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Dispersion of ordered stripe phases in the cuprates
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Department of Physics and Barnett Institute, Northeastern University, Boston, Massachusetts 02115
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A phase-separation model is presented for the stripe phase of the cuprates, which allows the doping depen-
dence of the photoemission spectra to be calculated. The idealized limit of a well-ordered array of magnetic
and charged stripes is analyzed, including effects of long-range Coulomb repulsion. Remarkably, down to the
limit of two-cell-wide stripes, the dispersion can be interpreted as essentially a superposition of the two
end-phase dispersions, with superposed minigaps associated with the lattice periodicity. The largest minigap
falls near the Fermi level; it can be enhanced by proximity to a~bulk! van Hove singularity. The calculated
spectra are dominated by two features: this charge stripe minigap plus the magnetic stripe Hubbard gap. There
is a strong correlation between these two features and the experimental photoemission results of a two-peak
dispersion in La22xSrxCuO4 and the peak-dip-hump spectra in Bi2Sr2CaCu2O81d . The differences are sug-
gestive of the role of increasing stripe fluctuations. The 1/8 anomaly is associated with a crossover from
magnetic-dominated to charge-dominated stripes. A model is proposed for the limiting minority magnetic
phase as an isolated two-leg ladder.
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I. INTRODUCTION

Evidence for stripe phases in the cuprates continue
grow. Particularly in the La22xSrxCuO4 ~LSCO! family, a
convincing case for~predominantly dynamic or disordered!
stripes can be made, based on elastic and inelastic neu
scattering,1–5 NMR, and nuclear quadrupole resonan
~NQR!.6,7 In other systems, the evidence is more ambiguo
In YBa2Cu3O72d ~YBCO!, there is now8,9 clear evidence for
incommensurate modulation of the inelastic magnetic n

tron scattering nearQW 5(p,p), but so far only in under-
doped YBa2Cu3O6.6. Balatsky and Bourges10 find a broad
commensurate peak, but the width of the peak scales
doping in exactly the same way as the incommensurabilit
LSCO, suggestive of an unresolved underlying incommen
rability in YBCO, as well. Also, de Lozanne11 finds direct
scanning tunnel microscope~STM! evidence for incommen
surate modulations~parallel to the chains! with a similar pe-
riodicity to the neutron data. Mook12 has reported similar
incommensurate neutron peaks in Bi2Sr2CaCu2O81d

~BSCCO!. Potentially stripe-related phonon anomalies ha
been reported in both LSCO~Ref. 13! and YBCO.14 Doping
with Zn seems to stabilize the stripe phase.15 Photoemission
evidence16,17 for stripes has been controversial.18,19

Over the same doping regime, there is also evidence f
pseudogap, and it is an important problem to understand
both pseudogap and stripes can coexist. In particular, ph
emission finds a dispersion consistent with the tw
dimensional~2D! energy bands, whereas in the stripe pha
the magnetic stripes should be insulating, leading to a o
dimensional~1D! dispersion along the charged stripes.

The presence of stripe phases raises important issue
how energy dispersion and even Fermi surfaces can be
defined concepts in the presence of fluctuating stripes.
important insight into this problem is the finding by Salko
Emery, and Kivelson~SEK!,20 and Seiboldet al.21 that a
well-defined average dispersion persists even in the pres
PRB 620163-1829/2000/62~2!/1252~18!/$15.00
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of strongly fluctuating stripe order. The present paper a
lyzes a phase separation scenario, modeling the stripe
associated with free-energy minima at two characteristic h
densities. This is consistent with a number
calculations22–26 which find that the stripes are associat
with very sharp density variations, and allows the dopi
dependence of the stripes and the resulting photoemis
spectrum to be analyzed.

It is found that long-range stripe order can persist even
the presence of Coulomb interactions. The resulting disp
sion is clearly recognizable as a superposition of the m
netic and charged stripe dispersions, with superimpo
minigaps due to the stripe order. These dual dispersions
vide a natural interpretation for the experimentally observ
photoemission dispersions, tying together results on LSC
BSCCO, and Sr2CuO2Cl2 ~SCOC!. In the model, the 1/8
anomaly can be understood as a form of quantum crit
point ~QCP!, associated with a crossover between a magn
stripe dominated regime and a charged stripe dominated
gime. Within the latter regime, the (p,p) spin gap in YBCO
is related to the behavior of a two-leg ladder~isolated mag-
netic stripe!.

Remarkably, within the charge stripe dispersion, a cl
signature of the two-dimensional Van Hove singular
~VHS! persists, down to the limit of a single, two-Cu-wid
stripe. There is a strong coupling of the minigaps with th
VHS, leading to astripe-induced VHS splitting. The doping
dependence of this splitting closely resembles that of
pseudogap.

The paper is organized as follows. Section II shows tha
low hole doping of the charged stripes,x0;0.25, is not only
compatible with experiment, but also makes sense theo
cally, in terms of kinetic-energy stabilized stripes. The mo
els for the magnetic and the charged stripes are introduce
Sec. III, along with a discussion of long-range Coulomb
teraction. Section IV gives the results of the stripe calcu
tions, which self-consistently determine the hole distributio
The doping dependence of the dispersion is presented
1252 ©2000 The American Physical Society
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varying strengths of Coulomb repulsion. Finally, the effe
of an additional~ferromagnetic! interaction on splitting the
VHS degeneracy on the charged stripes is discussed. In
V, these results are compared to experiment, and a consi
model of the photoemission in LSCO and BSCCO is p
sented. The 1/8 anomaly is interpreted as a ‘‘duality cro
over,’’ from a phase of majority magnetic stripes wi
charged domain boundaries to the dual phase. Section
studies the properties of a phase with minority magne
stripes, showing how the doping dependence of the spin
in YBCO can be understood. Possible explanations are
presented for the saturation of the incommensurabilityd vs x
found by Yamadaet al.2

Section VII includes discussions of the interpretation
the peak-dip-hump structure in BSCCO, the stripe-VHS s
ting pseudogap, and illustrations of Fermi surfaces and r
nant Fermi surfaces in the stripe phase. The principal c
clusions of this work are summarized in Sec. VIII.

II. FRACTIONALLY OCCUPIED STRIPES

A. Comparisons with other oxides

Stripe arrays have now been found in a number of oxid
most notably nickelates and manganites. The similarities
cuprates with nickelates are particularly close: in both s
tems, the charged stripes act as antiphase boundaries fo
magnetic stripes, and in both, the charge order arise
higher temperature than the magnetic order.1,27 The nickelate
stripes run diagonally~with respect to the Ni-O-Ni bonds!;
this is also true of the LSCO stripes, in the spin-gla
regime,28 x;0.04–0.06. However, in the superconducti
regime,x.0.06, the cuprate stripes are generally horizon
and vertical.

One striking difference is that in the nickelates and m
ganites, the charged stripes correspond to integer do
~one hole per Mn or Ni!, leading to simple patterns29,30 of
commensurate stripe arrays. There are prominent phase
sitions at rational fractions, 1/2, and 1/3, corresponding
holes on everynth row, with evidence for commensurabilit
locking in between~i.e., the 1/3 phase persists in an extend
doping range aboutx51/3.! Consistent with integer filling,
the phases are all insulating.29 In contrast, in the cuprates th
phases are all conducting or weakly localized, and the o
fraction which appears prominently is 1/8.

In the present paper, a simple explanation is proposed
this distinction. The charged stripes are fractionally dop
with approximately 1/4 hole per Cu~hence explaining the
finite conductivity!. The magical 1/8 doping would then co
respond to the simplest ‘‘commensurate’’ pattern of the
stripes.

The stability of the stripe phase decreases in the sequ
manganites, nickelates, cuprates. Thus, while there are b
tiful electron microscopic images of long-range stripe ord
in the manganites,30 stripes in the cuprates are mainly flu
tuating, with only short-range order. Within the prese
model, this pattern is readily understood, since the char
stripes are stabilized by charge-density wave~CDW! insta-
bilities; this is similar to models for the nickelates an
manganites.31 The strength of this instability can be es
mated by comparing the strength of electron phonon c
pling, which follows the same sequence: manganites~with
t
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well-defined Jahn-Teller polarons!, nickelates,32 cuprates. It
is only in the cuprates where the interaction is so weak th
fractional occupation can be stabilized, and it is only in t
cuprates that the stripe formation is so weak that superc
ductivity can successfully compete.

