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Impurity-induced quasiparticle transport and universal-limit Wiedemann-Franz violation
in d-wave superconductors
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Due to the node structure of the gap in ad-wave superconductor, the presence of impurities generates a finite
density of quasiparticle excitations at zero temperature. Since these impurity-induced quasiparticles are both
generated and scattered by impurities, prior calculations indicate a universal limit (V→0, T→0) where the
transport coefficients obtain scattering-independent values, depending only on the velocity anisotropyv f /v2.
We improve upon prior results, including the contributions of vertex corrections and Fermi-liquid corrections
in our calculations of universal-limit electrical, thermal, and spin conductivity. We find that while vertex
corrections modify electrical conductivity and Fermi-liquid corrections renormalize both electrical and spin
conductivity, only thermal conductivity maintains its universal value, independent of impurity scattering or
Fermi-liquid interactions. Hence, low-temperature thermal conductivity measurements provide the most direct
means of obtaining the velocity anisotropy for high-Tc cuprate superconductors.
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I. INTRODUCTION

The characteristic feature of ad-wave superconductor i
the existence of four nodal points where the order param
vanishes. Since low-energy excitations are concentra
about these nodes, low-temperature behavior is domin
by the details of the node structure, and, in particular,
ratio of the Fermi velocity to the gap velocity~slope! v f /v2.
Prior theoretical work has shown that this velocity ratio
prominent in expressions for low-temperature transp
coefficients1–7 as well as the temperature dependence of
superfluid density.8–10 However, discrepancies between va
ues of v f /v2 obtained from measurements of microwa
electrical conductivity,11 thermal conductivity,12,13 and su-
perfluid density14, as well as direct measurements of g
structure via angle-resolved photoemission spectrosc
~ARPES!15 indicate that the existing theoretical predictio
must be corrected through a more detailed analysis. To
end, we calculate herein electrical, thermal, and spin cond
tivity including the contributions of vertex corrections an
Fermi-liquid corrections. Associated calculations of the
perfluid density will be pursued in a future investigation.

It has been shown16 that for a superconductor withdx22y2

pairing symmetry, the presence of impurities generates
nite density of quasiparticle states down to zero energy~al-
though the ultra-low-energy regime remains the subjec
some debate17,18!. This results in a unique situation where a
increase in impurity density increases the density of qu
particles while reducing the quasiparticle lifetime. As a res
of the cancellation of these opposing effects, ‘‘bare bubb
conductivity calculations~neglecting the corrections we sha
consider! indicate a universal limit (V→0,T→0) where the
transport coefficients attain constant values, independen
scattering.1 However, we shall see that these results
modified by two types of corrections: vertex corrections a
Fermi-liquid corrections. Vertex corrections account for t
fact that forward scattering does not interfere with t
progress of a carrier to the same extent as back scatte
Hence, if the scattering potential varies ink space such tha
PRB 620163-1829/2000/62~2!/1270~21!/$15.00
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the potential for forward scattering differs from that for ba
scattering, the bare bubble transport coefficients may
modified. Fermi-liquid corrections account for the under
ing Fermi-liquid interactions between electrons in the sup
conductor. Due to such interactions, the presence of a qu
particle current induces an additional drag current wh
may renormalize the transport coefficients. The purpose
what follows is to improve upon the bare bubble results
including the effects of both types of corrections.

In Sec. II, we define the parameters of our phenome
logical d-wave model, introduce the Green’s function, a
calculate the density of states. In Appendix A, neglecting
corrections, we derive a generalized bare bubble polariza
function which can be applied to the calculation of eith
electrical, thermal, or spin conductivity. By treating the ge
eral case, we avoid repeating the same basic calculation t
times. In Appendix B, we calculate another generalized
larization function, now including the contributions of verte
corrections. The significance of vertex corrections in the u
versal limit is determined via a numerical calculation pr
sented in Appendix C. In Appendix D, we derive the reno
malization of a generalized current due to the effects
underlying Fermi-liquid interactions. In Secs. III, IV, and V
we make use of the results in the appendices to calcu
electrical, thermal, and spin conductivity in the univers
limit ( V→0,T→0). Each of these sections begins with
derivation of the appropriate current density operator. Th
calculations reveal an extra gap velocity term in the therm
and spin currents due to the momentum dependence o
d-wave gap and therefore indicate a correction to the s
dard thermal conductivity formula19,20 derived assuming an
s-wave gap. Given each current operator, we present the
bubble result and then note modifications due to vertex c
rections and Fermi-liquid corrections. We find that contra
to the scattering-independent result obtained from the b
bubble calculation, the universal limit electrical conductivi
attains a vertex correction, which depends explicitly on
nature of the impurity scattering, as well as a Fermi-liqu
renormalization, which depends on the strength of Fer
1270 ©2000 The American Physical Society
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liquid interactions. In addition, while the spin conductivity
unaffected by vertex corrections~for small impurity density!,
it is renormalized due to Fermi-liquid interactions. Only t
thermal conductivity has neither a vertex correction no
Fermi-liquid correction. It therefore retains its simple, un
versal value. Conclusions are discussed in Sec. VI where
provide physical descriptions of the mathematical corr
tions calculated herein.

II. D-WAVE MODEL, GREEN’S FUNCTION,
AND DENSITY OF STATES

To study the low-temperature transport properties o
d-wave superconductor, we employ a phenomenolog
model1,8 with the Brillouin zone of a two-dimensional squa
lattice~of lattice constanta), an electron dispersion~via tight
binding parametrization!

ek522t f~coskxa1coskya!2m, ~2.1!

and an order parameter ofdx22y2 symmetry

Dk5
D0

2
~coskxa2coskya! ~2.2!

which crosses through zero at each of four nodal points
the Fermi surface (kx56ky). The key feature of such a
model is that in the vicinity of each of the gap nodes,ek
varies linearly across the Fermi surface andDk varies lin-
early along the Fermi surface. Defining local momentu
variables at each of the nodes withk̂1 perpendicular to the
Fermi surface andk̂2 parallel to the Fermi surface, we ca
designate at each node both a Fermi velocity

vf[
]ek

]k
5v f k̂1 v f52A2 t fa ~2.3!

and a gap velocity

v2[
]Dk

]k
5v2k̂2 v25

1

A2
D0a. ~2.4!

~Note that all velocities in our model are taken to be ‘‘reno
malized’’ velocities accounting for both band structure a
many-body effects within the context of Fermi-liqu
theory.! Utilizing these definitions, it becomes clear that t
quasiparticle excitation spectrum in the vicinity of each
the gap nodes takes the form of an anisotropic Dirac con

Ek5Aek
21Dk

25Av f
2k1

21v2
2k2

2, ~2.5!

where the degree of anisotropy is measured by the rati
the two velocities. This ratiov f /v2 appears prominently in
the low-temperature transport coefficients and is a mea
able quantity which provides a convenient means of comp
ing theory to experiment.

The low-temperature physics of such a model is driven
the fact that at the four nodes, there is no gap to quasipar
excitations. Hence, quasiparticles are generated only in
vicinity of the gap nodes. This is very useful mathematica
since it means that a momentum integral over the Brillo
zone can usually be replaced by a sum over nodes an
integral over the small region ofk space surrounding eac
a
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node. Furthermore, due to the form of the excitation sp
trum ~2.5!, it is convenient to scale out the anisotropy of t
Dirac cone, and change to polar coordinates in a new sc
momentump5(p,u). Hence we will frequently make the
substitution

(
k

→(
j 51

4 E dk1 dk2

~2p!2
→(

j 51

4 E
0

p0 p dp

2pv fv2
E

0

2p du

2p
,

~2.6!

where p15v fk15p cosu, p25v2k25p sinu, p5Ap1
21p2

2

5Ek , andp05Apv fv2/a;O(D0) is a large scaled momen
tum cutoff defined such that the area of the new integrat
region is the same as that of the original Brillouin zone. No
that if quasiparticles are only generated at the nodes and
rest of the Brillouin zone makes no contribution, then w
should be safe in extending this limit to infinity. However,
is sometimes necessary to retainp0 through the intermediate
stages of a calculation~usually as part of a ratio within a
logarithm! maintaining throughout that all other energies a
much smaller than this cutoff value.

The fact that quasiparticles are concentrated in the vic
ity of the gap nodes is also very useful when consider
impurity scattering. Since the initial and final momenta o
scattering event must always be approximately equal to
k-space location of one of the four nodes, a general scatte
potential, Vkk8 , need only be evaluated in three possib
cases: intranode scattering (k and k8 at the same node!,
adjacent-node scattering (k and k8 at adjacent nodes!, and
opposite-node scattering (k andk8 at opposite nodes!. These
are depicted graphically in Fig. 1 and denoted, respectiv
as V1 , V2, and V3. Hence, an arbitrary potential~varying
slowly over the area of a node! is effectively reduced to a se
of three parameters. This simplification proves quite help

Since the transport calculations in the sections that foll
consist of the evaluation of Feynman diagrams via fie
theoretic techniques, it is important to establish the types
Green’s functions that will be utilized. For any superco
ductor, the existence of a condensate of ground state p
means that the annihilation of an electron must be treated
the same footing as the creation of its mate, an electron w

FIG. 1. Impurity scattering withind-wave model.V1 , V2, and
V3 are the potentials for intranode, adjacent-node, and oppo
node scattering.
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1272 PRB 62ADAM C. DURST AND PATRICK A. LEE
opposite momentum and spin. Hence we use the Nam
formalism21 in which the field operators are two-compone
spinors of the form

Ck5S ck↑
c2k↓

† D , Ck
†5~ck↑

† ,c2k↓! ~2.7!

and the resulting Green’s functions are 232 matrices in
Nambu space. Since we are concerned with fin
temperature calculations, all diagrams will be evaluated
ing the Matsubara finite temperature formalism.22 Hence, the
bare Matsubara Green’s function expressed in Nambu
malism takes the form

G̃0~k,iv!5
1

~ iv!22Ek
2 S iv1ek Dk

Dk iv2ek
D , ~2.8!

where the tilde denotes a Nambu space matrix andiv
5 i (2n11)p/b is a fermionic Matsubara frequency. In th
presence of impurities, the bare Green’s function is dres
via scattering from the impurities and obtains a Matsub
self-energyS̃( iv). Assuming that all but the scalar comp
nent of the self-energy can be neglected or absorbed intek
or Dk , Dyson’s equation yields that the dressed Matsub
Green’s function is given by

G̃~k,iv!5
1

@ iv2S~ iv!#22Ek
2

3S iv2S~ iv!1ek Dk

Dk iv2S~ iv!2ek
D .

~2.9!

~Note that while this assumption has been explicitly justifi
in both the Born and unitary scattering limits, the omitt
self-energy components can contribute for arbitra
scattering.23,24 For simplicity, we neglect such contribution
in this investigation.! From the Matsubara functions, corre
sponding retarded functions are obtained by analytically c
tinuing iv→v1 id such that

G̃ret~k,v!5G̃~k,iv→v1 id! ~2.10!

and the impurity scattering rate is defined as

G~v!52Im S ret~v! ~2.11!

whereS ret(v)5S( iv→v1 id).
With the Green’s function in hand, it is a simple an

illustrative step to calculate the density of states. In terms
the retarded Green’s function, the density of states is gi
by

N~v!52
1

2p (
k

Tr@ Im G̃ret~k,v!#. ~2.12!

