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A phase-separation model is presented for the stripe phase of the cuprates, which allows the doping depen-
dence of the photoemission spectra to be calculated. The idealized limit of a well-ordered array of magnetic
and charged stripes is analyzed, including effects of long-range Coulomb repulsion. Remarkably, down to the
limit of two-cell-wide stripes, the dispersion can be interpreted as essentially a superposition of the two
end-phase dispersions, with superposed minigaps associated with the lattice periodicity. The largest minigap
falls near the Fermi level; it can be enhanced by proximity tbwk) van Hove singularity. The calculated
spectra are dominated by two features: this charge stripe minigap plus the magnetic stripe Hubbard gap. There
is a strong correlation between these two features and the experimental photoemission results of a two-peak
dispersion in La_,Sr,CuQ, and the peak-dip-hump spectra in,8i,CaCyOg, 5. The differences are sug-
gestive of the role of increasing stripe fluctuations. The 1/8 anomaly is associated with a crossover from
magnetic-dominated to charge-dominated stripes. A model is proposed for the limiting minority magnetic
phase as an isolated two-leg ladder.

I. INTRODUCTION of strongly fluctuating stripe order. The present paper ana-
lyzes a phase separation scenario, modeling the stripes as
Evidence for stripe phases in the cuprates continues tassociated with free-energy minima at two characteristic hole
grow. Particularly in the La ,Sr,CuQ, (LSCO) family, a  densities. This is consistent with a number of
convincing case fofpredominantly dynamic or disordeped calculationd?~2® which find that the stripes are associated
stripes can be made, based on elastic and inelastic neutravith very sharp density variations, and allows the doping
scattering:™®> NMR, and nuclear quadrupole resonancedependence of the stripes and the resulting photoemission
(NQR).%" In other systems, the evidence is more ambiguousspectrum to be analyzed.
In YBa,Cu;O,_ 5 (YBCO), there is now® clear evidence for It is found that long-range stripe order can pers_ist even in
incommensurate modulation of the inelastic magnetic neuthe presence of Coulomb interactions. The resulting disper-
. = . sion is clearly recognizable as a superposition of the mag-
tron scattering nea@Q=(,7), but so far only in under-

doped YBaCu,O. Balatsky and Bourgd® find a broad netic and charged stripe dispersions, with superimposed

K but the width of th K | . minigaps due to the stripe order. These dual dispersions pro-
commensurate peak, but the width of the peak scales witliye 3 natyral interpretation for the experimentally observed

doping in exactly the same way as the incommensurability iy, 5toemission dispersions, tying together results on LSCO,
LSCO, suggestive of an unresolved underlying incommensugscco, and SCUO,Cl, (SCOQ. In the model, the 1/8
rab|llty in YBCO, as well. Also, de.Lozanﬁéﬁ.nds direct  anomaly can be understood as a form of quantum critical
scanning tunnel microscog&TM) evidence for incommen-  oint (QCP), associated with a crossover between a magnetic
surate modulationéparallel to the chainswith a similar pe-  stripe dominated regime and a charged stripe dominated re-
riodicity to the neutron data. Mook has reported similar gime. Within the latter regime, ther( ) spin gap in YBCO

incommensurate neutron peaks in ,8,CaCyOg, s s related to the behavior of a two-leg laddesolated mag-
(BSCCO. Potentially stripe-related phonon anomalies havenetic stripe.

been reported in both LSC@Ref. 13 and YBCO Doping Remarkably, within the charge stripe dispersion, a clear
with Zn seems to stabilize the stripe phas@hotoemission signature of the two-dimensional Van Hove singularity
evidencé®!’ for stripes has been controversi&f® (VHS) persists, down to the limit of a single, two-Cu-wide

Over the same doping regime, there is also evidence for stripe. There is a strong coupling of the minigaps with this
pseudogap, and it is an important problem to understand hoWHS, leading to astripe-induced VHS splittingThe doping
both pseudogap and stripes can coexist. In particular, photalependence of this splitting closely resembles that of the
emission finds a dispersion consistent with the two-pseudogap.
dimensional(2D) energy bands, whereas in the stripe phase The paper is organized as follows. Section Il shows that a
the magnetic stripes should be insulating, leading to a ondew hole doping of the charged stripeg,~ 0.25, is not only
dimensional(1D) dispersion along the charged stripes. compatible with experiment, but also makes sense theoreti-

