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We provide two analytic expressions particularly useful for the evaluation of the density of states of
multichannel interacting structures described by effective energy-dependent Hamiltonians. We show that the
knowledge of the off-diagonal matrix elements of a properly defined Green’s function, between the terminal
sites of the system, is the main ingredient to obtain the total density of states. We have used our expressions
to calculate the densities of states of ladder chains where each site of the chains may be connected to an
external system. A couple of significant examples clarify the feasibility of these expressions.
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I. INTRODUCTION

The study of the electronic properties of multichann
quantum wires is very often performed by describing1–6

these systems in terms ofm interacting chains, of lengthN,
whose tight-binding Hamiltonian matrix can be written as

H5S E1 T1,2

T2,1 E2 T2,3

T3,2 � �

� � �

� � TN21,N

TN,N21 EN

D , ~1!

whereEi andTi ,i 11 arem3m matrices. In a previous pape7

we have provided an analytic expression for the evalua
of the density of states of a multichannel system. Genera
ing a result by Kirkman and Pendry,8 we have shown that fo
the system described by the matrix Hamiltonian~1! the total
density of statesN(E) can be calculated by means of th
following expression:

N~E!5
1

p
Im S ]

]E
@ ln detG1,N~E!# D , ~2!

whereG1,N(E) is the resolvent of the Hamiltonian~1!, evalu-
ated only between the first and the last sites of them chains.
PRB 620163-1829/2000/62~19!/12565~4!/$15.00
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The proof of expression~2! requires that detTi ,i 11
Þ0 ; i and that bothTi ,i 11 and the eigenvaluesl i of H are
independent of energy E. Often we are faced with situation
where the quantities appearing in expression~1! and thus
also the eigenvaluesl i do depend on energy. This may hap-
pen, for instance, when the system that we are conside
~system A! is part of a larger system~system B! with which
it interacts, and by means of standard decimatio
renormalization procedure10,11 we resort to describe system
A by an effective energy-dependent HamiltonianHe f f

AA(E).
The usual definition of the total density of states projected
system A is

NAA52
1

p
Im Tr GAA~E!, ~3!

whereGAA(E)51/@E2He f f
AA(E)#. In this paper we show tha

also in the case where the system Hamiltonian is ene
dependent, we can provide an analytic expression for
total density of states similar to Eq.~2!; eventually we shall
evaluateNAA(E), without performing the trace ofGAA(E),
considering only the off-diagonal elements of the Gree
function between the terminal sites of the chains. This can
done as follows.

Let us define the Green’s function

G~d,E!5
1

E1d2He f f
AA~E!

, ~4!
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whered is an auxiliary continuous, energy-independent va
able and the identity operator multiplyingE1d is under-
stood. We have

lim
d→0

G~d,E!5GAA~E!. ~5!

An expression for TrGAA(E) is obtained fromG1,N(d,E)
exploiting the relations indicated below:

lim
d→0

]

]d
ln det@G1,N~d,E!#

5 lim
d→0

]

]d
ln

)
i 51

N21

detTi ,i 11~E!

det@E1d2He f f
AA~E!#

5 lim
d→0

]

]d
ln

)
i 51

N21

detTi ,i 11~E!

)
i 51

mN

@E1d2l i~E!#

5 lim
d→0

]

]d
ln )

i 51

mN
1

E1d2l i~E!

5 lim
d→0

(
i 51

mN
21

E1d2l i~E!
52Tr GAA~E!. ~6!

As in the relation ~2! G1,N(d,E) indicates the Green’s
function matrix elements between sites at the terminals~1
andN) of the system. Thus from the relation~3! we have

NAA~E!5
1

p
Im F ]

]d
ln det@G1,N~d,E!#G

d50

, ~7!

which generalizes expression~2! in the case of energy
dependent tridiagonal matrices~1!.