Plugging in the Green’s function~2.9!, replacing the sum by
a scaled integral about each node via Eq.~2.6!, neglecting
the real part of the self-energy, and performing the integ
tion we find that
bu
t
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N~v!5
2

p2v fv2

G~v!F ln
p0

G~v!
2 lnA11

v2

G~v!2G
1

uvu
pv fv2

F1

2
2

1

p
arctanS G~v!22v2

2uvuG~v! D G . ~2.13!

Note that in the absence of impurities@G(v)50#,

N~v!uG(v)505
uvu

pv fv2
~2.14!

while in the presence of impurities, there is a finite density
quasiparticle states down to zero energy16:

N~0!5
2

p2v fv2

G0 ln
p0

G0
, ~2.15!

whereG0[G(v→0). Theseimpurity-inducedquasiparticles
are responsible for the intriguing low-temperature transp
properties that we shall consider in the sections that follo

III. MICROWAVE ELECTRICAL CONDUCTIVITY

Electrical conductivity can be calculated by means of
Kubo formula22

s~V,T!52
Im P ret~V!

V
, ~3.1!

whereP ret(V)5P( iV→V1 id) andP( iV) is the current-
current correlation function~or polarization function! in the
Matsubara finite temperature formalism

P
↔

~ iV!52E
0

b

dt eiVt^Ttj
†~t!j ~0!&. ~3.2!

Thus, our first step is to derive an expression for the elec
cal current operator. Then by evaluating its correlation fu
tion, we obtain the electrical conductivity.

A. Electrical current

For a system of interacting electrons, the Hamiltonian
given by

H5E dx ca
†~x!S 2¹2

2m*
D ca~x!

1
1

2E dx dy ca
†~x!cb

†~y!V~x2y!cb~y!ca~x!,

~3.3!

whereca(x) annihilates an electron of spina at positionx
andV(x2y) is the electron-electron interaction potential.
the presence of a vector potentialA(x), the Hamiltonian
must be invariant under a local gauge transformation. Wh
the second term is gauge invariant as written, the first m
be modified by making the standard replacement2 i¹→
2 i¹1eA. Thus, the Hamiltonian becomes a functional
the vector potential and takes the form
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H@A~x!#5E dx ca
†~x!S ~2 i¹1eA!2

2m*
D ca~x!

1
1

2E dx dy ca
†~x!cb

†~y!V~x2y!cb~y!ca~x!.

~3.4!

Note that only the kinetic term couples to the vector pot
tial. Taking the functional derivative with respect toA(x) we
obtain an expression for the electrical current:

je~x!52Re
dH

dA~x!

5
2e

2im*
~ca

†¹ca2¹ca
†ca!. ~3.5!

Then taking the space-time Fourier transform yields

je~q,V!52
e

m*
(
k,v

S k1
q

2D cka
† ck1qa ~3.6!

and in the limit thatq→0 we obtain

je~0,V!52e(
k,v

vfCk
†1̃Ck1q , ~3.7!

wherevf[]ek /]k5k/m* and we have expressed the fin
result in terms of 232 Nambu matrix notation. Note that i
all cases, momentum indices on field operators denote
momentum and frequency. Although this result is w
known, we have derived it here in order to provide a ba
for comparison with the thermal current and spin curren
be derived later.

B. Bare bubble „electrical…

Given the current, we proceed to calculate the cor
sponding current-current correlation function. The corre
tion function for the electrical current can be express
diagrammatically as a fermionic bubble with fully dress
propagators and a fully dressed vertex in which each v
tex contributes a coupling parametere, a velocityvf , and a
232 Nambu formalism unit matrix1̃. Assuming that the
impurity scattering potential is isotropic ink space, the cor-
rections to the bare vertex vanish. Thus, in this approxim
tion, the conductivity can be obtained from the calculation
a bubble with dressed propagators~i.e., Green’s functions
with self-energy included! but bare vertices~no interaction
between the two propagators!. Such a diagram will be re
ferred to as abare bubble.

The calculation of the bare bubble polarization function
of the same basic form for the electrical, thermal, and s
conductivities. Thus, to avoid repeating the same deriva
several times, a generalized polarization functionP ret

gla(V)
~applicable to all three cases! which depends on a couplin
parameterg, a velocityvl , and a Nambu matrixt̃a has been
calculated in Appendix A. Applying the general result~A13!

to the case of interest (g5e, vl5vf , t̃a5 1̃) we find that
-

th
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s~V,T!5
e2

p2

v f

v2
E d2p

2p E
2`

`

dv
nF~v!2nF~v1V!

V

3Tr@G̃ret9 ~p,v!G̃ret9 ~p,v1V!#, ~3.8!

where

G̃ret~p,v!5
1

@v2S ret~v!#22p2

3S v2S ret~v!1p1 p2

p2 v2S ret~v!2p1
D .

~3.9!

In the universal limit (V→0,T→0),

nF~v!2nF~v1V!

V
→2

]nF

]v
→d~v!. ~3.10!

Hence, evaluating the rest of the integrand forv→0, noting
thatS ret(0)52 iG0, and integrating over momentum, we o
tain the universal limit bare bubble electrical conductivity

s05
e2

p2

v f

v2
. ~3.11!

This is the universal conductivity obtained in Ref. 1. Fin
temperature corrections can be obtained via a Sommer
expansion@for T!G(v)] and have been calculated by Hirsc
feld et al.3 and Grafet al.5

C. Vertex corrections „electrical…

The bare bubble conductivity derived above was cal
lated in the approximation that vertex corrections could
safely neglected. It turns out~as we shall see later! that this
approximation is justified if the impurity scattering potenti
is isotropic in k space (Vkk85V5const). However, for a
general scattering potential, corrections to the bare ve
can make a significant contribution and must be included
the calculation. To this end, we shall consider the contri
tion of theladder correctionsto the bare vertex~see Fig. 4 of
Appendix B!. Once again, since the electrical calculation
of the same form as that for the thermal and spin conduc
ity, a generalized polarization function including vertex co
rections~which can be applied to all three cases! has been
calculated in Appendix B. For the electrical conductivity, t
polarization function consists of a single bubble~with a
dressed vertex! where each vertex contributes a coupling p
rametere, a velocity vf , and a Nambu matrix1̃. Plugging
these parameters into the generalized polarization func
~B50! and using the electrical Kubo formula~3.1! we find
that

s~V,T!5
e2

2p2

v f

v2
E

2`

`

dv
nF~v!2nF~v1V!

V

3Re@J2
(0)~v,V!2J1

(0)~v,V!#, ~3.12!

whereJ1
a andJ2

a are defined in Appendix B. In the universa
limit ( V→0,T→0), we can make use of Eq.~3.10! to find
that
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s05
e2

2p2

v f

v2
ReF I 2

(0)

12gA2
(0)I 2

(0)$11~gB2
(0)/gA2

(0)!@gB2
(0)I 2

(1)/~12gA2
(0)I 2

(1)!#%

2
I 1

(0)

12gA1
(0)I 1

(0)$11~gB1
(0)/gA1

(0)!@gB1
(0)I 1

(1)/~12gA1
(0)I 1

(1)!#%
G , ~3.13!
th

c-
where all functions are evaluated forV,v→0. In these lim-
its, the constituent functions defined in Appendix B take
form

F8~0!5
F~ iG0!

4pv fv2
5 i

G0

2pv fv2
ln

p0

G0
5 i

p

4
N~0!, ~3.14!

Tn
a~0!5S VI

11@~p/4!N~0!#2VI 2D
n1

[An , ~3.15!

Tn
b~0!5 i S 2~p/4!N~0!VI 2

11@~p/4!N~0!#2VI 2D
n1

[ iBn , ~3.16!

gA1
(0)5

ni

4pv fv2
~An

22Bn
2!@ un512un53#, ~3.17a!

gA2
(0)5

ni

4pv fv2
~An

21Bn
2!@ un512un53#, ~3.17b!
t

is

tt

d
l
.
e
e
fa
e
l-

an
o

e gB1
(0)5 i

ni

2pv fv2
AnBn@ un512un53#, ~3.17c!

gB2
(0)50, ~3.17d!

I 1
(0)~0,0!5

dF~z!

dz U
iG0

52 ln
p0

G0
22, ~3.18!

I 2
(0)~0,0!5

Im F~ iG0!

G0
52 ln

p0

G0
, ~3.19!

I 1
(1)~0,0!5

1

2 S dF~z!

dz U
iG0

2
F~ iG0!

iG0 D 521, ~3.20!

I 2
(1)~0,0!5 lim

v→0

Im@~v2 iG0!F~v1 iG0!#

2G0v
51. ~3.21!

Thus, including vertex corrections, the universal limit ele
trical conductivity takes the form

s05
e2

p2

v f

v2
bVC , ~3.22!
bVC5
112@gA2

(0)2gA1
(0)1gB1

(0)2/~12gA1
(0)!# ln~p0 /G0!@ ln~p0 /G0!21#

@122gA2
(0)ln ~p0 /G0!#$122@gA1

(0)2gB1
(0)2/~12gA1

(0)!#@ ln ~p0 /G0!21#%
, ~3.23!
po-

l
a

ch

be
where bVC is the scattering-dependent vertex correction
the universal bare bubble result. Note that since theg ’s all
depend on the difference between the intranodeT matrix
(n51) and the opposite-nodeT matrix (n53), bVC→1 if
the two scattering potentials are the same. Hence for an
tropic scattering potential, the bare bubble result~3.11! is
recovered. However, in general we presume that the sca
ing potential will fall off for large k and the potential for
intranode scattering will be larger than that for opposite-no
scattering. If so, theg ’s will be nonzero and the universa
limit conductivity will deviate from its bare bubble value
This correction to the conductivity due to differences b
tween intranode~forward! scattering and opposite-nod
~back! scattering is the node-discrete equivalent of the
mous 12cosu factor obtained from vertex corrections in th
conductivity calculation for a simple metal. As in the meta
lic case, the phenomenon at work is the fact that forward
back scattering can have different effects on the progress
o

o-

er-

e

-

-

d
f a

charge carrier. As a result, anisotropy in the scattering
tential can renormalize the conductivity.

In general, the evaluation ofbVC requires a numerica
calculation sinceG0 must be obtained self-consistently as
function of impurity density and scattering potential. Su
calculations~presented in Appendix C! indicate that for an-
isotropic scattering, the electrical vertex correction can
significant even to zeroth order in the impurity density.

For the case of Born scattering,bVC reduces to a more
simple and illustrative form. In the Born limit~small V),

Tn
a~0!5Vn1 , Tn

b~0!50, ~3.24!

gA1
(0)5gA2

(0)5
ni

4pv fv2
~V1

22V3
2!, gB1

(0)50, ~3.25!
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and the zero-frequency scattering rate takes the form

G05p0 expS 2
2pv fv2

ni~V1
212V2

21V3
2!
D

5
p

4
ni~V1

212V2
21V3

2!N~0!, ~3.26!

where ~as defined in Sec. II! V1 , V2, and V3 correspond
respectively to intranode, adjacent-node, and opposite-n
scattering. Noting that ln (p0 /G0);1/ni@1 and defining

G1[2gA1
(0)G0 ln

p0

G0
5

p

4
ni~V1

22V3
2!N~0! ~3.27!

and a transport scattering rate

G tr[G02G15
p

4
ni~2V2

212V3
2!N~0! ~3.28!

the vertex correction factor~3.23! reduces to

bVC5S G0

G tr
D 2

5S V1
212V2

21V3
2

2V2
212V3

2 D 2

. ~3.29!