B. Origin of fractional occupation

Hartree-Fock calculations22 of the tJ model find that the
holes condense onto domain walls between antiferromagn
cally ordered domains, producing fully occupied char
stripes—one hole per Cu. However, neutron diffractio1

finds a charge modulation of periodicity four Cu atoms ax
50.125, which implies only 1/2 hole per cell. Tranqua
et al.1 suggested a model for the charged stripes, based
their experience with stripes in nickelates. The hole-dop
stripes are one cell wide, and have a hole on every other
A microscopic model for such a domain wall can b
derived33 by incorporating a charge-density wave~CDW! in-
stability along the stripes, treating them as one-dimensio
metals. However, such states with integral hole doping
likely to be insulators, as is the case in the stripe phase
the nickelates,29 whereas the cuprates are either conduct
or weakly localized.

Moreover, fractional hole occupation would seem to
more natural for thetJ and Hubbard models, since the e
ergy of doped holes is lowered by finite hoppingt in a par-
tially filled band. Visscher34 and Nagaev35 showed that the
holes enhance their kinetic energy by creating local fer
magnetic domains~ferrons! in which they are free to hop
This leads to a preferred hole densityxf inside the ferron
domain. In a two-dimensional,tJ version of the model~let-
ting \2/2m→ta2, with a the lattice constant!,

xf5AzS2J

pt
.0.334, ~1!

with z54 the number of nearest neighbors of a given C
and I have assumedJ/t50.35. A similar result was found by
Nayak and Wilczek.36 Nagaev’s model is a large-S theory,
and Emery and Kivelson37 extended it toS51/2, although
they did not address the issue ofxf . Auerbach and Larson38

showed that a single dopedS51/2 hole will spread out over
a ferromagnetic domain covering five lattice sites, sugges
a comparable value forxf ,.0.2 holes per cite, on averag
~since the hole has a higher probability of being on the c
tral atom!. Recent density-matrix renormalization-grou
~DMRG! calculations of thetJ model by White and Scala
pino ~WS! ~Ref. 39 and 40! find charged stripes which ar
two Cu’s wide, with an average hole doping of 0.25 hole p
Cu on the charged stripes~although WS suggest that th
relevant quantity is the net charge per unit length along
stripe, 0.5 hole!.

Since the charged domains are stabilized by the hole
netic energy, it is plausible that enhancing the kinetic ene
could enhance the stability of the hole-doped stripes. Th
in a generalized Hubbard model, with next-nearest-neigh
hopping t8, it is found that a macroscopic ferromagnet
phase is stabilized in the vicinity of the van Hove singular
~VHS!.41 Moreover, an extended Hartree-Fock analysi25

finds phase separated states smoothly evolving between
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1254 PRB 62R. S. MARKIEWICZ
antiferromagnetic~AFM! and ferromagnetic~FM! regions,
from a single magnetic polaron to FM stripes to a unifo
FM phase.

However, such ferromagnetic domains have not been
served in the cuprates. Nevertheless, there are altern
VHS routes to fractionally occupied stripes. The large d
sity of states~DOS! associated with a VHS can drive a larg
number of competing electronic instabilities,42,43 and it was
suggested early that this could be the origin of nanosc
phase separation in the cuprates.44 In particular, it was dem-
onstrated that strong electron-phonon coupling could st
lize a charge-density wave phase near the VHS.44,45

C. Viability of VHS models

In any model of stripe phase formation based on Fe
surface features, there is a fundamental question of s
consistency: do the features persist in the limit of an isola
stripe? Can one still recognize bulk features of the ba
structure and Fermi surfaces of the phases forming the s
array? This is one of the main issues that this paper reso
even in the limit of nanoscopic stripes, the band structur
recognizably a superposition of the structures of the two
phases. The main role of stripe order is to introduce m
band gaps into this structure.

In the particular case of the VHS’s, there were a num
of preliminary indications which suggested such an affirm
tive answer. First, SEK~Ref. 20! found that an average dis
persion persists in the presence of fluctuating stripes;
resulting ‘‘flat bands’’ are a signature of the VHS. Secon
within a group theoretical@SO(6)# model,43 the van Hove
instabilities all remain well defined on a single plaquette
232 Cu atoms, soa fortiori they should remain well define
on a two-leg ladder. Indeed, Lin, Balents, and Fisher46 found
anSO~8! group controlling the physics of the two-leg ladde
When one eliminates47 certain one-dimensional operato
~which break thek→2k symmetry along the ladder!, one is
left with the sameSO(6) group introduced earlier for th
VHS. Such a correspondence would fail for a single-leg l
der.

Hence the present model is restricted to stripes which
an even number of cells~or Cu atoms! wide. This point was
previously postulated for the magnetic stripes, in terms
spin gaps associated with even-legged ladders.48 Moreover,
WS find two-Cu-wide charged stripes in their DMR
calculations.39 With this assumption, it is found that a VHS
like feature can be clearly resolved near the Fermi leve
the stripe phases. Moreover, the stripes provide an inte
ing mechanism for VHS splitting—minigaps—which ca
generate a pseudogap with the correct doping dependen

III. MODELING THE STRIPES

While the stripes are likely to be strongly fluctuating, t
band-structure modifications should be strongest, and ca
analyzed in most detail, in an ordered stripe phase. Hence
present calculation assumes perfectly ordered stripe ph
to describe this ‘‘worst case’’ scenario. It will be assum
that there are two preferred hole densities,x;0 on the mag-
netic stripes, andx0;0.25 holes per Cu on the hole-dope
stripes. Coulomb effects lead to additional charge relaxat
and a more uniform distribution of charge~see Sec. III D!.
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A. Model for the magnetic stripes

In the insulating phase, a variant of the spin-density wa
~SDW! model studied by Schrieffer and co-workers49,50 is
used. This model works surprisingly well in the large-U
limit,51 reproduces the spin-wave spectrum of the Heisenb
model, and has served as the basis for a number of exte
treatments of correlation effects.52–55For realistic parameters
(t,t8,U), the model has a Mott-Hubbard gap of 2 eV, a
can reproduce the dispersion found in the oxyclorides;56,57

see the Appendix.
The dispersion of the one-band model can be written

ek522t~cx1cy!24t8cxcy , ~2!

with ci5coskia. Writing e65(ek6ek1Q)/2, the eigenvalues
in the presence of a HubbardU become

E65e16Ae2
2 1Ū2, ~3!

whereŪ5UmQ . In the limit Ū@t, the lower Hubbard band
may be approximated

E252Ū24t8cxcy2J~cx1cy!2, ~4!

with J52t2/Ū. The parameters can be determined by fitti
to the observed photoemission dispersion in SCOC. For s
plicity, one can use analytical expressions for the parame
at threek-space points:E2(p/2,p/2)52Ū,E2(p,0)52Ū

14t8,E2(0,0)524t82AŪ2116t2 @Eq. ~4! is not suffi-
ciently accurate for this purpose#. The fit yields t

5325 meV, Ū/t52.5, andt52t8/t520.552. Solving the
gap equation at half filling, this value ofŪ corresponds to
U/t56.03, MQ(x50)50.414 ~Fig. 1!, or 83% of the clas-
sical value.

For these parameters,M (x) is multivalued forx>0.38.
This implies that the magnetic to nonmagnetic transition
first order. This is discussed further in the Appendix. Ho
ever, this density is rather higher than expected for char
stripes. In LSCO, the VHS splitting seems to terminate n
x50.26,58,59 and similar results are found below for YBCO
In a number of models,45,41 the AFM instability is replaced
by a second instability, driven by splitting the VHS dege
eracy. Note that the bare (U50) VHS falls atx50.25 for
t520.559, very close to the value needed to explain
dispersion in the insulating phase.

FIG. 1. Doping dependence of magnetization in the SD
model.
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If MQ is interpreted as the long-range antiferromagne
order parameter, then the model does a poor job in desc
ing the temperature and doping dependence of the N´el
transition,60 TN , yielding TN;U/4. Figure 1 shows that
while MQ is strongly renormalized by doping, the mean-fie
theory underestimates the rapidity of the falloff ofTN with x.
However, the mean-field results are best reinterpreted as
resenting short-range order—the magnetic fluctuations—
and hence the renormalization of thesplitting into upper and
lower Hubbard bands. In this case, the mean-field calc
tions are in good agreement with exact diagonalizat
calculations.61 The fact that the gap is much smaller in th
doped phase is consistent with the experimen
observation62 that the upper Hubbard band rapidly disa
pears with doping.

