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The bond-disordered Anderson model in two dimensions on a square lattice is studied numerically near the
band center by calculating the density of std@®S), multifractal properties of eigenstates, and the localiza-
tion length. The DOS divergence at the band center is studied and compared with Gade’s result and power law.
Although Gade’s form describes accurately the DOS of finite-size systems near the band center, it fails to
describe the calculated part of the DOS of the infinite system, and a different expression is proposed. Study of
the level spacing distributions reveals that the state closest to the band center and the next one have a different
level spacing distribution than pairs of states away from the band center. Multifractal properties of finite
systems furthermore show that the scaling of eigenstates changes discontinuously near the band center. This
unusual behavior suggests the existence of a divergent length scale, whose existence is explained as the
finite-size manifestation of the band center critical point of the infinite system, and the critical exponent of the
correlation length is calculated by a finite-size scaling. Furthermore, study of the scaling of the Lyapunov
exponents of transfer matrices of long stripes indicates that for a long stripe of any width there is an energy
region around the band center within which the Lyapunov exponents cannot be described by one-parameter
scaling. This region vanishes, however, in the limit of the infinite square lattice, when one-parameter scaling is
restored, and the scaling exponent calculated is in agreement with the result of the finite-size scaling analysis.

[. INTRODUCTION at the middle of each of the disorder-broadened Landau
levels?®

A guantum particle moving in a random potential under-  Another class of model exhibiting localization properties
goes the Anderson localization quantum phase transition idifferent from the systems mentioned above are systems with
three dimensions with increasing strength of disofd&The  chiral (particle-holé symmetry. Such systems are defined on
order parameter characterizing the localized phase is the i bipartite lattice with only hoppingoff diagonal or bony
verse localization lengtié ™1, describing the exponential disorder. Wegner first realized the importance of this sym-
decay of the envelope of eigenstates. When the critical poinnetry in disordered system$;'?and even one-dimensional
is approached from the localized phase, the localizatiorsystems with this symmetry are known to have peculiar
length, which depends for a given energy only on theproperties, such as diverging densities of stai2®S'’s) at
strength of the disorder, increases with decreasing disordéne band centel® where the eigenstate decays as exp
strength and finally diverges as a power law at a particulat—yr),*** in contrast to one-dimensional site-disordered
disorder strength. Further decrease of disorder strength thesystems which have the DOS bountfeaind all states local-
makes the eigenstate extended throughout the whole systeined.
Simultaneously, on length scales smaller than the localiza- There are several models with chiral symmetry that have
tion length, eigenstates exhibit multifractal scaling behaviobeen extensively studied. The simplest two, in the sense that
characterized by anomalous scaling of the inverse participaonly one orbital per site and nearest-neighbor hopping
tion numbergfor definitions and references, see Seg. V. are included, time-reversal symmetry is present, and the

This basic phenomenon, together with the work of Lic-SPin is not relevant, are the Anderson bond-disordered

ciardello and Thouless on the scaling of conductance irﬁnOdeiLf;Zi’ﬂ’ls(ABP) and the random Dirac fermion model
finite-size system§, led to the scaling theory of (RDF).”“The main difference between these two models is

localization’-% one of the main consequences of which is thethat, in the nondisordered case, the ABD model has a line of

absence of extended states in two-dimensional disorderddfiNts as the Fermi surface at half filling while the RDF

systems, with two dimensions being the lower critical dimen-M0del has a point Fermi surface and linear dispersion of
sion of the transition. If spin-orbit interaction is present,energ.'es' . .

however, the picture changes and systems from symplectic This work is concerned with the ABD model on a square
ensembles exhibit the localization transition even in two di-2tice of ,S'zel,- and periodic boundary conditions, defined by