Note that the vertex correction depends on the scattering
tential but is independent of the density of impurities. In th
simple limit it is clear that if intranode scattering is strong
than opposite-node scattering~as we expect!, G0 will exceed
G tr and the universal limit electrical conductivity will be en
hanced beyond the bare bubble result.

D. Fermi-liquid corrections „electrical…

To this point, our calculation of electrical conductivit
has neglected the effects of the underlying Fermi-liquid
teraction between electrons. In Sec. III A, an explicit expr
sion was derived for the electrical current in the absence
Fermi-liquid interactions. In essence, it has the form

j0
e52e(

ka
vf k dnka , ~3.30!

wherevf k is the Fermi velocity atk anddnka is the deviation
of the electron distribution from equilibrium. The Ferm
liquid renormalization of such a current has been derived
Appendix D. Plugging into the general result~D11! we see
that in the presence of Fermi-liquid interactions, the elec
cal current is given by

je5 j0
e2e(

k8a8
dnk8a8(

k
vf k f kk8

s H Dk
2

2~ek
21Dk

2!3/2

1F ek
2

Ek
2

G0 /p

Ek
21G0

2
2

Dk
2

pEk
3
arctanS G0

Ek
D G J , ~3.31!

where f kk8
s

5 f kk8
↑↑

1 f kk8
↓↑ . The first term in brackets is peake

at ek50 and is therefore a Fermi surface term~smeared over
the extent of the gap!. If we assume a circular Fermi surfac
then replacing thek sum by an integral in circular coordi
nates (k,u), presuming thatDk5D(u)!EF , and expanding
the Landau function in two-dimensional~2D! harmonics
de

o-

r

-
-

of

n

i-

f s~u2u8!5
1

n~0! (
l 50

`

Fl
s cos@ l ~u2u8!# ~3.32!

this first term takes the form

j1
e5 j0

e
F1

s

2
, ~3.33!

whereF1
s is the l 51 spin-symmetric Landau parameter a

n(0) is the single spin normal state density of states at
Fermi surface. The second term in brackets is peaked aEk
50 and is therefore a node term~contributing primarily at
the gap nodes!. Replacing thek sum by an integral abou
each of the nodes and noting by symmetry that

(
j 51

4

vf
j f j j 8

s
5vf

j 8~ f 11
s 2 f 31

s ! ~3.34!

we find that

j2
e52 j0

e
G0~ f 11

s 2 f 31
s !

4p2v fv2

, ~3.35!

where f 11
s and f 31

s are, respectively, the intranode an
opposite-node spin-symmetric Fermi-liquid interaction en
gies. In the small impurity density limit, the second~node!
term can be neglected with respect to the first~Fermi surface!
term. Hence, the renormalized electrical current is given

je5 j0
eaFL

s , ~3.36!

where~for a circular Fermi surface!

aFL
s 511

F1
s

2
2

G0~ f 11
s 2 f 31

s !

4p2v fv2

'11
F1

s

2
~3.37!

and the superscripts denotes that this is the spin-symmetr
current renormalization factor. The simple form of this e
pression is due to our assumption of a circular Fermi surfa
For a more general Fermi surface, additional harmonics
the Landau function would have been generated. Thus
practice, this factor should be treated as a parameter to
determined by experiment. Note that the renormalization
plies to both the quasiparticle~normal! current and the su-
percurrent. However, since the supercurrent does not con
ute to the real part of the ac conductivity, we are concern
only with the normal current.

The basic physics of this renormalization is as follow
Upon the application of an electric field, quasiparticles a
perturbed to form a normal current. In the presence of
excited quasiparticles, the electron dispersion is modifi
due to the Fermi-liquid interaction. The modified dispersi
yields a modified equilibrium distribution which means th
the deviation from equilibrium is also modified and the cu
rent is renormalized. Note that the dominant term in t
renormalization factor is a Fermi surface term resulting fro
the modification of the equilibrium condensate distribution
the presence of perturbed quasiparticles.

So far, we have discussed only how Fermi-liquid intera
tions renormalize the electrical current density operator.
our goal is to determine the manner in which such inter
tions modify the electrical conductivity. In general, su
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modifications can be more complicated than merely ren
malizing the constituent currents. However, as discusse
Appendix D, current renormalization is the dominant effe
in the T→0 limit with which we are concerned. Therefor
since electrical conductivity is proportional to the curre
current correlation function, two powers of our current ren
malization factor appear in the conductivity. Hence, inclu
ing both vertex corrections and Fermi-liquid corrections,
electrical conductivity in the universal limit takes the form

s05
e2

p2

v f

v2
bVCaFL

s 2. ~3.38!

E. Superfluid density

As a check on the accuracy of our conductivity calcu
tions, it is useful to make a brief digression and use
results to calculate an experimentally distinct quantity,
superfluid density~without impurities!, rs(T). By definition
~see Ref. 8!,

rs~T![rs~T50!2rn~T!, ~3.39!

wherern(T) is the normal fluid density. Hence, to obtain th
temperature dependence of the superfluid density, it suffi
to calculate the normal fluid density. While the conductiv
is related to the imaginary part of the polarization functio
the normal fluid density is proportional to the real part vi

rn~T!

m
52

ReP ret~V50!

e2
. ~3.40!

ObtainingP ret from the generalized result~B49! in Appen-
dix B, settingV50, taking the no impurities limit@G(v)
→0#, and plugging into Eq.~3.40! we find that

rn~T!

m
5

1

p2

v f

v2
E

2`

`

dv nF~v! Im@ I 1
(0)~v,0!#, ~3.41!

where

Im@ I 1
(0)~v,0!#5p sgn~v!@u~v1p0!2u~v2p0!#

1pp0@d~v1p0!2d~v2p0!#. ~3.42!

Performing the frequency integration yields that the norm
fluid density neglecting Fermi-liquid corrections is given

rn~T!

m
5

2 ln 2

p

v f

v2
kBT ~3.43!

which is precisely the result obtained in Ref. 8 through
entirely different procedure. To include Fermi-liquid corre
tions in theT→0 limit, we note~via Appendix D! that the
primary effect of Fermi-liquid interactions is the renorma
ization of the current density operator. Thus, since the n
mal fluid density is proportional to the current-current cor
lation function, we need only multiply by two factors of th
current renormalization~obtained in the previous section! to
find that

rn~T!

m
5

2 ln 2

p

v f

v2
aFL

s 2kBT ~3.44!
r-
in
t

-
-
-
e

-
r
e

es

,

l

n

r-
-

which agrees with the results of Refs. 9,10,28. Given t
correspondence with prior work, we can be reassured of
accuracy of our calculations.

IV. THERMAL CONDUCTIVITY

Analogous to the case of electrical conductivity, therm
conductivity can be calculated by means of a thermal Ku
formula22

k~V,T!

T
52

1

T2

Im P ret
k ~V!

V
, ~4.1!

whereP ret
k (V)5Pk( iV→V1 id) andPk( iV) is the finite

temperature current-current correlation function~or polariza-
tion function!. In this case, the appropriate current for t
correlation function is the thermal current derived below.

A. Thermal current

To derive an expression for the heat current in an an
tropic superconductor, we can follow thes-wave derivation
of Ambegaokar and Griffin19 and generalize to the case of a
anisotropic gap. As in Eq.~3.3!, the Hamiltonian takes the
form

H5E dx ca
†~x!S 2¹2

2m*
D ca~x!

1
1

2E dx dy ca
†~x!cb

†~y!V~x2y!cb~y!ca~x!.

~4.2!

Given the Hamiltonian, it is straightforward to obtain th
equations of motion for the field operators

i ċa5@ca ,H#5S 2¹2

2m*
1E dr V~x2r !cg

†~r !cg~r !D ca

~4.3!

and to define a Hamiltonian density

h~x!5
1

2m*
¹ca

†~x!•¹ca~x!

1
1

2E dy V~x2y!ca
†~x!cb

†~y!cb~y!ca~x!.

~4.4!

If all energies are measured with respect to the chem
potential, this Hamiltonian density is the heat density. Hen
the operatorjQ(x) that satisfies the continuity equation

ḣ~x!1¹• jQ~x!50 ~4.5!

can be interpreted as the heat current. Taking the time
rivative of Eq.~4.4! and using the equations of motion~4.3!
we find that
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ḣ5¹•~ ċxa
† ¹cxa1¹cxa

† ċxa!2
1

2E dy V~y2x!

3@~ ċxa
† cyb

† cybcxa1cxa
† cyb

† cybċxa!2~cxa
† ċyb

† cybcxa

1cxa
† cyb

† ċybcxa!#, ~4.6!

where the compact notationcxa[ca(x) has been used fo
the sake of brevity. DefiningjQ5 j1

Q1 j2
Q we can use Eq.~4.5!

to write

j1
Q~x!52

1

2m*
~ ċxa

† ¹cxa1¹cxa
† ċxa! ~4.7!

and

¹• j2
Q~x!5

1

2E dy V~y2x!

3@~ ċxa
† cyb

† cybcxa1cxa
† cyb

† cybċxa!

2~cxa
† ċyb

† cybcxa1cxa
† cyb

† ċybcxa!#.

~4.8!

Taking the space-time Fourier transform of Eq.~4.7! in
the limit thatq→0 we obtain

j1
Q~0,V!5(

k,v
S v1

V

2 D vfcka
† ck1qa

5(
k,v

S v1
V

2 D vfCk
†t̃3Ck1q , ~4.9!

where vf[]ek /]k5k/m* , cka is the space-time Fourie
transform ofca(x), and the second line is written in terms
the 232 Nambu matrix notation introduced in Sec. II. Plea
note that in our compact notation, momentum indices
field operators always represent both momentum and
quency@i.e., Ck[C(k,v) andCk1q[C(k1q,v1V)].

Similarly, taking the space-time Fourier transform of E
~4.8! generates four terms such that

iq• j2
Q~q,V!5X11X22Y12Y2 . ~4.10!

The first such term,X1 , is given by

X15 (
k8s,v8s

v1Vk5
ck1a

† ck2b
† ck3bck4a

3dk42k12k52qdk32k21k5
dv11v22v32v41V .

~4.11!

Taking the mean field approximation, retaining only t
terms for which the average values are over (k↑,2k↓) pairs,
and using the fact that̂ck↑

† c2k↓
† & is an even function ofv ,

this becomes

X152 i(
k,v

~v2V!Dk
†ck2q↑

† c2k↓
† , ~4.12!

where
n
e-

.

Dk[2 (
k8,v8

Vk2k8^ck↑
† c2k↓

† &. ~4.13!

Repeating this procedure forX2 , Y1 , andY2 and takingDk
to be real we find that

q• j2
Q~q,V!52(

k,v
~Dk1q2Dk!

3@vck↑
† c2(k1q)↓

† 1~v1V!c2k↓ck1q↑#.

~4.14!

In the limit asq→0

Dk1q2Dk'q•
]Dk

]k
[q•v2 . ~4.15!

Thus, casting Eq.~4.14! in terms of the Nambu matrix for-
malism we find that

j2
Q~0,V!52(

k,v
F S v1

V

2 D v2Ck
†t̃1Ck1q

1
V

2i
v2Ck

†t̃2Ck1qG . ~4.16!