B. Model for the charged stripes

It is assumed that the hole-doped stripes are stabilized
splitting the VHS degeneracy, at the dopingx0;0.25 where
the VHS falls at the Fermi level. An earlier slave bos
calculation45 demonstrated that electron-phonon coupli
could provide that stabilization energy, even in the prese
of strong correlation effects. A ferromagnetic interaction41

can produce similar splitting.
While the earlier electron-phonon calculation involved

three-band model, here a simpler one-band model will
adopted. A parametrized form of the free energy vs dop
found in the self-consistent calculation45 will be assumed, to
stabilize the stripe phase. It is convenient at present tonot
introduce any mechanism to split the VHS degeneracy. T
allows a definitive answer to an important question: can e
dence for the VHS still be found in the presence of a we
defined stripe phase? The answer is a clear yes: the resu
dispersion is a superposition of the magnetic dispersion
the charged stripe dispersion, with recognizable VHS f
ture. What is more, the stripe phase minigaps provide adif-
ferent mechanism of VHS splitting, with a doping depen-
dence comparable to the experimental pseudogap.

A very simple doping dependence of the parameter
assumed. From Eqs.~2!–~4!, for finite U, t is renormalized
by a factort/UmQ , Fig. 1, so the increase oft with doping is
accomplished by the decrease inmQ , the ordered moment
We will thus make a simple ansatz that the only effect
doping is to renormalize

mQ→mQ~12x/x0!. ~5!

Since the stripes are predominantly near the limiting sta
x50, x0, the detailed nature of the intermediate states
relatively unimportant. As noted above, Eq.~5! neglects the
gap on the charged stripe; in Sec. IV D, a ferromagnetic
teraction will be included on the charged stripes, to show t
the VHS splitting is preserved in the striped phase.

C. Free-energy minima

To stabilize the stripe densities at the valuesx50 for
magnetic stripes, andx5x050.25 for the charged stripes
the following free energy is introduced, based on the res
of slave boson calculations for the three-band model:45
c
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f 0~x!5m0xS 12
x

x0
D 2

, ~6!

for x.0. ~At x50 there is a cusplike minimum, associate
with the Mott gap in the chemical potential.! Equation~6!
was fit63 to the free energies calculated in a three-band sl
boson model for competing magnetic~flux phase! and
charged~CDW! phases, Fig. 2 of Ref. 45.~Note that there is
an error in the caption of that figure: the correct CDW co
pling is Vep50.6 eV.!

Equation~6! is a convenient form for parametrizing th
confining potential of a striped phase. It has only two para
eters,x0 and m0, or equivalently,f m54m0x0/27, the maxi-
mum free-energy barrier, atx0/3. In the present stripe phas
calculations, these parameters are taken asx050.25 andm0
50.312 eV, or f m511 meV. This value corresponds t
Vep50.6 eV of Ref. 45, and allows us to see that even
relatively modest confining potential can stabilize the str
phase against the Coulomb potential. This free energy co
sponds to an additional chemical potential

m~x!52m0S 12
x

x0
D S 12

3x

x0
D ~7!

for x.0. In the calculations, thism(x) is added to the po-
tential on each row, and the local density adjusted until s
consistency is attained.

At x50, m has a discontinuity, the Mott-Hubbard ga
Hence, at this point, the Fermi level can take on any va
inside the gap. To model this in a computationally sta
manner, the discontinuous step inm is replaced by a linear
ramp, connecting the values ofm at x520.01 andx5
10.01, and assumingm(x520.01)52m(x510.01).
Thus, when the calculation findsuxu,0.01, it generally im-
plies that the Fermi level is in the gap of the magne
stripes. However, due to hybridization with holes in t
charged stripes, it is possible to have a well-defined M
gap, with a small dopingx.0 on the magnetic stripes~typi-
cally, x<0.05).

FIG. 2. Dispersion of 2,6 structure. Solid linesG→X5(p,0)
→S5(p,p)→G; dot-dashed linesG→Y5(0,p)→S. Here, Y is
along the stripes,X is across them.
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D. Madelung energies of stripes

We will assume for simplicity that all stripes, both ma
netic and charged, are an even number of cells wide. T
means that only a relatively small number of stripe config
rations are involved in the doping range of interest. For
stance, labeling the stripe configuration bym,n, wherem is
the width of a magnetic stripe andn the width of a charged
stripe, we will explore in detail the pure phasesm,n
56,2 (x5x0/4.0.0625, if x0.0.25), 4,2 (x5x0/3
.0.0833), 2,2 (x5x0/2.0.125—the 1/8 phase!, 2,4 (x
52x0/3.0.167), and 2,6 (x53x0/4.0.1875). Intermediate
dopings would correspond to mixed phases. For each
these phases, we assume that there can be different do
on each row; by symmetry, there can be (m1n)/2 inequiva-
lent rows for them,n phase.

In the presence of charging, it is the electrochemical
tential me and not the chemical potentialm which is con-
stant. For electrons,me5m2eV, whereV is the electrical
potential. Given the average hole density on each row,V can
be calculated as a Madelung sum. For each configuration
Madelung sum can be calculated for each row. Actua
since the overall chemical potential must be adjusted to
the total hole density, all that need be calculated is the
ference in Madelung potential between the different row
This is calculated by assuming a pure Coulomb interact
screened by a static dielectric constant,e. The on-site term is
neglected, having already been included asU.

The various Madelung constants can be expressed as
lows. For the~6,2! stripe, we label the rows 1,2,3,4, with 45
the charged stripe, and 1~3! 5 the magnetic rows farthes
from ~nearest to! row 4. LetVi be the Madelung potential fo
the i th row, Ṽi5(Vi2V1)x0 , xi the hole doping of thei th
row, andx̃i5(xi2x1)/x0. Then

Ṽi5V0(
j

Ki j x̃ j , ~8!

where theKm matrices have been calculated numerica
with results listed in Table I, for the cases~m,2!, m 5 2,4,6.
The constantV052x0e2/(ea)50.914eV/e, for x050.25.

The stripe phase is stable only if the dielectric constan
large enough: recent calculations64 suggeste.5 is sufficient.
The large static dielectric constant of the cuprat
;40–80,65 is a sign of strong electron-phonon couplin
This large coupling makes it difficult to accurately estima
the strength of the Coulomb interaction. The dc dielec
constant will be anisotropic and, most probably, dispers
on the length scale of the stripes. Since interlayer contri
tions to screening can be important~e.g., apical oxygens

TABLE I. Madelung matrices.

Ki j
m j 5 2 3 4

K2 j
6 5 20.4110 0.5365 0.347

K3 j
6 5 20.3466 0.4721 1.230

K4 j
6 5 20.8831 0.8831 1.702

K2 j
4 5 20.3082 0.6951

K3 j
4 5 0 1.082

K2 j
2 5 0.1256
is
-
-

of
ngs

-

he
,
x
f-
.

n,

ol-

,

is

,

c
,
-

bilayer coupling!, this is one parameter which could easi
have a strong material dependence.

While the above procedure should approximately capt
the long-range part of the Coulomb interaction, it will like
overestimate the hole-hole repulsion for nearest neighb
This can be thought of in terms of a correlation hole hav
two components. First, we are assuming that a hole o
given site interacts with a fractional hole~the average dop-
ing! on all other sites. Clearly, part of the hole population
the nearest-neighbor sites is actually generated by the
ping of the given hole, hence should not be counted in
Madelung sum. Moreover, there is likely to be a real cor
lation hole, as neighboring charges readjust to avoid
given hole. However, these terms are associated with C
formation, which will not be dealt with explicitly here.

IV. RESULTS

A. Structure factor effects

Figure 2 illustrates the band dispersion for a 2,6 struct
(x50.1875), in the absence of long-range Coulomb effe
The hole doping on each layer is self-consistently adjuste
allow for inter-row hopping processes, and the Fermi leve
adjusted to account for the overall doping. In the absenc
long-range Coulomb effects, the doping is close to the no
nal values. Numerical results will be discussed in the follo
ing subsection, which will show how they are modified b
Coulomb interaction.

The large number of bands is rather deceptive. It is eq
to the number of Cu atoms in the large unit cell, doubl
since the up and down spin bands are not degenerate. T
would be the same number of bandseven if there were no
stripes. But in this case, only one band would satisfy Bloch
theorem. This band can be determined by looking at
structure factor—the overlap of the corresponding wa
functions witheikW•rW. Similarly, when stripes are present, th
same structure factor determines which bands will be see
photoemission. This is illustrated in Fig. 3, where the circ
indicate a weight greater than 0.5, and the3 ’s a weight
between 0.5 and 0.1. For greater clarity, only the dispersi
alongG→Y→S are shown. The dispersions alongY ~parallel

FIG. 3. Dispersion of 2,6 structure, but with structure factors
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to the stripes! andX ~transverse to the stripes! are shown in
Figs. 4 and 5, respectively. The resulting weights revea
simple result: the envelope of the bands is approximate
superposition of the two limiting bands, at half filling and
optimal doping, with considerable fine structure associa
with minigaps.