The presence of stripe phases raises important issues célly, in terms of kinetic-energy stabilized stripes. The mod-
how energy dispersion and even Fermi surfaces can be wedls for the magnetic and the charged stripes are introduced in
defined concepts in the presence of fluctuating stripes. Asec. Ill, along with a discussion of long-range Coulomb in-
important insight into this problem is the finding by Salkola, teraction. Section IV gives the results of the stripe calcula-
Emery, and Kivelson(SEK),?® and Seiboldet al?! that a  tions, which self-consistently determine the hole distribution.
well-defined average dispersion persists even in the presendée doping dependence of the dispersion is presented for
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varying strengths of Coulomb repulsion. Finally, the effectwell-defined Jahn-Teller polaropsickelates? cuprates. It
of an additional(ferromagnetit interaction on splitting the is only in the cuprates where the interaction is so weak that a
VHS degeneracy on the charged stripes is discussed. In Sdecactional occupation can be stabilized, and it is only in the
V, these results are compared to experiment, and a consistetuprates that the stripe formation is so weak that supercon-
model of the photoemission in LSCO and BSCCO is pre-ductivity can successfully compete.
sented. The 1/8 anomaly is interpreted as a “duality cross-
over,” from a phase of majority magnetic stripes with
charged domain boundaries to the dual phase. Section VI
studies the properties of a phase with minority magnetic Hartree-Fock CalCUlatiOﬁ%Of the tJ model find that the
stripes, showing how the doping dependence of the spin gaoles condense onto domain walls between antiferromagneti-
in YBCO can be understood. Possible explanations are alselly ordered domains, producing fully occupied charge
presented for the saturation of the incommensurabfiggx ~ Stipes—one hole per Cu. However, neutron diffraction
found by Yamadat al? finds a charge modulation of periodicity four Cu atoms at
Section VII includes discussions of the interpretation of=0.125, which implies only 1/2 hole per cell. Tranquada
the peak-dip-hump structure in BSCCO, the stripe-VHS spitet al.! suggested a model for the charged stripes, based on
ting pseudogap, and illustrations of Fermi surfaces and rentheir experience with stripes in nickelates. The hole-doped
nant Fermi surfaces in the stripe phase. The principal corstripes are one cell wide, and have a hole on every other site.
clusions of this work are summarized in Sec. VIII. A microscopic model for such a domain wall can be
derived® by incorporating a charge-density wa(@DW) in-
stability along the stripes, treating them as one-dimensional
metals. However, such states with integral hole doping are
A. Comparisons with other oxides likely to be insulators, as is the case in the stripe phases of
the nickelate$? whereas the cuprates are either conducting

Stripe arrays have now been found in a number of 0XIdeS?r weakly localized.

Qjosr;tneost%tl)ilt);] nr:?(;kf ;?;?essagg m:rrt]igirelltr(la&c;gii'sil?Itl)acl)rtlﬁes :. Moreover, fractional hole occupation would seem to be
P P y ’ YStore natural for thed and Hubbard models, since the en-

tems, the charged stripes act as antiphase boundaries for t . - - )
magnetic stripes, and in both, the charge order arises %,fgy of doped holes is lowered by finite hoppintn a par

higher temperature than the magnetic orftféThe nickelate ally filled band. Visschef and Nagae¥ showed that the

. ) . . : holes enhance their kinetic energy by creating local ferro-
stripes run diagonallywith respect to the Ni-O-Ni bongis : . . .
this is also true of the LSCO stripes, in the spin-glas magnetic domaingferrong in which they are free to hop.

: . . SThis leads to a preferred hole densky inside the ferron
regime?® x~0.04-0.06. However, in the superconducting omain. In a tWoF.)dimensionalJ versior}{ of the mode(let-

regime,x>0.06, the cuprate stripes are generally honzontaﬁng %2/2m—ta2, with a the lattice constaht

B. Origin of fractional occupation

Il. FRACTIONALLY OCCUPIED STRIPES

and vertical.

One striking difference is that in the nickelates and man-
ganites, the charged stripes correspond to integer doping o= /§20334 1)
(one hole per Mn or Nij leading to simple patterfis*° of f mto T