In the limit of small V, the second term can be neglect
compared to the first. Thus, combining Eq.~4.16! with Eq.
~4.9! we obtain the following expression for the heat curre
in an anisotropic superconductor:

jQ~0,V!5(
k,v

S v1
V

2 D @vfCk
†t̃3Ck1q2v2Ck

†t̃1Ck1q#.

~4.17!

Note that for ans-wave superconductor, the gap is indepe
dent ofk andv250. Thus, the second term in the heat cu
rent vanishes and Eq.~4.17! reduces to the result derived b
Ambegaokaret al.19,20 However, for ad-wave supercon-
ductor, the gap is anisotropic andv2Þ0. Hence, although the
gap term may be small, neither term can be formally n
glected.

B. Bare bubble „thermal…

Unlike the electrical current, the thermal current has t
terms: a ‘‘Fermi’’ term proportional tovf and t̃3 and a
‘‘gap’’ term proportional tov2 and t̃1. Therefore, when we
evaluate the current-current correlation function, we exp
four bubbles rather than just one: Fermi-Fermi, Fermi-g
gap-Fermi, and gap-gap. However, since the Fermi velo
vf and the gap velocityv2 are orthogonal at each of the ga
nodes, the two cross terms cancel. Hence, the thermal
ductivity has two terms: a Fermi term with velocityvf and
Nambu matrixt̃3 on each vertex and a gap term with velo
ity v2 and Nambu matrixt̃1 on each vertex. For both term
the coupling parameter is (v1V/2).

Neglecting vertex corrections, each term can be obtai
from the bare bubble generalized polarization function
rived in Appendix A. Plugging the appropriate paramete
into the general result~A13! we find that
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k~V,T!

T
5

1

p2v fv2
E d2p

2p E
2`

`

dv
nF~v!2nF~v1V!

V

3S v1V/2

T D 2

@v f
2 Tr @G̃ret9 ~p,v!t̃3

3G̃ret9 ~p,v1V!t̃3#1v2
2 Tr@G̃ret9 ~p,v!t̃1

3G̃ret9 ~p,v1V!t̃1##. ~4.18!

In the universal limit (V→0, T→0),

nF~v!2nF~v1V!

V
→2

]nF

]v
~4.19!

which for lowT is very sharply peaked atv50. Thus, evalu-
ating the rest of the integrand forv→0, noting thatS ret(0)
52 iG0, performing the frequency integral via

E
2`

`

v2S 2
]nF

]v Ddv5
p2

3
kB

2T2 ~4.20!

and integrating over momentum, we obtain the bare bub
thermal conductivity in the universal limit:

k0

T
5S p2

3
kB

2 D 1

p2

v f
21v2

2

v fv2
. ~4.21!

Neglecting thev2
2 term in the numerator, this result and i

finite temperature corrections, were originally calculated
Graf et al.5 The gap term was first obtained by Senthilet al.6

via a physical argument of Wiedemann-Franz corresp
dence with their expression for spin conductivity. It aris
here as a direct result of the additional gap term found in
calculation of the thermal current for ad-wave supercon-
ductor.
r-
er

or

r
n

re
le

y

-
s
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C. Vertex corrections „thermal…

The bare bubble result derived in the previous section
be improved upon by including the contribution of theladder
correctionsto the bare vertex~see Fig. 4 of Appendix B!. A
generalized polarization function including such vertex c
rections has been derived in Appendix B. By plugging t
appropriate parameters into this general formula~B50! both
terms of the thermal conductivity~the Fermi term with pa-
rametersvf , t̃3, andv1V/2 and the gap term with param
etersv2 , t̃1, andv1V/2) can be obtained. Hence we fin
that

k~V,T!

T
5

1

2p2v fv2
E

2`

`

dv
nF~v!2nF~v1V!

V

3S v1V/2

T D 2

@v f
2 Re@J2

(3)~v,V!2J1
(3)~v,V!#

1 v2
2 Re@J2

(1)~v,V!2J1
(1)~v,V!##, ~4.22!

whereJ1
a andJ2

a are defined in Appendix B. In the universa
limit ( V→0, T→0), the Fermi function factor is sharpl
peaked atv50. Thus, evaluating theJ functions forV,v
→0, performing the frequency integral via Eq.~4.20!, and
noting that

J2
(3)~0,0!52J1

(1)~0,0!,

J1
(3)~0,0!52J2

(1)~0,0! ~4.23!

we find that the universal limit thermal conductivity takes t
form

k0

T
5S p2

3
kB

2 D 1

p2

v f
21v2

2

v fv2
bVC

T ~4.24!
bVC
T 5

1/2

12gA2
(0)

1

1
2

11gA1
(0)
„11~gB1

(0)/gA1
(0)!$gB1

(0)@2 ln ~p0 /G0!22#/†12gA1
(0)@2 ln ~p0 /G0!22#‡%…

, ~4.25!
ity
oth

or-
i-

the
l

ty
of
wherebVC
T is the thermal vertex correction factor and theg ’s

are defined in Eq.~3.17!. As for the electrical case, the the
mal vertex correction must generally be evaluated num
cally. The results of such numerical calculations~presented
in Appendix C! can be summarized as follows.~1! For all
scattering strengths~from Born to unitary! the thermal vertex
correction is negligible compared to the electrical vertex c
rection.~2! In the small impurity density limit,bVC

T 21 van-
ishes approximately as@ ln(p0 /G0)#

21. Thus, to zeroth orde
in the density of impurities, vertex corrections do not co
tribute. Hence,

bVC
T '1 ~4.26!

and the universal-limit thermal conductivity takes its ba
bubble form
i-

-

-

k0

T
5S p2

3
kB

2 D 1

p2

v f
21v2

2

v fv2
. ~4.27!

This is in stark contrast to the case of electrical conductiv
where we found a significant vertex correction even to zer
order in the impurity density.

D. Fermi-liquid corrections „thermal…

As discussed in Appendix D, there may be additional c
rections to the thermal conductivity due to underlying Ferm
liquid interactions between electrons. In theT→0 limit, the
dominant effect of such interactions is to renormalize
current density operator. From~4.17! we see that the therma
current ~in the absence of Fermi-liquid interactions! has a
rather complicated form including both a Fermi veloci
term and a gap velocity term. However, for the purposes
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this analysis, it suffices to neglect the gap term~since it is
known to be much smaller! and note that in essence, the ba
thermal current has the form

j0
Q5(

ka
ekvf k dnka , ~4.28!

wherednka is the deviation of the electron distribution from
equilibrium. To account for the effects of the Fermi-liqu
interactions, a general renormalization factor has been
rived in Appendix D. Plugging the appropriate paramet
into Eq. ~D11! we find that the dressed thermal current
given by

jQ5 j0
Q1 (

k8a8
dnk8a8(

k
ekvf k f kk8

s H Dk
2

2~ek
21Dk

2!3/2

1F ek
2

Ek
2

G0 /p

Ek
21G0

2
2

Dk
2

pEk
3
arctanS G0

Ek
D G J , ~4.29!

where f kk8
s

5 f kk8
↑↑

1 f kk8
↓↑ . Since the entire summand is odd

ek , the correction to the bare current integrates to ze
Hence, at least in the zero temperature limit, the ther
current is not renormalized by Fermi-liquid effects:

jQ5 j0
Q . ~4.30!

Basically, due to the symmetry of the electron dispers
about the Fermi surface, corrections to the thermal cur
cancel. Since the thermal current is unmodified, there are
Fermi-liquid corrections to the universal limit thermal co
ductivity. Thus, including both vertex corrections and Ferm
liquid corrections, the thermal conductivity retains the ba
bubble form

k0

T
5S p2

3
kB

2 D 1

p2

v f
21v2

2

v fv2
. ~4.31!

V. SPIN CONDUCTIVITY

For the spin conductivity case, the Kubo formula takes
form

ss~V,T!52
Im P ret

s ~V!

V
, ~5.1!

whereP ret
s (V)5Ps( iV→V1 id) and Ps( iV) is the finite

temperature current-current correlation function~or polariza-
tion function!. Here the current that enters the correlati
function is the spin current derived below.

A. Spin current

To find an expression for the spin current operator in
anisotropic superconductor, we can write down the Ham
tonian and spin density operators and use the spin contin
equation to obtain the current. For spin, the continuity eq
tion is

ṙs~x!52¹• j s~x!, ~5.2!
e-
s

.
al

n
nt
o

-
e

e

n
l-
ity
-

wherers is the spin density andj s is the spin current density
The spin density equation of motion takes the standard fo

ṙs~x!52 i @rs~x!,H#. ~5.3!

Thus, combining the two equations and using a Fourier r
resentation for both the spin density and the spin current
find that

q• jq
s5@rq

s ,H#. ~5.4!

The Fourier transform of the spin density operator is giv
by

rq
s5 (

k,v,a
Sacka

† ck1qa5s(
k,v

~ck↑
† ck1q↑2c2k↓

† c2k1q↓!,

~5.5!

whereSa56 1
2 and s[ 1

2 . In the mean field approximation
the Hamiltonian for a superconductor is expressed as

H5(
k,v

@ek~ck↑
† ck↑1c2k↓

† c2k↓!2Dk~ck↑
† c2k↓

† 1c2k↓ck↑!#.

~5.6!

Thus, evaluating the commutator of Eqs.~5.5! and ~5.6! us-
ing fermionic anticommutation relations we obtain

q• jq
s5s(

k,v
@~ek1q2ek!~ck↑

† ck1q↑2c2k↓c2(k1q)↓
† !

2~Dk1q2Dk!~ck↑
† c2(k1q)↓

† 1c2k↓ck1q↑!#.

~5.7!

In the limit asq→0

ek1q2ek'q•
]ek

]k
[q•vf , ~5.8!

Dk1q2Dk'q•
]Dk

]k
[q•v2 . ~5.9!

Hence, expressing the creation and annihilation operator
terms of 232 Nambu matrix notation we find that

j s~0,V!5s(
k,v

@vfCk
†t̃3Ck1q2v2Ck

†t̃1Ck1q#.

~5.10!

Note that the spin current takes precisely the same form
the thermal current~4.17! with an appropriate change of cou
pling parameter.

B. Bare bubble „spin…

As in the thermal conductivity case, the spin current h
both a ‘‘Fermi’’ term and a ‘‘gap’’ term. Hence, evaluatin
the current-current correlation function and noting~as be-
fore! that the cross-terms cancel, we find that the spin c
ductivity consists of two bubbles: a Fermi term withvf and
t̃3 on each vertex and a gap term withv2 and t̃1 on each
vertex. These are precisely the bubbles that we evaluated
the thermal case except that here the coupling constant is
spin (s51/2) rather than the frequency.
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Neglecting vertex corrections, each of the two bubb
can be evaluated by plugging the appropriate set of par
eters into the bare bubble generalized polarization func
~A13! derived in Appendix A. Doing so we find that

ss~V,T!5
s2

p2v fv2
E d2p

2p E
2`

`

dv
nF~v!2nF~v1V!

V

3$v f
2 Tr@G̃ret9 ~p,v!t̃3G̃ret9 ~p,v1V!t̃3#

1v2
2 Tr @G̃ret9 ~p,v!t̃1G̃ret9 ~p,v1V!t̃1#%.

~5.11!

In the universal limit (V→0,T→0),

nF~v!2nF~v1V!

