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We provide two analytic expressions particularly useful for the evaluation of the density of states of
multichannel interacting structures described by effective energy-dependent Hamiltonians. We show that the
knowledge of the off-diagonal matrix elements of a properly defined Green’s function, between the terminal
sites of the system, is the main ingredient to obtain the total density of states. We have used our expressions
to calculate the densities of states of ladder chains where each site of the chains may be connected to an
external system. A couple of significant examples clarify the feasibility of these expressions.

I. INTRODUCTION The proof of expression2) requires that def;;,;
#0 Vi and that bott7; ;. ; and the eigenvalues; of H are
The study of the electronic properties of multichannelindependent of energy.Eften we are faced with situations
quantum wires is very often performed by describify where the quantities appearing in expressian and thus
these systems in terms of interacting chains, of length, also the eigenvalues; do depend on energyrhis may hap-
whose tight-binding Hamiltonian matrix can be written as pen, for instance, when the system that we are considering
(system A is part of a larger systertsystem B with which

& Tip it interacts, and by means of standard decimation-
Ty & Tra renormalization procedut2! we resort to describe system
' _ ' A by an effective energy-dependent Hamiltoniidf;(E).
_ 32 The usual definition of the total density of states projected on
H= o @ system A is
7T\l—l,N 1
Tun-1 &N Naa=——1Im TrGaa(E), (©)

where&; and7; ;. , aremxm matrices. In a previous pager WhereGua(E)=1[E—HZf{(E)]. In this paper we show that
we have provided an analytic expression for the evaluatio@lso in the case where the system Hamiltonian is energy
of the density of states of a multichannel system. Generalizdependent, we can provide an analytic expression for the
ing a result by Kirkman and Pendfywe have shown that for total density of states similar to E(); eventually we shall
the system described by the matrix Hamiltoniahthe total ~ evaluateN,A(E), without performing the trace dBaa(E),
density of statedN(E) can be calculated by means of the considering only the off-diagonal elements of the Green’s
following expression: function between the terminal sites of the chains. This can be
done as follows.

1 d Let us define the Green'’s function
N(E)=—Im|—=[IndetG;n(E)]], (2
T JE ’
1
whereG, \(E) is the resolvent of the Hamiltonigt), evalu- G(6B)= ————x—» (4)
ated only between the first and the last sites ofrthehains. E+6—Her(E)
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FIG. 2. Integrateddotted ling and total(continuous ling den-
0 N sity of states of the effective system of Figb), with N=100,

M =10, E,=0, andt=—1. Energies are given in units .

FIG. 1. (a) Two interacting chains oN atoms with side chains

with random length between O arM atoms; each atom has site || A NUMERICAL EXAMPLE ON THE USE OF EQ. (7)
energyE, and hopping interactioh (b) Equivalent effective sys-
tem. In order to illustrate an application of E(/) we consider

the system depicted in Fig(d. It consists in two interacting
whered is an auxiliary continuous, energy-independent vari-chains with a random distribution of side chains. This struc-
able and the identity operator multiplying+ & is under-  ture can be useful to treat systems with topological disorder

stood. We have such as fractals, percolation clusters, and branched
polymers’® The two chains havél atoms, each one interact-
lim G(8,E)=Gpa(E). (5)  ing with a side chain of random lengthwith 0<m=M; the
9-0 site energieE, and the hopping nearest-neighbor interac-

tionst are assumed constant.