commensurate stripe arrays. There are prominent phase tran-
sitions at rational fractions, 1/2, and 1/3, corresponding tovith z=4 the number of nearest neighbors of a given Cu,
holes on everyith row, with evidence for commensurability and I have assumelit=0.35. A similar result was found by
locking in betweeri.e., the 1/3 phase persists in an extendedNayak and WilczeR® Nagaev's model is a largs-theory,
doping range about=1/3) Consistent with integer filing, and Emery and Kivelsdf extended it toS=1/2, although
the phases are all insulatifyIn contrast, in the cuprates the they did not address the issuexf. Auerbach and Larsdh
phases are all conducting or weakly localized, and the onlghowed that a single dop&3=1/2 hole will spread out over
fraction which appears prominently is 1/8. a ferromagnetic domain covering five lattice sites, suggesting
In the present paper, a simple explanation is proposed faa comparable value fat; ,>0.2 holes per cite, on average
this distinction. The charged stripes are fractionally doped(since the hole has a higher probability of being on the cen-
with approximately 1/4 hole per C(hence explaining the tral atorm. Recent density-matrix renormalization-group
finite conductivity. The magical 1/8 doping would then cor- (DMRG) calculations of theJ model by White and Scala-
respond to the simplest “commensurate” pattern of thesepino (WS) (Ref. 39 and 4pfind charged stripes which are
stripes. two Cu’s wide, with an average hole doping of 0.25 hole per
The stability of the stripe phase decreases in the sequen€&u on the charged stripe@lthough WS suggest that the
manganites, nickelates, cuprates. Thus, while there are beatglevant quantity is the net charge per unit length along the
tiful electron microscopic images of long-range stripe orderstripe, 0.5 holg
in the manganite¥ stripes in the cuprates are mainly fluc-  Since the charged domains are stabilized by the hole ki-
tuating, with only short-range order. Within the presentnetic energy, it is plausible that enhancing the kinetic energy
model, this pattern is readily understood, since the chargedould enhance the stability of the hole-doped stripes. Thus,
stripes are stabilized by charge-density wa@®W) insta- in a generalized Hubbard model, with next-nearest-neighbor
bilities; this is similar to models for the nickelates and hoppingt’, it is found that a macroscopic ferromagnetic
manganites: The strength of this instability can be esti- phase is stabilized in the vicinity of the van Hove singularity
mated by comparing the strength of electron phonon cou¢VHS).** Moreover, an extended Hartree-Fock anaffsis
pling, which follows the same sequence: manganitesh  finds phase separated states smoothly evolving between the
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antiferromagnetid AFM) and ferromagneti¢FM) regions,
from a single magnetic polaron to FM stripes to a uniform
FM phase.

However, such ferromagnetic domains have not been ob-
served in the cuprates. Nevertheless, there are alternative
VHS routes to fractionally occupied stripes. The large den-
sity of stategDOS) associated with a VHS can drive a large
number of competing electronic instabiliti&s? and it was
suggested early that this could be the origin of nanoscale
phase separation in the cupratésn particular, it was dem-
onstrated that strong electron-phonon coupling could stabi-

0.0'....I....I....I... |

lize a charge-density wave phase near the VS, 00 01 02 03 04 05
b 4
C. Viability of VHS models FIG. 1. Doping dependence of magnetization in the SDW

In any model of stripe phase formation based on FermM°d€l:

surface features, there is a fundamental question of self-
consistency: do the features persist in the limit of an isolated
stripe? Can one still recognize bulk features of the band In the insulating phase, a variant of the spin-density wave
structure and Fermi surfaces of the phases forming the stripDW) model studied by Schrieffer and co-work&r’ is
array? This is one of the main issues that this paper resolvegsed. This model works surprisingly well in the large-
even in the limit of nanoscopic stripes, the band structure i$imit, > reproduces the spin-wave spectrum of the Heisenberg
recognizably a superposition of the structures of the two enehodel, and has served as the basis for a number of extended
phases. The main role of stripe order is to introduce minitreatments of correlation effect$->>For realistic parameters
band gaps into this structure. (t,t’,U), the model has a Mott-Hubbard gap of 2 eV, and
In the particular case of the VHS's, there were a numbecan reproduce the dispersion found in the oxyclorifed;
of preliminary indications which suggested such an affirma-see the Appendix.

A. Model for the magnetic stripes

tive answer. First, SEKRef. 20 found that an average dis- The dispersion of the one-band model can be written
persion persists in the presence of fluctuating stripes; the ,
resulting “flat bands” are a signature of the VHS. Second, €= —2t(cxtcy) —4tcey, @)

within a group theoretical SO(6)] model;® the van Hove  with ¢, = coska. Writing e. = (e, = €x+0)/2, the eigenvalues
instabilities all remain well defined on a single plaquette ofin the presence of a Hubbatdl become

2X 2 Cu atoms, sa fortiori they should remain well defined

on a two-leg ladder. Indeed, Lin, Balents, and Fi§hfund Efe e+ 102 3)
anSQ8) group controlling the physics of the two-leg ladder. T '