mensions as opposed to systems from orthogonal ensembld@€ Hamiltonian

which have all states localizédThe presence of a strong

magnetic field in two-dimensional disordered systems, on the

other hand, leads to a completely different behavior—the H=—e¢ z (t; icle +H.c) 1)
integer quantum Hall effect—where critical states are present O, ~ I
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where angular brackets denote neighboring sites on the lathat has the opposite sign at each site of one of the two
tice, ¢; is the annihilation operator of the electron at dite sublattices.
andt’s are uniformly distributed random variablés; e (1 If the total number of sitebl=N,+ Ng is odd and open
—2w,1), with O<ws=1. They represent random hopping bounday conditions are appliéth order to keep the symme-
energies between nearest neighbors, expressed in units wy), then, since all eigenstates come in opposite energy
energyeg, which is set to 1 hereafter. pairs, there will be exactly one state with eigenenergy 0.
Interest in this model mainly comes from its unusual scal-This can be further generalized, and rf=N,—Ng>0,
ing properties at the band center, where Soukoeliall’  there exist exactlyn zero-energy eigenstates that have van-
have found a critical state using the Green’s fundtiand  ishing amplitude on the sublattid!?2°
transfer matrix methodTMM).?* More recent TMM calcu- On the other hand, ifn=0, the electron has equal prob-
lation by Eilmeset al® confirmed this result with a higher ability of occupying each of the two sublattices. To show
accuracy and showed the validity of one-parameter scalinthis, Eq.(2) is represented in the basis where the first and
not too close to the band center. Nevertheless, Miler andecond halves of the basis vectors are eigenstates of the po-
Wang? have found in their study of two models with chiral sition operator on sites of sublattide and B, respectively.
symmetry an apparent band of extended states near the bambde Hamiltonian is then represented as
center, and it remained unclear what is the fate of these states
in the infinite two-dimensional2D) system. Yet another 0 M
study?® showed that the scaling exponent of the average par- Mt o)/’
ticipation number changed discontinuously near the band . _ _
center, and the explicit dependence of this energy on th&hereM is a square matrix of hopping elements from one
system size proposed by the authors implied the existence g'Plattice to the other. Eigenstate
another diverging length scale in the problem. The last effect )
is rather subtle to calculate and led to a different participation |y = ( A )
number scaling exponent of the ABD model at the band |s)
center in Ref. 18 compared to the one caluclated here, ag;jisfies
discussed in detail in Sec. V below. Furthermore, Brouwer
et al?* have calculated the conductance distribution of quan- E=(y|H|¥)=2 Re¢a|M|ig). (4)
tum wires described by Ed1), and showed its nonuniver-
sality and the necessity of introducing an additional micro-On the other hand,
scopic parameter. M| grg) E| ¢/a)
It is thus the goal of this paper to present a detailed study H ll/>:( B ) :< A
of the scaling of the localization length on the approach to MT|¢A> Els)
the. b_and center for an infinite_2D square lattice, and test th%rom Egs.(4) and (5) it now follows that, for the ABD
validity of one-parameter scaling, as well as to calculate th(?nodel (il ) =112
multifractal properties of the electron probability density on TALTA .

length scales smaller than the localization length. Also allvith periodic boundary conditions are studied, because one

Zﬂalyt|qal elxpretssmn . t;heb DOdS Oft th.e . ;W(')I' of the main goals of this work is to understand the vicinity of
Imensional system near the band center IS proposed. h’_ge critical point of the ABD model on the infinite square

H= ()

. (5

Here only everlL finite-size systems on a square lattice

paper is organized as foIIovys. Some generallproperties andiice which in turn hasn=0. while the limit L—soo for
exact results are presented in Sec. I, Calcula_ltlon of the D_O dd L and open boundary conditions | 1

is presented and analyzed in Sec. lll. Section IV contains
analysis of level spacing distributions between the nearest
neighbors; multifractal properties of eigenstates are studied lll. DENSITY OF STATES NEAR THE BAND CENTER

in Sec. V; scaling of the Lyapunov exponents of transfer The gensity of states is calculated by exact numerical di-
matrices of long strips and the scaling of localization lengthagonalization of finite-size Hamiltonians for variotsfor

sults of this work. gies. The DOS’s obtained for each system sjzdE), are
normalized to 1. Thd.-dependent parts of sugh (E) are

Il. SOME GENERAL PROPERTIES OF LATTICE then removed, leaving the-independent DO$(E), which
HAMILTONIANS WITH CHIRAL SYMMETRY is therefore expected to be correct in the-o limit. The

o removal of finite-size dependency is based on the observa-
Suppose that the lattice is composed of two sublatiices tjon that the DOS converges quickly away from the band
and B with, respectivelyN, andNg sites. The correspond- .enter with increasing_. Thus, only a small number of
ing bond-disordered Hamiltonian with chiral symmetry the”eigenenergie$up to 20 closest to the band center and the
has the form corresponding DOS histograms have been calculated for
eachL. The calculateg, (E) plotted on a single graph re-

@) vealed that the three bins closest to the band center are where
the system size dependence sets in. Their removal thus led to
the DOSp(E) of the infinite system.

