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Dynamical correlations in one-dimensional charge-transfer insulators
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The single-particle spectral function and the density response of a two band Emery model for CuO chains is
calculated for large on-site Cu repulsionU and large on-site energy differenceD. For U@U2D@t the
eigenfunctions are products of charge and spin parts, which allows analytical calculation of spectral functions
in that limit. For other parameters numerical diagonalization is used. The low-energy hole carriers are shown
to be the one-dimensional analogs of the Zhang-Rice singlets. The validity of the one-band model is discussed.
The results are relevant to the interpretation of photoemission and electron-energy-loss spectroscopy experi-
ments on SrCuO2 and Sr2CuO3 .
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I. INTRODUCTION

One of the most intriguing phenomena in on
dimensional electron systems is the so called spin-cha
separation: the low-energy excitations are decoupled co
tive modes of charge and spin character, which may h
different velocities, and are referred to as holons and
nons, respectively. As a consequence, the spin and char
an added electron will be spatially separated after some
and there are no Fermi-liquid-like quasiparticles. While t
decoupling exists also in the weak-coupling limit,1 it is per-
haps best understood for the strong-coupling limit of
Hubbard model, where the Bethe ansatz solution tells us
the wave functions are factorized into a part describing f
spinless fermions representing the charges and a part re
senting the spins.2 This allowed the calculation of the dy
namical spectral functions of the Hubbard model at3 and
away4 from half filling with excellent resolution. These ca
culations provided an explanation of the origin of the diffe
ent features in the spectral function.

The most direct test of the theory is to look at the pho
emission spectra of highly anisotropic materials. The nea
ideally one-dimensional CuO chains5 in the charge-transfe
insulators SrCuO2 and Sr2CuO3 are perfect candidates, give
that the typical energy scale for spin and charge excitation
large compared to the experimental resolution, making
observation of the low-energy spectrum possible. The
sence of bands would indicate that we are not dealing w
the usual quasiparticles of Fermi-liquid theory. On the ot
hand, there are very clear theoretical predictions for the p
toemission spectrum of a system where spin-charge sep
tion exists, and indeed, recent photoemission experiment
SrCuO2 ~Refs. 6–8! and photoemission9,10 and
electron-energy-loss11 experiments on Sr2CuO3 seem to in-
dicate that the dynamics at low energies can be unders
within an effectivet-J or Hubbard model.

In comparing the measured spectra with the theoret
ones, we face the following difficulties:~i! the actual mate-
rial is a charge-transfer insulator, while the Hubbard/t-J
model is a Mott insulator. Therefore one is led to quest
how much of the spectra can be attributed to generic feat
PRB 620163-1829/2000/62~19!/12707~8!/$15.00
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where the details of the model are not important;~ii ! for the
CuO2 plane, thet-J model is derived to describe the dynam
ics of complex objects—the Zhang-Rice singlets.12 In the
CuO3 chains the O ions are not all identical, and the origin
picture of Zhang and Rice has to be refined;~iii ! on the
theoretical side, apart from numerical calculations of the
namical correlations which are difficult to interpret, exa
and/or analytical results are very rare concerning the spe
function3,13–15and the optical conductivity~e.g., for the Hub-
bard model, see Ref. 16!.

To answer these questions, we will consider the o
dimensional~1D! model involving the Cu ions and the oxy
gens between them~see Fig. 1!, the so called two band Em
ery model,17,18 as the simplest extension of the Hubba
model. In this paper we show that the charge-spin factori
wave function is an exact eigenfunction of the Emery mo
in the strong-coupling limit, however, the spinless fermio
~‘‘charges’’! represent complex objects which are the on
dimensional analogs of the Zhang-Rice singlets. Furth
more, we demonstrate that the Emery model can natur
explain the reduction of spectral weight for small momen
seen experimentally6–10 and also describes some higher e
ergy features of the photoemission spectra.