When one eliminaté$ certain one-dimensional operators WhereU:UmQ. In the limit U>t, the lower Hubbard band
(which break the&k— —k symmetry along the laddgrone is  may be approximated

left with the sameSO(6) group introduced earlier for the o

VHS. Such a correspondence would fail for a single-leg lad- E-=—-U—4t'c,cy—J(cy+ cy)z, (4)
der. _

Hence the present model is restricted to stripes which ar@ith J=2t%U. The parameters can be determined by fitting
an even number of Ce|K$)r Cu at0m$wide_ This point was o the observed photoemission dispersion in SCOC. For sim-
previously postulated for the magnetic stripes, in terms oplicity, one can use analytical expressions for the parameters
spin gaps associated with even-legged ladéfeMoreover,  at threek-space pointsE ™ (#/2,7/2)= —U,E~(7,0)= —U
WS find tvxgo—Qu—wide charged stripes in their DMRG | 41/ £-(0,0)= —4t'— U2+ 162 [Eq. (4) is not suffi-
galculatlons°’. With this assumption, it is found thata_\VHS—' ciently accurate for this purpoke The fit yields t
like feature can be clearly resolved near the Fermi level in

the stripe phases. Moreover, the stripes provide an interest- 325 meV, U/t=2.5, andr=2t'/t=—0.552. Solving the

ing mechanism for VHS splitting—minigaps—which can 9ap equation at half filling, this value & corresponds to

generate a pseudogap with the correct doping dependenceu_/tlze-?& Mq(x=0)=0.414(Fig. 1), or 83% of the clas-
sical value.

For these parameterd](x) is multivalued forx=0.38.
This implies that the magnetic to honmagnetic transition is

While the stripes are likely to be strongly fluctuating, thefirst order. This is discussed further in the Appendix. How-
band-structure modifications should be strongest, and can l&yer, this density is rather higher than expected for charged
analyzed in most detail, in an ordered stripe phase. Hence traripes. In LSCO, the VHS splitting seems to terminate near
present calculation assumes perfectly ordered stripe phases-0.26°%°°and similar results are found below for YBCO.
to describe this “worst case” scenario. It will be assumedin a number of model&*!the AFM instability is replaced
that there are two preferred hole densities,0 on the mag- by a second instability, driven by splitting the VHS degen-
netic stripes, ancy~0.25 holes per Cu on the hole-doped eracy. Note that the bardJ=0) VHS falls atx=0.25 for
stripes. Coulomb effects lead to additional charge relaxationf= —0.559, very close to the value needed to explain the
and a more uniform distribution of chargsee Sec. Il D. dispersion in the insulating phase.

Ill. MODELING THE STRIPES
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If Mg is interpreted as the long-range antiferromagnetic
order parameter, then the model does a poor job in describ-
ing the temperature and doping dependence of thel Ne
transition®® Ty, yielding Ty~U/4. Figure 1 shows that,
while M, is strongly renormalized by doping, the mean-field
theory underestimates the rapidity of the falloffig§ with x.
However, the mean-field results are best reinterpreted as rep-
resenting short-range orderthe magnetic fluctuations—
and hence the renormalization of thglitting into upper and
lower Hubbard bands. In this case, the mean-field calcula-
tions are in good agreement with exact diagonalization
calculation®! The fact that the gap is much smaller in the
doped phase is consistent with the experimental
observatiof? that the upper Hubbard band rapidly disap-
pears with doping.

B. Model for the charged stripes

It is assumed that the hole-doped stripes are stabilized by FIG. 2. Dispersion of 2,6 structure. Solid lings—X= (,0)
splitting the VHS degeneracy, at the dopixg~0.25 where ~—S=(m,m)—I'; dot-dashed lined’—Y=(0,m)—S. Here, Y is
the VHS falls at the Fermi level. An earlier slave bosonalong the stripesX is across them.
calculatiot® demonstrated that electron-phonon coupling
could provide that stabilization energy, even in the presence
of strong correlation effects. A ferromagnetic interaction Fo(X)= peox
can produce similar splitting.