In the presence of stripes, the dispersion should be qu
one-dimensional. This is clearly seen in Fig. 2, where
dispersion alongG→Y (G→X) closely resembles tha
along X→S (Y→S). However, with the structure factor
included, the dispersions are quite distinct. Nevertheless
minigaps are most prominent in the dispersions perpend
lar to the stripes,G→X ~Fig. 5!, andY→S ~Fig. 4!.

B. Coulomb interaction

The doping dependence of the dispersion is shown in
6 ~no Coulomb effects! and Fig. 7~moderate screening,e
515). The curves show the dispersions for a series of d
ings, fromG→X[(p,0)→S[(p,p). While the fine struc-
ture~minigaps! is strongly doping dependent,the overall dis-
persion is not, and is essentially identical to the dispersion
the uniform end phases. This is exactly what would be

FIG. 4. Dispersion of 2,6 structure, parallel to the stripes.

FIG. 5. Dispersion of 2,6 structure, transverse to the stripes
a
a

d

si-
e
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pected formacroscopicphase separation, even though
crossover the charge stripe is only two cells wide.

The figures show that the dispersion is largely a super
sition of two sets of bands: one for the insulating magne
stripes, one for the charged stripes. The small1 ’s ~large
circles! indicate>80% of the wave function is on the mag

FIG. 6. Total dispersion in the absence of Coulomb repulsi
from G→S for dopings:x 5 0 ~a!, 0.0625~b!, 0.125~c!, 0.1875~d!,
and 0.25@solid line in ~d!#. Data in~a! were shifted upward by 0.16
eV.

FIG. 7. Total dispersion corrected for charging (e515) from
G→S for dopings:x 5 0.0625~a!, 0.125~b!, 0.167~c!, 0.1875~d!,
and 0.25@solid line in ~d!#.
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1258 PRB 62R. S. MARKIEWICZ
netic ~charged! stripe; the small diamonds indicate a mixtu
of both. Note that there is strong overlap in the region of
upper Hubbard band, while the magnetic lower Hubb
band ~LHB! remains well defined at all dopings, and th
charged stripes fill in the gap as doping increases.

It should be noted that once the charged stripes are
duced to two cells wide, atx50.125, the dispersion remain
nearly unchanged as the doping is further reduced~e.g., at
x50.0625). Hence an important aspect to understanding
strongly underdoped stripe phases will be to develop a g
model for these limiting, two-cell stripes. As discussed b
low, there is an analogous magnetic stripe beyond the pe
lation crossover, which can be modeled as a two-leg lad

Inclusion of Coulomb interaction leads to fairly mode
changes in the dispersion. Careful inspection of Figs. 6 an
reveals that charging effects push holes onto the magn
layers, shifting the lower Hubbard band toward the Fer
level and causing it to more fully hybridize with the charg
layers. With reduced screening (e55) the bottom of the
charged band actually falls below the magnetic lower H
bard band. The layers near the Fermi level remain predo
nantly associated with the charged layers, so we may
loosely speak of charged bands and magnetic bands.
that in every case, the Fermi level lies within the miniba
closest to the van Hove singularity. This provides adifferent
mechanismfor the opening of the pseudogap, as will be d
cussed further below.

Even in the absence of Coulomb interaction, the car
density in a given row deviates somewhat from the fr
energy minima—here taken asx50,0.25—due to the finite
hopping probability. For the 2,6 structure, Figs. 2–4, t
magnetic layers havex50.025, and for the charged layer
moving away from the magnetic layer, the hole doping
0.25, 0.24, and 0.24. Adding the Madelung potential rai
the energy of the hole-doped stripes, and requires a shi
the Fermi energy to compensate. However, since the m
netic stripes are gapped, this shift makes little difference
the hole population on these stripes, the corresponding l
populations being 0.026, 0.255, 0.25, and 0.22, fore515
~Fig. 7!. For larger Coulomb interaction, the deviation b
comes greater~Fig. 8!. The data display an interesting ev
lution: superimposed on a trend toward greater homogen
there is also a tendency to evolve into a~2,2! state. This can
be understood from Table I: the Coulomb effects are sma
for this state, since the phase separation is restricted to
finest scale.

This result is of potential relevance for LSCO: it is foun
experimentally that the incommensurability saturates n
1/8 doping—here the crossover where the~2,2! phase is
stable. The saturation could simply mean that for LSCO,
Coulomb effects are large enough that the system locks
the ~2,2! phase for all higher dopings.

There is a striking asymmetry about 1/8 doping: in t
~6,2! phase, Coulomb interaction makes very little diffe
ence. This is because of the sharp cusp instability at
filling, which keeps the hole doping fixed near zero in t
magnetic stripes, whereas the shallower potential minim
near optimal doping allows more substantial density fluct
tions.

These results will be discussed further in a later sect
Two points are worth mentioning: first, the incommensu
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bility saturation has so far only been observed in LSCO; a
second, LSCO closely resembles the other cuprates in
doping range up to 1/8, but for higher doping,Tc saturates at
a much lower value.

C. Minigaps

Figure 7 shows the evolution of the minigaps with dopin
A simple model provides a semiquantitative explanation
these results. The dispersion along (0,0)→(p,0) is dis-
cretized into n levels for n-Cu-wide charge stripes. Thi
bandwidth is 4(t12t8).584 meV. If the minibands are
equally spaced, the average gap should be 584n
21) meV. Actually, the net bandwidth changes some w
doping, so a better formula is

Dav5
584 meV

n
~9!

5292 (n52),146 (4), or 97 (6)meV, to be compared
with average values~Fig. 7! of 260, 147, and 94 meV, re
spectively. For the dispersion along (0,p)→(p,p), the same
bands are present, but shifted by the dispersion alongY, and
with total bandwidth 4(t22t8).

For fluctuations in the stripe spacing, there will be a te
dency to average over the various dispersions in Fig. 7. T
will tend to wash out most of the minigaps, since they a
shifted in energy as the stripe width changes. However, s
there is always one gap present near the Fermi level, this
should survive averaging. For the uniform stripe phases
Fig. 7, this ‘‘pseudogap,’’ or distance between the Fer
level and the nearest (p,0) minigap edge, follows the sam
scaling as Eq.~9!, Dp5364/n meV.

D. Ferromagnetic stripes

Figure 7 shows that beyond the percolation crossove
clear remnant of the bulk VHS is visible in the striped pha
dispersion. In Fig. 9, it can be seen that splitting this VH
degeneracy produces a clear pseudogaplike splitting of

FIG. 8. Hole distribution on rows~labeled byN) of the 2,6
structure, fore5` ~i.e., no Coulomb interaction—solid line!, 15
~dashed line!, or 5 ~dotted line!.
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PRB 62 1259DISPERSION OF ORDERED STRIPE PHASES IN THE . . .
dispersion near (p,0). It is this lowering of a large density o
states that has been postulated to stabilize the cha
stripes, and the figure clearly shows that the mechanism
mains active even in the striped phase.

For the calculations in the figure, it was assumed that
antiferromagnetic phase is stable only up to a dopingx0/3,
while for larger doping a ferromagnetic instability wins ou
The ferromagnetic dispersion is also given by Eqs.~2!–~4!,
but with q5(0,0) instead ofQ5(p,p). For the same value
of U, the equilibriumM has the form shown in Fig. 10
which was approximated byM50.4–0.5ux20.2u.

It should be noted that the doping dependence depe
sensitively on the choice of parameters; these values
taken for illustrative purposes only. Figure 9~d! shows the
dispersion of the self-consistent solution with the fullM (x),
while the other frames show a reducedM of 1/5 ~c!, 1/10~b!,
or 0 ~a!. Since the parameters were chosen to have the V
in frame ~a! centered on the Fermi level, the pseudog
opens approximately symmetrically about the Fermi leve

This should not be taken as evidence that the char
stripes really are ferromagnetic, only as an example of
another kind of instability that is driven by the VHS. Th
figure illustrates that one can distinguish different instab
ties, but one must carefully analyze secondary characte
tics, since the opening of the pseudogap near (p,0) is com-
mon to a variety of instabilities. In the present instance
ferromagnetic instability does not double the unit cell, so
ghost dispersion beyond (p,0) is absent, in contrast to ex
periment@see Fig. 19~b! below#. Moreover, the splitting of
the spin-up and spin-down bands should lead to extra st
ture most clearly seen~below the Fermi level! nearG, which
is not found experimentally.