Since the formation of Zhang-Rice singlets is an ess
tially strong-coupling phenomenon, the approach we pres
in the paper is the most suitable method to apply. We
coupling approaches13 are inappropriate to capture the add
tional physics due to the presence of additional bands.

The outline of the paper is as follows: In Sec. II we i
troduce the Emery model and the canonical transforma
leading to the strong-coupling effective model. The spec

FIG. 1. The CuO3 chain with 3d orbitals of Cu and 2p orbitals
of O. The side oxygens~dashed lines! are omitted in the two band
model.
12 707 ©2000 The American Physical Society
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12 708 PRB 62KARLO PENC AND WALTER STEPHAN
functions within this effective model are calculated in Se
III, while in Sec. IV the density-density correlations releva
to the electron-energy-loss spectroscopy~EELS! experiments
are discussed.

II. EMERY MODEL

A. Definition of the model

The Emery model is given by the HamiltonianH5T1U
1V. For the kinetic part we take the usual tight-bindin
form,

T52t (
i ,d,s

~di ,s
† pi 1d,s1H.c.!, ~1!

wheredi ,s
† andpi 1d,s

† denote the hole creation operators
copperd and oxygenp orbitals at sitesi and i 1d, respec-
tively. The Cu-Cu distance is taken to be unity,i are integers
andd561/2. The phase factors in the hybridization comi
from the symmetry of the Cu and O orbitals are absorbed
the definition of thed andp operators asdj5(21) jdphys,j ,
and pj 11/25(21) j pphys,j 11/2, where the subscript ‘‘phys’’
denotes the operators respecting the phase factors in th
bridization. The inclusion of the phase factors causes a s
of p in the momentum of theO hole and will be explicitly
mentioned when necessary. In the potential part we incl
the on-site energy differenceD5«p2«d and the on-site
Coulomb repulsionU of the Cu 3d orbitals:

U5
D

2 (
i

~ni 11/2
p 2ni

d!1U(
i

ni ,↑
d ni ,↓

d , ~2!

where ni ,s
a 5ai ,s

† ai ,s (a5d,p), and ni
a5(sni ,s

a , further-
more, the nearest-neighbor Cu-O repulsion

V5V(
i ,d

ni
dni 1d

p , ~3!

which may lead to exciton formation.18 We chooseU.D in
order to have a charge-transfer insulator with one hole
unit cell.19

Note that if one begins with a model which also includ
oxygen orbitals on the side of the chain, as a preliminary s
one may build bonding, and anti- and nonbonding combi
tions of these. Therefore, if one understands our single o
gen orbital per cell to correspond to the bonding combi
tion, our results may also be seen to represent a g
approximation to part of the spectrum of the more compl
four band model.20,21

B. Effective model in the strong-coupling limit

As mentioned earlier, direct numerical methods, such
exact diagonalization, work only for rather small syste
sizes. However, in the strong-coupling limit (U,D@t,V) it is
possible to do controlled calculations both analytically a
numerically. As a first step, we derive an effective stron
coupling Hamiltonian. In the extreme case whent5V50,
the Hamiltonian is block-diagonal in the subspace of sta
with a given eigenvalue ofU. The hybridization inT may be
treated perturbatively using a canonical transformatio22

leading to an effective HamiltonianHeff acting within one
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subspace. A detailed and systematic explanation for the
of the Hubbard model is given in Ref. 23. We denote by til
~e.g.,p̃) the operators acting in the subspace ofHeff , and the
physical operatorsO are then obtained from

O5eSÕe2S5Õ1@S,Õ#1 . . . , ~4!

whereÕ[O(p→ p̃,d→d̃, . . . ) and

S5
1

D
~ T̃D2T̃D

†!1
1

U2D
~ T̃U2D2T̃U2D

† !1O~ t2! ~5!

is the generator of the canonical transformation with

T̃D52t (
i ,d,s

p̃i 1d,s
† d̃i ,s~12ñi ,s̄

d
!,

T̃U2D52t (
i ,d,s

d̃i ,s
† p̃i 1d,sñi ,s̄

d . ~6!

