PHYSICAL REVIEW B VOLUME 62, NUMBER 2 1 JULY 2000-II

Impurity-induced quasiparticle transport and universal-limit Wiedemann-Franz violation
in d-wave superconductors

Adam C. Durst and Patrick A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 16 August 1999; revised manuscript received 11 January 2000

Due to the node structure of the gap id-&vave superconductor, the presence of impurities generates a finite
density of quasiparticle excitations at zero temperature. Since these impurity-induced quasiparticles are both
generated and scattered by impurities, prior calculations indicate a universal{lmi0(, T—0) where the
transport coefficients obtain scattering-independent values, depending only on the velocity anisptegpy
We improve upon prior results, including the contributions of vertex corrections and Fermi-liquid corrections
in our calculations of universal-limit electrical, thermal, and spin conductivity. We find that while vertex
corrections modify electrical conductivity and Fermi-liquid corrections renormalize both electrical and spin
conductivity, only thermal conductivity maintains its universal value, independent of impurity scattering or
Fermi-liquid interactions. Hence, low-temperature thermal conductivity measurements provide the most direct
means of obtaining the velocity anisotropy for high-cuprate superconductors.

I. INTRODUCTION the potential for forward scattering differs from that for back

- . scattering, the bare bubble transport coefficients may be
The characteristic feature of wave superconductor is modified. Fermi-liquid corrections account for the underly-

the existence of four nodal points where the order paramet%g Fermi-liquid interactions between electrons in the super-
vanishes. Since low-energy excitations are concentrategd

| havior is domi nductor. Due to such interactions, the presence of a quasi-
about these_ nodes, low-temperature be avior 1s. ominategs, ticle current induces an additional drag current which
by the details of the node structure, and, in particular, th

) ) ) ' ay renormalize the transport coefficients. The purpose of
ratio of the Fermi velocity to the gap velocitglope vi/vo.  \what follows is to improve upon the bare bubble results by
Prior theoretical work has shown that this velocity ratio isincluding the effects of both types of corrections.
prominent in eXpreSSionS for IOW-temperature transport In Sec. Il, we define the parameters of our phenomeno-
coefficients™" as well as the temperature dependence of theogical d-wave model, introduce the Green’s function, and
superfluid density=*° However, discrepancies between val- calculate the density of states. In Appendix A, neglecting all
ues ofwvs/v, obtained from measurements of microwave corrections, we derive a generalized bare bubble polarization
electrical conductivity! thermal conductivity?*® and su-  function which can be applied to the calculation of either
perfluid density’, as well as direct measurements of gapelectrical, thermal, or spin conductivity. By treating the gen-
structure via angle-resolved photoemission spectroscopgral case, we avoid repeating the same basic calculation three
(ARPES® indicate that the existing theoretical predictionstimes. In Appendix B, we calculate another generalized po-
must be corrected through a more detailed analysis. To thirization function, now including the contributions of vertex
end, we calculate herein electrical, thermal, and spin condu@orrections. The significance of vertex corrections in the uni-
tivity including the contributions of vertex corrections and versal limit is determined via a numerical calculation pre-
Fermi-liquid corrections. Associated calculations of the susented in Appendix C. In Appendix D, we derive the renor-
perfluid density will be pursued in a future investigation.  malization of a generalized current due to the effects of
It has been showfithat for a superconductor with2 > underlying Fermi-liquid interactions. In Secs. lll, IV, and V,
pairing symmetry, the presence of impurities generates a five make use of the results in the appendices to calculate
nite density of quasiparticle states down to zero enéaly  electrical, thermal, and spin conductivity in the universal
though the ultra-low-energy regime remains the subject ofimit (1—0,T—0). Each of these sections begins with a
some debafé'. This results in a unique situation where an derivation of the appropriate current density operator. These
increase in impurity density increases the density of quasiealculations reveal an extra gap velocity term in the thermal
particles while reducing the quasiparticle lifetime. As a resultand spin currents due to the momentum dependence of the
of the cancellation of these opposing effects, “bare bubble’d-wave gap and therefore indicate a correction to the stan-
conductivity calculationgneglecting the corrections we shall dard thermal conductivity formut&?® derived assuming an
considey indicate a universal limitQ—0,T—0) where the swave gap. Given each current operator, we present the bare
transport coefficients attain constant values, independent dfubble result and then note modifications due to vertex cor-
scattering: However, we shall see that these results areections and Fermi-liquid corrections. We find that contrary
modified by two types of corrections: vertex corrections ando the scattering-independent result obtained from the bare
Fermi-liquid corrections. Vertex corrections account for thebubble calculation, the universal limit electrical conductivity
fact that forward scattering does not interfere with theattains a vertex correction, which depends explicitly on the
progress of a carrier to the same extent as back scatteringature of the impurity scattering, as well as a Fermi-liquid
Hence, if the scattering potential varieskirspace such that renormalization, which depends on the strength of Fermi-
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liquid interactions. In addition, while the spin conductivity is

unaffected by vertex correctiotior small impurity density,

it is renormalized due to Fermi-liquid interactions. Only the
thermal conductivity has neither a vertex correction nor a
Fermi-liquid correction. It therefore retains its simple, uni- Vv,
versal value. Conclusions are discussed in Sec. VIwherewe | 7 ]
provide physical descriptions of the mathematical correc-
tions calculated herein.

—m/a I i n/: kx
Il. D-WAVE MODEL, GREEN'S FUNCTION,
AND DENSITY OF STATES

To study the low-temperature transport properties of a
d-wave superconductor, we employ a phenomenological 72
modet-8 with the Brillouin zone of a two-dimensional square
lattice (of lattice constan&), an electron dispersiafvia tight
binding parametrization

FIG. 1. Impurity scattering withird-wave modelV,, V,, and
V3 are the potentials for intranode, adjacent-node, and opposite-
node scattering.

€= —2t;(cosk,a+ cosk,a) — u, (2.1
and an order parameter dfz_,2 symmetry node. Furthermore, due to the form of the excitation spec-
A trum (2.5), it is convenient to scale out the anisotropy of the
Akz—o(coskxa—coskya) (2.2 Dirac cone, and change to polar cqordlnates in a new scaled
2 momentump=(p,#). Hence we will frequently make the

which crosses through zero at each of four nodal points oﬁ‘UbSt'tUtlon

the Fermi surface ky=*k,). The key feature of such a

model is that in the vicinity of each of the gap nodes, ‘ dk; dk, . [ro pdp (27dé6
varies linearly across the Fermi surface akg varies lin- zk: —>j§=:1 (2772 _’1.:1 0 2mvval)o 27’
early along the Fermi surface. Defining local momentum 2.6

variables at each of the nodes Wﬁl@ perpendicular to the
Fermi surface and, parallel to the Fermi surface, we can where p;=vk;=pcosé, p,=v,k,=psing, p= \/p21+ p22

designate at each node both a Fermi velocity =E,, andpy=+mvv./a~O(Ay) is a large scaled momen-
5 tum cutoff defined such that the area of the new integration
_ 7% 0 region is the same as that of the original Brillouin zone. Note
Vi= —— =v¢K =2\2ta 2.3 : - o
=gk vt v V2 f @3 that if quasiparticles are only generated at the nodes and the

rest of the Brillouin zone makes no contribution, then we

should be safe in extending this limit to infinity. However, it
JA is sometimes necessary to retagmthrough the intermediate

Vo= —k=vaz vo,=——=Aoa. (2.4  stages of a qalcgl_atio(usually as part of a ratio within a
ak V2 logarithm maintaining throughout that all other energies are

(Note that all velocities in our model are taken to be “renor—rnUCh smaller than this cutoff value.

) . - . The fact that quasiparticles are concentrated in the vicin-
malized” velocities accounting for both band structure andit of the aap nodes is also very useful when considerin
many-body effects within the context of Fermi-liquid y gap y 9

theory) Utilizing these definitions, it becomes clear that theISTSIL':Q%SC:\t/fr:Itnr?q.ui':nglsv;hi 'Sg";l arr]gxmgltgog]eun;?tgftﬁe
guasiparticle excitation spectrum in the vicinity of each of g Y pp y €q

the gap nodes takes the form of an anisotropic Dirac cone k—spac_e location of one of the four nodes, a_lgeneral scatt_ermg
potential, V., need only be evaluated in three possible

_ [ZiA2_ [22. . 22 cases: intranode scatteringx @nd k' at the same nodge
Ex \/EK+A \/Ufk1+vzk ’ 29 adjacent-node scattering (@nd k' at adjacent nodg¢sand
where the degree of anisotropy is measured by the ratio afpposite-node scattering @ndk’ at opposite nodgsThese
the two velocities. This ratio; /v, appears prominently in are depicted graphically in Fig. 1 and denoted, respectively,
the low-temperature transport coefficients and is a measuas V,, V,, and V;. Hence, an arbitrary potenti@varying
able quantity which provides a convenient means of comparslowly over the area of a nojles effectively reduced to a set
ing theory to experiment. of three parameters. This simplification proves quite helpful.
The low-temperature physics of such a model is driven by  Since the transport calculations in the sections that follow
the fact that at the four nodes, there is no gap to quasiparticleonsist of the evaluation of Feynman diagrams via field-
excitations. Hence, quasiparticles are generated only in thimeoretic techniques, it is important to establish the types of
vicinity of the gap nodes. This is very useful mathematicallyGreen’s functions that will be utilized. For any supercon-
since it means that a momentum integral over the Brillouinductor, the existence of a condensate of ground state pairs
zone can usually be replaced by a sum over nodes and aneans that the annihilation of an electron must be treated on
integral over the small region df space surrounding each the same footing as the creation of its mate, an electron with

and a gap velocity
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opposite momentum and spin. Hence we use the Nambu 2

formalisnf* in which the field operators are two-component N(w)= () In&—ln 1+
spinors of the form 200, I'(w) ['(w)?
Ciy LI I VEF(Q))Z—Q)ZH (2.13
> — —arctan ———=—| |- .
\Pk:(CT ), \I’EZ(CET ,C_k|) (2.7 TUfU,|2 T 2|w|T'(w)
—k|

. . . _ Note that in the absence of impuritieE (w) =0],
and the resulting Green’s functions are<2 matrices in