FIG. 9. Dispersion alongX for a ferromagnetic instability on the
charged stripes, forx50.1875~2,6!, and different degrees of mag
netizationM, as discussed in the text.
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V. COMPARISON TO EXPERIMENT

A. Photoemission in LSCO

The doping dependence of the photoemission spectr
LSCO~Ref. 66! is strikingly different from that in BSCCO.67

In this section, it will be shown thatboth spectra can be
interpreted in terms of stripe phases, with stronger fluct
tion effects in BSCCO. The key observation, Fig. 7, is th
stripes produce distinct dispersion features associated
the magnetic stripes and the charged stripes—which can
identified with the hump and peak features in supercond
ing BSCCO, and with similar features in LSCO.

Since most samples contain many stripe domains,
photoemission should be compared with a superposition
the X and Y dispersions~Fig. 11!. The following features
should be noted:~i! there is always a flat band pseudog
near (p,0), which tends to shift further below the Ferm
level with increased underdoping.~ii ! The evolution with
doping is not smooth: with increased doping, the magne
band gradually fades away while a more metallic band gro
in near the Fermi level. The overall doping dependence
quite similar to the experimental results of Inoet al.66 ~see
particularly their Fig. 3!, confirming the suggestion tha
stripes are better developed in LSCO than in BSCCO.

Figure 12 compares the (p,0) photoemission peak pos
tions for LSCO~Ref. 66! with the present calculations. Re
sults for BSCCO~Ref. 68! are also shown; these will b
discussed in the following subsection. In LSCO, there
two main features: one (3 ’s! is near20.6 eV, with a dis-
persion similar to that in the magnetic insulator SCOC, a
with a nearly doping-independent binding energy. The s
ond feature~open circles! is a gap close toEF with larger
doping dependence. Qualitatively, these features are sim
to the hump and peak features in BSCCO, but with lar
binding energies. These two features can be correlated
two prominent gaplike features in the calculations: the m
netic gap associated with the lower Hubbard band on
magnetic stripes, and the charge stripe gap, associated
the miniband closest to the Fermi level. The calculated g
are larger, since the energy scale has been chosen to a
with the magnetic gap in SCOC, yielding a value21.2 eV
at half filling, but the overall doping dependences are qu

FIG. 10. Doping dependence of the magnetizationM for a fer-
romagnetic instability.
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1260 PRB 62R. S. MARKIEWICZ
similar to LSCO. This similarity is brought out most clear
by plotting the calculated gap values divided by two~dia-
monds and suns!.

B. Photoemission in BSCCO

1. Below Tc

In BSCCO, there is a remarkable evolution of the pho
emission with temperature, particularly on passing throu
Tc . Above Tc , the spectra are very broad, with a sing
broad peak near (p,0) representing the normal-sta
pseudogap. BelowTc , the spectra sharpen and split into tw
features, commonly referred to as a ‘‘peak’’ nearEF , with a
‘‘hump’’ at lower energies, close to the normal-sta
pseudogap; between the peak and hump, there is a
‘‘dip’’ in intensity, below the level in the normal state. Re
cently, systematic studies of these features in b
tunneling69 and photoemission68 were presented. Most strik
ingly, photoemission finds these two peaks in the same
rection of k space, a feature which is very suggestive
phase separation.

Here, it will be assumed that the photoemission is do
nated by stripe effects, and the main role of superconduc
ity is to suppress fluctuations.~The clear sharpening of th
spectra belowTc , even in a range away from any gaps,
demonstrated in Ref. 70.! The analysis will be in two parts
First, the low-T spectra will be compared with those o
LSCO. Then the role of fluctuations in producing the highT
smeared spectra will be discussed.

FIG. 11. Superposition ofX andY dispersions for, from bottom
to top,x 5 0, 0.0625~6,2 structure!, 0.125~2,2!, and 0.1875~2,6!.
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In Fig. 12 the low-temperature photoemission peaks68 of
BSCCO are compared to those of LSCO. The pe
~squares! are in reasonable agreement with the near-EF
pseudogap in LSCO~circles!, and with the calculated mini-
gaps. On the other hand, the humps (1 ’s! are considerably
closer to the Fermi level than the magnetic stripe feature
LSCO (3 ’s!; compared to theory, the overall offset is di
ferent, but the doping dependence is similar. Neverthel
identification of the hump with the antiferromagnetic Mo
gap feature is compelling. Laughlin67 clearly showed that the
photoemission data evolve with doping to match the SC
spectrum at half filling. In the Appendix it is shown that th
complete doping dependence of the hump is well descri
by simply doping into the lower Hubbard band of the an
ferromagnet.

2. Above Tc

In LSCO, the photoemission spectra were observed66 only
in the superconducting state, due to surface degradatio
higher temperatures. However, the stripes are clearly be
defined in LSCO~the two gap features are more clearly sep
rated! even thoughTc is considerably lower, so it is quite
possible that the split spectral peaks persist aboveTc .

In BSCCO, there is a sudden change of the photoemis
spectrum atTc : a single broad feature aboveTc splits into a
peak-dip-hump structure belowTc . This is here assumed t
be mainly a fluctuation effect: aboveTc , both features are
assumed to be present, but the line broadening is so l
that they strongly overlap. BelowTc , fluctuations are greatly
suppressed, and the linewidth broadeningG is reduced by
over an order of magnitude,71 so the individual spectral fea
tures are resolved. Model calculations along these lines h
been presented, see Ref. 72~Fig. 19! and Ref. 73. Supercon
ductivity will also renormalize the gap on the charg
stripes, but this is a secondary effect.72,74

A long-standing puzzle has been why the Fermi level
optimally-doped BSCCO is so much further from the VH

FIG. 12. Pseudogaps at (p,0) in LSCO ~Ref. 66! (3 ’s, open
circles! and BSCCO~Ref. 68! (1 ’s 5 hump, squares5 peak!
compared to calculated Mott gap~diamonds! and minigap~suns!;
the calculated values are reduced by a factor of 2. At the high
doping, the Mott gap does not show much intensity near (p,0);
what is plotted is energy of the corresponding dispersion neare
(p,0).
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~35 meV! than in most other cuprates. However, th
estimate75 was based on the normal-state dispersion, whil
is now clear that the appropriate comparison is with the d
persion of the peak feature belowTc . In this case, the VHS
is estimated to be only 5 meV from the Fermi level.76

C. Summary: Magnetic vs charged pseudogaps

There is a clear progression in the magnetic stripe se
ration from the Fermi level, from SCOC to LSCO t
BSCCO. It is likely that this is due to stripe fluctuation e
fects, since as more holes fluctuate onto the magnetic str
the band moves closer toEF ~similar to enhanced charging
Fig. 7!. Further evidence for this interpretation lies in th
high-T BSCCO spectra, where the peak and hump colla
into a single feature, which continues to resemble the m
netic dispersion~Appendix! and is even closer toEF than the
hump. The conclusion that fluctuations are strongest
BSCCO is consistent with the fact that incommensur
magnetic modulations have not yet been clearly seen
BSCCO.

On the other hand, the charge pseudogap, being fixe
quantum size effects, Eq.~9!, is much less sensitive to fluc
tuations. Results in LSCO and BSCCO are quite similar,
in agreement with the present calculations~Fig. 12!. The idea
that the pseudogap is associated with stripe minigaps
been proposed previously;77 the present calculation provide
a systematic doping dependence and a connection with
VHS. Since the greatest energy lowering corresponds to h
ing EF centered on the miniband closest to the VHS~largest
DOS, Fig. 15!, this is a form ofstripe-induced van Hove
splitting.

The present result improves on an earlier model for
pseudogap.45 That calculation, based on the photoemiss
studies of BSCCO in thenormalstate, explained the openin
of the pseudogap in terms of a direct crossover from
charged stripe gap to the larger gap on the magnetic st
The recent systematic studies in BSCCO~Refs. 68 and 69!
and LSCO~Ref. 66! suggest that the low-temperature da
are more representative of the stripe phase, and that
pseudogap~or peak feature! is associated with the charge
stripes only.