While the earlier electron-phonon calculation involved afor x>0. (At x=0 there is a cusplike minimum, associated
three-band model, here a simpler one-band model will bavith the Mott gap in the chemical potentinEquation (6)
adopted. A parametrized form of the free energy vs dopingvas fif° to the free energies calculated in a three-band slave
found in the self-consistent calculatfBrwill be assumed, to  boson model for competing magneti¢lux phas¢ and
stabilize the stripe phase. It is convenient at presemioio  charged CDW) phases, Fig. 2 of Ref. 45Note that there is
introduce any mechanism to split the VHS degeneracy. Thian error in the caption of that figure: the correct CDW cou-
allows a definitive answer to an important question: can evipling is V,,=0.6 eV)
dence for the VHS still be found in the presence of a well-  Equation(6) is a convenient form for parametrizing the
defined stripe phase? The answer is a clear yes: the resultirgnfining potential of a striped phase. It has only two param-
dispersion is a superposition of the magnetic dispersion angters,x, and u, or equivalently,f,=4uyX,/27, the maxi-
the charged stripe dispersion, with recognizable VHS feamum free-energy barrier, at/3. In the present stripe phase
ture. What is more, the stripe phase minigaps providéf-a  calculations, these parameters are taker,as0.25 andug
ferent mechanism of VHS splittingvith a doping depen- =0.312 eV, orf,=11 meV. This value corresponds to
dence comparable to the experimental pseudogap. Ve,=0.6 eV of Ref. 45, and allows us to see that even a

A very simple doping dependence of the parameters igelatively modest confining potential can stabilize the stripe
assumed. From Eq$2)—(4), for finite U, t is renormalized  phase against the Coulomb potential. This free energy corre-
by a factort/Umg, Fig. 1, so the increase ofvith dopingis  sponds to an additional chemical potential
accomplished by the decreasent,, the ordered moment.

x |2
= ©

We will thus make a simple ansatz that the only effect of X 3x
doping is to renormalize pm(X)= —,uo( 1-— ( 1-— (7
Xo Xo
Mg— Mg(1—X/Xg). (5)  for x>0. In the calculations, thig.(x) is added to the po-

tential on each row, and the local density adjusted until self-

Since the stripes are predominantly near the limiting statesonsistency is attained.
x=0, Xq, the detailed nature of the intermediate states is At x=0, u has a discontinuity, the Mott-Hubbard gap.
relatively unimportant. As noted above, E§) neglects the Hence, at this point, the Fermi level can take on any value
gap on the charged stripe; in Sec. IV D, a ferromagnetic ininside the gap. To model this in a computationally stable
teraction will be included on the charged stripes, to show thamanner, the discontinuous step jnis replaced by a linear
the VHS splitting is preserved in the striped phase. ramp, connecting the values @f at x=—0.01 andx=
+0.01, and assumingu(x=—0.01)=—u(x=+0.01).
Thus, when the calculation findg|<0.01, it generally im-
plies that the Fermi level is in the gap of the magnetic

To stabilize the stripe densities at the valuesO for  stripes. However, due to hybridization with holes in the
magnetic stripes, and=x,=0.25 for the charged stripes, charged stripes, it is possible to have a well-defined Mott
the following free energy is introduced, based on the resultgap, with a small doping>0 on the magnetic stripsypi-
of slave boson calculations for the three-band mddel: cally, x<0.05).

C. Free-energy minima
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TABLE |. Madelung matrices.
2
KT j=2 3 4
ng: —0.4110 0.5365 0.347
K§ = —0.3466 0.4721 1.230
K= —0.8831 0.8831 1.702 ~ 1T
K= ~0.3082 0.6951 ®
K= 0 1.082 = YN
K= 0.1256
0 A DDA NN X} -
D. Madelung energies of stripes
We will assume for simplicity that all stripes, both mag- m
netic and charged, are an even number of cells wide. This

means that only a relatively small number of stripe configu- -t

rations are involved in the doping range of interest. For in- r Y s r
stance, labeling the stripe configuration fmyn, wherem is
the width of a magnetic stripe andthe width of a charged FIG. 3. Dispersion of 2,6 structure, but with structure factors.
stripe, we will explore in detail the pure phasesn
=6,2 (X=Xo/4=0.0625, if x,=0.25), 4,2 k=x,/3 bilayer coupling, this is one parameter which could easily
~0.0833), 2,2 x=xo/2=0.125—the 1/8 phage 2,4 (x  have a strong material dependence.
=2x0/3=0.167), and 2,6 X=3x,/4=0.1875). Intermediate While the above procedure should approximately capture
dopings would Correspond to mixed phases_ For each dhe |0ng-range part of the Coulomb interaCtion, it W|||||k6|y
these phases, we assume that there can be different dopirg\g_erestlmate the hole-hole repulsion for nearest neighbors.
on each row; by symmetry, there can e+ n)/2 inequiva- his can be thought of in terms of a correlation hole having
lent rows for them,n phase. two components. First, we are assuming that a hole on a