The subscriptnU1mD denotes that the state acted upon
promoted to a subspace at this energy difference. In o
words

@Ũ,OnU1mD#5~nU1mD!OnU1mD , ~7!

and every operator can be decomposed asO
5(n,mOnU1mD with n integers andm integers or half-odd
integers. ThenHeff is given by

Heff5Ũ1Ṽ1
1

D
@ T̃D ,T̃D

†#1
1

U2D
@ T̃U2D ,T̃U2D

† #1O~ t2!.

~8!

Separating the different processes,Heff5U81H01H1
1H2, and introducing the effective hopping amplitudestS
5t2/(U2D) and tT5t2/D, furthermore,U85U14tT14tS
andD85D14tT , we get~see also Refs. 24 and 25!:

U85
D8

2 (
i

~ ñi 11/2
p 2ñi

d!1U8(
i

ñi ,↑
d ñi ,↓

d 1V(
i ,d

ñi
dñi 1d

p ,

H052tT (
i ,s,d

~12ñi 12d,s̄
d

!d̃i 12d,s
† d̃i ,s~12ñi ,s̄

d
!,

H15~ tS1tT! (
i ,d,d8,s

~ p̃i 1d,s
† d̃i ,s̄

†
d̃i ,sp̃i 1d8,s̄

2 p̃i 1d,s
† ñi ,s̄

d
p̃i 1d8,s!1tT (

i ,s,d
p̃i 1d,s

† p̃i 2d,s,

H25tS(
i ,s,d

ñi 12d,s̄
d

d̃i 12d,s
† d̃i ,sñi ,s̄

d . ~9!

H0 and H2 describe the motion of the empty and doub
occupied site, respectively, whileH1 is responsible for the
dynamics of the hole on oxygen. By using the Heisenb
model ground stateuGS& for the insulating case, the mai
effect of the ~fourth order! antiferromagnetic ~AF!
interaction26 between Cu spins is accounted for.
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III. SPECTRAL FUNCTIONS

Now let us turn to the spectral functions. The photoem
sion spectrum is proportional to the single particle spec
function, defined by

B~k,v!5(
f ,s

u^ f upk,s
† uGS&u2d~v1Ef2EGS!

1(
f ,s

u^ f udk,s
† uGS&u2d~v1Ef2EGS!, ~10!

assuming that the cross sections of the Cu and O elec
removal are equal. The sum is over final statesu f & with a
hole added, and a similar definition holds for the inve
photoemission spectra, where a hole is removed. First,
will present the analytical and numerical calculation of t
spectral function for the effective model, and then we w
compare our results to the spectral function oft-J model and
the photoemission spectra of SrCuO2 and Sr2CuO3.

A. Calculation of spectral functions

Since the nearest-neighbor Coulomb repulsion leads o
to a uniform shift of the final-state energies in the spec
functions, it will be neglected in this section. The stron
coupling behavior of the photoemission spectra is schem
cally shown in Fig. 2: the hole can go either to the Cu s
~peak ‘‘a’’! or to the O site~peaks ‘‘b’’ and ‘‘c’’ !. The cre-
ation operatorck,s

† 5dk,s
† ,pk,s

† entering the calculation of the
spectral function Eq.~10! can be decomposed in leading o
der asck,s

† 5ck,s;2D/2
† 1ck,s;D/2

† 1ck,s;U2D/2
† which represent

a hybridized mixture of Cu and O atomic states. For e
ample, includingO(t) corrections

pi 1d,s;D/2
† 5 p̃i 1d,s

† 1O~ t2!, ~11!

di ,s;D/2
† 52

t

D (
d

@~12ñi ,s̄
d

! p̃i 1d,s
† 2d̃i ,s

† p̃i 1d,s̄
†

d̃i ,s̄#

1
t

U2D (
d

@ ñi ,s̄
d

p̃i 1d,s
† 1d̃i ,s

† p̃i 1d,s̄
†

d̃i ,s̄#1O~ t2!.