Nambu space. Since we are concerned with finite- ||
temperature calculations, all diagrams will be evaluated us- N(o)|r(wy-0==—— (2.19
ing the Matsubara finite temperature formali&htdence, the TUiU2

bare Matsubara Green's function expressed in Nambu fof hjje in the presence of impurities, there is a finite density of

malism takes the form quasiparticle states down to zero enéfgy
_ 1 |(l)+ ék Ak 2
Go(kjiw)=——— : , (2.8 __“ P
(|w)2—EE Ak |0)_€k N(O) 772Uf02F0|nF0, (215)

where the tilde denotes a Nambu space matrix &ad \herel',=I'(w—0). Thesempurity-inducedquasiparticles
=i(2n+1)7/p is a fermionic Matsubara frequency. In the 4re responsible for the intriguing low-temperature transport

presence of impurities, the bare Green’s function is dressegroperties that we shall consider in the sections that follow.
via scattering from the impurities and obtains a Matsubara

self-energyi(iw). Assuming that all but the scalar compo- Il MICROWAVE ELECTRICAL CONDUCTIVITY
nent of the self-energy can be neglected or absorbedejnto

or Ay, Dyson’s equation yields that the dressed Matsubara Electrical conductivity can be calculated by means of the

Green'’s function is given by Kubo formul&?
- 1 Im I1e(£2)
G(k,iw)= U’(Q,T)Z——g , (3.1
[iw—3(iw)]?—E2
iw—3(iw)+ e A, wherell (Q)=TI(iQ—Q +i6) andII(iQ) is the current-
) ) . current correlation functioffor polarization functiopin the
Ay lo—2(iw)— € Matsubara finite temperature formalism
(2.9
L . o Sove [P i it
(Note that while this assumption has been explicitly justified (iQ)=- . dre™ (T, (7)j(0)). (3.2

in both the Born and unitary scattering limits, the omitted

self-energy components can contribute for arbitraryThus, our first step is to derive an expression for the electri-
scattering=>** For simplicity, we neglect such contributions cal current operator. Then by evaluating its correlation func-
in this investigation). From the Matsubara functions, corre- tion, we obtain the electrical conductivity.

sponding retarded functions are obtained by analytically con-

tinuing iw— w+16 such that A Electrical current

Gl k,0)=G(K,iw— w+id) (2.10 For a system of interacting electrons, the Hamiltonian is
e ’ given by
and the impurity scattering rate is defined as
—v?
T(w)==IM3 o w) (2.19) H= f dx wlxx)( pyo ) Ya(X)

whereX () =3 (io—w+id). 1

With the Green’s function in hand, it is a simple and +_J dxdv &t (x) ¢ (VIV(x— X
illustrative step to calculate the density of states. In terms of 2 Y el Q) PpIV Y)Y Pa(X)
the retarded Green’s function, the density of states is given (3.3

by
where ¢ ,(X) annihilates an electron of spim at positionx
1 ~ andV(x—y) is the electron-electron interaction potential. In
N(w)=-5— Ek: THIM Gre(k, @) ]. (212 e presence of a vector potentia(x), the Hamiltonian
must be invariant under a local gauge transformation. While
Plugging in the Green’s functiof2.9), replacing the sum by the second term is gauge invariant as written, the first must
a scaled integral about each node via Ej6), neglecting be modified by making the standard replacementv —
the real part of the self-energy, and performing the integra—iV +eA. Thus, the Hamiltonian becomes a functional of
tion we find that the vector potential and takes the form
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_i 2 2 2 . B

77-2 Uo 2 — QO

1 ~n =n
t5 f dx dy 4 (X) YY)V (X=Y) YY) thal X). XTHGre P @) Cref P+ )], (39

(3.4

where

Note that only the kinetic term couples to the vector poten-  Ge(p,w)= >
tial. Taking the functional derivative with respectAgx) we [0=Ze(@)]*—p
obtain an expression for the electrical current:

% 0= (w)t+p; P2
el — P2 0= () =Py’
JF00=—Rez s 3.9
e In the universal limit (1 —0,T—0),
= V=Vl 3.
Zim*(i/fa Va=Vibatha) (3.9 Ne() —ne(w+Q) one

Q —>—(9—w—>5(w). (3.10

Hence, evaluating the rest of the integrand dor 0, noting
thatX (0)=—iI"y, and integrating over momentum, we ob-

Then taking the space-time Fourier transform yields

e
i%(q,Q)=— — > k+g clack+qa (3.6)  tain the universal limit bare bubble electrical conductivity
m* ke
. . . e2 Ug
and in the limit thatp—0 we obtain o0=— —- (3.11
me U2
i¢0,0)= —92 qu,qq,k (3.7) This is the universal conductivity obtained in Ref. 1. Finite
' Ko k= krar temperature corrections can be obtained via a Sommerfeld

~expansiofifor T<I'(w)] and have been calculated by Hirsch-
wherev;=de/dk=k/m* and we have expressed the final fg|d et al3 and Grafet al®

result in terms of X2 Nambu matrix notation. Note that in
all cases, momentum indices on field operators denote both C. Vertex corrections (electrical)

momentum and frequency. Although this result is well o .
known, we have derived it here in order to provide a basis | N€ bare bubble conductivity derived above was calcu-

for comparison with the thermal current and spin current tg2t€d in the approximation that vertex corrections could be
be derived later. safely neglected. It turns oués we shall see latethat this

approximation is justified if the impurity scattering potential
) is isotropic ink space ¥V, =V=const). However, for a
B. Bare bubble (electrical) general scattering potential, corrections to the bare vertex
Given the current, we proceed to calculate the correcan make a significant contribution and must be included in
sponding current-current correlation function. The correlathe calculation. To this end, we shall consider the contribu-
tion function for the electrical current can be expressedion of theladder correctiongo the bare vertexsee Fig. 4 of
diagrammatically as a fermionic bubble with fully dressedAppendix B. Once again, since the electrical calculation is
propagators and a fully dressed vertex in which each verof the same form as that for the thermal and spin conductiv-
tex contributes a coupling parametera velocityvy, and a  ity, a generalized polarizatiqn function including vertex cor-
2x2 Nambu formalism unit matrid. Assuming that the rections(which can be applied to all three cabéms been
impurity scattering potential is isotropic kspace, the cor- calcullate_d in Appendlx B. Fpr the elec'grlcal conduct.lwty, the
rections to the bare vertex vanish. Thus, in this approximaPolarization function consists of a single bubkeith a
tion, the conductivity can be obtained from the calculation ofdreéssed vertexwhere each vertex contributes a coupling pa-
a bubble with dressed propagatdi®., Green’s functions rametere, a velocity vy, and a Nambu matrix. Plugging
with self-energy includedbut bare verticegno interaction these parameters into the generalized polarization function
between the two propagatdrsSuch a diagram will be re- (B50) and using the electrical Kubo formul@.1) we find

ferred to as @are bubble that
The calculation of the bare bubble polarization function is 5
of the same basic form for the electrical, thermal, and spin o(Q.T)= AN R Ne() —Ne(0+Q)
conductivities. Thus, to avoid repeating the same derivation ' 272 V2) = QO
several times, a generalized polarization functlﬂiﬁ;l{’((l)
(applicable to all three casewhich depends on a coupling xR IP(0,0) = I(w,0)], (3.12

parametey, a velocityv;, and a Nambu matrix,, has been  whereJ* andJ¢ are defined in Appendix B. In the universal
calculated in Appendix A. Applying the general restdl3)  |imijt (0 —0,T—0), we can make use of E.10 to find
to the case of interesgE&e, vi=v;, 7,=1) we find that that
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eZ l)f I(O)
0T, 2 ER 1— Y1001+ (YO Y[ Y Q1D (1— 4 Q1 D)y

10

) (3.13
1 ,y(0)|(0){1+(,y(0) (0))[,y(0)|(1)/(1 ,},(0)|(1))]}

where all functions are evaluated fOr,w—0. In these lim-

. n-
its, the constituent functions defined in Appendix B take the 7(301)=|27wlv AnBilln=1=n=3], (3.179
form 2
(0)_
F(ilo) . To  po 7e2 =0, (3179
F'(0)= - In—2 N(O) (3.14
47TUfl12 27TUfl)2 FO dF(Z) Po
199(0,0= =2In——2, (3.18
dz | Iy
iy
T3(0) y A (3.15 IMF(ily)
= = , . m |
n 1+[(mN©O) 22 " 1€(0,0)= T—OO 2|n% (3.19
1/(dF(z)|  F(iTy)
[ —(al4)N(0)V2 _ 119(0,0 = ~—=2]=-1, (320
by — — 2\ dz |, il
(0) =i iB,, (3.10 T,
1+[(m/4N(0)]?V?

ni IM[(w—iTo)F(w+ilg)]

(1) -
1$9(0,0)= | TTow

w—0

=1. (3.2)

n.
(0)— ! 2_g2 —
VAL ; Z(A“ B)lln-1~ln-s]. (3173 Thus, including vertex corrections, the universal limit elec-

trical conductivity takes the form

471'vv(A2 BDlln-1=ln-3],  (3.17H 00=—5 . Bve: (3.22

1+ 20 Y0 — ¥+ ¥ (1~ ¥ ) TIn(po /T ) [IN(Po /Tg) — 1]
[1-299In (po /To) {1~ 2[ ¥iQ— ¥ (1~ ¥ [In (po/To) — 11}

(3.23

Bvc=

where By¢ is the scattering-dependent vertex correction tocharge carrier. As a result, anisotropy in the scattering po-
the universal bare bubble result. Note that sincetweall  tential can renormalize the conductivity.

depend on the difference between the intranddenatrix In general, the evaluation g8y requires a numerical
(n=1) and the opposite-node matrix (n=3), Byc—1 if  calculation sincd’g must be obtained self-consistently as a
the two scattering potentials are the same. Hence for an isdunction of impurity density and scattering potential. Such
tropic scattering potential, the bare bubble res8ltLl]) is  calculations(presented in Appendix Xdndicate that for an-
recovered. However, in general we presume that the scattejsotropic scattering, the electrical vertex correction can be
ing potential will fall off for largek and the potential for significant even to zeroth order in the impurity density.
intranode scattering will be larger than that for opposite-node Eqr the case of Born scatterin@yc reduces to a more

scattering. If so, they’s will be nonzero and the universal simple and illustrative form. In the Born limismall V),
limit conductivity will deviate from its bare bubble value.