In the presence of charging, it is the electrochemical podiven site interacts with a fractional hofthe average dop-
tential u, and not the chemical potential which is con- ing) on all othe( sites. C_Iear!y, part of the hole population on
stant. For electronsy.= u—eV, whereV is the electrical the nearest-n_elghbor sites is actually generated by th_e hop-
potential. Given the average hole density on each kean  PiNg of the given hole, hence sh_oul_d not be counted in the
be calculated as a Madelung sum. For each configuration, tHéadelung sum. Moreover, there is likely to be a real corre-
Madelung sum can be calculated for each row. Actually/ation hole, as neighboring charges readjust to avoid the
since the overall chemical potential must be adjusted to fidiven hole. However, these terms are associated with CDW
the total hole density, all that need be calculated is the difformation, which will not be dealt with explicitly here.
ference in Madelung potential between the different rows.
This is calculated by assuming a pure Coulomb interaction, IV. RESULTS
screened by a static dielectric constantThe on-site term is
neglected, having already been includedJas

The various Madelung constants can be expressed as fol- Figure 2 illustrates the band dispersion for a 2,6 structure
lows. For the(6,2) stripe, we label the rows 1,2,3,4, with4  (x=0.1875), in the absence of long-range Coulomb effects.
the charged stripe, and (B) = the magnetic rows farthest The hole doping on each layer is self-consistently adjusted to
from (nearest tbrow 4. LetV; be the Madelung potential for allow for inter-row hopping processes, and the Fermi level is
theith row, i“/i:(vi_vl)xo, x; the hole doping of théth adjusted to account for the overall doping. In the absence of
long-range Coulomb effects, the doping is close to the nomi-
nal values. Numerical results will be discussed in the follow-
_ _ ing subsection, which will show how they are modified by

Vi=Vo Kijx, (8)  Coulomb interaction.

! The large number of bands is rather deceptive. It is equal
where theK™ matrices have been calculated numerically,to the number of Cu atoms in the large unit cell, doubled
with results listed in Table I, for the casé®,2), m = 2,4,6.  since the up and down spin bands are not degenerate. There
The constan¥/,=2xe?/(ea) =0.914 V/e, for x,=0.25. would be the same number of banelgen if there were no

The stripe phase is stable only if the dielectric constant i$tripes But in this case, only one band would satisfy Bloch’s
large enough: recent calculatiGAsuggese>5 is sufficient.  theorem. This band can be determined by looking at the
The large static dielectric constant of the cupratesStructure factor—the overlap of the corresponding wave
~40-80% is a sign of strong electron-phonon coupling. functions withe'*"". Similarly, when stripes are present, the
This large coupling makes it difficult to accurately estimatesame structure factor determines which bands will be seen by
the strength of the Coulomb interaction. The dc dielectricphotoemission. This is illustrated in Fig. 3, where the circles
constant will be anisotropic and, most probably, dispersiveindicate a weight greater than 0.5, and tkés a weight
on the length scale of the stripes. Since interlayer contribubetween 0.5 and 0.1. For greater clarity, only the dispersions
tions to screening can be importafg.g., apical oxygens, alongl’—Y— Sare shown. The dispersions alo¥igparallel

A. Structure factor effects

row, andx; = (x;—X;)/X,. Then
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FIG. 4. Dispersion of 2,6 structure, parallel to the stripes. T
to the stripesand X (transverse to the stripeare shown in - /\/\ : '.:'.‘ 1
Figs. 4 and 5, respectively. The resulting weights reveal a o
simple result: the envelope of the bands is approximately a r X Sr X ST

superposition of the two limiting bands, at half filling and at
optimal doping, with considerable fine structure associate({JromF S for dopingsx — 0 (a), 0.0625(b). 0.125(c), 0.1875(d)
— X = , U, y U s V. [}

with minigaps. U ; ;
In the presence of stripes, the dispersion should be quas"fl-nOI 0.29solid line in(d)]. Data in(a) were shifted upward by 0.16

one-dimensional. This is clearly seen in Fig. 2, where the

dispersion alongl’—Y (I'—X) closely resembles that

along X—S (Y—S). However, with the structure factors Pected formacroscopicphase separation, even though at
included, the dispersions are quite distinct. Nevertheless, therossover the charge stripe is only two cells wide.

minigaps are most prominent in the dispersions perpendicu- The figures show that the dispersion is largely a superpo-
lar to the stripes]'— X (Fig. 5), andY—S (Fig. 4). sition of two sets of bands: one for the insulating magnetic

stripes, one for the charged stripes. The smials (large
circles indicate=80% of the wave function is on the mag-