VI. ISOLATED MAGNETIC STRIPE

Coulomb repulsion inhibits long-range electronic pha
separation, resulting in some form of nanoscale ph
separation.34,35 For a two-dimensional charge distributio
the low-energy phases are found to be domain-wall pha
with the minority phase plating out as minimal-width doma
walls separating domains of the macroscopic phase.44 In this
situation, there will be a percolation crossover when the
nority phase becomes the majority phase.

The present stripe phases share this domain-wall st
ture, in that the minority phase always appears as mini
width stripes. Strictly speaking, one-dimensional objects
not have a percolation crossover, but at 1/8 doping there
duality crossover, from dominant magnetic to domina
charged stripes, which should be reflected in many prope
of the stripes.

For doping less than 1/8, these minimum width cha
stripes resemble the domain walls between antiferromagn
t
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domains proposed in a number of theories;78 however, for
doping greater than 1/8 there are charged domains with m
netic domain walls, a situation not envisaged in these th
ries.

An important aspect of stripe phase theory is the devel
ment of a microscopic model for these domain walls. A nu
ber of groups have suggested a connection between mag
stripes and even-leg ladders. Here, the magnetic dom
walls in the higher-doping regime are modeled as two-
ladders, which develop a spin gap as they move further ap
with reduced interladder coupling.

A. Spin gap

In a stripe model, the magnetic neutron scattering n
(p,p) should be reflective of the properties of the magne
stripes. For LSCO, the incommensurability has been d
cussed above, Fig. 8, and is further discussed in the foll
ing subsection. In YBCO, incommensurability has only be
resolved at one doping,8,9 but the doping dependence of th
peak width is consistent with a similar underlying, but unr
solved incommensurability.10 In YBCO, the stripe model can
also explain the doping dependence of the intensity of
magnetic neutron scattering near (p,p), as well as the open
ing of a spin gap.

The doping dependence of the net intensity of the m
netic neutron scattering should reflect the relative density
magnetic stripes. For YBCO61y , the intensity was numeri-
cally integrated from Fig. 2 of Ref. 79, and the result plott
in Fig. 13. While the relation betweeny and hole dopingx in
YBCO is not completely settled, the straight line illustrates
modified Tokura80 expression, with the doping of the plane
starting aty50.2, and varying linearly withy. The results are
consistent with the picture that all magnetic scattering is
sociated with the magnetic stripes, and the stripe ph
would terminate at an~inaccessible! doping y51.095. This
would place the percolation crossover aty;0.65, close to
the plateau regime. Since the plateau has been interprete
a 1/8 effect,81,15 this suggests that the plateau doping
;0.125. This fixes the constant of proportionality:x
50.27(y20.2), so the charged stripe doping, correspond
to y51.095, would be;0.25, in excellent agreement wit
our other estimates. At optimal doping,y;0.925, the hole
doping would be;0.2. These estimates are also consist
with Tokura et al.,80 who found x50.125 for y50.75,
x50.25 for y51, andx5.21 for optimal doping. The inse
to the figure shows thatTc(x) follows the familiar parabolic
form82

Tc

Tc,max
512S x2xm

xw
D 2

, ~10!

with Tc,max592 K, xm50.2, andxw50.16. Note that the
dip in Tc near the 60-K plateau is close tox51/8. The falloff
of intensity is likely to be even steeper than illustrated in F
13, since the data were presented only up to about 60 m
while at the lower doping levels, there is considerable int
sity at higher frequencies.

The spectrum of the excitations near (p,p) has a compli-
cated evolution with doping, and below the superconduct
Tc , the intensity is suppressed below a doping depend
energy, called the ‘‘spin gap.’’79 This gap is distinct from the
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1262 PRB 62R. S. MARKIEWICZ
pseudogap, and has a strikingly different doping depende
~Fig. 14!. A similar gap is seen in LSCO,83,84but so far only
near x50.15. There it is found that the spin gap
isotropic,84 further evidence that it is distinct from superco
ductivity or the pseudogap.

The doping dependence of this spin gap in YBCO can
interpreted simply in terms of coupled magnetic ladders~Fig.
14!. Below the 1/8 crossover, the magnetic stripe~ladder!
width decreases smoothly with doping, while the interlad
coupling is approximately constant, since the hole-dop
stripe has fixed width. Theoretically, the spin gap is found
be ~approximately! inversely proportional to the ladde
width,85 so in this regime the spin gap scales linearly w
doping,Ds5bJ/M , whereJ is the exchange constant,M the
ladder width, andb a correction for interladder coupling,b
.(124J9/J), with J9 the exchange coupling between ad
cent ladders.86 The solid line in Fig. 14 corresponds toJ9
50.21J.

Above the crossover,x.x0/250.125, M is fixed at 2
while b increases with doping, sinceJ9 decreases as th
hole-doped stripes widen. Since the Cu in the hole-do
stripes can be magnetized, the falloff should be relativ
slow. Details are model sensitive, but qualitatively the o
served behavior is readily reproduced. The curve in Fig.
follows from assuming a falloffJ9;N21, where N is the
hole-doped stripe width, inset to Fig. 14.~It should be noted
that the falloff is sensitive to the hole-densityx0, here taken
as 0.25.!

The model predicts86 that for an isolated stripe, the spi
gap equalsJ/2, at least when the exchange constant is
same on all rungs and links. From Fig. 14, this implies
limiting value J;80 meV atx50.25, considerably smalle
than thex50 value J5130 meV. Such a doping depen
dence forJ is not unexpected. For simplicity, however, th
model assumes a constant value forJ; this value must be
taken asJ580 meV, to successfully model the single stri
limit. The value is less critical near zero doping, where
gap is small.

In this model, the spin gap should already exist in t
normal state. The striking change observed atTc can be ex-
plained as a fluctuation effect, similar to those seen in

FIG. 13. Intensity of magnetic scattering vs doping for YBC
Circles5data of Ref. 79; line5expected result for stripe model.
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BSCCO photoemission. Strong fluctuations at high tempe
tures prevent any long-range stripe order or true spin g
The superconducting transition leads to three-dimensio
coherence, and hence greatly suppresses charge and
fluctuations in the stripes. Hence a long-range spin gap
open on the magnetic stripes belowTc . Consistent with this
interpretation, it should be noted that the spectrum in
normal state in heavily doped YBCO has be
interpreted87,84 in terms of a formula derived for spin-1
chains,88 and hence expected to approximately hold for s
1/2, two-leg ladders.

One should note the duality between the charge st
minigap, which grows as hole doping is reduced~Fig. 12!,
and the magnetic stripe spin gap, which increases with
creasing hole doping~Fig. 14!.

Two final points should be noted.~i! After the present
manuscript was first submitted, Tallon, Loram, a
Williams89 provided considerable additional evidence th
the stripe phase terminates at a doping close tox0, and that
Tc remains large, even when the stripe phase is absent.~ii ! In
the regime where magnetic stripes are widely separa
there may be an additional contribution to the magnetic s
tering associated with Fermi-surface nesting effects76 on the
charged stripes. It is an outstanding task to combine the
contributions.

B. Incommensurability saturation

Inelastic magnetic neutron diffraction finds a saturation
the incommensurability in LSCO at approximatelyx51/8.
Within the present framework, there are actually several p
sible explanations for the saturation. One was discus
above~Fig. 8!: strong Coulomb interactions arrest the pha
separation at the~2,2! stripe, and higher doping causes the
stripes to gradually fill in.

On this interpretation, the Coulomb effects are mu
stronger in LSCO than in YBCO, and the isolated spin g
regime~right-hand side of Fig. 14! would not exist in LSCO.
The Coulomb effects would indeed be expected to be str
ger in LSCO, since interlayer screening is weaker. In N
substituted LSCO, due to the low-temperature tetrago
~LTT! phase structural distortions, stripes in alternate lay

FIG. 14. Spin gapDs vs doping for YBCO. Circles5data of
Ref. 79; line5theory, assuming solid line from inset. Inset: inte
ladder exchange vs hole-doped stripe width.
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FIG. 15. Density of states for dopings:x 5 0 ~a!, 0.0625~b!, 0.0833~c!, 0.125~d!, 0.167~e!, 0.1875~f!, and 0.25~g! assuming dielectric
constante515. ~The x50 data are shifted up by 0.16 eV.! Solid ~dashed! line5partial density of states for magnetic~charged! stripes.
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are rotated by 90°; a similar situation may arise in LSC
perhaps due to LTT fluctuations. On the other hand,
YBCO the magnetic correlations have a strongc-axis modu-
lation, suggesting that stripes in both CuO2 planes of a bi-
layer run parallel, with the charged stripes offset laterally
provide stronger interlayer screening.