It is easy to show that for every eigenstage with energyE Results forp, (|E|) are given in Fig. 1, for system sizes

there is an eigenstate with energyE with a wave function L=10,2Q...,60 andnumber of disordered configurations

H= 2 (ti’jCiTCj"‘H.C.).
jeB

ieAje
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FIG. 1. Density of statep, (E) of the ABD
model forw=1 near the band center for system
sizesL=10,...,60 in alog-log plot. Full lines
are fits to Gade’s forn6), while dotted lines are
fits to the power law. The fit to Gade’s form is
done for all the points except the one closest to
the band center, while the fit to the power law is
done for all the bins except the three bins closest
to the band center, which are thedependent
parts ofp, (E).

102 10t 103 102

108 102 103 102 10+ 103 102
E E E

ranging, respectively, from 160 000 to 4100. They are fittedwvith x=1.345+0.005 andC=1.30*=0.03, represented by
to a power law divergence, (E)=C,|E|~“t, as well as to the full line in the same figure. The observed range in which

Gade’s result Eq. (7) is accurate is for all the energies studied smaller than
6x10 2.
1
puE)= CLEeXp( KL= In[E]. © IV. DISTRIBUTION OF THE NEAREST-NEIGHBOR

. . LEVEL SPACINGS
All the calculations were done for several different numbers

of bins, and the values obtained for the fitting parameters In the localized regime, an eigenstate is determined

were the same within error bars. mainly by a local configuration of disorder where the wave
Figure 1 shows that Ed6) describesp, very accurately function is localized, and two eigenstates close in energy are

for L=40, including the size-dependent part. The power lawspatially far apart. Level repulsion is therefore absent and the

on the other hand, also describes the data accurately for thistribution of the nearest-neighbor level spacisgsE;, ;

same system sizes, but fails to describeltiiependent part —E; is Poissoniaf®

of p_. Despite this, neither of the two forms describes the

whole p(E) accurately. Instead, the expression found to best Do(s)= }ex _s )
fit the L-independent DOS obtained, given in Fig. 2, is P 5 5]’
1 where 5=(s) is the mean level spacing.
p(E)=C——=exp — k\—In|E]), 7) In the delocalized phase, on the other hand, eigenstates
VIE are extended throughout the system and level repulsion be-
comes significant for eigenstates with close energies. In the
. ' ' infinite 3D Anderson site-disorderddSD) model,
L =60
L =50
L L-do . H=2i Eini_aZp (ciTcJ-+cJ-Tci), ©)
L=30 ) ) o o
L=20 with uniformly distributede; e (—W/2,W/2), the distribution
p(E) L=10 of level spacings becomes that of the Gaussian orthogonal
fit ensemblé?® very accurately described by the Wigner surmise
NN m(s\? 10
ws)=5 <em-7|5] | (10
X"xxx»w In finite-size systems, localized states are on average at a
1(‘)_3 1(‘)_2 1(')_1 distanceL rather than infinitely far apart. This leads to a

repulsion between adjacent energy levels and a nonuniversal
E distribution D (s). Shklovskii et al?® have shown that
FIG. 2. Density of states of the ABD model far=1 near the D(S) of the 3D site-disordered Anderson model exhibits a
band center. The graph is obtained from the data in Fig. 1 by relinear dependence amcharacteristic foD,y(s) for smalls
moving the three bins closest to the band center, leaving th@nd an exponential tail characteristic fDp(s) for larges.
L-independentp(E). The fit is p(E)=C exp(—«— In[E))/\[E], They were able, from a finite-size scaling analysis of the tail,
with k=1.345+0.005 andC=1.30+0.03. to accurately determine the critical point and exponent. In
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X = ZREN L =40
VA L=20 ) -1
Di(S) \\ i=1 \\\ L= 9
N e =2 {4 N i= o .
osl 1 A s o5l \ e i=3 FIG. 3. Distributions of level spacingfter
\ - =4 N i=4 unfolding of the spectrujnD;(s) between the
=5 - i=5 levelsi andi+ 1, counted from the band center.

D,(s) is distinctly different from other distribu-
tions due to the presence of symmetry.