!——(C) !— @

FIG. 6. Total dispersion in the absence of Coulomb repulsion,

B. Coulomb interaction

The doping dependence of the dispersion is shown in Fig.
6 (no Coulomb effectsand Fig. 7(moderate screening; 2@ L(b)
=15). The curves show the dispersions for a series of dop-
ings, fromI'— X=(,0)— S=(, 7). While the fine struc-
ture (minigap3 is strongly doping dependerihe overall dis-
persion is notand is essentially identical to the dispersion of
the uniform end phases. This is exactly what would be ex-

%
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2 eg s
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~ *
= i § : ! |
L i ¥ — e
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= : 1 + |
o N i
r X sr X sr X sr X s
-1
r X s r FIG. 7. Total dispersion corrected for charging=15) from

I'— S for dopings:x = 0.0625(a), 0.125(b), 0.167(c), 0.1875(d),
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netic (chargedl stripe; the small diamonds indicate a mixture I I B IR

of both. Note that there is strong overlap in the region of the 0.25 —( R 4

upper Hubbard band, while the magnetic lower Hubbard [ A —— ]

band (LHB) remains well defined at all dopings, and the [ P ]

charged stripes fill in the gap as doping increases. 0.20 L E .
It should be noted that once the charged stripes are re-

duced to two cells wide, at=0.125, the dispersion remains

nearly unchanged as the doping is further redu@ed., at X

x=0.0625). Hence an important aspect to understanding the

strongly underdoped stripe phases will be to develop a good o.10 _'

model for these limiting, two-cell stripes. As discussed be- [ ]

low, there is an analogous magnetic stripe beyond the perco- i ]

lation crossover, which can be modeled as a two-leg ladder. 0.05_ | —_——
Inclusion of Coulomb interaction leads to fairly modest . 1

changes in the dispersion. Careful inspection of Figs. 6 and 7 I | | |

reveals that charging effects push holes onto the magnetic T T T T T T e T e

layers, shifting the lower Hubbard band toward the Fermi N

level and causing it to more fully hybridize with the charged

|ayers_ With reduced screening:é 5) the bottom of the FIG. 8. Hole distribution on rOW$|abe|ed byN) of the 2,6

charged band actually falls below the magnetic lower Hub-tructure, fore== (i.e., no Coulomb interaction—solid line15

bard band. The layers near the Fermi level remain predomidashed ling or 5 (dotted ling.

nantly associated with the charged layers, so we may still

loosely speak of charged bands and magnetic bands. Nokility saturation has so far only been observed in LSCO; and
that in every case, the Fermi level lies within the minibandS€cond, LSCO closely resembles the other cuprates in the

closest to the van Hove singularity. This providedifierent ~ dOPing range up to 1/8, but for higher dopirig, saturates at
mechanisnfor the opening of the pseudogap, as will be dis-& much lower value.
cussed further below.

Even in the absence of Coulomb interaction, the carrier C. Minigaps

density in a given row deviates somewhat from the free- g re 7 shows the evolution of the minigaps with doping.
energy minima—here taken &s-0,0.25—due to the finitt A simple model provides a semiquantitative explanation of
hopplng probability. For the 2,6 structure, Figs. 2—4, thethese results. The dispersion along (0,Q)m,0) is dis-
magnetic layers have=0.025, and for the charged layers, qretizeqd inton levels for n-Cu-wide charge stripes. This
moving away from the magnetic layer, the hole doping isy,;,qwidth is 4{+2t')=584 meV. If the minibands are
0.25, 0.24, and 0.24. Adding the Madelung potential raise qually spaced, the average gap should be ©84/(

the energy of the hole-doped stripes, and requires a shift of 1) meV. Actually, the net bandwidth changes some with
the Fermi energy to compensate. However, since the magy

netic stripes are gapped, this shift makes little difference to oping, so a better formula is
the hole population on these stripes, the corresponding layer 584 meV
populations being 0.026, 0.255, 0.25, and 0.22, derl5 Ayy=——
(Fig. 7). For larger Coulomb interaction, the deviation be-

comes greatefFig. 8. The data display an interesting evo- — 292 (=2),146 (4), or 97 (6)meV, to be compared
lution: superimposed on a trend toward greater homogeneityyith average valuegFig. 7) of 260, 147, and 94 meV, re-
there is also a tendency to evolve int¢2a2) state. This can  spectively. For the dispersion along £0,— (, ), the same

be understood from Table I: the Coulomb effects are smallegiangs are present, but shifted by the dispersion aloremd
for this state, since the phase separation is restricted to thgiih total bandwidth a-2t").