By the renormalization procedure one can decimate the
side chains and reduce the system of Fig) fo the effective
system of Fig. tb) where the energies of the sites, which
lim —In defGin(S,E)] were in correspondence with a side chainnofatoms, are

An expression for TGAA(E) is obtained fromgG, y(4,E)
exploiting the relations indicated below:

5000 given byEy+3 (E), with
N—-1
H det7; ;. 1(E) S (E)= v with  24(E)=0. (8)
—im d m [E-Eo—2m_1(E)]

—In
ED)
00 de{E+ 5~ He”(E)] In a single stroke the density of states of the Hamiltonian of

N-1 Fig. 1(b) can be evaluated by means of the relati@gh To
H det7; 1(E) obtain deftG, \(8,E)] we have made use of the same recur-
— lim J I sion procedure illustrated in Ref. 7 to obtain[def(E)].
50 g8 ™N In Fig. 2 it is reported the average over 100 configurations
H [E+6—N(E)] of the total density of states of the system of Fi¢p)Iwith
=1 N=100, M=10, E,=0, andt=—1. The peak aE=0 is
1 due to the fact that the effective energy,, for odd m,

diverges; analogously the peaks=*+1 are due to the two

poles of3 ,, for m=2. Generalizing ,, hasm poles where

the density of states should increase but peaks corresponding

—TrGaa(E). (6) to higher values ofn are smeared out because their weight
decreases witin. The peaks aE= +2 are due to the nature
itself of the two interacting chains, and their separation de-

As in the relation(2) G;n(6,E) indicates the Green’s- pends on the interchain hoppiAg.

function matrix elements between sites at the termirals

andN) of the system. Thus from the relatig® we have

=lim In TN
5o 00 HE+5 M(E)

=lim — e . =1
(pO.E E+6— )\(E)

Ill. THE CASE det (Z;4+1)=0

Let us now consider the case where the matrix elements
of the Hamiltonian(1) can depend on energy, with the fur-
ther condition that some or all the values of d&gt(.,) [and
which generalizes expressiof2) in the case of energy- thus also detf, )] vanish.
dependent tridiagonal matricés). In this case Eq(7) is useless for the evaluation b{E)

1
Naa(E)=—1m —In defGin(8.E)]| (7
5=0
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and a different approach has to be followed; we resort to the

definition (4), @ Iél&&&>l§§&&515

1 A A A A A A A A A A A A
N(E)Z—“;[HHTTE:TEZTﬂﬁ ° M
=0
I i Indet(E+ 6—H 9
= — N — ®
—Im| —<Indet( oo
0
and look for a recursive method to calculate the determinan(® \ \ \ \ \I\ \
of (E4+ 6—H). One can write 1 T 1 i
A1 By I I I
B2,1 A2 B2,3 l l l
Byy . . 2 g
E+d6—H= . . .
[0} O, L ) (o) (o)
pew| @ DINNNNNNND,
BN,N—l AN 0 N
=Ky, (10) FIG. 3. (a) Chain of vertical dimers. Site energies are all equal

to Eop, interactions internal to the dimers and between adjacent
whereAj=E+6—& andB; j.1=—7+1; & and7; ., are  dimers are equal tb (b) As system(a), decorated by side chains of
defined in expressiofil). One can partition the matriky random length; each atom has site endfgythe hopping interac-
into four blocks tion between adjacent sitestig (c) Effective system, with energy
dependent site energies, equivalent to the systsm

< _( Kn-1 Byoan 1)
N EN'N,l AN ! detKN:de(M KN)
whereKy_; is the minor of the matriX, made with the =detKy_;-defAy—Byn-1(Kn-1) " "Bn-1n]-
first m-(N—1) columns and rows an"E'N_lyN is them- (N (15

—1)Xm matrix made as follows: . ) .
We can iterate the procedure to obtain Kigt ; as function

DN of detKy_, and so on; finally we obtain
®2,N N
~ : - _B -1%
By 1am ; (12 detKN—detA1~Jl;[2 defA—B; ;_1(Kj_1) Bj_y],
DN-2N (16)
BNfl,N
1000 . — ;
~ I N
with &; ; the nullmxm matrix. By v is the transpose of 500 // /
Bn-1n- i
Let us consider the following matrix: i
600 | A 1
In-1 %) § DA
M= “Bynoa(Knop) ! I (13 400 | 1
By construction deM=1 so we have that déty 200 ¢ ]
=det(M -Ky). The matrixM - Ky is given by
0 : -
In_1 % Kot Buoin -4 1 2 3 4

