling should be a narro
crossover, as opposed to the much broader crossover
power law to constant IPN that occurs at the termination
the multifractal scaling~13! for L'j.

This is compatible with the results presented in Fig.
which gives the calculatedZq(L,E) for q50.9,2 as well as
for all L andE studied. Smallerq’s allow for more accurate
determination of the scaling properties, and it can be s
from the data that for bothq’s there are two characteristi
scaling behaviors—one occurs at the band center and ne
energies for smallerL, while the other scaling holds at ene
gies further away from the band center, and for largerL at
energies close to the band center.

The scaling exponentstq are determined from the linea
regression of the data for system sizesL550,60, . . . ,100.
The goodness of the power law fit is quantitatively char
terized by a coefficientgq(E) next to the quadratic term
from an additional quadratic fit of the data.tq and gq ob-
tained thus from the data in Fig. 6 are presented in Fig
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FIG. 6. Dependence of the average IPN
system size for several energies near the ba
center forq50.9,2.
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The results show the existence of three different cases~i!
Away from the band center,gq'0 andtq is independent of
E, indicating a power law dependence of IPN onL, ~ii ! Ap-
proaching the band center,gq becomes different from zero
indicating that a power law is not obeyed. This is due to
emergence of the scaling for system sizesL*j8(E) dis-
cussed above and present in Fig. 6,~iii ! For E50 a power
law is obeyed again (gq'0), but with a differenttq than for
energies away from the band center.

The discontinuity oftq(E) for all the otherq’s studied
naturally leads to two different spectra of generalized dim
sions, and Fig. 8 shows the calculatedDq for all energies
except the three nonzero energies closest to the band c
~which cannot givetq from the fitting procedure used her
due to the change of scaling properties discussed above!. In
particular, the participation number grows with the numb
of sitesL2 as a power law with exponentsb(E50)50.25
60.02, andb(EÞ0)50.5560.05. This should be com
pared with the result for the ABD model of Ref. 18,b(E
50)50.5060.06. It is easy to explain this discrepan
since the bin sizeDE5431024 used in Ref. 18 was, de
pending on the system size, roughly an order of magnit
too large to detect the correct scaling behavior, and there
b(EÞ0) was obtained instead.

Dq is calculated for only three negative values ofq,
mainly because IPN’s for negativeq’s are determined mostly
by the parts of eigenstates with the smallest probability
finding the electron, which in turn acquire the highest re

FIG. 7. Scaling exponent of IPN,tq , and the goodness of fi
coefficient gq , calculated from the data in Fig. 6~exceptL540
results!.
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tive error during numerical diagonalization of the Ham
tonian. Difficulties in calculatingDq in this regime even
arouse suspicion that multifractality might break down f
negativeq.41 It is thus important to show thatDq is defined
for negativeq’s as well as for positive ones. The accuracy
all the calculations of IPN’s done in this section can
straightforwardly improved by increasing the number of co
figurations of disorder that is averaged over. This would le
to smaller error bars of all the quantities calculated, as w
as to a wider range ofq’s for which Dq can be calculated.

The results of this section give the following picture
the scaling of IPN with system size. For any energyE close
enough to the band center, there exist two power law s
ings: one forL0,L&j8(E) described by the set of expo
nentstq(E50), and another one forj8(E)&L!j(E), de-
scribed by adifferent set of exponentstq(EÞ0), which
leads to the two different spectra of generalized dimens
Dq .

The dependence of the additional length scale on ene
j8(E), can easily be determined from Eq.~17! by integrating
the actual numerical data forrL(E), and the result, obtained
from Fig. 9, givesj8(E)}uEu2n8, with

n850.3560.01. ~18!