V
→2

]nF

]v
→d~v!. ~5.12!

Thus, evaluating the rest of the integrand in thev→0 limit,
noting thatS ret(0)52 iG0, and integrating over momentum
we obtain the universal limit bare bubble spin conductivi

s0
s5

s2

p2

v f
21v2

2

v fv2
. ~5.13!

This agrees~aside from a disputed factor of 2! with the result
obtained by Senthilet al.6

C. Vertex corrections „spin…

As in the electrical and thermal cases discussed pr
ously, the bare bubble result derived above can be impro
upon by including the contribution of the ladder correctio
to the bare vertex. By plugging the appropriate parame
into the generalized polarization function~including vertex
corrections! derived in Appendix B, both the Fermi term an
the gap term of the spin conductivity can be obtained. Do
so we find that

ss~V,T!5
s2

2p2v fv2
E

2`

`

dv
nF~v!2nF~v1V!

V

3$v f
2 Re@J2

(3)~v,V!2J1
(3)~v,V!#

1v2
2 Re@J2

(1)~v,V!2J1
(1)~v,V!#%, ~5.14!

whereJ1
a andJ2

a are defined in Appendix B. In the univers
limit ( V→0,T→0), we can make use of Eq.~5.12! to
evaluate the frequency integral and find that

s0
s5

s2

p2

v f
21v2

2

v fv2
bVC

s , ~5.15!

where the spin vertex correction factorbVC
s is identical to the

thermal vertex correction factorbVC
T defined in Eq.~4.25!.

Thus, mirroring the analysis described in Sec. IV C, we n
that for small impurity density,bVC

s '1 and the universa
limit spin conductivity takes its bare bubble form

s0
s5

s2

p2

v f
21v2

2

v fv2
. ~5.16!
s
-

n

i-
ed

rs

g

e

As in the thermal case and in contrast to the electrical ca
vertex corrections do not contribute~to zeroth order in the
impurity density!.

D. Fermi-liquid corrections „spin…

An additional correction to the spin conductivity
needed to account for the effects of underlying Fermi-liqu
interactions between electrons. In theT→0 limit, the domi-
nant effect of Fermi-liquid interactions is the renormalizati
of the current density operator~see Appendix D!. Neglecting
the gap term in Eq.~5.10! ~since it is small and rather diffi-
cult to deal with!, the spin current has the basic form

j0
s5(

ka
Savf k dnka , ~5.17!

where Sa561/2. The Fermi-liquid renormalization of thi
current can then be obtained by plugging the appropr
parameters into the general result~D11! derived in Appendix
D. Noting that the math is completely analogous to that
the electrical calculation in Sec. III D, we can easily ada
the electrical result to the present case. Replacing2e with s
(51/2) and changing spin-symmetric designations to sp
antisymmetric ones, we find that the Fermi liquid renorm
ization of the spin current takes the form

j s5 j0
saFL

a , ~5.18!

whereaFL
a is the spin-antisymmetric current renormalizatio

factor which, for a general Fermi surface, is some com
cated function of the spin-antisymmetric Landau parame
Fl

a . For the simplified case of a circular Fermi surface

aFL
a '11

F1
a

2
. ~5.19!

As in the electrical case, the current renormalization
dominated by a Fermi surface term resulting from t
interaction-induced modification of the equilibrium distrib
tion of the condensate. At first glance, this result is a
surprising since the Zeeman field which generates the~nor-
mal! spin current cannot induce a supercurrent. Howeve
must be understood that the renormalization of the nor
current has nothing to do with the presence of a supercurr
Rather, due to the existence of the normal current, theequi-
librium distribution of the condensate is modified~via Fermi-
liquid effects!. It is this modification of the equilibrium con
densate, not the presence of an excited conden
~supercurrent!, that gives rise to the renormalization of th
spin current.

Since the spin conductivity is proportional to the curre
current correlation function, it obtains two factors of the sp
current renormalization. Thus, including both vertex corre
tions and Fermi-liquid corrections, the universal limit sp
conductivity takes the form

s0
s5

s2

p2

v f
21v2

2

v fv2
aFL

a 2 . ~5.20!
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VI. CONCLUSIONS

In the presence of impurities, the gap symmetry o
d-wave superconductor yields the generation of impur
induced quasiparticles at the gap nodes. The transport p
erties of the resulting system are quite unique since s
quasiparticles are both generated and scattered by impur
In the V→0,T→0 limit, bare bubble calculations indicat
that transport coefficients are ‘‘universal,’’ independent
the impurity density or scattering rate. However, once
contributions of vertex corrections and Fermi liquid corre
tions are included, we find that~putting in the\ ’s! the elec-
trical, thermal, and spin conductivities in this universal lim
take the form

s05
e2

\p2

v f

v2
bVCaFL

s 2, ~6.1a!

k0

T
5

@~p2/3!kB
2 #

\p2 S v f

v2
1

v2

v f
D , ~6.1b!

s0
s5

s2

\p2 S v f

v2
1

v2

v f
DaFL

a 2, ~6.1c!

wherebVC is a scattering-dependent vertex correction~3.23!
andaFL

s andaFL
a are spin-symmetric and spin-antisymmet

Fermi-liquid factors~3.36!,~5.18!. Note that these are the 2D
conductivities of a single CuO2 plane. To obtain 3D conduc
tivities, they must be multiplied by the number of CuO2
planes per unit length stacked along thec axis.

The ‘‘law’’ of Wiedemann and Franz suggests that t
transport coefficients should be related such that

k

sT
5

p2

3

kB
2

e2
,

k

ssT
5

p2

3

kB
2

s2
,

ss

s
5

s2

e2
. ~6.2!

However, examination of the expressions above yields th
sources of Wiedemann-Franz violation: current opera
definition corrections, vertex corrections, and Fermi-liqu
corrections. First of all, since the electrical current has on
Fermi term while the thermal and spin currents include b
a Fermi term and a gap term,s0 is proportional to the ratio
v f /v2 while k0 ands0

s involve an extrav2 /v f term. These
extra terms arise when the thermal and spin current opera
are corrected to account for the anisotropy of the order
rameter. However, sincev f /v2;14 for YBCO,13 this type of
violation is of more qualitative than quantitative importanc
Secondly, unless impurity scattering is completely isotro
in k space, the electrical conductivity contains a scatteri
dependent vertex correctionbVC , which cannot be neglecte
even to zeroth order in impurity density. However, ana
gous corrections to the thermal and spin conductivities v
ish in the small impurity density limit. Thus we expect
scattering-dependent enhancement ofs0 that is absent ink0

ands0
s . Finally, due to underlying Fermi-liquid interaction

the electrical and spin conductivities gain spin-symme
and spin-antisymmetric correction factors, respectively. C
responding corrections to the thermal current cancel du
particle-hole symmetry. Hence, while Fermi-liquid intera
tions modifys0 ands0

s , the value ofk0 is unaffected.
a
-
p-
h

es.
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The physical origin of the first two corrections lies wit
the velocity dependence of the current operators. Althou
somewhat obscured in the Nambu formalism, when our c
rent operators~3.7!,~4.17!,~5.10! are rewritten in the quasi
particle basis, it is clear that the electrical current is prop
tional to the Fermi velocityvf5]ek /]k, while the thermal
and spin currents are proportional to the group velocityvG
5]Ek /]k. This difference arises because quasipartic
carry definite energy and spin but do not carry defin
charge. Since energy and spin are well defined in the qu
particle basis, thermal and spin currents are proportiona
the group velocity, the derivative of the quasiparticle disp
sion. By contrast, the electron and hole parts of each qu
particle have opposite charge and opposite velocity. The
fore each part carries the same electrical curre
proportional to the normal state Fermi velocity. This po
was emphasized in Ref. 8. For ad-wave superconducto
where bothek andDk are momentum dependent, the gro
velocity will have both avf component and av2 component
while the Fermi velocity can only have avf component~see
Fig. 2!. This is the source of the extra gap terms in t
thermal and spin conductivities.~Similar conclusions were
drawn by Moreno and Coleman.25!

The role of vertex corrections can be understood by c

FIG. 2. Schematic depictions of the~a! electrical current and~b!
thermal/spin current in the vicinity of the four gap nodes. Electri
current is proportional to the Fermi velocityvf5]ek /]k, whereas
thermal/spin current is proportional to the group velocityvG

5]Ek /]k. The ellipses drawn at each node denote~at a very exag-
gerated scale! the regions ofk space within which impurity-induced
quasiparticles are generated in the universal limit.@Note that in the
small impurity density regime with which we are concerned (G0

!D0), these nodal regions are pointlike on the scale of the B
louin zone.#
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sidering the graphical depictions of the Fermi velocity a
group velocity presented in Fig. 2. Throughout the area o
node, the magnitude and direction of the Fermi velocity
approximately constant. Thus, the electrical current can re
much more effectively via scattering from node to node th
it can via scattering within a single node. It is therefore n
essary to distinguish, mathematically, between the effect
intranode scattering and internode scattering. This is acc
plished through the inclusion of vertex corrections. In co
trast, the group velocity varies significantly over the area o
node. Therefore, the thermal and spin currents can r
through either intranode scattering or scattering betw
nodes. As a result, the different types of scattering p
nearly the same role and need not be distinguished. He
vertex corrections do not contribute to the thermal and s
conductivity.

Fermi-liquid corrections result from the redistribution
equilibrium electrons in response to the presence of inte
tions between excited electrons. In essence, this redistr
tion gives rise to a drag current that can renormalize
quasiparticle current and therefore the conductivity. T
character of the renormalization depends on the nature o
coupling parameter for a particular current. Since the s
current gets opposite contributions from the two species
spin, the spin conductivity gets a spin-antisymmetric ren
malization. However, charge is spin independent so the e
trical conductivity gets a spin-symmetric renormalizatio
Furthermore, since energy changes sign across the Ferm
face, particle-hole symmetry dictates that the effects
Fermi-liquid interactions on the thermal current must canc
Thus, thermal conductivity is not renormalized.

The velocity ratiov f /v2 is a fundamental material param
eter which measures the anisotropy of the quasiparticle e
tation spectrum. Therefore, an important objective in m
suring quantities such as the normal fluid density and
universal limit transport coefficients, which all depend
v f /v2, is to obtain the value of this ratio. However, due
vertex corrections and Fermi-liquid corrections, the electri
conductivity, spin conductivity, and normal fluid density d
pend on parameters~such as interaction energy and/or sc
tering potential! with values that are not well known. Onl
the thermal conductivity involves neither vertex correctio
nor Fermi-liquid corrections. Thus,k0 is the only truly ‘‘uni-
versal’’ coefficient and is the quantity from which the valu
of v f /v2 can be most directly obtained. On the other ha
the linear T coefficient of the superfluid density~3.44! is

proportional toaFL
s 2

v f /v2. Hence, these two measuremen
can be combined to determine the Fermi liquid factoraFL

s .
In fact, while this paper was in preparation, Chiaoet al.26

applied these conclusions to the results of a series of re
experiments performed on optimally doped Bi2Sr2CaCu2O8
~BSCCO!. By analyzing the residual linear term in their ve
low temperature thermal conductivity measurements in te
of Eq. ~6.1b!, they obtained a value for the velocity rati
v f /v2519. This is roughly the same value obtained from t
ARPES measurements of Mesotet al.15 Going further, by
combining this result with the linearT coefficient of the su-
perfluid density measured by Waldram and co-workers27 and
making use of Eq.~3.44!, they extracted a value for th

Fermi-liquid correctionaFL
s 2

50.43. These results provide a
experimental verification of our analysis.
a
s
x

n
-
of

-
-
a
x
n
y
ce,
in

c-
u-
e
e
he
in
f

r-
c-
.
ur-
f
l.

i-
-
e

l

-

s

,

nt

s

e

ACKNOWLEDGMENTS

The authors gratefully acknowledge discussions with A
Berlinsky, C. Kallin, D. Bonn, and L. Taillefer and helpfu
comments from M. R. Norman and J. A. Sauls. A.C.
thanks A. Abanov and M. Oktel for valuable help with ca
culations. This material is based upon work supported un
a National Science Foundation Graduate Fellowship as w
as NSF Grant No. DMR-9813764.