FIG. 1. ~a! Two interacting chains ofN atoms with side chains
with random length between 0 andM atoms; each atom has sit
energyE0 and hopping interactiont. ~b! Equivalent effective sys-
tem.
-

II. A NUMERICAL EXAMPLE ON THE USE OF EQ. „7…

In order to illustrate an application of Eq.~7! we consider
the system depicted in Fig. 1~a!. It consists in two interacting
chains with a random distribution of side chains. This stru
ture can be useful to treat systems with topological disor
such as fractals, percolation clusters, and branc
polymers.9 The two chains haveN atoms, each one interac
ing with a side chain of random lengthm with 0<m<M ; the
site energiesE0 and the hopping nearest-neighbor intera
tions t are assumed constant.

By the renormalization procedure one can decimate
side chains and reduce the system of Fig. 1~a! to the effective
system of Fig. 1~b! where the energies of the sites, whic
were in correspondence with a side chain ofm atoms, are
given byE01Sm(E), with

Sm~E!5
t2

@E2E02Sm21~E!#
with S0~E!50. ~8!

In a single stroke the density of states of the Hamiltonian
Fig. 1~b! can be evaluated by means of the relation~7!. To
obtain det@G1,N(d,E)# we have made use of the same rec
sion procedure illustrated in Ref. 7 to obtain det@G1,N(E)#.

In Fig. 2 it is reported the average over 100 configuratio
of the total density of states of the system of Fig. 1~b! with
N5100, M510, E050, and t521. The peak atE50 is
due to the fact that the effective energySm , for odd m,
diverges; analogously the peaksE561 are due to the two
poles ofSm for m52. Generalizing,Sm hasm poles where
the density of states should increase but peaks correspon
to higher values ofm are smeared out because their weig
decreases withm. The peaks atE562 are due to the nature
itself of the two interacting chains, and their separation
pends on the interchain hopping.7

III. THE CASE det „Ti ,i¿1…Ä0

Let us now consider the case where the matrix eleme
of the Hamiltonian~1! can depend on energy, with the fu
ther condition that some or all the values of det(Ti ,i 11) @and
thus also det(G1,N)# vanish.

In this case Eq.~7! is useless for the evaluation ofN(E)

FIG. 2. Integrated~dotted line! and total~continuous line! den-
sity of states of the effective system of Fig. 1~b!, with N5100,
M510, E050, andt521. Energies are given in units ofutu.
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and a different approach has to be followed; we resort to
definition ~4!,

N~E!52
1

p F Im Tr
1

E1d2HG
d50

[2
1

p
Im F ]

]d
ln det~E1d2H !G

d50

, ~9!

and look for a recursive method to calculate the determin
of (E1d2H). One can write

E1d2H5S A1 B1,2

B2,1 A2 B2,3

B3,2 � �

� � �

� � BN21,N

BN,N21 AN

D
5KN , ~10!

whereAi5E1d2Ei andBi ,i 1152Ti ,i 11 ; Ei andTi ,i 11 are
defined in expression~1!. One can partition the matrixKN
into four blocks

KN5S KN21 B̃N21,N

B̃N,N21 AN
D , ~11!

whereKN21 is the minor of the matrixKN made with the
first m•(N21) columns and rows andB̃N21,N is them•(N
21)3m matrix made as follows:

B̃N21,N5S B1,N

B2,N

A

BN22,N

BN21,N

D ~12!

with B i , j the null m3m matrix. B̃N,N21 is the transpose o
B̃N21,N .

Let us consider the following matrix:

M5S IN21 B

2B̃N,N21~KN21!21 I1 D . ~13!

By construction detM51 so we have that detKN
5det(M•KN). The matrixM•KN is given by

M•KN5S IN21 B

2B̃N,N21~KN21!21 I1 D •S KN21 B̃N21,N

B̃N,N21 AN D
5S KN21 B̃N21,N

B AN2B̃N,N21~KN21!21B̃N21,N
D . ~14!

Thus we have
e

nt

detKN5det~M•KN!

5detKN21•det@AN2B̃N,N21~KN21!21B̃N21,N#.

~15!

We can iterate the procedure to obtain detKN21 as function
of detKN22 and so on; finally we obtain

detKN5detA1•)
j 52

N

det@Aj2B̃j , j 21~K j 21!21B̃j 21,j #,

~16!