However, there are other plausible explanations for
commensurability saturation. Even before the discovery
stripes, it was found that low-temperature orthorhom
~LTO! and LTT domains of fairly large size~producing dis-
tinguishable diffraction peaks! coexist near 1/8 doping in
LBCO. It seems plausible that this is associated with a st
commensurability effect, similar to that found in the nic
elates, and that a similar effect arises, at least incipientl
LSCO. In this case, the residual magnetic scattering wo
be due to regions that have not yet been doped beyond
In the more highly doped domains, the magnetic strip
would have a spin gap: since the ground state of a two
ladder is a spin singlet, it does not contribute to the magn
scattering. A related problem has been studied by K
et al.,90 who showed that in a random mix of weakly coupl
three-leg~magnetic! ladders and two-legged~spin-gapped,
and hence nonmagnetic! ladders, the magnetic incommens
rability remains unchanged from that of the pure array
three-legged ladders.

Even without commensurability effects, one would exp
1/8 lock-in over a finite doping range, when the 2,2 strip
coexist with 2,4 stripes, which have a well defined spin g
In this case, the magnetic incommensurability should
,
n
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-
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c
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/8.
s
g
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.
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fixed at that for 1/8 throughout the coexistence regime,
should disappear when a commensurate 2,4 phase is st
at x52x0/3.0.17. In LSCO, the 1/8 stripes are actual
found1,2 to persist up tox.0.25. Hence the need to postula
lock-in effects at 1/8 doping, the exact analog of the stabi
of the x51/3 and 1/2 striped phases in nickelates. In t
case, the heavily doped phases would have no magnetic
tering, while the 1/8 stripes would have a scattering of fix
incommensurability, but decreasing intensity and increas
width, as the stripe domains shrink in size. The special
bility of the 1/8 phase may be associated with the finite
sidual exchange coupling across the two-cell-wide char
stripes, which is responsible for the antiphase boundar
and which may be lost in wider charged stripes, or with t
reduced Coulomb energy.

At this stage, there is not enough information to jud
between the two models for incommensurability saturati
The former, strong Coulomb effect, has the advantage th
could simultaneously explain whyTc in LSCO is so low—
the local hole density is forced away from optimal. Howev
there is considerable evidence that stripe phase order is b
developed in LSCO than in other cuprates, and this co
provide reason enough for a lowerTc .

In many ways, optimally doped LSCO resembles an u
derdoped YBCO. We have here suggested that this is
cause stripes and pseudogaps in both materials persist
x.0.25, whereasTc is optimal near 0.16 in LSCO, 0.2 in
YBCO. Satoet al.91 have recently provided additional ev
dence that the pseudogap opens well aboveTc in optimally
doped LSCO.
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VII. DISCUSSION

A. Improvements for the stripe model

The present model provides a significant advance in
understanding of the stripe phase. Earlier calculations20,21

found that the stripes produce minigaps, but that an aver
smeared dispersion and Fermi surface could still be defin
The present calculation studies how holes redistribute in
presence of a competition between a doping depen
chemical potential, which favors phase separation, and C
lomb repulsion, which favors a uniform density distributio
The full doping dependence of the dispersion is calcula
with the striking result that the resulting dispersion r
sembles a weighted superposition of the dispersions of
two end phases, with the addition of some superlattice m
gaps. This is very encouraging, in providing an explanat
for the photoemission results. Moreover, it shows that
mechanisms responsible for the special stability of the
phases can continue to operate on these nanoscopic le
scales.

A number of improvements still need to be made in t
model. The next step would be to make the calculation fu
self-consistent, deriving the chemical potential by direc
calculating and minimizing the free energy of the strip
phase. Since the dispersion is not greatly changed, it is
likely that this additional step will greatly modify the prese
results. The most likely change would be that the densi
could adjust slightly to take advantage of the minigaps, b
ter centering them at the Fermi level. This could lead to
more systematic growth of the pseudogap with underdop
since the minigaps are associated with the charged str
and get larger as these stripes get narrower.

A complete understanding of the stripe phase, particula
in BSCCO, lies in the correct inclusion of fluctuation effec
These effects can broadly be separated into two catego
depending on whether the fluctuation preserves the lo
density distribution or not. In the former category fall flu
tuations in the local stripe spacing, either static or slow
varying in time, and long-wavelength bending of the strip
It is likely that the energy dispersion is a fairly localize
function in space, and that these fluctuations can be ca
lated as weighted averages over the present solutions. In
case, the dispersion would still be a superposition of the
end phases, and the main effect of the fluctuations would
to smear out the minigaps. Since there is always a gap
the Fermi level, a residual pseudogap should survive. Mo
over, since the split-off LHB is well defined, particularly
lower doping, it should persist as a distinguishable feat
after averaging. This would resemble the photoemission
LSCO.

The second class of fluctuations involves fluctuatio
which are fast enough, or disordered on a sufficiently sh
wavelength scale so that the local density does not lie n
the two potential minima. These fluctuations act to wipe
the stripe fluctuations on a local level, and the question
can they describe the experimental results in BSCCO, wh
for T.Tc , the two valence bands appear to collapse int
single reconstructed band. This is a plausible result: as a
of holes fluctuates back and forth in an antiferromagne
background, the background will have to adjust to so
time-averaged hole density. The theoretical problem is h
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to properly include this averaging: it is a question of how t
system responds locally on different time scales.

B. Density of states

Figure 15 shows the calculated densities of states fo
number of stripe configurations, illustrating how the charg
stripes gradually fill in the Mott-Hubbard gap. Within th
charged stripe dispersion, there is a single prominent m
gap, shown on expanded scale in Fig. 16, close to half fill
of the charged stripe, which gradually closes up with
creased doping. Comparison with Fig. 7 shows that this
the minigap closest to the VHS. Doping of the charged str
moves the Fermi level into the miniband below this ga
approximately centered between two flat band states.

C. Fermi surface and remnant Fermi surface

Figure 17 shows the Fermi surfaces corresponding to
same dopings as in Fig. 7. As expected from the ‘‘projecte
dispersions in that figure, in all cases the wave functions
.90% associated with the charged stripes. Note the imp
tant role of the structure factors: while there is a well-defin
superlattice in each case, and hence each Fermi-surface
ment is periodically repeated, the weight is highly nonu
formly distributed, being concentrated predominantly ne
the limiting x50.25 Fermi surface~solid line in the figures!.

The large flat sections of the 1/8 stripe pattern, Fig. 17~b!
may have been seen experimentally, both in Nd-substitu
LSCO at the 1/8 anomaly92 and in BSCCO,93 although the
latter result is disputed.94

Ronning et al.57 introduced an alternative, well-define
energy surface, which they refer to as a ‘‘remnant Fer
surface’’ ~rFs!. This is the locus of points where the inte
grated photoemission intensity, taken as proportional
n(k), falls to one half its maximal value. While the intensi
does fall to half at the Fermi level, it can also fall to half
an energy away from the Fermi level~N.B., the rFs is not a
surface of constant energy!. Indeed, a rFs was found for th
insulating Ca2CuO2Cl2. We have shown95 that in this case
the rFs~the locus of points where the coherence factor equ
one-half! maps out the superlattice zone boundary.~Since the
model does not include fluctuations, there is only one ba
below EF , and hence no photoemission distribution to in
grate over.!

In the case of a stripe array, there are several compl
tions. First, there are several subbands, and one will get
ferent results depending on whether one calculates an rF
each subband, or a single rFs for the whole valence ba
The structure factor provides an additional complicatio
since the intensity is almost never the full possible val
Nevertheless, for simplicity, Fig. 18 plots the locus of poin
where the net spectral function equals 1/2—actually, fa
within a range 0.48–0.52. Comparison of Fig. 17 and
shows that the true Fermi surface and the rFs are quite
tinct features, and that the rFs tends to follow the superlat
Brillouin-zone boundaries.