~12!

The final states in peaks b and c are obtained by apply
ck,s;D/2

† to the ground state, and the sum rule of the b1 c
peaks in Fig. 2 is

^GSupk,s;D/2pk,s;D/2
† uGS&1^GSudk,s;D/2dk,s;D/2

† uGS&

511O~ t2!. ~13!

FIG. 2. Schematic distribution of the weights in the stron
coupling limit for a charge-transfer insulator.
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Similarly, the weight in peaks a and d is 1/21O(t2). For
simplicity, we do not include the corrections in Eq.~12!
when we calculate the spectral functions.

The dynamics in the peak a is governed byH2: the extra
hole on Cu, created byd̃k,s

† in Eq. ~10!, hops to neighboring
Cu sites with amplitudetS , leaving the spin sequence un
changed:

H2u•••s j 212s j•••&52tSu•••2s j 21s j•••&

2tSu•••s j 21s j2•••&. ~14!

Here ‘‘2’’ in the wave function denotes the position of th
extra hole~site occupied by two holes!, ands j the spins of
the singly occupied Cu sites withj 51, . . . ,L21, as there
are L21 spins remaining. The situation is identical to th
case ofU/t→1` Hubbard model, where we know that th
wave function of a state with momentumk factorizes into
charge and spin parts:2–4

u f Q~k!&5
1

AL
(
j 50

L21

ei (k2Q) j uc j& ^ uxL21~Q,nQ!&, ~15!

where uc j& describes free spinless fermions onL lattice
points with an empty sitej, which in our case is the site with
the extra hole.uxL21(Q,nQ)& is the squeezed spin-wav
function of L21 spins with momentumQ52pJ/(L
21), J integer, and other quantum numbersnQ . The en-
ergy of the state is

«Q~k!5U82D8/222tS cos~k2Q!. ~16!

Now that we have both the energy and the wave function
the final state, we are ready to calculate the spectral func
as presented by Sorella and Parola for the large-U Hubbard
model.3 As a first step, we write the ground state also in
product form

uGS&5ucGS& ^ uxGS&, ~17!

where theuxGS& is the Heisenberg ground-state wave fun
tion anducGS& is the fully filled Fermi see of spinless ferm
ons ~charges!. It is convenient to choose systems with 2,
10, etc. sites, where the momentum of theuGS& is zero. In
the matrix element of Eq.~10! it suffices to keep the momen
tum dependence in the final wave function only,

u^ f Q~k!ud̃k,s
† uGS&u25Lu^ f Q~k!ud̃ j 50,s

† uGS&u2

5u^x~Q,nQ!uZ0,suxGS&u2, ~18!

where we have substituted the factorized form Eq.~15! and
used the fact that the overlap in the charge part is 1. Only
spin part is nontrivial: the operatorZj ,s removes a spins at
site j, reducing the spin sequence to lengthL21. Introduc-
ing

D~Q!5(
nQ

u^x~Q,nQ!uZ0,suxGS&u2 ~19!

for the spectral function we get

B~k,v!5(
Q

D~Q!d@v1«Q~k!#. ~20!

-
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12 710 PRB 62KARLO PENC AND WALTER STEPHAN
D(Q) is essentially the ‘‘occupation number’’ of the sp
nons, and has a singularity at the spinon Fermi momentQ
56p/2. It can be approximated as (L21)D(Q)'20.5
12.98/Ap224Q2 for 2p/2,Q,p/2 and zero
otherwise.3,4,27We therefore find that the spectral function
the upper Hubbard band~peak a! is identical to that of the
large-U Hubbard or smallJ t-J model. Note also that the
inverse photoemission spectrum will have a similar fo
with bandwidth 4tT ~peak d in Fig. 2!.