The meaning of this length scale and corresponding ex
nent n8 can be understood by assuming that the additio
scaling of the two states is due to the finite-size effect
‘‘smearing’’ of theE50 critical point of the infinite system
because exactly the two states closest to the band cente
come critical whenL→`. The critical energy then change
by De which is, in a finite system of sizeL ~in units of the

FIG. 8. Multifractal spectraDq at the band center and nearb
energies.
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lattice spacing!, equal toDE2(L)}L2d5L21/n8. If, further-
more, j}uEu2n in the infinite system, the shiftDec of the
critical energy in the system of sizeL is Dec}L21/n, from
the general theory of finite-size scaling.42 Therefore, n8
equalsn, the critical exponent of the correlation length of th
infinite two-dimensional system. It should be noted that
finite-size scaling applied here is somewhat different fr
usual, whereDec[uE2Ecu/Ec .42 Here, Ec50 and Dec
[uE2Ecu, where both energies are expressed in units ofe0,
as discussed in the Introduction. Thus, the energye0 appears
in the denominator ofDec rather than the critical energ
itself.

VI. LOCALIZATION LENGTH NEAR THE BAND
CENTER

In order to calculate the localization length of the infin
two-dimensional system, the finite-size scaling~FSS! analy-
sis of MacKinnon and Kramer8 is applied to the TMM of
Pichard and Sarma.21 In this analysis, renormalized invers
Lyapunov exponents~ILE’s! of the transfer matrix of the
ABD model18,24 of a long quasi-one-dimensional strip o
width M are calculated for several energies near the b
center and one parameter scaling analysis is applied to
largest ILE, from which the correlation length of the 2
system is calculated. The scaling analysis consists of ass
ing that the change of the largest ILE,L(E,M ), due to
rescalingM→bM can be compensated by an appropri
change of energy, after whichL will remain the same, which
implies that8

L~E,M !5L„M /j~E!…. ~19!

Figure 10 shows the calculatedL(E,M ) for several energies
E close to the band center and for various strips up to
sites wide. The figure also gives the second largest~dashed
line! renormalized ILE,L2, for the two lowest nonzero en
ergies studied (E51025 and 1026) and forM<20. All val-
ues are obtained with relative error of 1% or better.

At E50 and forM even, all ILE’s become doubly degen
erate due to the presence of chiral symmetry,22,24 and they
scale linearly withM for M>16, reflecting the scale invari
ance ofL characteristic of a critical state. To see the effe
this degeneracy has on the scaling properties of ILE’s,
should recall that ILE’s of transfer matrices of disorder
systems repel each other in general43 and become self-
averaging quantities for sufficiently long stripes.21 The sym-

FIG. 9. Dependence of the additional length scale on ene
near the band center, as determined from Eq.~17!.
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metry now enforces ‘‘dimerization’’ of pairs of ILE’s, acting
as an effective attractive force between each pair of IL
that becomes degenerate at zero energy, as in Fig. 10, w
for a fixed M, L, and L2 are closer together for smalle
energy. The largest ILE thus decreases in a strip of widthM
on approaching the band center, as in models with ch
symmetry studied in Ref. 22. On the other hand, at any gi
energy, every pair of ILE’s becomes more repulsive w
increasingM. Such an increased number of ILE’s thus d
minishes the attractive effect of the symmetry, and, depe
ing on the relative strengths of the two effects, there are
regimes:~i! for smallerM, the largest ILE increases approx
mately linearly with M, and, since the slope of the ris
changes with energy, FSS cannot be done;~ii ! for suffi-
ciently large M, on the other hand, the repulsion amo
ILE’s due to disorder dominates and FSS is possible.