This correction to the conductivity due to differences be-
tween intranc_)de(_forward) scat_tering and. opposite-node T2(0)=V1, 2(0):0, (3.24)
(back scattering is the node-discrete equivalent of the fa-

mous 1-cosé factor obtained from vertex corrections in the

conductivity calculation for a simple metal. As in the metal-

lic case, the phenomenon at work is the fact that forward and (0)— ,(0)
back scattering can have different effects on the progress of a A
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and the zero-frequency scattering rate takes the form 1 =
f(6—6')=—— > Fcogl(6—6')] (3.32

27 v(0) =0

Io=poexp — £2 -
0= Po ni(V2+2V2+\V2) this first term takes the form
FS
_r 2 2. \/2 je_je 1 (3.33
_Zni(vl+2V2+V3)N(0)’ (3.26 11=lo% .

where (as defined in Sec. IV, V,, and V3 correspond whereFj is thel=1 spin-symmetric Landau parameter and

respectively to intranode, adjacent-node, and opposite-node(0) is the single spin normal state density of states at the

scattering. Noting that Irpg/I'p)~1/n;>1 and defining Fermi surface. The second term in brackets is peakés] at
=0 and is therefore a node teroontributing primarily at

Po 7 the gap nodes Replacing thek sum by an integral about
=2,(0) PO _ T2 \/2
F1_27A1F°|nro 4 ni(Vi—V3a)N(O)  (3.27 each of the nodes and noting by symmetry that
and a transport scattering rate 4 . y
- =
[y=To—T1=—n;(2V3+2V3N(0 3.2
tr 0 1 4 |( 2 3) ( ) ( 8) we find that
the vertex correction factdB.23 reduces to s ¢s
1-‘O(fll_ 31)
5=—io—— — 335
3 (Fo 2 [Viravi+vi|® (329 4700,
Y 2V5+2V3 where f}; and f3, are, respectively, the intranode and

&pposite-node spin-symmetric Fermi-liquid interaction ener-
gies. In the small impurity density limit, the secofrtbde
term can be neglected with respect to the fiEgrmi surfacg
term. Hence, the renormalized electrical current is given by

Note that the vertex correction depends on the scattering p
tential but is independent of the density of impurities. In this
simple limit it is clear that if intranode scattering is stronger
than opposite-node scatterif@s we expegt 'y will exceed
I';, and the universal limit electrical conductivity will be en- je=jcas (3.36
hanced beyond the bare bubble result. oTFL :
where(for a circular Fermi surfage
D. Fermi-liquid corrections (electrical)
i b i - y FI To(fi—f3) F

To this point, our calculation of electrical conductivity af =1+ - ————C~1+ = (3.37
has neglected the effects of the underlying Fermi-liquid in- 2 47?0, 2
teraction between electrons. In Sec. Il A, an explicit expres-,
sion was derived for the electrical current in the absence o
Fermi-liquid interactions. In essence, it has the form

nd the superscrig denotes that this is the spin-symmetric
urrent renormalization factor. The simple form of this ex-
pression is due to our assumption of a circular Fermi surface.
For a more general Fermi surface, additional harmonics of
j8=—e2 Vi 0Ny (3.30 the Landau function would have been generated. Thus, in
ka practice, this factor should be treated as a parameter to be
wherev is the Fermi velocity ak and ny,, is the deviation ~determined by experiment. Note that the renormalization ap-
of the electron distribution from equilibrium. The Fermi- Plies to both the quasipartickmorma) current and the su- -
liquid renormalization of such a current has been derived irPercurrent. However, since the supercurrent does not contrib-
Appendix D. Plugging into the general res(@11) we see Uteto _the real part of the ac conductivity, we are concerned
that in the presence of Fermi-liquid interactions, the electri-0nly with the normal current.

cal current is given by The basic physics of this renormalization is as follows.
Upon the application of an electric field, quasiparticles are
A2 perturbed to form a normal current. In the presence of the
jezjg—eE Nt o 2, vfkfik,| > X T excited quasiparticles, the electron dispersion is modified
K o’ k 2(e T Aj) due to the Fermi-liquid interaction. The modified dispersion
2 5 yields a modified equilibrium distribution which means that
€k Uolm B iarctar( &) (3.31) the deviation from equilibrium is also modified and the cur-
R a— 3 , . ) . . -
E2E2+T3 «E} Ey rent is renormalized. Note that the dominant term in the

renormalization factor is a Fermi surface term resulting from
wheref;,, =fll,+f.l, . The first term in brackets is peaked the modification of the equilibrium condensate distribution in
at €,=0 and is therefore a Fermi surface tefemeared over the presence of perturbed quasiparticles.
the extent of the ggplf we assume a circular Fermi surface,  So far, we have discussed only how Fermi-liquid interac-
then replacing thé& sum by an integral in circular coordi- tions renormalize the electrical current density operator. Yet
nates k, 6), presuming that\,= A(#)<Eg, and expanding our goal is to determine the manner in which such interac-
the Landau function in two-dimensionéD) harmonics tions modify the electrical conductivity. In general, such
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modifications can be more complicated than merely renorwhich agrees with the results of Refs. 9,10,28. Given this

malizing the constituent currents. However, as discussed inorrespondence with prior work, we can be reassured of the
Appendix D, current renormalization is the dominant effectaccuracy of our calculations.

in the T—0 limit with which we are concerned. Therefore,

since electrical conductivity is proportional to the current-
current correlation function, two powers of our current renor-
malization factor appear in the conductivity. Hence, includ- Analogous to the case of electrical conductivity, thermal
ing both vertex corrections and Fermi-liquid corrections, theconductivity can be calculated by means of a thermal Kubo
electrical conductivity in the universal limit takes the form formula??

IV. THERMAL CONDUCTIVITY

2

e” v¢ K

0=, U_IBVCaFS:LZ' (3.38 (T = i M (4.1
ar 2 T T2 Q ’

E. Superfluid density wherell(Q)=11"(1Q—Q+i8) andI1“(iQ) is the finite

As a check on the accuracy of our conductivity calcula-lEMPerature current-current correlation f.unct(on polariza-
tions, it is useful to make a brief digression and use oufion function. In this case, the appropriate current for the

results to calculate an experimentally distinct quantity, thecorrelatlon function is the thermal current derived below.
superfluid densitywithout impurities, p3(T). By definition
(see Ref. 8 A. Thermal current

STV S(T—0) _ N To derive an expression for the heat current in an aniso-
pA(T)=p(T=0)=p (D), (3.39 tropic superconductor, we can follow tisavave derivation
wherep"(T) is the normal fluid density. Hence, to obtain the of Ambegaokar and GriffitY and generalize to the case of an
temperature dependence of the superfluid density, it sufficesnisotropic gap. As in Eq3.3), the Hamiltonian takes the
to calculate the normal fluid density. While the conductivity form
is related to the imaginary part of the polarization function,

the normal fluid density is proportional to the real part via _v2
= [ ax wz<x>( )cmx)
p"(T) Rell,(Q=0) 2m*
=-— . (3.40
m ez

1 t T
Obtainingll ¢ from the generalized resulB49) in Appen- " 2[ Axay YO PV X=Y) (V) ().
dix B, settingQ)=0, taking the no impurities limifI' () (4.2
—0], and plugging into Eq(3.40 we find that
Given the Hamiltonian, it is straightforward to obtain the

p"(T) 1 vg (= equations of motion for the field operators

m v .0 Ne(w) IM[1(,0)], (3.4

. —v?
where il//a:[l//a,H]:(z_*‘f‘jdrV(X_r)l/I;(r)l//y(r) lr//a
m
Im[1{”(,0)]= 7 sgn ®)[ #(w+ o) — 6w —Po)] 4.3
+mPo[ d(w+pg) —d(w—po)]. (342  and to define a Hamiltonian density

Performing the frequency integration yields that the normal
fluid density neglecting Fermi-liquid corrections is given by

1
h(X) = —— V() V()
p"(T)  2In2 v 2m
m 7 v,

ksT (3.43

1

o o +5 f dy VX=Y) o) YEY) (V) ha(X).
which is precisely the result obtained in Ref. 8 through an
entirely different procedure. To include Fermi-liquid correc- (4.9
tions in theT—0 limit, we note(via Appendix D that the
primary effect of Fermi-liquid interactions is the renormal- If all energies are measured with respect to the chemical
ization of the current density operator. Thus, since the norpotential, this Hamiltonian density is the heat density. Hence,
mal fluid density is proportional to the current-current corre-the operatoj?(x) that satisfies the continuity equation
lation function, we need only multiply by two factors of the
;:iﬁ;reta;renormalizatio(\obtained in the previous sectipto h(x)+V-jQ(x)=O (4.5)

can be interpreted as the heat current. Taking the time de-
s 2T (3.44  rivative of Eq.(4.4) and using the equations of moti¢#.3)
m T Uy we find that
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- 4 + - 1
h—V~(¢XaV¢Xa+V¢IXMXa)—§f dy V(y—x)

X[ (P gy ptiat Uratlh sty stxe) = (Wkallh sty s¥xa
Ut sy ata) 1. (4.6

where the compact notatiop, ,= ¢/,(x) has been used for

the sake of brevity. Defining?=j$+j$ we can use Eq4.5
to write

_ 1 . .
I —(UheV Uxat V rahia)

2m

()=~ (4.7

and

1

5| ayvo-x

X [( (/l)ta l/l;ﬁwyﬁlﬂmz"_ lﬂlalﬂ;[;%ﬁlﬁxd)

— (Ul gty stat Uhal gy piixe) 1.
(4.8

Taking the space-time Fourier transform of E4.7) in
the limit thatg— 0 we obtain

Q
0+ =

iF00)=2 |0t

t
ViCraCk+qa

Q
= kE w+ E Vf\PE3\I,k+q , (49)

where vi=de, /dk=k/m*, ¢, is the space-time Fourier

transform ofy,(x), and the second line is written in terms

the 2x 2 Nambu matrix notation introduced in Sec. Il. Please

note that in our compact notation, momentum indices
field operators always represent both momentum and
quencyli.e., ¥, =¥ (k,w) and ¥, ;=¥ (k+0q,0+Q)].

Similarly, taking the space-time Fourier transform of Eq

(4.8) generates four terms such that

19-§3(9,0)=X;+ X, = Y1 =Y, (4.10
The first such term¥X; , is given by
X, = > leKSCLaCEZBCkaﬁCMa
K's,w's
X Oy —ky ks =4 Og =Kyt ks Py + w0y g =04+ 0 -
(4.1)

Taking the mean field approximation, retaining only t
terms for which the average values are over,(—k|) pairs,
and using the fact thdk:ﬂ:Tc‘:kl) is an even function ob ,

this becomes

x1=—ik2 (w—)Afel ey, (4.12

where
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A== 2 Vicw(cicly). (4.13
k' o'

Repeating this procedure fo%, Y, , andY, and takingA,

to be real we find that

q-j?(q.m:—gu (Agsq— AW

T AT
X[kaTC,(kJrq)l‘i‘(a)+Q)C,lek+qT].