Let us now proceed to peaks b and c in Fig. 2, which c
be associated with the hole on oxygens. The hole added t
O site with p̃k,s

† can form a singlet or triplet with a neigh

boring Cu spin. We will denote byuSQ & (uSW &) states where
the O hole forms a singlet with the Cu spin on its right~left!,
as seen in Fig. 3. For example,

u↓SW↑↓&5
1

A2
d̃1↓

† ~ d̃2↑
† p̃5/2↓

† 2d̃2↓
† p̃5/2↑

† !d̃3↑
† d̃4↓

† u0&,

u↓SQ↑↓&5
1

A2
d̃1↓

† ~ p̃3/2↓
† d̃2↑

† 2 p̃3/2↑
† d̃2↓

† !d̃3↑
† d̃4↓

† u0&.

As we will see below, a suitable combination of these sta
will give us the Zhang-Rice singlets,12 in terms of which the
lowest energy excitations may be described by a one b
model. In the present calculation we are also including
triplets and high-energy singlets in order to describe hig
energy excitations. Note that this basis is not orthogonal

^•••SW s•••u•••SW s•••&51,

^•••SW s•••u•••sSQ •••&51/2. ~21!

In general, the resulting spectrum is complicated and
singlets and triplets mix with one other, except for the p
ticular case oftS finite andtT50.25,28Due to the very specia
form of H1 for tT50

H1522tS (
i ,d,d8,a,a8

S daa8
4

ñi
d2

taa8
2

S̃i
dD p̃i 1d,a

† p̃i 1d8,a8 ,

~22!

where we can identify the projector onto spin singlets~here
S̃i

d5(s,s8d̃i ,s
† tss8d̃i ,s8/2 andt is the vector of Pauli matri-

ces!, the matrix elements ofHeff leading to propagation o
the singlets are

FIG. 3. The stateu↓SW↑↓&. The Cu and O spins in the shade

region form a singlet, which we denoted bySW .
n
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H1u•••SW s•••&5tSu•••s~SW 2SQ !•••&

22tSu•••~SW 2SQ !s•••&,

H1u•••sSQ •••&52tSu•••~SW 2SQ !s•••&

12tSu•••s~SW 2SQ !•••&.

The combinationuSW &2uSQ & moves through the lattice like th
site ‘‘2’’ in Eq. ~14!

H1u•••s j 21~SW 2SQ !s j•••&

5tS„u•••s j 21s j~SW 2SQ !•••&

24z•••s j 21~SW 2SQ !s j•••&

1 z•••~SW 2SQ !s j 21s j•••&…, ~23!

leaving the spin sequence unchanged. In this caseuc j& in Eq.
~15! will denote this particular combination at sitej. The
energy of the state is

«Q
S~k!5D/224tS12tS cos~k2Q!. ~24!

These singlets leads to the formation of the c peak in Fig
Next, we need to calculate the matrix elements. Using

identity

z^ f u p̃k,s
† uGS& z25L z^GSu p̃1/2,su f ~k!& z2, ~25!

where p1/2,s removes the hole at sitei 51/2, thek depen-
dence is now in the final state only. So, for the matrix e
ment we get

L z^GSu p̃1/2,↓u f ~k!& z2

5u(
j

ei (k2Q) j~^xGSu ^ ^cGSu! p̃1/2,↓

3~ uc j& ^ ux~Q,nQ!&!u2

5
1

2
z^xGSu~Z0,↑

† 2ei (k2Q)Z1,↑
† !ux~Q,nQ!& z2

5~11cosk!z^xGSuZ0,↑
† ux~Q,nQ!& z2, ~26!

where we have used that ^xGSuZ1,↑
† ux(Q)&

52eiQ^xGSuZ0,↑
† ux(Q)&. Dividing the matrix element by the

norm of the final state

^ f Q~k!u f Q~k!&522cos~k2Q!5
D22«Q

S~k!

4tS
, ~27!

and summing over final states with definiteQ, we can write
the spectral function as

BS~k,v!5
4tS~11cosk!

D12v (
Q

D~Q!d@v1«Q
S~k!#.

~28!