0.0 ! L 0.0
0 0

the infinite size limit, they recovered not onyp(s) in the  eigenstate at the mobility edge in disordered systems in gen-
insulating phase ani,,(s) in the conducting phase, but also eral should have a fractal structi¥eand shown that even

a system-size-independent nonuniversal distribution at thkcalized states in one and two dimensions exhibit fractal

critical point, which was further shown by Braw al?’ to  character on length scales smaller than the localization
be dependent on boundary conditions. This method was alggngth3?-34

used for an accurate determination of the localization length |nverse participation numbei, (IPN's) are particularly

in the two-dimensional ASD mod_é’i’, confirming the ab-  convenient quantities to describe scaling properties of prob-
sence of delocalized states following the scenario of the ingpility distribution of the electron. The IPN’s of an eigen-

sulating phase from Ref. 26 described above. stateW are defined as

To see the effect of the symmetry of the Hamiltoni@h
on the distribution of level spacings, let us for a moment
consider theith eigenenergyE; of the ASD model. Upon Zy(W)= 2, |W(r))|. (11)
averaging over disorder, thg, will be distributed between =1
E™" and El"® according to some distribution. Some of the Intuitively, their meaning can be seen by looking at the par-
eigenenergies, fori close to N/2, will have Eim"‘<0 ticipation numbeiZ,(¥) ~1: it is equal to 1 for a state local-
<EM, This is, however, forbidden for eigenstates of theized at one site and thl for plane waves. The participation
ABD model since evenE; of Eq. (2) is negative fori ~ number thus gives generally the number of sites at which the
<N/2 and positive fori>N/2. This means that eigenener- Wave function is significantly different from zero. The par-
gies of Eq.(2) close to the band center are effectively pushedicipation numbersZ,(¥) "* generalize this by giving the
away from it due to the symmetry. If is much smaller than number of sites where the probability distribution of elec-
the localization length, states will be repelled among themirons is very hightfor large positiveq's), very low (for large
selves due to their large spatial overlap. But the two state§egativeq’s), and in between these extrema is continuously
closest to the band center, being simply related to each afarametrized byj.
other by the symmetry, will not repel at all, i.e., the state More convenient, with the advantage of being defined as
closest to the band center is at tfrégh energy end of the ~averages over disorder at a given enefggre IPN's defined
spectrum. Thus, these two states are distributed around zer@$ functions of and system size,
where distributions of all other individual levels go to zero. o

To explore the consequences of this simple analysis, the Zq(L.B)=(Zy(¥) S(E(¥)—E)), (12
level spacing distribution is calculated between each pair ofvhere the angular brackets denote averaging over disorder.
adjacent levels separately. Let us denotelh{s) the level 7 (E,L) can be numerically calculated by averaging Eq.
spacing distribution between the energy levelandi+1  (11) over all eigenstates frovl configurations of disorder
after unfolding of the spectruﬁ’?,i.e., expressing level ener- pelonging to an energy interval of widthE aroundE, and
gies in units of the mean level spacing, where B, <E, studying the limitAE—O for Iargel\/l_23
<---<Eyp. Figure 3 showsD(s), ...,Ds(s), for L Wegnet® pioneered this kind of investigation, and Castel-
=20,40, and, respectively 150000,120000 configurationsiani and Pelitf® proposed that eigenstates near the critical
and it can be seen thdd,(s) is distinctly different from  point are multifractal on length scales smaller tianThe
D,(s), ... ,Ds(s). The same effect was also present for most important feature of IPN’s of eigenstates is their scaling
=10,30, while forL=50 and 60 the number of disorder with system size and enerd§y°
configurations was insufficient for an accurate enough deter-

LXL

mination of the individuaD;(s).% This illustrates how the Zy(L,E)~L" T, 13
presence of chiral symmetry can profoundly influence spec-
tral characteristics near the band center, despite the fact that Z4(L,E)~|E—E|™, (14)

the DOS's of the ABD and ASD models seem to have thg,arek s the critical energy. The former scaling is present
same shape for adequately chosen pairs of disorder parang o E for |L<¢(E), while the latter holds in the critical
etersw andW away from the band centéand after rescaling region of the transitiod’
18 :

of €o). Within the framework of multifractality®3° the electron
probability density is characterized by several quantities that
can be derived fromr,—the generalized dimensidd, and

The eigenstate of an electron in a random potential flucthe singularity strengthy, of the gth singularity with the
tuates from site to site and it has been proposed that thieactal dimensiorf :