(4.149

In the limit asq—0

IA

oK (4.195

Agrg—Ar=Q- q-Vva.

Thus, casting Eq(4.14) in terms of the Nambu matrix for-
malism we find that

, Q
i800)= =2 || 0+ 5 V2T Vg
+ Evzwz}z%q . (4.16

In the limit of small (), the second term can be neglected
compared to the first. Thus, combining Hd.16 with Eq.
(4.9 we obtain the following expression for the heat current
in an anisotropic superconductor:

L L
ViV 3 Wi q= VoW 1 Wi gl

(4.17)

Note that for ars-wave superconductor, the gap is indepen-
dent ofk andv,=0. Thus, the second term in the heat cur-
"fent vanishes and E¢4.17 reduces to the result derived by
€Ambegaokaret al'®?° However, for ad-wave supercon-
ductor, the gap is anisotropic amgl+ 0. Hence, although the
"gap term may be small, neither term can be formally ne-
glected.

Q
(1)+E

j20,0)=>

k,w
of

o]
fr

B. Bare bubble (thermal)

Unlike the electrical current, the thermal current has two
terms: a “Fermi” term proportional tov; and 73 and a

“gap” term proportional tov, and 7;. Therefore, when we
evaluate the current-current correlation function, we expect
four bubbles rather than just one: Fermi-Fermi, Fermi-gap,
gap-Fermi, and gap-gap. However, since the Fermi velocity
v; and the gap velocity, are orthogonal at each of the gap
henodes, the two cross terms cancel. Hence, the thermal con-
ductivity has two terms: a Fermi term with velocity and

Nambu matrixr; on each vertex and a gap term with veloc-

ity v, and Nambu matrix-; on each vertex. For both terms
the coupling parameter iso(+ /2).

Neglecting vertex corrections, each term can be obtained
from the bare bubble generalized polarization function de-
rived in Appendix A. Plugging the appropriate parameters
into the general resultA13) we find that
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®(Q,T) 1 d2p - Ne(@)—Ne(w+Q) C. Vertex corrections (thermal)
T 200 f on ) 0¢ QO The bare bubble result derived in the previous section can
72 be improved upon by including the contribution of faeder
w+Q/2\2 ye ~ correctionsto the bare vertexsee Fig. 4 of Appendix B A
X| [vf Tr[Gredp, @) 73 generalized polarization function including such vertex cor-
rections has been derived in Appendix B. By plugging the
><é;gt(p,w+9);3]+v§Tr[(”;/r;t(p,w)“;l appropriate parameters into this general form(#80) both
terms of the thermal conductivitithe Fermi term with pa-
XGrefp,w+Q)71]]. (4.18  rametersy, 73, andw+Q/2 and the gap term with param-
In the universal limit Q—0, T—0), eﬁersvz, 71, and w+Q/2) can be obtained. Hence we find
that
n,:(a))— n,:(w-i—Q) (9[‘1,:
Q o (419 «(Q,T) 1 F Ne(@) —Ne(w+Q)
= w
T 2772va2 - Q

which for low T is very sharply peaked at=0. Thus, evalu-

ating the rest of the integrand far— 0, noting thats o(0) w+0/2\2
=—iI'y, performing the frequency integral via x| — ) [v2REIP (0,0)— I (w,0)]
o 2
f wz( _ %)dw: T 420 + 02REIN(0,0)—IN(0,Q)]], (422

_ _ _ whereJ{ andJj are defined in Appendix B. In the universal
and integrating over momentum, we obtain the bare bubbl@mit (Q—0, T—0), the Fermi function factor is sharply

thermal conductivity in the universal limit: peaked atw=0. Thus, evaluating thd functions forQ,w
5 1 2402 _>0_, performing the frequency integral via E@.20, and
Ko_ [T 2|t UfTU2 (427 hoting that
T 3 B 772 UfU2 ' '

39(0,0=-3{"0,0,
Neglecting thev3 term in the numerator, this result and its
finite temperature corrections, were originally calculateGd by J$¥(0,00=-3(0,0 (4.23
Grafet al”> The gap term was first obtained by Senttilal. ) . - o
via a physical argument of Wiedemann-Franz correspon}—/g?r;md that the universal limit thermal conductivity takes the
dence with their expression for spin conductivity. It arises

here as a direct result of the additional gap term found in our « 72 1 p2402
calculation of the thermal current for @wave supercon- S _gﬂT (4.24)
T 382 v, TVC '
ductor. e Uil2
o=t : (4.25
o ' .
1= 172+ R ) {7812 In (o /T o) — 20/[1 = ¥[2 In(po/To) — 211})
|
where! is the thermal vertex correction factor and tie ko [ 1 vi+p2
are defined in Eq(3.17). As for the electrical case, the ther- T3 é)—z o (4.27
T fv2

mal vertex correction must generally be evaluated numeri-

cally. The results of such numerical calculatidipsesented Thjs js in stark contrast to the case of electrical conductivity

in Appendix Q can be summarized as followgl) For all - \yhere we found a significant vertex correction even to zeroth
scattering strengthigrom Born to unitary the thermal vertex  grder in the impurity density.

correction is negligible compared to the electrical vertex cor-
rection.(2) In the small impurity density Iimitﬁ\T,C— 1 van-
ishes approximately gdn(py/I'p)] % Thus, to zeroth order
in the density of impurities, vertex corrections do not con- As discussed in Appendix D, there may be additional cor-
tribute. Hence, rections to the thermal conductivity due to underlying Fermi-
liquid interactions between electrons. In the»0 limit, the
- dominant effect of such interactions is to renormalize the
Bvc~1 (4.26 current density operator. Fro.17) we see that the thermal
current (in the absence of Fermi-liquid interactionisas a
and the universal-limit thermal conductivity takes its barerather complicated form including both a Fermi velocity
bubble form term and a gap velocity term. However, for the purposes of

D. Fermi-liquid corrections (thermal)
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this analysis, it suffices to neglect the gap teisince it is  wherep?® is the spin density ang is the spin current density.
known to be much smallgand note that in essence, the bareThe spin density equation of motion takes the standard form
thermal current has the form .

pS(x)=—i[p%(x),H]. (5.3

= Vix Ny (4.289  Thus, combining the two equations and using a Fourier rep-
ka resentation for both the spin density and the spin current we

where ény, is the deviation of the electron distribution from find that

equilibrium. To account for the effects of the Fermi-liquid q-is=[p% H] (5.4)
interactions, a general renormalization factor has been de- a e '

rived in Appendix D. Plugging the appropriate parametersThe Fourier transform of the spin density operator is given
into Eqg. (D11) we find that the dressed thermal current isby

given by

k,w,a

_Jo+2 ONr /E €V f kk/

"
AE E Sckack+qa sé) CkTCk+qT_C—kLC—k+qL):
k/ ’

2. 230 5.
2(eg+AD)%? (5.5

whereS,=+3 ands=3. In the mean field approximation,

eﬁ Iyl Aﬁ I' the Hamiltonian for a superconductor is expressed as
— 5 o —garctan —
E2EZ+T2 =E] Ex

] , (4.29

_ T t t ot
H—kE [€k(CiiCiyFCoi Ci) — A(CyCi +Ci Cip) ]
)

wheref;,, =fll,+f., . Since the entire summand is odd in

€, the correction to the bare current integrates to zero. (5.6
Hence, at least in the zero temperature limit, the thermalpys, evaluating the commutator of E@S.5) and (5.6) us-
current is not renormalized by Fermi-liquid effects: ing fermionic anticommutation relations we obtain
Q
j°=i§ . (4.30 .
Q'JZZS; [(6k+q_Gk)(ClTCkJqu_kaLCt(kJrq)i)
Basically, due to the symmetry of the electron dispersion “
about the Fermi surface, corrections to the thermal current —(Apsq—Ap(cl et +C_y(C )]
. : - k k - —k/Ck .
cancel. Since the thermal current is unmodified, there are no 4 KT leral ket
Fermi-liquid corrections to the universal limit thermal con- (5.7)

ductivity. Thus, including both vertex corrections and Fermi-| the |imit asq—0
liquid corrections, the thermal conductivity retains the bare

bubble form €y
€rq™ &0 =0- Vi, (5.9
Ko a2 o) 1 v?+v§
T3 2 o, @33 2y
T 2 Apiq=Ax=q- ——=0-Vs. (5.9
ak
V. SPIN CONDUCTIVITY Hence, expressing the creation and annihilation operators in

For the spin conductivity case, the Kubo formula takes theterms of 2<2 Nambu matrix notation we find that

form
1%00) =52 [Vi¥iTsWiciq= VoW kT Wicrq).

(5.1) (5.10

Note that the spin current takes precisely the same form as
wherell;(Q)=TI3(i1Q—Q+i5) andII3(iQ) is the finite  the thermal current4.17) with an appropriate change of cou-
temperature current-current correlation functionpolariza-  pling parameter.
tion function. Here the current that enters the correlation
function is the spin current derived below. B. Bare bubble (spin)

ImI15,(Q)

QT =~ ——,

, As in the thermal conductivity case, the spin current has
A. Spin current both a “Fermi” term and a “gap” term. Hence, evaluating
To find an expression for the spin current operator in arthe current-current correlation function and notitas be-
anisotropic superconductor, we can write down the Hamilfore) that the cross-terms cancel, we find that the spin con-
tonian and spin density operators and use the spin continuitguctivity consists of two bubbles: a Fermi term withand
equation to obtain the current. For spin, the continuity equar, on each vertex and a gap term with and 7, on each
tion is vertex. These are precisely the bubbles that we evaluated for
. the thermal case except that here the coupling constant is the
p%(xX)=—=V-j3%(x), (5.2 spin (s=1/2) rather than the frequency.
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Neglecting vertex corrections, each of the two bubblesAs in the thermal case and in contrast to the electrical case,
can be evaluated by plugging the appropriate set of paranvertex corrections do not contributéo zeroth order in the
eters into the bare bubble generalized polarization functioimpurity density.