Clearly, even introducing form factors in the one band mo
@which is identical in form to Eq.~20!#, the v-dependent
prefactor of the spectral distribution above cannot be
tained. The local (k-averaged! spectral function for the sin-
glets is
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FIG. 4. The analytical result for photoemis
sion spectra of~a! t-J model in theJ/t→0 limit
@Eq. ~28! without thek andv dependent prefac-
tors# and ~b! tT50 effective model@Eq. ~28!#,
compared to~c! a Lánczos diagonalization of 18
site effective model fortT50 and~d! tT5tS . The
d functions are plotted as Lorentzians of wid
0.1. The q5k1p is the momentum when the
relative phases ofd and p orbitals are properly
included and it should be used when we compa
with the experiments.
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BS~v!5
1

p

4tS1~2ln221!~22v2D18tS!

~D12v!A~D24tS12v!~22v2D112tS!
,

~29!

with weight 0.32. The rest of the weight~0.68! is at higher
energiesv52D/2, where we find nondispersing solution
made of a particular combination of singletsuSW ss8&
22usSW s8&22usSQ s8&1uss8SQ &, as well as the triplets, con
tributing with a delta peak to the spectral function to for
the peak b in Fig. 2.

The only requirement for the procedure outlined above
work is that during the motion of the hole the spin seque
is unchanged. This immediately requirestT50 in H1.

The influence of finitetT is shown in Fig. 4. The lower
‘‘singlet’’ band increases its width, while the overall sha
of BS(k,v) does not change significantly. On the other ha
peak b now extends fromD/2 to D/214tT and a sharp dis-
persion dominates the spectrum. Only a slight weight tra
fer from the ‘‘singlet’’ to the ‘‘triplet’’ band can be ob-
served, e.g., atk50 (q5p) the weight in the singlet band
is reduced from 0.65 to 0.43 as we increasetT from 0 to tS ,
while the total weight, given by Eq.~13! is unchanged in
leading order.

B. Comparison with the t-J model and photoemission
experiments

Comparing with thet-J model for smallJ @Fig. 4~a!#, we
can see that although~also for tT5tS) the singlet feature is
similar to thet-J model result,3 there are detailed difference
in the distribution of weight, similar to those in Eq.~28!, as
well as in the dispersion of the upper edge of the sing
continuum. We therefore see that even in parameter regi
where the one bandt-J description accurately predicts low
energy excitation energies, the two band model may h
significantly different properties as far as other physical
servables is concerned, exemplified here by the momen
and frequency dependence of the spectral weights. The e
of finite J is to give dispersion to the now dispersionle
lower ‘‘spinon’’ edge in both Emery andt-J model.

Finally, let us compare our results with the experimen
For both SrCuO2 and Sr2CuO3 the low-energy region show
o
e

,

s-

t
es

e
-
m
ct

.

features found in thet-J model, i.e., the holon and spino
bands dispersing witht'0.5–0.6 eV andJ'0.15–0.2 eV,
respectively, which is consistent with the susceptibility5

optical,29 and electron-energy-loss11 experiments. However
an additional interesting feature is the weight reduction
the zone center (q50) is approached. In Refs. 7 and 10 th
is attributed to the different cross sections of Cu and O
bitals, while in our theory it arises quite naturally from th
internal structure of the low-energy singlets. Concerning
higher energy features, the triplet feature is in reasona
agreement with the dispersing peak at 2 eV in Fig. 6 of R
8, if one disregards the flat nonbonding oxygen bands
included in our model. These general trends do not dep
strongly on tT /tS and the inclusion oft/D and t/(U2D)
correction in operators leads only to a small weight trans
to lower energies.

IV. DENSITY-DENSITY CORRELATIONS

The density-density correlation function describes the
namical dielectric response of the material and is access
by measuring, e.g., the optical conductivity, electron-ener
loss spectra~EELS!, and inelastic x-ray scattering. Both op
tical conductivity30 and EELS~Ref. 11! have been measure
on Sr2CuO3. The EELS spectra can be reasonably well
terpreted within a one band Hubbard model extended w
nearest-neighbor repulsion, so it is interesting to see w
changes if we consider a two band model, like the Em
model.