V. MULTIFRACTALITY OF EIGENSTATES
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FIG. 4. Dependence of the average IPN for
several differenty’'s and L=80 on the bin size
AE. The vertical dashed lines represent energies
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drg states from an energy intervak (- AE/2 E+ AE/2), taken
(q—1)Dg=171q, ag= a9’ fqlag)=aqq—74. from N, realizations of disorder, followed by studying the

limit AE—0.2 Results at the band center for the system
=80 and several differemy’s are presented in Fig. 4. The
D, represents a generalization of the fractal dimension, anérror bars in the figure are taken to be the standard deviation
it is constant and equal to the fractal dimension for ordinaryof the average value.
fractals, whilefy(ag) is the singularity strength spectrum  The figure suggests the existence of an endtgynde-
describing a multifractal as an interlaced set of fractals withpendent ofj (and therefore defined by the whole multifractal
fractal dimensiong,, where the measure on tigh fractal ~measurgsuch that decreasingE belowE’ does not change
scales as a power law with exponen{. These quantities Zq(E,L,AE) significantly. A decrease of, to a smaller
have several general propertid, is the fractal dimension extent, however, is still present fd(E<E’', and the main
of the suppor{2 in this work; D, is called the information source of this is the mismatch between the average and typi-
dimension since it describes scaling of the entropy of thecal values of the IPN at a given energy. Thus, the effect
measuré® and there exist finiteD = Dq . and Dy, Should become smaller as the number of disorder configura-
=Dg .. tions that are averaged over is increased, Zg(E,L,AE

This work is concerned mainly with the spectrum of gen-<E')~Z4(E,L) up to the corresponding statistical error.
eralized dimensionB , characterizing the spatial structure of This can be seen in Figs. 4 and 5, where valueg pfor
eigenstates on length scales smaller than the localizatiohE<E' are approximately constant within the error bas
length, while the properties ofr, will be discussed else- indicated by the horizontal dashed linesvhile for AE
where. Before a detailed discussion of the results, an over>E’ there is approximately a linear dependenc&pbn the
view of the main results of this part of the paper is given.bin sizeAE. In this sense Fig. 5 suggests tli&t exists for
The scaling of IPN’s at the band center is calculated first, andll the systems studie@nd can be shown to be independent
it is shown that scaling propertigthat is, the whole spec- of g for each of them, analogously to Fig). 5
trum of generalized dimensidd,) changes discontinuously ~ An analogous analysis is carried out for energies away
near the band center, at an enefy(L) for the range ol from the band center and,(E,L) determined accordingly,
studied. It is then shown thdE’ can be quite accurately where it turns out that the convergence for these energies is
identified with half of the width of the energy range aroundslightly easier to establish and occurs at lar§&rthan at the
the band center within which two states occur on average ifband center. Such energy intervals used in calculations of
the ensemble of disordered systems. The existence of thI®N’s for different E were small enough so that there was
energy reveals the existence of a length s¢a(&), diverg-  essentially no overlap among them.
ing whenE— 0, which is the system size at which the IPN’'s ~ The vertical dashed lines in Fig. 4 and Fig. 5 represent
change their scaling properties from one power law depenhalf of the energye,(L), defined as the width of the energy
dence onL to another. This change is then explained as dnterval around zero in which every system from the en-
finite-size manifestation of the critical point, and the critical Semble of disordered systems has two states on avétage,
exponent calculated by a finite-size analysis. 0

Calculation of Zy(E,L) starts with calculation of 1:|_2j pL(e)de. (16)
Z4(E,L,AE), which is just the IPN averaged over all eigen- Eal2

(19
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From the figures one can see th&t~E,/2 for all system E’(L) in several models with chiral symmetry. It can be
sizes studied excet=40 (the smallest system studied, not straightforwardly shown that the same happens with scaling
shown in Fig. 3, where the convergence seems to be someef Z,(E=0,,AE). This suggests that a different scaling
what slower. Equationi16) defines a length scalf (E) that  characteristic should be attributed to the two states closest to
can be described as the system dizfor a given energ)E  the band center, and thBt scales a€,, with a coefficient
such that the number of states within the energy intervapf proportionality close to 1. This also implies that the cor-
between—E andE is 2 on average. This can be defined as rections to the constai,(E,L,AE) for AE<E’ are small.
, . Therefore, the length at which the change of scaling occurs