(A13) derived in Appendix A. Doing so we find that

D. Fermi-liquid corrections (spin)
a%(Q,T)=

772UfU2

s [(d’p(*  ne(w)—ne(w+Q) y . . o
o ® Q An additional correction to the spin conductivity is

needed to account for the effects of underlying Fermi-liquid
2 & ~ =y = interactions between electrons. In the-0 limit, the domi-
X{ui T Gre( P, @) 75Grelp. 0+ ) 73] nant effect of Fermi-liquid interactions is the renormalization
02T & (D)1 G (D w+ Q)T of the current density operatsee Appendix D Neglecting
02 TT[Cre(P,@) 11Cre(p 0+ Q) 71} the gap term in Eq(5.10 (since it is small and rather diffi-
(5.1)  cult to deal with, the spin current has the basic form

In the universal limit (1 —0,T—0),

Ne(0)—Ne(@+Q)  dng 5= 2 SaVik M (5.17)
Q H—(?—w—)5(w). (5.12) @

) . ) o whereS,= *+1/2. The Fermi-liquid renormalization of this
Thus, evaluating the rest of the integrand in the-0 limit, o, rent can then be obtained by plugging the appropriate
noting thatX.e(0)= —iI'¢, and integrating over momentum, parameters into the general resitL1) derived in Appendix
we obtain the universal limit bare bubble spin conductivity: o Noting that the math is completely analogous to that of
the electrical calculation in Sec. Ill D, we can easily adapt

oS=— (5.13 the electrical result to the present case. Replacirgwith s
0 22 v, ' (=1/2) and changing spin-symmetric designations to spin-
) ) ) ] antisymmetric ones, we find that the Fermi liquid renormal-
This agreesaside from a disputed factor of @ith the result  jzation of the spin current takes the form
obtained by Senthiét al®

s? v?-l—v%

iS__;S _a
C. Vertex corrections (spin) = loar .13
As in the electrical and thermal cases discussed previwhereag, is the spin-antisymmetric current renormalization
ously, the bare bubble result derived above can be improvetictor which, for a general Fermi surface, is some compli-
upon by including the contribution of the ladder correctionscated function of the spin-antisymmetric Landau parameters
to the bare vertex. By plugging the appropriate parameterg. For the simplified case of a circular Fermi surface
into the generalized polarization functigimcluding vertex

correction$ derived in Appendix B, both the Fermi term and =
the gap term of the spin conductivity can be obtained. Doing al ~1+ > (5.19
so we find that
g2 % Ne(w)—Ne(w+Q) As in the electrical case, the current renormalization is
o>(Q,T)= T do Q dominated by a Fermi surface term resulting from the
2mvivp) - interaction-induced modification of the equilibrium distribu-
X{vfzRe[J(z?’)(w,Q)—J(f)(w,Q)] tion of the condensate. At first glance, this result is a bit

surprising since the Zeeman field which generates(iloge-

+0iR4IMN(0,0)-IP(w,0)]}, (5.14  mal spin current cannot induce a supercurrent. However, it

must be understood that the renormalization of the normal

whereJ{ andJj are defined in Appendix B. In the universal current has nothing to do with the presence of a supercurrent.
limit (2—0,T—0), we can make use of Ed5.12 to  Rather, due to the existence of the normal current etpg-

evaluate the frequency integral and find that librium distribution of the condensate is modifiada Fermi-

liquid effects. It is this modification of the equilibrium con-
2 .2 2 .
ST vitug densate, not the presence of an excited condensate
oy=——-8 (5.15 i i izati
072 p, VC (supercurrent that gives rise to the renormalization of the

spin current.

where the spin vertex correction facigj is identical to the Since the spin conductivity is proportional to the current-

thermal vertex correction factqsl. defined in Eq.(4.25.  current correlation function, it obtains two factors of the spin
that for small impurity density8S.~1 and the universal tions and Fermi-liquid corrections, the universal limit spin
limit spin conductivity takes its bare bubble form conductivity takes the form
2 .2 2 2 2 2
s* vitu s? vitv
St B (5.16 oy=—5 ——af 2. (5.20
me UfU2

S
Jo

w2 VU2
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VI. CONCLUSIONS
(a)
In the presence of impurities, the gap symmetry of a

d-wave superconductor yields the generation of impurity-
induced quasipatrticles at the gap nodes. The transport prop-
erties of the resulting system are quite unique since such
guasiparticles are both generated and scattered by impurities.
In the O—0,T—0 limit, bare bubble calculations indicate
that transport coefficients are “universal,” independent of
the impurity density or scattering rate. However, once the
contributions of vertex corrections and Fermi liquid correc-
tions are included, we find th§putting in the#’s) the elec-
trical, thermal, and spin conductivities in this universal limit
take the form

£
Eawal wal

(b)
92 V¢
Uozﬁ v_zﬁvcalssza (6.1a “a
2/3)k2
ko _[(m )B](ﬂ_i_g, 6.1
T far Uy Ug
52 (Uf Uz)
o=——| —+ =] a8 2, 6.1
0 hal\va  Ug FL (610

where By is a scattering-dependent vertex correctidr23

andap, andeg, are spin-symmetric and spin-antisymmetric , - .

L FIG. 2. Schematic depictions of tli@) electrical current an¢b)
Ferm"“qu_"_j factors(_3.3®,(5.18). Note that th(_ese are the 2D thermal/spin current in the vicinity of the four gap nodes. Electrical
conductivities of a single Cufplane. To obtain 3D conduc-  ¢yrent is proportional to the Fermi velocity= de, /ok, whereas
tivities, they must be multiplied by the number of CUO thermal/spin current is proportional to the group velocity

planes per unit length stacked along thexis. = 9E,/dk. The ellipses drawn at each node den@tea very exag-
The “law” of Wiedemann and Franz suggests that thegerated scalethe regions ok space within which impurity-induced
transport coefficients should be related such that quasiparticles are generated in the universal lifiNbte that in the
small impurity density regime with which we are concernég, (
K w? k% K w? k% oS & <Ay), these nodal regions are pointlike on the scale of the Bril-
oT 3 o7 32 o & 2 louinzone]

HOWGVGr, examination of the eXpreSSionS above y|e|ds three The physica| Origin of the first two corrections lies with

sources of Wiedemann-Franz violation: current operatofhe velocity dependence of the current operators. Although
definition CorreCtiOI’]S, vertex Corrections, and Fermi'liquidsomewhat obscured in the Nambu formansm, when our cur-
corrections. First of all, since the electrical current has only gent operatorg3.7),(4.17),(5.10 are rewritten in the quasi-
Fermi term while the thermal and spin currents include bottparticle basis, it is clear that the electrical current is propor-
a Fermi term and a gap ternx, is proportional to the ratio  tional to the Fermi velocity;= de,/dk, while the thermal
vi/vy while ko and o involve an extrav, /v term. These  and spin currents are proportional to the group velogity
extra terms arise when the thermal and spin current operatoes ), /gk. This difference arises because quasiparticles
are corrected to account for the anisotropy of the order pacarry definite energy and spin but do not carry definite
rameter. However, sinag; /v,~ 14 for YBCO,* this type of  charge. Since energy and spin are well defined in the quasi-
violation is of more qualitative than quantitative importance.particle basis, thermal and spin currents are proportional to
Secondly, unless impurity scattering is completely isotropicthe group velocity, the derivative of the quasiparticle disper-
in k space, the electrical conductivity contains a scatteringsijon. By contrast, the electron and hole parts of each quasi-
dependent vertex correctighy,c, which cannot be neglected particle have opposite charge and opposite velocity. There-
even to zeroth order in impurity density. However, analo-fore each part carries the same electrical current,
gous corrections to the thermal and spin conductivities vanproportional to the normal state Fermi velocity. This point
ish in the small impurity density limit. Thus we expect a was emphasized in Ref. 8. For dawave superconductor
scattering-dependent enhancementpfthat is absent iy where bothe, and A, are momentum dependent, the group
andoy. Finally, due to underlying Fermi-liquid interactions, velocity will have both as; component and & component
the electrical and spin conductivities gain spin-symmetriowhile the Fermi velocity can only haveva componen{see
and spin-antisymmetric correction factors, respectively. CorfFig. 2). This is the source of the extra gap terms in the
responding corrections to the thermal current cancel due tthermal and spin conductivitiegSimilar conclusions were
particle-hole symmetry. Hence, while Fermi-liquid interac- drawn by Moreno and Colema&n)

tions modify oy and o, the value ofk, is unaffected. The role of vertex corrections can be understood by con-
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sidering the graphical depictions of the Fermi velocity and
group velocity presented in Fig. 2. Throughout the area of a
node, the magnitude and direction of the Fermi velocity is
approximately constant. Thus, the electrical current can relax
much more effectively via scattering from node to node than

it can via scattering within a single node. It is therefore nec- FIG. 3. Bare polarization bubble.
essary to distinguish, mathematically, between the effects of
intranode scattering and internode scattering. This is accom- ACKNOWLEDGMENTS

plished through the inclusion of vertex corrections. In con-
trast, the group velocity varies significantly over the area of

node. Therefore, the thermal and spin currents can rela
through either intranode scattering or scattering betwee

nodes. As a result, the different types of scattering pla A : -
nearly the same role and need not be distinguished. Hencgulatlons. This material is based upon work supported under

; ; ~a'National Science Foundation Graduate Fellowship as well
Xg;tg;(;;\)/:{;ChOﬂS do not contribute to the thermal and spuis NSE Grant No. DMR-9813764.