Since the system is an insulator, we get finite dens
response only above the charge transfer gap atv'D. In
lowest order the density-density correlation function is giv
by

N~k,v!5(
f

u^ f unk;DuGS&u2d~v2Ef1EGS!, ~30!

where nk;D5nk;D
d 1nk;D

p can be calculated from

ni ;D5(1/D)@ T̃D ,ñi # and reads

nk;D5
t

D

1

AL
(
j ,d,s

eik j~eidk21!~12ñ j ,s̄! p̃ j 1d,s
† d̃ j ,s .

~31!
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This leads to the sum rule

E N~k,v!dv58
t2

D2
sin2

k

4
. ~32!

Now let us determine the dynamical density response
the special casetT50. The operatornk;D moves a hole from
Cu to O, and results in a two-body problem, which can
solved using standard techniques. For the singlet part,
final-state wave function can be represented as

u f S&5 (
j 51

L21

~xj ues1•••s j 21SQ s j•••&

2yj ues1•••s j 21SW s j•••&), ~33!

with the norm

^ f Su f S&5 (
j 51

L21

~xj
21yj

2!2 (
j 51

L22

yjxj 11 . ~34!

These states areL-fold degenerate, since ‘‘e, ’ ’ which repre-
sents the Cu with no hole, does not hop in this limit. T
Schrödinger equation gives

Exj5Eyj5tS~xj 1122xj22yj1yj 21! ~35!

for j 52, . . . ,L22 with boundary conditions

Ey15tS~x222x122y1!,

E~y12x1!5Vx1 ,

EyL215tS~xL2222xL2122yL21!,

E~yL212xL21!5VxL21 .

The energyE is measured fromD. Due to symmetryxj and
yj are real and there are even and odd parity solutions w
xj57yL2 j .

Let us first consider the caseV50. We immediately
see that (xj2yj )E50, i.e., xj5yj for E5” 0 and j
51,•••,(L21). The solution is xj5yj5sin jk, with k
5Ip/L, andI 51,2,•••,L21. These states have even~odd!
parity for I even~odd!, energy

Ek524tS12tS cosk, ~36!

and norm^ f Su f S&5L(22cosk)/2. ForL→` they will form
a continuum fromE526tS to 22tS . Additionally there are
L21 degenerate states withE50. The matrix elements in
Eq. ~30! for the singlet contribution read

z^ f Sunk;DuGS& z25
8t2

D2
FS

x1
2

^ f u f & F16 cos
k

2Gsin2
k

4
, ~37!
in

e
he

th

where the1 (2) sign is for the even~odd! state, andFS

5^GSu 1
4 2S0•S1uGS& → ln 2 for L→` is the probability of

finding two neighboring spins forming a singlet in the sp
sequence. The only nontrivial quantity isx1

2/^ f Su f S&, which
can be conveniently expressed using the energy of the s
as

x1
2

^ f u f &
5

1

L

2 sin2k

22cosk
5

1

L

~2tS1E!~6tS1E!

tSE
. ~38!

In the thermodynamic limit we replace the sum over sta
with an integral over energy:

(
I

→E dEk

1

p

]k

]Ek
, ~39!

where (1/p)(]k/]Ek) is the density of states

1

p

]k

]Ek
5

1

p

1

A~22tS2E!~6tS1E!
, ~40!

the factor@16 cos(k/2)# in Eq. ~37! averages to 1, and fo
the contribution of the Zhang-Rice singlets to the dens
response we get

N~k,v!5
8ln2

p

t2

D2

A~v2D16tS!~D22tS2v!

tS~D2v!
sin2

k

4
.

~41!