APPENDIX A: BARE BUBBLE CALCULATION

In the absence of vertex corrections, our calculations
electrical, thermal, and spin conductivity all require t
evaluation ofbare bubblediagrams depicting various type
of polarization functions. The details of these different c
culations are all quite similar. They differ only in the cou
pling parameter, velocity, and Pauli matrix contributed
each bare vertex. Rather than repeating the same basic
culation several times, it is convenient to calculate a gen
alized polarization function here which can be referred to
each of the specific cases of interest. This generalized fu

tion P
↔gla, will depend on a coupling parameterg, a velocity

vl , and a Nambu space Pauli matrixt̃a , where

g5$e,s~51/2!,v1V/2%,

vl5$vf ,v2%,

t̃a5$t̃0~5 1̃!,t̃1 ,t̃2 ,t̃3%.

Evaluating the diagram in Fig. 3 we find that

P
↔gla~ iV!5

1

b (
k,iv

g2vlvl Tr @ G̃~k,iv!t̃aG̃~k,iv1 iV!t̃a#,

~A1!

whereG̃(k,iv) is the 232 Nambu matrix form of the Mat-
subara Green’s function. For ad-wave superconductor a
temperatures much less than the gap maximum, quasip
cles are generated primarily at the four gap nodes.1,8 Thus,
linearizing the quasiparticle spectrum about the nodes
defining a coordinate system (k1 ,k2) at each node withk̂1

( k̂2) perpendicular~parallel! to the Fermi surface, we ca
replace our momentum sum by an integral over thek space
area surrounding each node. If we further define a sca
momentum (p1 ,p2) we can let

(
k

→(
j 51

4 E d2k

~2p!2
→(

j 51

4 E d2p

~2p!2v fv2

, ~A2!

where p1[v fk15«k and p2[v2k25Dk . Since vf5v f k̂1

andv25v2k̂2 at each of the four nodes, the sum over nod
yields

FIG. 3. Bare polarization bubble.
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(
j 51

4

vl
( j )vl

( j )52v l
2 1
↔

. ~A3!

This, in turn, allows the definition of a scalar polarizatio
function via

P
↔gla~ iV![Pgla~ iV! 1

↔
. ~A4!

Defining a spectral representation forG̃, we can write

G̃~p,iv!5E
2`

` Ã~p,v1!

iv2v1
dv1 , ~A5!

where

Ã~p,v!52
1

p
G̃ret9 ~p,v! ~A6!

and G̃ret9 is the imaginary part of the retarded Green’s fun
tion. Plugging back into Eq.~A1! we obtain

Pgla~ iV!5
2v l

2

v fv2
E d2p

~2p!2E dv1E dv2

3Tr@Ã~p,v1!t̃aÃ~p,v2!t̃a#S, ~A7!

where

S5
1

b (
iv

g2
1

iv2v1

1

iv1 iV2v2
. ~A8!

Evaluating the Matsubara sum in the standard way22 we pick
up a contribution from each of the poles of the summa
Since the intermediate results differ depending on the
quency dependence of the coupling parameter, it is bes
handle the frequency-independent coupling and frequen
dependent coupling cases separately.

For g5$e,s% ~frequency-independent coupling!, the sum
is straightforward. Adding the contribution of the two pol
and then continuingiV→V1 id we obtain the retarded
function

Sret5S~ iV→V1 id!5g2
nF~v1!2nF~v2!

v12v21V1 id
, ~A9!

where

nF~v!5
1

ebv11
~A10!

is the Fermi function.
For g5v1V/2 ~frequency-dependent coupling!, we pro-

ceed in the same way but there are a few technicalities
must be clarified. First of all, it should be understood th
within the Matsubara sum we really meang→ iv1 iV/2.
Only after the sum has been evaluated and all frequen
have been continued to the real axis should the stated for
the coupling parameter be taken literally. Secondly, note
with this frequency-dependentg, the summand has two extr
powers of frequency. As a result, the sum appears to
divergent. However, as discussed by Ambegaokar
Griffin,19 this apparent divergence results from an impro
-

.
-
to
y-

at
t

es
of
at

e
d
r

treatment of time-derivatives within the time-ordered cor
lation function and should be ignored. Doing so, we proce
just as before. Adding the contribution of the two summa
poles and continuing the external frequency to the real a
we find that

Sret5
~v11V/2!2nF~v1!2~v22V/2!2nF~v2!

v12v21V1 id
.

~A11!

Plugging Eqs.~A9! and~A11! back into Eq.~A7!, writing
the spectral function in terms of the retarded Green’s fu
tion via Eq.~A6!, and using the identity

1

x1 id
5P

1

x
2 ipd~x! ~A12!

to take the imaginary part, we find that

Im P ret
gla~V!5

1

p2

v l
2

v fv2
E d2p

2p E
2`

`

dv

3g2@nF~v1V!2nF~v!#

3Tr@G̃ret9 ~p,v!t̃aG̃ret9 ~p,v1V!t̃a# ~A13!

for all three coupling parametersg5$e,s,v1V/2%. Neglect-
ing vertex corrections, this is the imaginary part of the ge
eralized retarded polarization function. The real part can
obtained via Kramers-Kronig analysis. By specifying diffe
ent input parameters, Eq.~A13! can be used to obtain th
electrical, thermal, and spin conductivity.

APPENDIX B: VERTEX CORRECTIONS

Unless the scattering potential is completely isotropic,
bare bubble results of Appendix A can be improved upon
including the contributions of vertex corrections. In this se
tion the ladder correctionsdepicted in Fig. 4 will be in-
cluded. Once again, our object is to obtain an expression
a generalized polarization functionP

↔gla in which each of
the vertices contribute a coupling parameterg, a velocityvl ,
and a Nambu space Pauli matrixt̃a . Evaluating the diagram
in Fig. 4~a! and noting thatvl[v l k̂ l we find that the gener-
alized polarization function takes the form

FIG. 4. ~a! Polarization bubble with dressed vertex.~b! Ladder
series.~c! T-matrix series.
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P
↔gla~ iV!5

1

b (
iv

(
k

g2v l
2k̂ l

3Tr@ G̃~k,iv!t̃aG̃~k,iv1 iV!t̃aG̃la~k,iv,iV!#

~B1!

which is equivalent to the bare bubble result~A1! with the
unit vector k̂ l from the second bare vertex replaced by
more general vertex functionG̃la. Evaluating the diagram
series in Fig. 4~b! we obtain an equation which can be solv
for the vertex function

t̃aG̃la~k!5 k̂ l t̃a1ni(
k9

T̃kk9~ iv1 iV!G̃~k9,iv1 iV!

3 t̃aG̃la~k9!G̃~k9,iv!T̃k9k~ iv!, ~B2!

whereni is the impurity density andT̃kk8( iv) is the impurity
scatteringT matrix defined by the diagram series in Fig. 4~c!.
Multiplying from the left by t̃a we can define

G̃ la~k,iv,iV!5 k̂ l@ 1̃1L̃a~ iv,iV!#, ~B3!

where

k̂ lL̃
a5ni(

k9
t̃aT̃kk9~ iv1 iV!G̃~k9,iv1 iV!t̃a

3G̃la~k9!G̃~k9,iv!T̃k9k~ iv!. ~B4!

Acting on both sides of Eq.~B3!, using Eq.~B4! to replace
the left hand side byk̂ l8L̃

a, and noting that by the symmetr
of the scattering potential

(
k

k̂ l→ k̂ l8(
k

~ k̂8• k̂! ~B5!

we find that

L̃a5ni(
k

~ k̂8• k̂!t̃aT̃k8k~ iv1 iV!G̃~k,iv1 iV!t̃a

3@ 1̃1L̃a#G̃~k,iv!T̃kk8~ iv!, ~B6!

wherek8 is the final momentum of a scattering event.
An expression for theT matrix in terms of the scattering

potentialVkk8 and the Matsubara self-energyS( iv) ~itself a
function of the scattering potential! can be obtained by
evaluating the diagram series in Fig. 4~c!:

T̃kk8~ iv!5 t̃3Vkk81(
k1

t̃3G̃~k1 ,iv!t̃3Vkk1
Vk1k81•••.

~B7!

As discussed in Appendix A, at temperatures low compa
to the gap maximum, quasiparticles are only generated in
small regions ofk-space surrounding each of the four g
nodes. Hence we can let

(
k

→(
j 51

4 E d2p

~2p!2v fv2

~B8!
d
he

and note that the initial and final momenta of a scatter
event must always be approximately equal to thek-space
location of one of the four nodes. Thus ifj and j 8 are node
indices~1 to 4!, the scattering potential takes the form

Vkk8→Vj j 8→~VI ! j j 8 , ~B9!

whereVI is a 434 matrix in node space. Due to the symm
try of the nodes,VI consists of only three independent para
eters:V1 for intranode scattering,V2 for adjacent-node scat
tering, andV3 for opposite-node scattering~see Fig. 1 in Sec.
II !:

VI 5S V1 V2 V3 V2

V2 V1 V2 V3

V3 V2 V1 V2

V2 V3 V2 V1

D ~B10!

Hence Eq.~B7! becomes

T̃j j 8~ iv!5 t̃3~VI ! j j 81 t̃3S E d2p

~2p!2v fv2

G̃~p,iv!D t̃3~VI 2! j j 8

1•••. ~B11!

Performing the node integration we see that the integra
the Green’s function about a node is a scalar in Nambu sp
~proportional to1̃). Sincet̃3 raised to an even power is equ
to 1̃, theT matrix splits into at̃3 component and a1̃ compo-
nent. Summing the resulting geometric series we find tha

T̃j j 85Tj j 8
a t̃31Tj j 8

b 1̃,

Tj j 8
a

5S VI

12F8~ iv!2VI 2D
j j 8

,

Tj j 8
b

5S 2F8~ iv!VI 2

12F8~ iv!2VI 2D
j j 8

, ~B12!

where

F8~ iv!5
F@ iv2S~ iv!#

4pv fv2
, ~B13!

F~x![xlnS 12
p0

2

x2D ~B14!

and p0 is the large scaled momentum cutoff defin
in Sec. II.

Taking the Nambu space trace of Eq.~B6!, cyclically per-
muting within the trace, and replacing the momentum s
with a scaled integral about the nodes via Eq.~B8! yields
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Tr L̃a5TrFniE d2p

~2p!2v fv2

G̃~p,iv!

3(
j 51

4

~ k̂ j 8
• k̂ j !T̃j j 8~ iv!t̃aT̃j 8 j~ iv1 iV!