D. QCP’s?

While there have been a number of suggestions tha
quantum critical point~QCP! exists in the cuprates,96 the
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FIG. 16. Blowup of density of states nearEF ,
for same dopings as in Fig. 15.~There is no frame
~a!, since the DOS vanishes in this energy r
gime.!
in
d
t

om
t

er
za

t
i

d

e

lie
n
e

nd

o

ave
a

ara-

he
ire

is
le a
pes,

lcu-
tion.

her-
r of
ed.
y
ce,

ion,
ent

n

is-
-
nd
l
nde
present model suggests rather a series of preferred dop
corresponding to commensurate stripes—much as foun
the nickelates. The most prominent special dopings are
1/8 anomaly, corresponding to the duality crossover fr
magnetic-dominated to charge-dominated stripes, and
termination of the stripe phases,89 at approximately twice
that density,x0.0.25. However, there are hints that oth
special dopings also play a role. Thus the high-field locali
tion transition in LSCO~Ref. 97! occurs atx50.17, close to
the first appearance of two-leg-wide charged stripes ax
52xc/3.0.167. Again, the superconducting transition term
nates~and the horizontal-vertical stripes are replaced by
agonal stripes!28 at x50.058, close to the dopingx0/4 where
the charged stripes first separate by more than four magn
cells.

E. Comparisons with slave boson results

It is instructive to compare the present results with ear
slave boson calculations. In the simplest version, there is
magnetic coupling,J50, and the band structure near th
Mott transition is highly anomalous. There is a single ba
but as the doping approaches half filling,x→01, the band-
width vanishes, with botht and t8 renormalized to zero. In
the three-band model, even after settingU→`, there is still
a charge transfer energy,D. In this case, it is also possible t

FIG. 17. Fermi surfaces for dopings:x5 0.0625~a!, 0.125~b!,
and 0.1875~c!, ande515. Solid line in each is the Fermi surfac
for x50.25.
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approach half filling from below,x→02; the same band-
width collapse occurs, but at a different energy,E2, with
E22E1 being the~renormalized! charge transfer energy.

Is there any way to reconcile the present results with sl
boson theory? I suggest the following possibility. When
hole is doped into the Mott insulator, there is phase sep
tion, and locally the dispersion is restored:t→t0. At a dop-
ing x, a fractionx/x0 of the electrons have hopping;t, the
rest ;0. But in the mean-field slave boson calculation t
effect of the hole is uniformly spread out over the ent
lattice, leading to an effectivet→xt0. This is just what is
found in the present stripe calculation. As the material
doped, the magnetic band persists with little change, whi
new band appears, characteristic of the hole-doped stri
with full bandwidth,t;t0 ~neglecting superlattice gaps!, but
with relative intensity proportional tox, ~Fig. 7!. If this in-
terpretation is correct, it suggests that the slave boson ca
lation may underestimate the tendency for phase separa

VIII. CONCLUSIONS

This has been a long manuscript, which presents a co
ent view of the stripe phases in the cuprates. A numbe
principal results of the calculations are here summariz
Most of the results aregeneric, and would be expected in an
model where the stripes result from two-phase coexisten
while a few are specific to a van Hove scenario.

~i! The stripes arise from a frustrated phase separat
i.e., there are two preferred hole dopings with independ
dispersions, one characteristic of antiferromagnetism.

~ii ! This allows a study of the evolution of the dispersio
as a function of hole doping.

~iii ! It is found that, even at this nanoscale level, the d
persion can be characterized as asuperposition of two com
ponents, leading to a picture of magnetic stripe bands a
hole-doped~‘‘charged’’! stripe bands. This allows a natura
interpretation of the photoemission spectra in LSCO, a
suggests a unified picture with BSCCO and SCOC.
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~iv! The calculations suggest that an important role of
superconducting transition is to freeze out fluctuations of
stripes. This freezeout manifests itself in three ways:~a! the
electron-electron scattering rate drops by several order
magnitude belowTc ;71 ~b! the photoemission dispersio
splits in BSCCO into a characteristic peak-dip-hump str
ture; ~c! the (p,p) magnetic neutron scattering in YBCO
sharpens belowTc , revealing a characteristic spin gap.

~v! The doping dependence naturally leads to a picture
a series ofquantum critical points~QCP’s! or magic dop-
ings, at which the stripe pattern is commensurate with
crystalline lattice. The most prominent one is the famous
effect, but the metal-insulator transition in LSCO and t
onset of superconductivity are close to two other magic nu
bers.

~vi! The percolation crossover at 1/8 doping provides
simple model of the spin gap in YBCO, showing that a tw
leg ladder provides a good model for an isolated magn
stripe.

~vii ! As a result of point~iii !, the model has anatural
VHS pinningto the Fermi level: if the VHS is at the Ferm
level in the charged stripe end phase~as it must be, if this
phase is stabilized by van Hove nesting!, then the VHS re-
mains close toEF over the entire doping range.

~viii ! This provides a new explanation of the pseudog
stripe-induced Van Hove splitting.

~ix! More speculatively, since superconductivity
YBCO is strongest well beyond the percolation crosso
~1/8 effect!, superconductivity seems to be a property p
dominantly of the charged stripes. The recent data of Tallon
Loram, and Williams89 strengthen this possibility.

There are a number of advantages of the present mod
fractionally doped stripes. First, if the stripes are stabiliz
by CDW formation, then there is an important continu
between stripes in the cuprates, and those in the nicke
and manganites. Such continuity is lost in theSO(5) model,
where the charged stripes are stabilized by supercondu
ity. Moreover, a connection with CDW’s would natural
explain the experimental observation that the stripe pha
are dominated by charge order rather than spin order, a re
difficult to understand in a pure Hubbard ortJ model.

Note added in proof. Section VI B: Recent work by Bu¨ch-
ner et al.99 suggests that in RE-substituted LSCO there
phase separation between1

8 -anomaly domains (x50.125)
and fully doped domains (x50.25) . Thus ‘‘bulk supercon-
ductivity’’ is found only for x.0.18, close to the percola
tion crossover~0.12510.25!/2.

Section VII E: Orenstein and Millis100 recently posed the
Lee-Wen paradox:101 Lee and Wen showed that they cou

FIG. 18. Remnant Fermi surfaces for same dopings as in
17: x 5 0.0625~a!, 0.125~b!, and 0.1875~c!.
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explain the Uemura relation for underdoped cuprates
terms of flux phase physics, as long as the flux phase dis
sion is independent of doping. The paradox is that ma
strong-coupling models expect the dispersion to renorma
to zero near the Mott insulator at half filling. As discussed
Sec. VII E, for stripes this renormalization is taken as in
cating that thefraction of materialassociated with charge
stripes renormalizes to zero at half filling, whereasthe dis-
persion on a single stripeis less sensitive to doping. Thus
the paradox is explained if the flux phase exists on
charged stripes. Indeed, the flux phase is a form of dyna
charge-density wave, closely related to the CDW and L
phases,102 and hence could well live on charged stripes.
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APPENDIX: MORE ON THE SDW DISPERSION

The SDW model, Sec. III A, gives a good description
the magnetic photoemission dispersion for insulating SCO
for the hump feature in superconducting BSCCO, and
normal-state BSCCO~Fig. 19!. For all curves, the band pa
rameters given below Eq.~4!, are used, withM (x) found
self-consistently. The spectral weight is proportional to t
coherence factor

z65
1

2 S 16
e2

W D , ~A1!

g.

FIG. 19. Dispersion of the doped antiferromagnet in mean-fi
model, forx50 ~a!, 0.169~b!, 0.356~c!, and 0.392~d!. Data of Ref.
565diamonds~SCOC!; Ref. 985squares@BSCCO~b! underdoped,
Tc567 K; ~c! overdoped,Tc585 K#; and Ref. 68: BSCCO, tri-
angles ~underdoped, Tc552 K) and circles ~overdoped, Tc

572 K). Solid lines: coherence factor.0.8; dashed lines:
0.8.coherence factor.0.2; dotted lines: coherence factor,0.2.
Horizontal lines5Fermi level.
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with the subscript1 (2) referring to the upper~lower! Hub-
bard band.

The results are qualitatively consistent with the insulat
oxyclorides56,57 and both the hump pseudogap~diamonds
and squares!,68 and the normal-state pseudogap (3) ~Refs.
98 and 68! in BSCCO. The fact that the normal-sta
pseudogap has the dispersion of the lower Hubbard band
been noted by a number of groups, including Schmal
Pines, and Stojkovic,53 and Misraet al.54 Note that the self-
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consistent hole dopings are quite large, and are very diffe
for the hump and normal-state features. As discussed in
V, the shift of the lower Hubbard band is presumably due
fluctuation-induced hole filling of the magnetic stripes.

The first-order transition to the paramagnetic phase e
dent in Fig. 1 is a topological transition, arising when t
Fermi level crosses the band dispersion nearX @Fig. ~19!d#.
This is rather striking, since topological transitions are ty
cally rather weak—of order 2.5. A similar result was foun
in the Hubbard model (t850) by Guineaet al.55
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