§'(E)=E;(E), (17) should be close to and depend on the energy proportionally
to ¢'(E), while the change of scaling should be a narrow
crossover, as opposed to the much broader crossover from
power law to constant IPN that occurs at the termination of

where Ez’l(E) is the inverse function oE,(L), which is
defined by Eq.(16). Since E,(L) goes to zero wherk
—oo, this length scale diverges whé&n—0. ) ,

It is tempting to integrate results fgr, from Sec. Il o the multifractal scalind13) for L~¢. o
obtain ¢ (E) explicitly. This, however, does not give the '_I'h|s is compatible with the results presented in Fig. 6,
correct result since the whole analysis of the DOS from SecVhich gives the calculatedy(L ,E) for q=0.9,2 as well as
Il is done for energies larger than the width of the distribu-for all L andE studied. Smalleq’s allow for more accurate
tion of the two states closest to the band center, which in turfletermination of the scaling properties, and it can be seen
definesé’ in Eq. (17). In other words, there is an energy from the data that for botly’s there are two characteristic
cutoff, vanishing wher. — o, below which the fits are not scaling behaviors—one occurs at the band center and nearby
accurate, most obviously seen by noticing that all of the asenergies for smallelr, while the other scaling holds at ener-
sumed analytical forms qf, are diverging at the band cen- gies further away from the band center, and for larigeat
ter, while the actuap, is not. energies close to the band center.

A nontrivial feature connected with the existence of the The scaling exponents, are determined from the linear
length scalet” is that the scaling exponentg(E) are dif-  regression of the data for system sides 50,60 . . .,100.
ferent forL=<¢'(E) andL=¢'(E). This is a generalization The goodness of the power law fit is quantitatively charac-
of findings from Ref. 23, where a deviation from the powerterized by a coefficienty,(E) next to the quadratic term
law scaling of the average participation number for differentfrom an additional quadratic fit of the data, and y, ob-

AE at the band center appeared whenewdt exceeded tained thus from the data in Fig. 6 are presented in Fig. 7.
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The results show the existence of three different ca@ges. tive error during numerical diagonalization of the Hamil-
Away from the band centery,~0 andr, is independent of tonian. Difficulties in calculatingD, in this regime even
E, indicating a power law dependence of IPN lon(ii) Ap- arouse suspicion that multifractality might break down for
proaching the band centey, becomes different from zero, negativeq.*! It is thus important to show thdd, is defined
indicating that a power law is not obeyed. This is due to thefor negativeq’s as well as for positive ones. The accuracy of
emergence of the scaling for system sitzes¢'(E) dis-  all the calculations of IPN’s done in this section can be
cussed above and present in Fig.(ié, For E=0 a power straightforwardly improved by increasing the number of con-
law is obeyed againy,~0), but with a differentr, than for  figurations of disorder that is averaged over. This would lead
energies away from the band center. to smaller error bars of all the quantities calculated, as well
The discontinuity of7y(E) for all the otherg’s studied as to a wider range af’s for which D, can be calculated.
naturally leads to two different spectra of generalized dimen- The results of this section give the following picture of
sions, and Fig. 8 shows the calculatBg for all energies the scaling of IPN with system size. For any enekgglose
except the three nonzero energies closest to the band centsrough to the band center, there exist two power law scal-
(which cannot giver, from the fitting procedure used here ings: one forL,<L=<¢'(E) described by the set of expo-
due to the change of scaling properties discussed abbve nents7,(E=0), and another one fof' (E) <L <¢(E), de-
particular, the participation number grows with the numberscribed by adifferent set of exponentsr,(E#0), which
of sitesL? as a power law with exponenB(E=0)=0.25 leads to the two different spectra of generalized dimension
+0.02, andB(E#0)=0.55+0.05. This should be com- Dg.
pared with the result for the ABD model of Ref. 18(E The dependence of the additional length scale on energy,
=0)=0.50=0.06. It is easy to explain this discrepancy &' (E), can easily be determined from HG.7) by integrating
since the bin siz2d\E=4x10"* used in Ref. 18 was, de- the actual numerical data fg (E), and the result, obtained
pending on the system size, roughly an order of magnitud@rom Fig. 9, givesgf(E)oc|E|*V’, with
too large to detect the correct scaling behavior, and therefore
B(E+#0) was obtained instead. v'=0.35+0.01. (18)
Dq is calculated for only three negative values af