Fermi-liquid corrections result from the redistribution of
equilibrium electrons in response to the presence of interac- ~ APPENDIX A: BARE BUBBLE CALCULATION
tions between excited electrons. In essence, this redistribu- |, the absence of vertex corrections, our calculations of

tion gives rise to a drag current that can renormalize theyacprical, thermal, and spin conductivity all require the
quasiparticle current and therefore the conductivity. The,, 4 ation ofoare bubblediagrams depicting various types

chargcter of the renormalization depends on th? nature of t_k@f polarization functions. The details of these different cal-
coupling parameter for a particular current. Since the Spin jations are all quite similar. They differ only in the cou-

current gets opposite contributions from the two species Of)ling parameter, velocity, and Pauli matrix contributed by

spin, the spin conductivity gets a spin-antisymmetric renorgach hare vertex. Rather than repeating the same basic cal-

malization. However, charge is spin independent so the elegsation several times, it is convenient to calculate a gener-
trical conductivity gets a spin-symmetric renormalization. 5jized polarization function here which can be referred to for

Furthermore, since energy changes sign across the Fermi sWsop, of the specific cases of interest. This generalized func-
face, particle-hole symmetry dictates that the effects of

Fermi-liquid interactions on the thermal current must canceltion IT9'%, will depend on a coupling parameigra velocity

The authors gratefully acknowledge discussions with A. J.
erlinsky, C. Kallin, D. Bonn, and L. Taillefer and helpful
omments from M. R. Norman and J. A. Sauls. A.C.D.
anks A. Abanov and M. Oktel for valuable help with cal-

Thus, thel‘mal Con.dUCtIVIty is not renormalized. ) v, and a Nambu space Pauli mat’ﬁ%, where
The velocity ratiov /v, is a fundamental material param-

eter which measures the anisotropy of the quasiparticle exci- g={e,s(=1/2),0+Q/2},

tation spectrum. Therefore, an important objective in mea-

suring quantities such as the normal fluid density and the vi={vs,Vy},

universal limit transport coefficients, which all depend on

v¢lv,, is to obtain the value of this ratio. However, due to Fo={10(=1) 71,75 73}

vertex corrections and Fermi-liquid corrections, the electrical

conductivity, spin conductivity, and normal fluid density de- Evaluating the diagram in Fig. 3 we find that

pend on parametefsuch as interaction energy and/or scat- 1

tering potentigl with values that are not well known. Only $7gla/iy— — 2 B i N Pl COVS

the thermal conductivity involves neither vertex corrections IIZ(0) B % gviv, Tr[Gg(K,iw) 7,G(K,iw+iQ)7,],
nor Fermi-liquid corrections. Thug, is the only truly “uni- (A1)
versal” coefficient and is the quantity from which the value ~ .

of v /v, can be most directly obtained. On the other handWhereg(k,iw) is the 2<2 Nambu matrix form of the Mat-

the linearT coefficient of the superfluid densiti3.44 is  Subara Green's function. For @wave superconductor at
temperatures much less than the gap maximum, quasiparti-

cles are generated primarily at the four gap node$hus,
linearizing the quasiparticle spectrum about the nodes and

HFfining a coordinate systenky(,k,) at each node withk,

proportional thﬁfvf/vz. Hence, these two measurements
can be combined to determine the Fermi liquid factgy .

In fact, while this paper was in preparation, Chigtoal 26
applied these conclusions to the results of a series of rece _ _
experiments performed on optimally doped,8,CaCOq (ky) perpendicular(paralle) to the F_erm| surface, we can
(BSCCO. By analyzing the residual linear term in their very replace our momentum sum by an integral over kispace
low temperature thermal conductivity measurements in term@réa surrounding each node. If we further define a scaled
of Eq. (6.10), they obtained a value for the velocity ratio, Momentum p;,p,) we can let
v¢/v,=19. This is roughly the same value obtained from the 4 5 4 5
ARPES measurements of Meset al® Going further, by >y f d°k 3 f d°p
combining this result with the linear coefficient of the su- ” _),-:1 (27.,)2_>j:1
perfluid density measured by Waldram and co-worKeaad .
making use of Eq(3.44), they extracted a value for the where p;=vk,=¢, and p,=v,k,=A,. Since vi=vk;
Fermi-liquid correctiomii=0.43. These results provide an andv,=u,k, at each of the four nodes, the sum over nodes
experimental verification of our analysis. yields

, A2
(277)2va2 ( )
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4

(D)= 9,27
121 V| V| —2U| Jl . (A3) (a)
This, in turn, allows the definition of a scalar polarization
function via
Mol Q)=T19%(0)T. (A4) ® fA = /\+ AC A\+
Defining a spectral representation #rwe can write
® il 2
- w 'A(p'wl) ©) H = + AN+ \\+
Q’(p,lw)=J ——dowy, (A5) ‘ e L
—x lw (.Ul
FIG. 4. (a) Polarization bubble with dressed vertér) Ladder
where series.(c) T-matrix series.
K(p,w)= — ié;/et(p,w) (AB) treatment of time-derivatives within the time-ordered corre-
a

lation function and should be ignored. Doing so, we proceed
just as before. Adding the contribution of the two summand

= 1 . . . y
and G, is the imaginary part of the retarded Green's func-j, a5 and continuing the external frequency to the real axis

tion. Plugging back into Eq(A1) we obtain

we find that
2v? 2
moleigy= 220 [ 4P dwlf do, (01402 (07) (0 Q12N (0;)
UfU2 (277-)2 et (1)1_(1)2+Q+|(S ’
~ ~ ~ ~ All
XTI A(p,wq) T, AP, w2)7,]S, (A7) (AL1)
where Plugging Eqs(A9) and(A11) back into Eq(A7), writing
the spectral function in terms of the retarded Green’s func-
1 1 1 tion via Eg.(A6), and using the identit
S==> g% P . (A8) 9.(A8) 9 Y
BH T ilwo—wiot+tiQ—w, L L
Evaluating the Matsubara sum in the standard3fmse pick s Px 1mox) (A12)

up a contribution from each of the poles of the summand.
Since the intermediate results differ depending on the fre take the imaginary part, we find that
guency dependence of the coupling parameter, it is best to
handle the frequency-independent coupling and frequency- 1 02 (d2p (=
dependent coupling cases separately. iM% (Q)=— ! f_p do

For g={e,s} (frequency-independent couplinghe sum ¢ w2 Uiva) 2T ) o
is straightforward. Adding the contribution of the two poles
and then continuingQ)—Q+ié we obtain the retarded
function

X@Ne(0+Q)—ne(w)]
XTGP, ®) 7, P, 0+ Q)7,]  (A13)

ZM, (A9)  for all three coupling parametegs-{e,s, v+ (2/2}. Neglect-
w1— 0t Q+i6 ing vertex corrections, this is the imaginary part of the gen-
where eralized retarded polarization function. The real part can be
obtained via Kramers-Kronig analysis. By specifying differ-
ent input parameters, E§A13) can be used to obtain the
(A10) electrical, thermal, and spin conductivity.

Set=S(iQ—0+id)=¢g

Ne(w)=
- efo+1

is the Fermi function. APPENDIX B: VERTEX CORRECTIONS

For g= w+Q/2 (frequency-dependent couplingve pro- ) o ) _
ceed in the same way but there are a few technicalities that Unless the scattering potential is completely isotropic, the
must be clarified. First of all, it should be understood thatPare bubble results of Appendix A can be improved upon by
within the Matsubara sum we really meap—iw-+iQ/2. mcludlng the contrlbutlpns of vertex corrections. In thl§ sec-
Only after the sum has been evaluated and all frequencidion the ladder correctionsdepicted in Fig. 4 will be in-
have been continued to the real axis should the stated form &fuded. Once again, our object is to obtain an expression for
the coupling parameter be taken literally. Secondly, note thad generalized polarization functiol 9'“ in which each of
with this frequency-dependegt the summand has two extra the vertices contribute a coupling parameggea velocityv,
powers of frequency. As a result, the sum appears to band a Nambu space Pauli matnigg. Evaluating the diagram
divergent. However, as discussed by Ambegaokar anth Fig. 4a and noting thaw,=v k; we find that the gener-
Griffin,*® this apparent divergence results from an improperalized polarization function takes the form
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JEN 1 . and note that the initial and final momenta of a scattering
Hg'“(iQ)ZE > > ghik event must always be approximately equal to kagpace
ok location of one of the four nodes. Thusjind |’ are node
XTHG(K, i 0)7,8(k,i 0+ Q) 7,1 %K,i0,i Q)] indices(1 to 4), the scattering potential takes the form

(B1)

which is equivalent to the bare bubble resi@il) with the

unit vectork, from the second bare vertex replaced by awhereV is a 4x4 matrix in node space. Due to the symme-
more general vertex functiob'®. Evaluating the diagram try of the nodesY consists of only three independent param-
series in Fig. ) we obtain an equation which can be solved eters:Vy for intranode scattering/, for adjacent-node scat-

Vige = Vjjr— (V)i (B9)

for the vertex function tering, anadV; for opposite-node scatteririgee Fig. 1 in Sec.
I):
T K =K Tt 0 D Tie(io+iQ)GK" io+iQ
rol () =Ri7a 1 2 Taelio G 0 +i0) ViV, VsV,
~ Pla,m\ P i T ; \% \ \4 v
X7 L (K)G(K" i 0) Tyl @), (B2) V2 (B10)

wheren; is the impurity density and (i ) is the impurity
scatteringl matrix defined by the diagram series in Figcy

Multiplying from the left by 7, we can define Hence Eq(B7) becomes

T'(k,iw,iQ)=k[T+A%(i0,iQ)], (B3)
- - - d’p -~ . \-
where Tjj(lw)=73(V)jjr + 73 f—zg(p,m))m(\_/z)”,
(2m)vv2
KA*=n>, 7, Tae(io+iQGK io+iQ)7, TR (B11)
k!/
T (k") GK" i 0) T (i ). (B4) Performing the node integration we see that the integral of

. _ . the Green'’s function about a node is a scalar in Nambu space
Acting on bOth sides of EqB3), using Eq.(B4) to replace  (proportional tdl). Sincers raised to an even power is equal
the left hand side bk A%, and noting that by the symmetry 57, the T matrix splits into ar; component and & compo-

of the scattering potential nent. Summing the resulting geometric series we find that
k—k{ > (k'-k B5 Fo_TaT o Th T

Ek I |; ( ) ( ) TJJI—T”,T3+T”,L

we find that
a _( v
Roe=nS (R -K7TFeioriOBkiotriQ)T, D= Fle)?v?
K
X[T+A*1G(k,i 0) Ty (i), (B6) ) ( —F'(iw)V? @12

wherek’ is the final momentum of a scattering event. i’ 1-F'(iw)?V? ’

An expression for thd matrix in terms of the scattering !
potentialV,,, and the Matsubara self-enery(i w) (itself a where
function of the scattering potentjakcan be obtained by

evaluating the diagram series in Figcy

) Flio—2(iw)]
B B s B F'(Iw)=—4 , (B13)
Tkkr(i w) = T3kar + kE 7'3Q(k1 ,i w) T3ka1Vk1kr + ... TUU2
1
(B7) 2
As discussed in Appendix A, at temperatures low compared F(X)EX|”< 1- —2) (B14)
to the gap maximum, quasiparticles are only generated in the X
small regions ofk-space surrounding each of the four gap ) ]
nodes. Hence we can let and py is the large scaled momentum cutoff defined
in Sec. Il
4 d2p Taking the Nambu space trace of EB6), cyclically per-
‘ J—z (B8) muting within the trace, and replacing the momentum sum
ko i=1J (272 with a scaled integral about the nodes via E8g) yields
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TrA®=Tr

f P ipiw)

n | ———a(p,i

@mvw,

4

X2 (K kDT (i) 7,1 ([0+i1Q)
=1

XGpiw+iQ) T, (T+A|. (B15)