The density response in this limit has a trivial momentu
dependence, due to the nondispersing nature of the ‘‘e’’ site.
It gives 2(22A3)FS'37% of the total weight, the rest o
the weight is in a single peak atv5D, which comes from
the nondispersing singlets and triplets. TheN(k,v) we just
calculated is shown on the upper left plot in Fig. 5.

Turning on the Cu-O repulsion, which acts as an effect
attraction between the empty Cu site and the O hole,
twofold degenerate~for L→`) excitons with energies

VS
65

3tSV1V26VA12tS
21V2

tS22V
~42!

appear, together with a twofold degenerate exciton involv
the triplets atVT52V. The VS

1 solution exists only forV
.2tS where it splits off from the lower edge of the con
tinuum. Not going into the details, the expression f
x1

2/^ f Su f S& in Eq. ~37! now reads
x1
2

^ f u f &
5

2E~2tS1E!~6tS1E!

24tS
2V12E~4tS2V!V1L@~2V2tS!E212~3tS1V!VE13V2tS#

, ~43!
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FIG. 5. N(k,v) of 18 site effective model for
V50, 2tS , and 8tS from left to the right, and
tT50 ~upper! and tT5tS ~lower plots! obtained
by exact diagonalization. The thick line in th
upper plots shows the analytical result. Thed
functions are plotted as Lorentzians of wid
0.1tS and the plots for eachk are normalized to
have total weight 1. In the upper plots we sho
k5p only because of the trivialk dependence.
The remnants of excitons are indicated within t
parenthesis in the lower right plot. These spec
are independent of the phase factors of Cu and
orbitals.
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which is valid both for theVS
6 excitons and the continuum

TheN(k,v) is complicated and we do not give the analytic
form, which is straightforward to derive from Eqs.~37!, ~40!,
and ~43!, but we refer to Fig. 5 for a discussion of feature
For smallV the energy of the exciton isVS

2'(322A3)V
with relative weight'@2A32322(724A3)V/tS#FS , i.e.,
increasingV the weight is transferred to the continuum. F
large repulsion (tS!V!U) the weight is concentrated in th
excitons atVS

1'2V22tS , while the continuum and the
exciton atVS

2'23tS/2 has a negligible weight of the orde
of tS

2/V2. On the other hand, the triplet excitonVT has
weight 12FS'31%, independent of the size ofV.

To study the effect of finitetT , we used numerical La´nc-
zos diagonalization of small systems~18 site! to extract the
density-density correlations. As can be seen in Fig. 5,
effect of finite tT is substantial:~i! Because ‘‘e’ ’ acquires
dispersion, the shape of the spectrum resembles more clo
that of the one band model, in that it narrows ask→p.31

Turning on V, excitonic features are formed at the zo
boundary.~ii ! The contributions coming from singlets an
triplets cannot be separated energetically, especially
small momenta.~iii ! While for tT50 the excitons are shar
peaks, fortT5” 0 these sharp excitonic peaks broaden a
form an incoherent spectrum. A direct comparison with
experiments to decide whether a two band model is m
appropriate is difficult, given that the resolution of the EEL
spectra is not sufficient to see the detailed differences
tween the two band and the one band models. Furtherm
l

.

e
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or

d
e
re

e-
re,

all of our results here are valid in the strong-coupling lim
so one expects quantitative changes to the spectra for ex
mentally relevant coupling strengths.

Recently, the density response was calculated using
jection techniques in Ref. 32, with a result which disagre
with ours. Since the calculation presented in that pape
rather involved, it is difficult to trace whether the differenc
is due to the method applied or to the parameter reg
investigated.

V. CONCLUSION

We have demonstrated that spin-charge factorization m
be applied to understand dynamical behavior of the two b
model in a particular limit. The low-energy hole charge ca
riers have been identified as complex objects resemb
Zhang-Rice singlets, and the low-energy part of the sing
particle spectral function of the two-band model has be
shown to be related to that of the one band model with n
trivial frequency as well as momentum dependent corr
tions. This provides a very simple and natural explanat
for the momentum and frequency dependence of the spe
weights observed experimentally.
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