: , : . The meaning of this length scale and corresponding expo-
mainly because IPN's for negatiegs are determined mo_;tly ]nent v’ can be understood by assuming that the additional

scaling of the two states is due to the finite-size effect of
“smearing” of the E=0 critical point of the infinite system,
because exactly the two states closest to the band center be-

finding the electron, which in turn acquire the highest rela

-0.11p =09 $1 12} 3 g }H i come critical wherL —. The critical energy then changes
-0.12¢ 1 1.0} by Ae which is, in a finite system of sizk (in units of the
-0.13} §1 ost 50 CE
T, 0141 3|1 o8 g=2= ] 25
3
-0.15} { 04} ] i
oxel ¥ s 8481 ] 20T
t t 1.5 ; [
0.05} { LO} { ] D 1'5;
. 0.5} 1 I s } 3 q i
Y I — ; 10
g 000y T ¢ 8Ty oo 2 j— !
-0.5}f ] [
-0.05} 1 1ol { ] 05 F
1x108  Bx104 O 1x108 Bx104 O 0.0 b
E E

FIG. 7. Scaling exponent of IPN;,, and the goodness of fit
coefficient y,, calculated from the data in Fig. @xceptL =40 FIG. 8. Multifractal spectrdD, at the band center and nearby
results. energies.
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FIG. 9. Dependence of the additional length scale on energy “To T A(E=1076, M) 0 ®
near the band center, as determined from #a). [ --an - A (E=10-5,M) o
E=10"1
lattice spaciny equal toAE,(L)=L ==L~ If, further- 02 Ly iy
more, éx|E| ™" in the infinite system, the shifh e, of the 1 10 100
critical energy in the system of sideis Ae.cL ™", from M

L : ,

the general th‘?ory of finite-size scallﬁﬁ.'rherefore, v FIG. 10. The largest renormalized inverse Lyapunov exponents

.eq.“"?"s”' the prltlcal_ exponent of the correlation length of the A(E,M), calculated for long stripes of width and various ener-

|_nf!n|te_two-d|men5|ona_l system._lt should be n(_)ted that thegies near the band centéull line). The energy range is IggE|

finite-size scaling applied here is somewhat different from_ _; _4 5 —5, —6. Dashed lines connect points of the sec-
_ 42 _ , fro P , .

usual, WhereAec:|E_Ec|/E_c- Here, Ec=0 and Ae;  ond largest ILE,A,(E,M), for energiesE=1075,10"%, and M

=|E—E_|, where both energies are expressed in units;pf  <20.

as discussed in the Introduction. Thus, the enetggppears

in the denominator ofAe. rather than the critical energy metry now enforces “dimerization” of pairs of ILE’s, acting

itself. as an effective attractive force between each pair of ILE’s
that becomes degenerate at zero energy, as in Fig. 10, where,
VI. LOCALIZATION LENGTH NEAR THE BAND for a fixed M, A, and A, are closer together for smaller
CENTER energy. The largest ILE thus decreases in a strip of widith

on approaching the band center, as in models with chiral
symmetry studied in Ref. 22. On the other hand, at any given
energy, every pair of ILE's becomes more repulsive with
increasingM. Such an increased number of ILE’s thus di-
minishes the attractive effect of the symmetry, and, depend-
ing on the relative strengths of the two effects, there are two

8,24 i Aneodi ; ;
Ao W v caleuites or several onerdros et e banifGmesi) or smallr, the argestILE increases approx:
9 mately linearly with M, and, since the slope of the rise

center and one parameter scaling analysis is applied to th . s .
largest ILE, from which the correlation length of the 2D cﬁ}anges with energy, FSS cannot be dofie; for suffi