Defining nodej’ to be node 1 we can write fgr=1,2,3,4

o={[=3.13]],

kl={1,0-1,0},

Tjjr=Tj,jE{Tl,T2 ,'~|'3 ,Tz},

and therefore

4
Z (K KT ()7, 1) (l0+iQ)
=Th(io) 7, Th(io+HiQ)[[n-1—|n-s]
4 %1%
- [va(i0,iQ)+ ya(iw,iQ)73]7,,
I
(B16)
where
n a a
VA= pp— —— [, To(io)Th(iw+i)
+T(0)TR(iw+i)[[ho1—|n-3], (B17)
o n a
Vo= pp—— [ﬂaT (o) TH(lw+iQ)
+Ta(i0)Tp(io+i)[[h-1—|n-s], (B19)
and we define
B +1 for «=0,3,
Ta=1 _1 for a=1,2. (B19
Plugging Eq.(B16) into Eq. (B15) and defining
— dp. . o~
I"(|w,|Q)=J7g(p,|w)rag(p,|w+|ﬂ)ra
(B20)
and
- d’p. - -
|§(Iw,|Q)=f7Q(p,lw)737'ag(p,lw+lﬂ)ra
(B21)
we find that

TrAC=Tr[ YT *(T+A0 ]+ Tr[y& 2T+ A%)].

(B22)
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Similarly, multiplying Eq.(B6) by 75 and repeating our steps
we find that
Tr[7A]=Tr[yal T+ AN+ Tr[ya 5T+ A9)].
(B23)

At this point it is useful to carry out the momentum inte-
grals in Egs.(B20),(B21) to obtain an explicit form forl

and14. Recalling the form of the Matsubara Green’s func-
tion from Sec. Il, noting thap,;=¢, andp,=A,, and de-
fining

fi=io—2(iw), (B24a
fo=io+iQ—2(iw+iQ), (B24b)
we can write
- f, 14Dy Tat Pt
G(piiw)= -, (825
2_

Further, using the definition of, from Eq.(B19) and simi-
larly defining

+1 for a=0,1,

-1 for a=2,3, (B26)

r—
Na=

we find that

fol+ 1,P173+ 7,P271

T.0(piw+iQ)7,= 5
f2_

(B27)

Thus, plugging Eqs(B25) and (B27) into Eq.(B20), noting
thatp,=p cosf andp,=p sin 6, and performing the angular
integral we find that

f1f,+a,p?

~ ~ ~ [ Po
|a=|aﬂ=1f 2p
o (fi—p?)(f3—p?)

dp, (B29

where

+1 for a=0,
0 for a=1,3,
-1 for a=2.

Nat Mo
2

a,= (B29)

Factoring the integrand and performing théntegral yields

(fi+a,fo)F(fy)—(fot+a,f )F(fl)
fo—f2

[*(iw,iQ))=
(B30

whereF (x) is defined via Eq(B14). Similarly, acting on Eq.
(B21) yields that

~ o~ Po
|§:Tsfo 2p

f,f,+a)p?

dp, (B31)

where
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+1 for a=3,
for «=0,2,

for a=1.

a' = =<0
-1

(B32)

It is easy to see tha,=a,; (where the index addition is
defined modulo # Hence

T(iw,iQ)=1], (B339
T4(iw,iQ)=12"17;,
wherel “ is given by Eq.(B30).
Now that1® andT§ have been evaluated, Eq822) and
(B23) become a set of coupled equations forATt and
Trl7sA%]:

(B33b

TrA®=yal “(2+Tr A®) + ygl * 1 Tr[ 734 ],

(B343

Tr[T3A“] vg! 2+TrA“)+ ya|“+1Tr[T3A“]
(B34b)

Solving simultaneously yields
Tr[1+A%]
_ 2

1=yl {1+ (vl v Lysl (1= yR1 " H]}
(B35)

This is a very useful result since using Eq83), (B8),
(B20), and(B33) with Eq. (B1) yields that

4

E V(I)V(l)

Amviv, T2

2 g2 Tr[T+A?].
(B36)

Thus plugging Eq(B35) into Eq. (B36) and making use of
Eq. (A3) from Appendix A we find that

moei0)=

Tole=qyole, (B37)

where

Hgla(IQ)_

2 g% w,iQ), (B39

amv 02,8
|ll

1= yal 1+ (vl v Lyl * (1= yal **H ]}
(B39)

and we note that®, 1“*1, y%, andyg are all functions of w
andi().

Jo=

Provided the input self-energy is of a proper functional
form, J%(z,iQ)) will be analytic throughout the complex

plane except for two branch cuts at /0 and Imz=
— Q. Thus, evaluating the Matsubara stfmve pick up a

contribution from each of the branch cuts of the summand.

Consequently, it is useful to consider the formJd{z,i(2)
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(B39),(B17)—(B21) it is clear that the internal and external
frequenciesjw andi(}, enter only through functional cou-
plets of the form

P(i0,iQ)=A(0)B(io+iQ). (B40)

Furthermore, due to the defined analytic structure of Matsu-
bara Green'’s functions, the functions composing these cou-
plets always have a Matsubara-like analytic structure and
satisfy

Allo—o+i8)=A(w), (B41)

Allw—o—i8)=Al(w). (B42)

Consider the form of such a couplet above and below the
branch cuts of our summand. Defining

Pi(w,iQ)=P(w+i6,iQ), (B433
Py(w,iQ)=P(0—i5,iQ), (B43b)
P3(w,iQ)=P(w—iQ+i45,iQ), (B43¢
Pi(w,iQ)=P(w—i1Q—i6,iQ), (B43d

and continuing Q—Q +i6 we see that
P3(0,Q)=Psy(w0—Q,Q), (B443
Py(0,Q)=P(0—Q,Q). (B44b)

SinceJ® is composed of such couplets, if we similarly define

I ,i0)=Iw+i8iQ), (B453
I (0,i)=J(w—i6,iQ), (B45b)
I(0,i0)=Iw—i0+i8,iQ), (B450
I, 0)=30—i10—i8i0) (B450)

it follows that
J3(0,0)=33(0=0,0), (B46a
I(0,0)=I* (w—Q,Q). (B46b)

These relations will be very helpful in what follows. Now we
can proceed with the Matsubara sum. As in Appendix A, it is
best to treat the frequency-independent coupling and
frequency-dependent coupling cases separately.

For g={e,s} (frequency-independent couplinghe sum
is straightforward. Adding the contributions of the two
branch cuts and using the definitions in EB45) yields

Hg'a(um—|— —f dw ne(w)

X[IH(@,i0)— I (w,iQ)
+3%(w,i0) - I4(0,iQ)],  (B47)

whereng(w) is the Fermi function.

above and below each of the branch cuts. Upon examination For g=w+Q/2 (frequency-dependent couplingnoting

of the frequency dependence of

this function viathe technical issues discussed in the analogous stage of the
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bare bubble calculatiosee Appendix A we can proceed as relations in Eq(B46), and shiftingw— w+ Q in the last two
above. Adding the contributions of the two branch cuts anderms, we obtain the retarded polarization function
using Eq.(B45) we find that

2
2 1 | )

1 * @
HQIa(IQ)_Iz_WZ% dwn,:(w) H?elt (Q)_Iﬁv_vz da)g2
y ) Q Z[Ja( 1) 35 i )] X{Ng(w)[I{(®,Q2)—I5(w,Q)]
—_— W — W
@ e 21 (0 + O[3 (0,0)— I%(w,0)]}
.Q 2
+ w—'?) [Jg(w,m)—Jz(w,iQ)]}. (B49

which is valid for all three coupling parameters. Taking the
imaginary part, noting that Re]=Rg z* ], and expanding
In either case, continuinig)— Q +i 8, making use of the J{ andJ3 yields

(B48)

1
|mn9'f(m—2 25 sz do g?[Ne(w+Q)—ne(w)]

I a

R{ a |« « o 201 a+1l a ja+l
1=yl 511+ (vgol va) [ veal 2 /(1= yasla D1}
s (B50)
1 Vil {1+ (v v ved § T (A= v §7H T

where
Ygl 471_0 vy [7]01 n(w)Ta(w+Q)
15(0,0)= ”“aafz)F”:Z ii 2radF() FTH T 0+ D[ n-1= o], (850
n;
(851 Vo= Gy L 7aTR @) T +Q)
» _ (T +a,fo)F(fy) —(fo+a, FHF(f) +T3(0)* TY 0+ Q)[|n=1—ln=s], (B5?)
15(w,Q fo—f¥2 ('852) ) ( v
Th(w)= m nl, (B58)
fl=w—2ret(w), (853a _Fr(w)vz
Tl >=(,—;2 (B59)
1-F'(0)2Vv?] |
fomwt Q-3 (0t+Q). (B53b) "
Flo—2 e
(@ =—[°;va‘(2w)], (B60)

andF(x) is defined in Eq(B14). The above equations define

o a

Ya1= 4m, vy Zro o[ aTa(@) To(e+Q) the imaginary part of the generalized retarded polarization

function including ladder corrections to the vertex. By speci-
+Tﬁ(w)Tn(w+Q)][|n:1—|n:3], (B54)  fying different input parameters we can use it to obtain the
electrical, thermal, and spin conductivity.
APPENDIX C: NUMERICAL ANALYSIS OF UNIVERSAL
LIMIT VERTEX CORRECTIONS
Yae= 71 [ 7.Th(@)* TH(w+Q)

47Tv U2 In Secs. lll C, IV C, and V C, the vertex correction factors
for the universal limit electrical and thermal/spin conductivi-

+T(0)* T+ Q) [|a=1—|n=sl,  (B55 ties were found to be
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1+ 20 Y0 — ¥+ ¥ (1~ ¥ ) 1In (po/To)[In (po/T'g) — 1]