3G̃~p,iv1 iV!t̃a~ 1̃1L̃a!G . ~B15!

Defining nodej 8 to be node 1 we can write forj 51,2,3,4

k j5H S 6
p

2
,6

p

2 D J ,

k̂ j 8
• k̂ j5$1,0,21,0%,

T̃j j 85T̃j 8 j[$T̃1 ,T̃2 ,T̃3 ,T̃2%,

and therefore

(
j 51

4

~ k̂ j 8
• k̂ j !T̃j j 8~ iv!t̃aT̃j 8 j~ iv1 iV!

5T̃n~ iv!t̃aT̃n~ iv1 iV!@ un512un53#

5
4pv fv2

ni
@gA

a~ iv,iV!1gB
a~ iv,iV!t̃3#t̃a ,

~B16!

where

gA
a[

ni

4pv fv2
@haTn

a~ iv!Tn
a~ iv1 iV!

1Tn
b~ iv!Tn

b~ iv1 iV!#@ un512un53#, ~B17!

gB
a[

ni

4pv fv2
@haTn

b~ iv!Tn
a~ iv1 iV!

1Tn
a~ iv!Tn

b~ iv1 iV!#@ un512un53#, ~B18!

and we define

ha[H 11 for a50,3,

21 for a51,2.
~B19!

Plugging Eq.~B16! into Eq. ~B15! and defining

Ĩ a~ iv,iV!5E d2p

p
G̃~p,iv!t̃aG̃~p,iv1 iV!t̃a

~B20!

and

Ĩ 3
a~ iv,iV!5E d2p

p
G̃~p,iv!t̃3t̃aG̃~p,iv1 iV!t̃a

~B21!

we find that

Tr L̃a5Tr @gA
a Ĩ a~ 1̃1L̃a!#1Tr @gB

a Ĩ 3
a~ 1̃1L̃a!#.

~B22!
Similarly, multiplying Eq.~B6! by t̃3 and repeating our step
we find that

Tr @ t̃3L̃a#5Tr @gB
a Ĩ a~ 1̃1L̃a!#1Tr @gA

a Ĩ 3
a~ 1̃1L̃a!#.

~B23!

At this point it is useful to carry out the momentum int
grals in Eqs.~B20!,~B21! to obtain an explicit form forĨ a

and Ĩ 3
a . Recalling the form of the Matsubara Green’s fun

tion from Sec. II, noting thatp15«k and p25Dk , and de-
fining

f 1[ iv2S~ iv!, ~B24a!

f 2[ iv1 iV2S~ iv1 iV!, ~B24b!

we can write

G̃~p,iv!5
f 11̃1p1t̃31p2t̃1

f 1
22p2

. ~B25!

Further, using the definition ofha from Eq. ~B19! and simi-
larly defining

ha8[H 11 for a50,1,

21 for a52,3,
~B26!

we find that

t̃aG̃~p,iv1 iV!t̃a5
f 21̃1hap1t̃31ha8p2t̃1

f 2
22p2

. ~B27!

Thus, plugging Eqs.~B25! and~B27! into Eq. ~B20!, noting
thatp15p cosu andp25p sinu, and performing the angula
integral we find that

Ĩ a5I a1̃5 1̃E
0

p0
2p

f 1f 21aap2

~ f 1
22p2!~ f 2

22p2!
dp, ~B28!

where

aa[
ha1ha8

2
5H 11 for a50,

0 for a51,3,

21 for a52.

~B29!

Factoring the integrand and performing thep integral yields

I a~ iv,iV!5
~ f 11aa f 2!F~ f 2!2~ f 21aa f 1!F~ f 1!

f 2
22 f 1

2
,

~B30!

whereF(x) is defined via Eq.~B14!. Similarly, acting on Eq.
~B21! yields that

Ĩ 3
a5 t̃3E

0

p0
2p

f 1f 21aa8p2

~ f 1
22p2!~ f 2

22p2!
dp, ~B31!

where
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aa8[
ha2ha8

2
5H 11 for a53,

0 for a50,2,

21 for a51.

~B32!

It is easy to see thataa85aa11 ~where the index addition is
defined modulo 4!. Hence

Ĩ a~ iv,iV!5I a1̃, ~B33a!

Ĩ 3
a~ iv,iV!5I a11t̃3 , ~B33b!

whereI a is given by Eq.~B30!.
Now that Ĩ a and Ĩ 3

a have been evaluated, Eqs.~B22! and

~B23! become a set of coupled equations for TrL̃a and
Tr @ t̃3L̃a#:

Tr L̃a5gA
aI a~21Tr L̃a!1gB

aI a11 Tr@ t̃3L̃a#,
~B34a!

Tr@ t̃3L̃a#5gB
aI a~21Tr L̃a!1gA

aI a11 Tr@ t̃3L̃a#.
~B34b!

Solving simultaneously yields

Tr@ 1̃1L̃a#

5
2

12gA
aI a$11~gB

a/gA
a!@gB

aI a11/~12gA
aI a11!#%

.

~B35!

This is a very useful result since using Eqs.~B3!, ~B8!,
~B20!, and~B33! with Eq. ~B1! yields that

P
↔gla~ iV!5

1

4pv fv2
(
j 51

4

vl
( j )vl

( j ) 1

b (
iv

g2I a Tr@ 1̃1L̃a#.

~B36!

Thus plugging Eq.~B35! into Eq. ~B36! and making use of
Eq. ~A3! from Appendix A we find that

P
↔gla5Pgla 1

↔
, ~B37!

where

Pgla~ iV!5
v l

2

pv fv2

1

b (
iv

g2Ja~ iv,iV!, ~B38!

Ja[
I a

12gA
aI a$11~gB

a/gA
a!@gB

aI a11/~12gA
aI a11!#%

~B39!

and we note thatI a, I a11, gA
a , andgB

a are all functions ofiv
and iV.

Provided the input self-energy is of a proper function
form, Ja(z,iV) will be analytic throughout the comple
plane except for two branch cuts at Imz50 and Imz5
2V. Thus, evaluating the Matsubara sum22 we pick up a
contribution from each of the branch cuts of the summa
Consequently, it is useful to consider the form ofJa(z,iV)
above and below each of the branch cuts. Upon examina
of the frequency dependence of this function v
l

.

on

~B39!,~B17!–~B21! it is clear that the internal and extern
frequencies,iv and iV, enter only through functional cou
plets of the form

P~ iv,iV!5A~ iv!B~ iv1 iV!. ~B40!

Furthermore, due to the defined analytic structure of Mat
bara Green’s functions, the functions composing these c
plets always have a Matsubara-like analytic structure
satisfy

A~ iv→v1 id!5Aret~v!, ~B41!

A~ iv→v2 id!5Aret* ~v!. ~B42!

Consider the form of such a couplet above and below
branch cuts of our summand. Defining

P1~v,iV![P~v1 id,iV!, ~B43a!

P2~v,iV![P~v2 id,iV!, ~B43b!

P3~v,iV![P~v2 iV1 id,iV!, ~B43c!

P4~v,iV![P~v2 iV2 id,iV!, ~B43d!

and continuingiV→V1 id we see that

P3~v,V!5P2~v2V,V!, ~B44a!

P4~v,V!5P1* ~v2V,V!. ~B44b!

SinceJa is composed of such couplets, if we similarly defin

J1
a~v,iV![Ja~v1 id,iV!, ~B45a!

J2
a~v,iV![Ja~v2 id,iV!, ~B45b!

J3
a~v,iV![Ja~v2 iV1 id,iV!, ~B45c!

J4
a~v,iV![Ja~v2 iV2 id,iV! ~B45d!

it follows that

J3
a~v,V!5J2

a~v2V,V!, ~B46a!

J4
a~v,V!5J1

a* ~v2V,V!. ~B46b!

These relations will be very helpful in what follows. Now w
can proceed with the Matsubara sum. As in Appendix A, i
best to treat the frequency-independent coupling a
frequency-dependent coupling cases separately.

For g5$e,s% ~frequency-independent coupling!, the sum
is straightforward. Adding the contributions of the tw
branch cuts and using the definitions in Eq.~B45! yields

Pgla~ iV!5 i
g2

2p2

v l
2

v fv2
E

2`

`

dv nF~v!

3@J1
a~v,iV!2J2

a~v,iV!

1J3
a~v,iV!2J4

a~v,iV!#, ~B47!

wherenF(v) is the Fermi function.
For g5v1V/2 ~frequency-dependent coupling!, noting

the technical issues discussed in the analogous stage o
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bare bubble calculation~see Appendix A!, we can proceed a
above. Adding the contributions of the two branch cuts a
using Eq.~B45! we find that

Pgla~ iV!5 i
1

2p2

v l
2

v fv2
E

2`

`

dv nF~v!

3F S v1
iV

2 D 2

@J1
a~v,iV!2J2

a~v,iV!#

1S v2
iV

2 D 2

@J3
a~v,iV!2J4

a~v,iV!#G .
~B48!

In either case, continuingiV→V1 id, making use of the
d
relations in Eq.~B46!, and shiftingv→v1V in the last two
terms, we obtain the retarded polarization function

P ret
gla~V!5 i

1

2p2

v l
2

v fv2
E

2`

`

dv g2

3$nF~v!@J1
a~v,V!2J2

a~v,V!#

2nF~v1V!@J1
a* ~v,V!2J2

a~v,V!#%

~B49!

which is valid for all three coupling parameters. Taking t
imaginary part, noting that Re@z#5Re@z* #, and expanding
J1

a andJ2
a yields
Im P ret
gla~V!5

1

2p2

v l
2

v fv2
E

2`

`

dv g2@nF~v1V!2nF~v!#

3ReF I 2
a

12gA2
a I 2

a$11~gB2
a /gA2

a !@gB2
a I 2

a11/~12gA2
a I 2

a11!#%

2
I 1

a

12gA1
a I 1

a$11~gB1
a /gA1

a !@gB1
a I 1

a11/~12gA1
a I 1

a11!#%
G , ~B50!
e
ion
ci-
the

rs
i-
where

I 1
a~v,V!5

~ f 11aa f 2!F~ f 2!2~ f 21aa f 1!F~ f 1!

f 2
22 f 1

2
,

~B51!

I 2
a~v,V!5

~ f 1* 1aa f 2!F~ f 2!2~ f 21aa f 1* !F~ f 1* !

f 2
22 f 1*

2
,

~B52!

f 15v2S ret~v!, ~B53a!

f 25v1V2S ret~v1V!. ~B53b!

gA1
a [

ni

4pv fv2
@haTn

a~v!Tn
a~v1V!

1Tn
b~v!Tn

b~v1V!#@ un512un53#, ~B54!

gA2
a [

ni

4pv fv2
@haTn

a~v!* Tn
a~v1V!

1Tn
b~v!* Tn

b~v1V!#@ un512un53#, ~B55!
gB1
a [

ni

4pv fv2
@haTn

b~v!Tn
a~v1V!

1Tn
a~v!Tn

b~v1V!#@ un512un53#, ~B56!

gB2
a [

ni

4pv fv2
@haTn

b~v!* Tn
a~v1V!

1Tn
a~v!* Tn

b~v1V!#@ un512un53#, ~B57!

Tn
a~v!5S VI

12F8~v!2VI 2D
n1

, ~B58!

Tn
b~v!5S 2F8~v!VI 2

12F8~v!2VI 2D
n1

, ~B59!