. X . . ciently large M, on the other hand, the repulsion among
system is calculated. The scaling analysis consists of asSUN"£:s due to disorder dominates and ESS is possible
ing that the change of the largest ILRA,(E,M), due to ] : . o
rescalingM —bM can be compensated by an appropriatet The one-parameter universal function(M/¢(E)), ob

change of energy, after which will remain the same, which ained for system sizei =50 for energiedE|>10 *, and
impligs that 9y ' for system sizesVl =64 for energies 10°<|E|<10 4, is

presented in Fig. 11. The obtained localization leng(tg),
A(E,M)=A(M/E(E)). (199  inunits of the localization length of the smallest energy stud-
) . ied (E=0.1), is shown in the inset of the same figure. The
Figure 10 shows the calculated E, M) for several energies calculatedg(E)/£(0.1) is fitted to a power law for energies
E close to the band center and for various StrlpS up to 12&0*5$ E< 10*3' and the result suggests a power law diverg_

sites wide. The figure also gives the second lar¢éashed ing |ocalization length at the band center, with the exponent
line) renormalized ILE,A,, for the two lowest nonzero en-

ergies studiedE=10"° and 10 ®) and forM=<20. All val- »=0.335+0.034, (20)
ues are obtained with relative error of 1% or better.

At E=0 and forM even, all ILE’s become doubly degen- in agreement with the resull8) of Sec. V.
erate due to the presence of chiral symmét’t and they Some additional analysis of the results can be done by
scale linearly withM for M =16, reflecting the scale invari- introducingA ,,,,( M), defined as the maximal (E,M) for a
ance ofA characteristic of a critical state. To see the effectgiven strip widthM. The importance of this quantity comes
this degeneracy has on the scaling properties of ILE’s, wdrom the fact that points wher& reaches its maximum for
should recall that ILE’s of transfer matrices of disorderedvarious energies cannot be described by FSS, and, at the
systems repel each other in gen&tand become self- same timeA ., limits by its definition possible values that
averaging quantities for sufficiently long stripgsThe sym-  A(x) (obtained from the FSSan have. The main observa-

In order to calculate the localization length of the infinite
two-dimensional system, the finite-size scal(i$9 analy-
sis of MacKinnon and Kraméris applied to the TMM of
Pichard and Sarntd.In this analysis, renormalized inverse
Lyapunov exponentslLE’s) of the transfer matrix of the
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1.5 — — with k=1.345-0.005 andC=1.30+0.03.

Other calculated quantities share in common the qualita-
tive feature of a discontinuous change near or at the band
7 center. The nearest-neighbor level spacing distributions, for
] instance, between the state closest to the band center and the
next one seem to be distinctly different from the level spac-
ing distributions between other neighboring states. This was
argued to be connected to the chiral symmetry of the model,
which places the two states closestEo=-0 at the (high
energy end of the spectrum. These two states are further
found to play a crucial role in explaining the discontinuous
change of the scaling properties of IPN’s near the band cen-
o ] ter. Extrapolation to the limit of the infinite square lattice
then led to two different spectra of generalized dimension

10 o agE o e D,—one forE+0 (present at length scales smaller than the

0.2 B e localization length, and another one fdE=0 (present at all

1 10 100 length scales Finite-size scaling associated with the effects
M/ E., that finiteL has on the critical band center states of the infi-

. _ o o
FIG. 11. One-parameter universal functiaM/&(E)) for the nite system led to the value=0.35+0.01 of the critical

ABD model. The four separate points are(E=0M) for M eX[Z’)A\Odnd(-?‘Qt Oflthe Ilcl)callzatllon'len?tlfll_.E’ f f .
=16,32,64,128, corresponding to the band center critical state. The itional scaling analysis o s of transfer matrices

inset shows the calculated localization leng(fE) in units of the ~ Of 0ng quasi-1D systems gave the value 0.335=0.034.

localization lengthé(E=0.1), with error bars smaller than the sym- This suggests that there is only one critical state at the band

bol size. center with all other states localized in the system on the
infinite square lattice, in agreement with the findings of Refs.

tion is thatA ., Seems to grow slower than linearly in Fig. 32 and 18. A one-parameter universal functid(x) is cal-

10. Linear(or fastej growth would imply the existence of an culated and another discontinuity found, sinké&(E—0))

additional energy scale below which FSS would break down;eA(E: oM).

for all largeM and A (E,M) would grow linearly and indefi- A puzzling feature of the critical exponentof the ABD

nitely with M in the same figure, implying the existence of @ a5 well as of the RDF mod&i?is their apparent disagree-

whole band of extended states where one-parameter scalifgent with the rigorous theorem of Chayesal,** which

would not hold. The slower than linear growth &f,a,S€en,  states thay=1 in two-dimensional quantum disordered sys-

thgrefore, further suggests the existence of a si_ngle criticghms in general. This question, however, requires further
point at the band center of the system on an infinite squargtudy and will be addressed elsewhere

lattice.
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