FIG. 3. ~a! Chain of vertical dimers. Site energies are all equ
to E0, interactions internal to the dimers and between adjac
dimers are equal tot. ~b! As system~a!, decorated by side chains o
random length; each atom has site energyE0, the hopping interac-
tion between adjacent sites ist0. ~c! Effective system, with energy
dependent site energies, equivalent to the system~b!.

FIG. 4. Integrated and total density of states of the effect
system of Fig. 3~b!, with N5500, E050, andt521. The dotted
line corresponds toM50 @undecorated lattice of Fig. 3~a!#, the
continuous line corresponds toM510 ~decorated lattice! averaged
over 100 configurations. Energies are expressed in units ofutu. The
dashed-dotted and dashed curves represent the integrated den
states for the systems 3~a! and 3~b!, respectively.
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where (K j 21)21ud505Gj 21 is the Green’s function of the
effective ~or real! system built with the firstm•( j 21)
states.

It is worthwhile to notice that expression~16! is particu-
larly convenient for block tridiagonal matrices but can
used as well as for any kind of matrixKN ; in fact, in the
proof we have never used the special form of the matri
B̃j 21,j ; moreover, when we iterate the procedure we c
choose at each step a different partition of the matrixK j so
that the blocksAj can have different dimensions. For almo
one-dimensional systems, when the matricesB̃j 21,j have few
nonvanishing elements, only few terms of the Green’s fu
tion Gj 21 have to be evaluated to obtain the determinant
KN .

To test the usefulness of Eq.~16! let us evaluate the elec
tronic density of states of the decorated one-dimensional
tem shown in Fig. 3 without@Fig. 3~a!# and with @Fig. 3~b!#
random distribution of side chains of lengthm (0<m
<M ). The bare system is composed by two sublatticesA
andB, without interactions within the sublatticeB @see Fig.
3~a!#. This geometry has been used in the study of the lo
ization of the electronic states in the presence of disorde
the site energies of the two sublattices12 and it has been
proposed also in the study of strongly correlated system13

For simplicity we assign the same energyE0 to each site
and the same valuet to the intersite interactions. Thus in th
matrix ~1! representing the system of Fig. 3~a!, the subma-
tricesEi andTi ,i 11 are given by

Ei5S E0 t

t E0D and Ti ,i 115S t 0

t 0D .

The determinants ofTi ,i 11 vanish and thus the density o
states of the system of Figs. 3~a! and 3~b! are obtained
s
n

t

-
f

s-

l-
in

through Eq.~9! by means of the recursive relation~16!. The
results are reported in Fig. 4 for the bare lattice@Fig. 3~a!#
and for the renormalized decorated lattice@Fig. 3~c!#.

In Fig. 4, the dotted line shows the density of states of
system in Fig. 3~a! ~without side chains!: two bands are
present for energies23.2<E<0 and 1.1<E<2, and a
‘‘surface state’’ atE51. The effect of the side chains@sys-
tem 3~b!# is to fill the forbidden gaps and to add a peak
E50 which is due, as in the case of Fig. 2, to the poles
Sm at E50 for odd m; the density of states for the syste
3~b! is given in Fig. 4~continuous line!; it has been obtained
averaging 100 configurations with side chains of rand
lengthm (0<m<10).

As a final check we have verified that the integrated d
sity of states exactly sums to the total number of states;
is shown in Fig. 4 for the systems of Figs. 3~a! and 3~b!, by
the dashed-dotted and dashed curves, respectively.

IV. CONCLUSIONS

We have presented in this paper two analytic express
which prove very convenient in the evaluation of total a
integrated densities of states of multichannel systems
scribed by energy dependent Hamiltonians. Such a situa
always appears, for instance, when we deal a part of a g
system and describe by the decimation-renormaliza
method the effect of all the remaining system on the cho
part, by appropriate self-energy corrections.

We have shown that even in this case we can obtain
total density of states from the knowledge of few o
diagonal matrix elementsG1,N of a suitably adapted Green’
function, only between the terminal sites of the system.
few applications on representative model systems highl
the shortcut provided by our expressions.
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