The one-parameter universal functionL„M /j(E)…, ob-
tained for system sizesM>50 for energiesuEu.1024, and
for system sizesM>64 for energies 1025<uEu<1024, is
presented in Fig. 11. The obtained localization lengthj(E),
in units of the localization length of the smallest energy stu
ied (E50.1), is shown in the inset of the same figure. T
calculatedj(E)/j(0.1) is fitted to a power law for energie
1025<E<1023, and the result suggests a power law dive
ing localization length at the band center, with the expon

n50.33560.034, ~20!

in agreement with the result~18! of Sec. V.
Some additional analysis of the results can be done

introducingLmax(M ), defined as the maximalL(E,M ) for a
given strip widthM. The importance of this quantity come
from the fact that points whereL reaches its maximum fo
various energies cannot be described by FSS, and, at
same time,Lmax limits by its definition possible values tha
L(x) ~obtained from the FSS! can have. The main observa

y

FIG. 10. The largest renormalized inverse Lyapunov expone
L(E,M ), calculated for long stripes of widthM and various ener-
gies near the band center~full line!. The energy range is log10uEu
521,21.5, . . . ,25, 26. Dashed lines connect points of the se
ond largest ILE,L2(E,M ), for energiesE51025,1026, and M
<20.
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tion is thatLmax seems to grow slower than linearly in Fig
10. Linear~or faster! growth would imply the existence of a
additional energy scale below which FSS would break do
for all largeM andL(E,M ) would grow linearly and indefi-
nitely with M in the same figure, implying the existence of
whole band of extended states where one-parameter sc
would not hold. The slower than linear growth ofLmax seen,
therefore, further suggests the existence of a single crit
point at the band center of the system on an infinite squ
lattice.

VII. CONCLUSIONS

In conclusion, the main results of this work are summ
rized. The densities of states of finite-size systems are ca
lated and the validity of Gade’s expression~6! is shown. The
calculated part of the DOS for the system on an infin
square lattice, however, suggests a different dependenc
energy near the band center,

r~E!5C
1

AuEu
exp~2kA2 lnuEu!, ~21!

FIG. 11. One-parameter universal functionL„M /j(E)… for the
ABD model. The four separate points areL(E50,M ) for M
516,32,64,128, corresponding to the band center critical state.
inset shows the calculated localization lengthj(E) in units of the
localization lengthj(E50.1), with error bars smaller than the sym
bol size.
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with k51.34560.005 andC51.3060.03.
Other calculated quantities share in common the qua

tive feature of a discontinuous change near or at the b
center. The nearest-neighbor level spacing distributions,
instance, between the state closest to the band center an
next one seem to be distinctly different from the level sp
ing distributions between other neighboring states. This w
argued to be connected to the chiral symmetry of the mo
which places the two states closest toE50 at the ~high
energy! end of the spectrum. These two states are furt
found to play a crucial role in explaining the discontinuo
change of the scaling properties of IPN’s near the band c
ter. Extrapolation to the limit of the infinite square lattic
then led to two different spectra of generalized dimens
Dq—one forEÞ0 ~present at length scales smaller than t
localization length!, and another one forE50 ~present at all
length scales!. Finite-size scaling associated with the effec
that finiteL has on the critical band center states of the in
nite system led to the valuen50.3560.01 of the critical
exponent of the localization length.

Additional scaling analysis of ILE’s of transfer matrice
of long quasi-1D systems gave the valuen50.33560.034.
This suggests that there is only one critical state at the b
center with all other states localized in the system on
infinite square lattice, in agreement with the findings of Re
32 and 18. A one-parameter universal functionL(x) is cal-
culated and another discontinuity found, sinceL„x(E→0)…
ÞL(E50,M ).

A puzzling feature of the critical exponentn of the ABD
as well as of the RDF model19,20 is their apparent disagree
ment with the rigorous theorem of Chayeset al.,44 which
states thatn>1 in two-dimensional quantum disordered sy
tems in general. This question, however, requires furt
study and will be addressed elsewhere.

ACKNOWLEDGMENTS

This work was partially supported by the Department
Physics and Astronomy at Michigan State University. T
author is thankful to S. D. Mahanti for suggestions on i
proving the manuscript and to S. A. Trugman, R. Bhatt,
A. Kaplan, V. Zelevinski, M. Mostovoy, I. Herbut, D. Mul-
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