F8~v!5
F@v2S ret~v!#

4pv fv2
, ~B60!

andF(x) is defined in Eq.~B14!. The above equations defin
the imaginary part of the generalized retarded polarizat
function including ladder corrections to the vertex. By spe
fying different input parameters we can use it to obtain
electrical, thermal, and spin conductivity.

APPENDIX C: NUMERICAL ANALYSIS OF UNIVERSAL
LIMIT VERTEX CORRECTIONS

In Secs. III C, IV C, and V C, the vertex correction facto
for the universal limit electrical and thermal/spin conductiv
ties were found to be
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bVC5
112@gA2

(0)2gA1
(0)1gB1

(0)2/~12gA1
(0)!# ln ~p0 /G0!@ ln ~p0 /G0!21#

@122gA2
(0) ln~p0 /G0!#$122@gA1

(0)2gB1
(0)2/~12gA1

(0)!#@ ln~p0 /G0!21#%
, ~C1!

bVC
T,s5

1/2

12gA2
(0)

1
1/2

11gA1
(0)
„11~gB1

(0)/gA1
(0)!$gB1

(0)@2 ln~p0 /G0!22#/†12gA1
(0)/2 ln~p0 /G0!22#‡%…

, ~C2!
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where theg ’s and their constituent functions are given
Eqs.~3.14!–~3.17!. Here we shall numerically compute bo
factors as a function of impurity density and scattering p
tential. To facilitate the computation, it is convenient
make all quantities dimensionless by expressing energie
units of p0 and lengths in units of 2a. This choice of units
sets the frequently encountered constant, 4pv fv2, equal to 1.
For a particular set of input parameters, the computatio
done in two steps. First, solve self-consistently for the ze
frequency scattering rateG0 via

S ret~v!5niT11
b ~v!, ~C3!

which ~in the universal limit with our choice of units! re-
duces to

2ni ln
1

G0
S VI 2

11@2G0 ln ~1/G0!#2VI 2D
1,1

51. ~C4!

Then givenG0, plug into Eqs.~C1! and ~C2! to obtain the
vertex corrections.

The result will depend on the set of four input paramet
which determine the impurity density and scattering poten
$ni ,V1 ,V2 ,V3%. In our units,ni54z wherez is the substitu-
tional fraction of impurities. Furthermore, it is convenient
parametrize the scattering potential via

V15VscaletanS p

2
dD , R25

V2

V1
, R35

V3

V1
, ~C5!

whereVscaleis a dimensionless constant andd ranges from 0
to 1. Hence, the scattering anisotropy is given byR2 andR3
while the scattering strength is given byd. Note that while it
is tempting to think of (p/2)d as some sort of scatterin
phase shift, to do so would be stretching an analogy bey
its realm of usefulness. The above is merely a helpful par
etrization, the aim of which is to allow us to go smooth
from the Born limit to the unitary limit asd varies from 0 to
1. For our purposes, these limits are determined by the
nominator in Eq.~C4!:

S 2G0 ln
1

G0
DV1!1→Born limit,

S 2G0 ln
1

G0
DV1@1→ unitary limit.

Thus, for a particular range ofz, we shall setVscaleto a value
that allows us to evenly sample the transition from one lim
-

in

is
-

s
l

d
-

e-

t

to the other. In the end, these manipulations yield a new
of four dimensionless input parameters$z,d,R2 ,R3%.

The electrical and thermal/spin vertex corrections o
tained for a typical set of input parameters, via the proced
described above, are plotted in Fig. 5. Here we have assu
that V(k) falls off slowly with increasingk (R250.9, R3
50.8) and have plotted the vertex corrections versus im
rity fraction (z50.01%→1%) for seven scattering strength
from Born (d50.001) to unitary (d50.999). Note that the
electrical correction,bVC21, can be quite significant while
the thermal/spin correction,bVC

T,s21, is much smaller and
vanishes asz→0. The difference between the two cases
seen most clearly in Fig. 6 where, ford50.001,0.5,0.999, we
have replotted the electrical and thermal/spin correction f
tors on the same scale. On the scale ofbVC21, it is difficult
to distinguishbVC

T,s21 from thex axis. Thus, we see that fo
all scattering strengths, the thermal/spin vertex correctio
negligible compared to the electrical vertex correction.

Additional insight is gained through consideration of t
intermediate stages of the calculation which reveal that

FIG. 5. Numerically calculated~a! electrical and~b! thermal/
spin vertex corrections plotted as a function of impurity fracti
(z50.01%→1%) for scattering strengths parametrized via~from
bottom to top! d5$0.001~Born!, 0.1, 0.3, 0.5, 0.7, 0.9, 0.999~uni-
tary!%. In all cases we have setVscale520 and assumed thatV(k)
falls off slowly with uku (R250.9, R350.8).
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gA1
(0) ,gA2

(0) ,gB1
(0)&OS 1

ln ~p0 /G0! D . ~C6!

In the Born limit, 1/ln(p0 /G0);z, which can truly be ne-
glected for the small impurity fractions of interest. In th
unitary limit, 1/ln(p0 /G0);1/ln(1/z), which vanishes much
more slowly but is still small compared to terms of ord
unity. Thus, since we can treat theg ’s as small quantities
the ~mathematical! difference between the electrical an
thermal/spin cases is due to the manner in which theg ’s
enter Eqs.~C1! and ~C2!. The g ’s enter bVC within order
unity combinations of the formg ln(p0 /G0) @and for some
parameter values eveng ln2(p0 /G0)] which cannot be ne-
glected. In contrast, theg ’s enterbVC

T,s on their own~that is,
in direct competition with terms of order unity! and can
therefore be neglected for smallz. Hence we say that elec
trical vertex corrections contribute even to zeroth order in
impurity density while thermal/spin vertex corrections
not.

APPENDIX D: FERMI-LIQUID CORRECTIONS

In addition to the effects of vertex corrections, transp
coefficients may be further modified due to underlyi
Fermi-liquid interactions between Landau quasiparticles~re-
ferred to hereafter as ‘‘electrons’’ to avoid any confusi
with the Bogoliubov quasiparticle excitations of the sup
conductor!. A detailed theory of the superfluid Fermi liqui
has been developed in the literature.9,10,28–30In particular, a
widely applicable phenomenological approach has been
vised by Leggett.28 Within this approach, we consider thre

FIG. 6. Direct comparison of electrical (bVC21) and thermal/
spin (bVC

T,s21) vertex corrections for~a! d50.001,~b! d50.5, and
~c! d50.999. Note that in all cases, the thermal/spin correction
negligible on the scale of of the electrical correction.
e

t

-

e-

layers of Fermi-liquid effects.~1! Mass renormalization: By
virtue of our acknowledgment that ‘‘electrons’’ are real
Landau quasiparticles, all masses should be viewed as e
tive massesm* . ~2! Current renormalization: Due to Ferm
liquid interactions, the presence of a current yields an ad
tional drag current resulting in an overall curre
renormalization.~3! Response function modification: Ferm
liquid interactions induce an effective ‘‘molecular field
which couples to the current-producing perturbation a
modifies the response functionK0(T) via

K0~T!→K~T!5
K0~T!

11lK0~T!
, ~D1!

wherel is a constant which depends on the interaction.28 In
the case at hand,~1! has been built into the parameters of o
model, ~2! yields a nontrivial effect which shall be consid
ered below, and~3! can be neglected in theT→0 limit with
which we are concerned. This last statement follows beca
at lowT, few quasiparticles are generated, response funct
~such as the normal fluid density or conductivity! are small,
and the higher order correction terms in Eq.~D1! are negli-
gible. Thus, the dominant corrections to transport coe
cients due to Fermi-liquid interactions enter simply v
renormalization of the various current density operators.
determine the nature of this current renormalization, we p
ceed as follows.31

In the absence of Fermi-liquid interactions, a gene
~bare! current density operator takes the form

j05(
ka

gkavk dnka , ~D2!

where vk is a velocity, gka is a coupling parameter~i.e.,
charge, spin, or energy!, and

dnka5nka2n0~ek ,Dk! ~D3!

is the difference between the true electron distribution in
presence of the current-inducing perturbationnka and the
~bare! equilibrium distributionn0(ek ,Dk). ~The bare desig-
nations refer to our neglect of Fermi-liquid interactions as
from the extent to which they are included in the velocity v
mass renormalization.!

Once Fermi-liquid interactions are turned on, excit

electrons interact via the Landau interaction energyf kk8
aa8 . In

the presence of this interaction, the electron dispersion m
be modified~or dressed! to account for the additional energ
cost of interacting with other excited electrons:

ẽk5ek1 (
k8a8

f kk8
aa8dnk8a8 . ~D4!

~Note that in this context, the tilde denotes a dressed qu
tity, not a Nambu matrix.! It is important to realize that the
dispersion ofevery electron ~not just the excited ones! is
dressed as long as any electrons are excited. Although
the excited electrons interact, the dispersion measures
energy required to excite an electron and must therefore
count for the interactions an electronwould experience if it
were excited. Also note that althoughDk should also be
modified due to Fermi-liquid interactions, we expect this
fect to be less significant and shall therefore assume for
sake of simplicity that the gap is unaffected. Once the d

s
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persion is dressed, we can Taylor expand in the change iek
to obtain a dressed equilibrium distribution function

n0~ ẽk ,Dk!5n0~ek ,Dk!1
]n0

]ek
(
k8a8

f kk8
aa8dnk8a8 . ~D5!

Thus, the dressed current density operator takes the form

j5(
ka

gkavk dñka , ~D6!

where

dñka5dnka2
]n0

]ek
(
k8a8

f kk8
aa8dnk8a8 ~D7!

is the difference between the true electron distribution a
the equilibrium distribution in the presence of Fermi-liqu
interactions.

In a superconductor, there are two types of electro
those that compose the condensate of ground state pairs
those that form the Bogoliubov quasiparticles. Hence
equilibrium distribution function has both a condensate te
and a quasiparticle term

n05n0
C1n0

Q . ~D8!

The equilibrium distribution of electrons in the condensate
just given by the coherence factorvk

2 so its derivative is

]n0
C

]ek
5

]

]ek
F1

2 S 12
ek

Ek
D G52

Dk
2

2Ek
3

. ~D9!
e

v.

k,

v

.

N

n,

L.

y,

u
u-
d

s:
nd

e

s

In the presence of impurities, the equilibrium quasiparti
distribution is given by the convolution of the quasipartic
spectral function~a Lorentzian of widthG0 aboutEk) and
the Fermi functionnF . Multiplying this by the probability
the quasiparticle is an electron minus the probability it is
hole (uk

22vk
2), we obtain the equilibrium distribution o

electrons that form the quasiparticles. In theT!G0 limit, its
derivative is given by

]n0
Q

]ek
5

]

]ek
F ek

Ek
E

2`

`

dv
G0 /p

~v2Ek!
21G0

2
nF~v!G

52
ek

2

Ek
2

G0 /p

Ek
21G0

2
1

Dk
2

pEk
3
arctanS G0

Ek
D . ~D10!

Making use of these expressions and evaluating the dre
current density operator

j5(
ka

gkavkFdnka2S ]n0
C

]ek
1

]n0
Q

]ek
D (

k8a8
f kk8

aa8dnk8a8G
~D11!

for the appropriate coupling parameters and velocities,
Fermi-liquid renormalizations of the electrical, thermal, a
spin currents can be computed.
a-
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