Energy

M- KN: E K -1 1 .
- _ _ 1 By N A
-1 (K- N.N-1 N FIG. 4. Integrated and total density of states of the effective

_ system of Fig. &), with N=500, E,=0, andt=—1. The dotted
Kn-1 Bn-1n line corresponds tM =0 [undecorated lattice of Fig.(8], the
= o ~ TS (14) continuous line corresponds M =10 (decorated latticeaveraged
An—Bnn-1(Kn-1) " "Bnoan over 100 configurations. Energies are expressed in units.ofhe
dashed-dotted and dashed curves represent the integrated density of
Thus we have states for the systemg& and 3b), respectively.
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where K;_;) !s-0=Gj_1 is the Green's function of the through Eq.(9) by means of the recursive relati¢h6). The
effective (or rea) system built with the firstm-(j—1) results are reported in Fig. 4 for the bare lattiEég. 3(a)]
states. and for the renormalized decorated lattjEgg. 3(c)].

It is worthwhile to notice that expressidi6) is particu- In Fig. 4, the dotted line shows the density of states of the
larly convenient for block tridiagonal matrices but can besystem in Fig. 8a) (without side chains two bands are
used as well as for any kind of matriy; in fact, in the  present for energies-3.2<E<0 and 1.KE<2, and a
proof we have never used the special form of the matricesg face state” atE=1. The effect of the side chairisys-
’Bj,ld-; moreover, when we iterate the procedure we cartem 3b)] is to fill the forbidden gaps and to add a peak at
choose at each step a different partition of the matijxso  E=0 which is due, as in the case of Fig. 2, to the poles of
that the blocksA; can have different dimensions. For almost 3, at E=0 for oddm; the density of states for the system
one-dimensional systems, when the matries, ; have few ~ 3(b) is given in Fig. 4(continuous ling it has been obtained
nonvanishing elements, only few terms of the Green’s funcaveraging 100 configurations with side chains of random
tion G;_; have to be evaluated to obtain the determinant ofengthm (0=m=10). 3 _

Ky. As a final check we have verified that the integrated den-

To test the usefulness of EQLG) let us evaluate the elec- Sity of states exaCtIy sums to the total number of states; this
tronic density of states of the decorated one-dimensional syds shown in Fig. 4 for the systems of FiggaBand 3b), by
tem shown in Fig. 3 withouftFig. 3(@)] and with[Fig. 3(b)] the dashed-dotted and dashed curves, respectively.
random distribution of side chains of lengtim (O<m
<M). The bare system is composed by two sublatti¢es,
and B, without interactions within the sublattid® [see Fig. IV. CONCLUSIONS

3(@)]. This geometry has been used in the study of the local- o . .
ization of the electronic states in the presence of disorder in We have presented in this paper two analytic expressions

the site energies of the two sublatti€éand it has been which prove very convenient in the evaluation of total and

proposed also in the study of strongly correlated systéms. mte_grated densities of states of r_nult|_channel systems qle-
For simplicity we assign the same eneify to each site scribed by energy dgpendent Hamiltonians. Such a situation

and the same valueto the intersite interactions. Thus in the always appears, for instance, when we deal a part of a given

- : - ~ system and describe by the decimation-renormalization
[Eiter;xg(lgnrs géser;t:gggit\tleensg;tem of Figia the subma method the effect of all the remaining system on the chosen
| i+l

part, by appropriate self-energy corrections.

Eo t t 0) We have shown that even in this case we can obtain the

and T . ..= total density of states from the knowledge of few off-
t Ep ii+1 t O . . . ,
diagonal matrix element§,  of a suitably adapted Green’s
function, only between the terminal sites of the system. A
The determinants df; ; +; vanish and thus the density of few applications on representative model systems highlight

states of the system of Figs(a® and 3b) are obtained the shortcut provided by our expressions.
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