Bvc= , (Cy
[1- 299 I(po/To) {120 ¥iQ— ¥ 1(1— ¥ I[In(po/T o) — 11}
s 1/2 1/2 2
e T 0@t (YY) (482 n(pe/To)— 21— 722 In(po/To)—211)

where they’s and their constituent functions are given in to the other. In the end, these manipulations yield a new set
Eqgs.(3.14—(3.17). Here we shall numerically compute both of four dimensionless input parametésd, Ry, R} .
factors as a function of impurity density and scattering po- The electrical and thermal/spin vertex corrections ob-
tential. To facilitate the computation, it is convenient to tained for a typical set of input parameters, via the procedure
make all quantities dimensionless by expressing energies idescribed above, are plotted in Fig. 5. Here we have assumed
units of py and lengths in units of & This choice of units that V(k) falls off slowly with increasingk (R,=0.9, R3
sets the frequently encountered constamty dv,, equalto 1.  =0.8) and have plotted the vertex corrections versus impu-
For a particular set of input parameters, the computation isity fraction (z=0.01%—1%) for seven scattering strengths
done in two steps. First, solve self-consistently for the zerofrom Born (d=0.001) to unitary §=0.999). Note that the
frequency scattering ratg, via electrical correctionByc—1, can be quite significant while
the thermal/spin correctione\T,é—l, is much smaller and
vanishes ag—0. The difference between the two cases is
el @) =N Thy(0), (C3)  seen most clearly in Fig. 6 where, for=0.001,0.5,0.999, we
have replotted the electrical and thermal/spin correction fac-

which (in the universal limit with our choice of unitge- tors on the same scale. On the scalggé— 1, it is difficult

duces to to distinguishgl$—1 from thex axis. Thus, we see that for
1 V2 all scattering strengths, the thermal/spin vertex correction is
2n: In— - =1. (C4)  negligible compared to the electrical vertex correction.
Fol1+[20In (1) 17V 11 Additional insight is gained through consideration of the

intermediate stages of the calculation which reveal that
Then givenl'y, plug into Egs.(C1) and (C2) to obtain the

vertex corrections. 12
The result will depend on the set of four input parameters (a)
which determine the impurity density and scattering potential —_ 10 A\
{n;,V1,V,,V3}. In our units,n;=4z wherez is the substitu- i gf S
tional fraction of impurities. Furthermore, it is convenient to >
parametrize the scattering potential via ; 6
(8]
I_(r ) V, Vs B 4f:
Vi=Vgadan 5d|, Ry=7, Rz=g7, (CH i} :
2 Vi V, of
whereV,eiS @ dimensionless constant atdanges from 0
to 1. Hence, the scattering anisotropy is givenRzyand R, 0
while the scattering strength is given dyNote that while it ~0.15
is tempting to think of @/2)d as some sort of scattering T
phase shift, to do so would be stretching an analogy beyond =9
its realm of usefulness. The above is merely a helpful param- =g 01
etrization, the aim of which is to allow us to go smoothly £
from the Born limit to the unitary limit asl varies from 0 to %
1. For our purposes, these limits are determined by the de- € 0.05
nominator in Eq.(C4): §
1 0 S e d=0:001" """
(Zl“oln—) V;<1—Born limit, 0 025 05 075 1
Ty Impurity Fraction (%)
1 FIG. 5. Numerically calculateda) electrical and(b) thermal/
. L spin vertex corrections plotted as a function of impurity fraction
(ZFO Inr_o Vi>1— unitary limit. (§=0.01%—>1%) for sc:ttering strengths parametrised )(,Jﬁa)m

_ bottom to top d={0.001Born), 0.1, 0.3, 0.5, 0.7, 0.9, 0.99@ni-
Thus, for a particular range af we shall seW.4ct0 a value  tary)l. In all cases we have s&t,,=20 and assumed that(k)
that allows us to evenly sample the transition from one limitfalls off slowly with |k| (R,=0.9, R3=0.8).
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0.4 layers of Fermi-liquid effects(1) Mass renormalization: By
(a) d=0.001 virtue of our acknowledgment that “electrons” are really
0.3 Landau quasiparticles, all masses should be viewed as effec-

tive massesn*. (2) Current renormalization: Due to Fermi-
liquid interactions, the presence of a current yields an addi-
tional drag current resulting in an overall current

o°
i

d=0.999 model, (2) yields a nontrivial effect which shall be consid-
ered below, and3) can be neglected in tiE—0 limit with
which we are concerned. This last statement follows because
at low T, few quasiparticles are generated, response functions
(such as the normal fluid density or conductiyigre small,
and the higher order correction terms in EQ1) are negli-
gible. Thus, the dominant corrections to transport coeffi-
0 025 05 075 1 cients due to Fermi-liquid interactions enter simply via
Impurity Fraction (%) renormalization of the various current density operators. To
FIG. 6. Direct comparison of electricaB(c— 1) and thermal/ determine the nature of this current renormalization, we pro-

1
spin (81— 1) vertex corrections fofa) d=0.001,(b) d=0.5, and  C€€d as follows! o _ _
(c) d=0.999. Note that in all cases, the thermal/spin correction is [N the absence of Fermi-liquid interactions, a generic

2

)

2 0.1

8 ' renormalization(3) Response function modification: Fermi-
5 0 liquid interactions induce an effective “molecular field”
S (b) d=0.5 which couples to the current-producing perturbation and
i 4 modifies the response functidty(T) via

ol

]

@ . Ko(T)

T — Electrical -0

E 2 - = Thermal/Spin Ko(T)—=K(T) 1+ NKo(T)" (D)

E where\ is a constant which depends on the interactfoim

e O——smmmem—moms—smes——s the case at handl) has been built into the parameters of our
K|

£

9

k]

L

—
o
—~—
[O
g

negligible on the scale of of the electrical correction. (bare current density operator takes the form
© _© O 1 jo:; OkaVk Nk s (D2)
7A1:7A2a7315@(— : (C6) . o . .
In(po/T'o) where v, is a velocity, gy, is a coupling parametefi.e.,
charge, spin, or energyand
In the Born limit, 1/Infy/T'y)~2z, which can truly be ne- ge. sp By
glected for the small impurity fractions of interest. In the 0Ny =Ny~ Nol( €k, Ay) (D3)

unitary limit, 1/In(py/T"g)~21/In(1/z), which vanishes much
more slowly but is still small compared to terms of order
unity. Thus, since we can treat thés as small quantities,
the (mathematical difference between the electrical and
thermal/spin cases is due to the manner in which y&
enter Egs(C1) and (C2). The y's enter By within order
unity combinations of the formy In(py/I'y) [and for some
parameter values evemn?(py/T')] which cannot be ne- ] ) i . ,
glected. In contrast, the’s enter8l:2 on their own(that is, electrons interact via the Landau interaction enefiffy . In

in direct competition with terms of order unjtyand can the presence of this interaction, the electron dispersion must
therefore be neglected for small Hence we say that elec- be modified(or dressefito account for the additional energy
trical vertex corrections contribute even to zeroth order in thecost of interacting with other excited electrons:

impurity density while thermal/spin vertex corrections do _ ,

not. €= Ek+k,z/ fslf’ 5nk/a/ . (D4)

is the difference between the true electron distribution in the
presence of the current-inducing perturbatioy, and the
(bare equilibrium distributionng(ey,A,). (The bare desig-
nations refer to our neglect of Fermi-liquid interactions aside
from the extent to which they are included in the velocity via
mass renormalization.

Once Fermi-liquid interactions are turned on, excited

(Note that in this context, the tilde denotes a dressed quan-
tity, not a Nambu matriy. It is important to realize that the

In addition to the effects of vertex corrections, transportdispersion ofevery electron (not just the excited ongds
coefficients may be further modified due to underlyingdressed as long as any electrons are excited. Although only
Fermi-liquid interactions between Landau quasiparti¢fes  the excited electrons interact, the dispersion measures the
ferred to hereafter as “electrons” to avoid any confusionenergy required to excite an electron and must therefore ac-
with the Bogoliubov quasiparticle excitations of the super-count for the interactions an electrovould experience if it
conductoy. A detailed theory of the superfluid Fermi liquid were excited. Also note that although, should also be
has been developed in the literatdr@:2®=*°In particular, a modified due to Fermi-liquid interactions, we expect this ef-
widely applicable phenomenological approach has been ddect to be less significant and shall therefore assume for the
vised by Leggetf® Within this approach, we consider three sake of simplicity that the gap is unaffected. Once the dis-

APPENDIX D: FERMI-LIQUID CORRECTIONS
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persion is dressed, we can Taylor expand in the changg in In the presence of impurities, the equilibrium quasiparticle
to obtain a dressed equilibrium distribution function distribution is given by the convolution of the quasiparticle
_ ang , spectral function(a Lorentzian of widthl’, aboutE,) and
No(€x,A) =nNo( €, Ay)+ e > frw ONgrer. (D5)  the Fermi functionng . Multiplying this by the probability
ko'

Thus. the d d t densit tor takes the f the quasiparticle is an electron minus the probability it is a
us, the dressed current density operaltor takes the 1ofM ole w2—-v2), we obtain the equilibrium distribution of

- ~ lectrons that form the quasiparticles. In th&l’ limit, its
= Vi 0N, D6 electrons that | 0 '
: % IkaVic OMice (D) derivative is given by
where

~ (9”0 ’ [?ng Jd € [~ Fo/’ﬂ

5nka: 5nka_ a— 2 faa, 5nk/a/ (D?) —_— —f w—N w)

67Ek K'a' kk &Ek (?Gk Ek — (w—Ek)2+F(2) F(

is the difference between the true electron distribution and 2 T A2 .
the equilibrium distribution in the presence of Fermi-liquid __fk 1o/m 4k arctaré _0)_ (D10)
interactions. EZ EZ+T% wE} Ex

In a superconductor, there are two types of electrons:
those that compose the condensate of ground state pairs affhking use of these expressions and evaluating the dressed
those that form the Bogoliubov quasiparticles. Hence therent density operator
equilibrium distribution function has both a condensate term

and a quasiparticle term c

!
aa
7e, > o SN

k' a'

(D8) i= % IkaVk

The equilibrium distribution of electrons in the condensate is
just given by the coherence factmi so its derivative is

&ng)

OMNyy— -—
ka ( (96k

ne=ng+ng.

(D11)

S a1 € A2 for the appropriate coupling parameters and velocities, the
9 5( 1_E_) =-—. (D9) Fermi-liquid renormalizations of the electrical, thermal, and
de Jeg k 2E; spin currents can be computed.
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