finest scale. ) o For fluctuations in the stripe spacing, there will be a ten-
This result is of potential relevance for LSCO: itis found gency to average over the various dispersions in Fig. 7. This
expenmgntally that the incommensurability saturates. Neaill tend to wash out most of the minigaps, since they are
1/8 doping—here the crossover where #®%2) phase is ghjfted in energy as the stripe width changes. However, since
stable. The saturation could simply mean that for LSCO, Fhefhere is always one gap present near the Fermi level, this gap
Coulomb effects are large enough that the system locks intghoyid survive averaging. For the uniform stripe phases of
the (2,2) phase for all higher dopings. Fig. 7, this “pseudogap,” or distance between the Fermi

There is a striking asymmetry about 1/8 doping: in the|eye| and the nearests(0) minigap edge, follows the same
(6,2 phase, Coulomb interaction makes very little differ- scaling as Eq(9), A,=364h meV.

ence. This is because of the sharp cusp instability at half
filling, which keeps the hole doping fixed near zero in the
magnetic stripes, whereas the shallower potential minimum
near optimal doping allows more substantial density fluctua- Figure 7 shows that beyond the percolation crossover a
tions. clear remnant of the bulk VHS is visible in the striped phase
These results will be discussed further in a later sectiondispersion. In Fig. 9, it can be seen that splitting this VHS
Two points are worth mentioning: first, the incommensura-degeneracy produces a clear pseudogaplike splitting of the

(€)

n

D. Ferromagnetic stripes
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® - V. COMPARISON TO EXPERIMENT
o
~a y T 1 A. Photoemission in LSCO
d ad o . . .
-1p X sr Xx Ssr X Sr X S The doping dependence of the photoemission spectra in

LSCO(Ref. 66 is strikingly different from that in BSCC®’

FIG. 9. Dispersion alon¥ for a ferromagnetic instability on the |n this section, it will be shown thaboth spectra can be
charged stripes, fox=0.1875(2,6), and different degrees of mag- jnterpreted in terms of stripe phases, with stronger fluctua-
netizationM, as discussed in the text. tion effects in BSCCO. The key observation, Fig. 7, is that

stripes produce distinct dispersion features associated with
the magnetic stripes and the charged stripes—which can be
dispersion nears#,0). It is this lowering of a large density of identified with the hump and peak features in superconduct-
states that has been postulated to stabilize the chargédg BSCCO, and with similar features in LSCO.
stripes, and the figure clearly shows that the mechanism re- Since most samples contain many stripe domains, the
mains active even in the striped phase. photoemission should be compared with a superposition of

For the calculations in the figure, it was assumed that theéhe X and Y dispersions(Fig. 11). The following features
antiferromagnetic phase is stable only up to a dopigl®,  should be noted(i) there is always a flat band pseudogap
while for larger doping a ferromagnetic instability wins out. near (r,0), which tends to shift further below the Fermi
The ferromagnetic dispersion is also given by E@—(4),  level with increased underdopingii) The evolution with
but with q=(0,0) instead oQ=(, ). For the same value doping is not smooth: with increased doping, the magnetic
of U, the equilibriumM has the form shown in Fig. 10, band gradually fades away while a more metallic band grows
which was approximated byl =0.4-0.5x—0.2. in near the Fermi level. The overall doping dependence is

It should be noted that the doping dependence dependjuite similar to the experimental results of leo al®® (see
sensitively on the choice of parameters; these values arfgarticularly their Fig. 3 confirming the suggestion that
taken for illustrative purposes only. Figuréd® shows the stripes are better developed in LSCO than in BSCCO.
dispersion of the self-consistent solution with the Mi(x), Figure 12 compares ther(0) photoemission peak posi-
while the other frames show a redudddf 1/5 (c), 1/10(b), tions for LSCO(Ref. 66§ with the present calculations. Re-
or 0 (a). Since the parameters were chosen to have the VHSults for BSCCO(Ref. 68 are also shown; these will be
in frame (a) centered on the Fermi level, the pseudogapdiscussed in the following subsection. In LSCO, there are
opens approximately symmetrically about the Fermi level. two main features: oneX’s) is near—0.6 eV, with a dis-

This should not be taken as evidence that the chargegersion similar to that in the magnetic insulator SCOC, and
stripes really are ferromagnetic, only as an example of yeith a nearly doping-independent binding energy. The sec-
another kind of instability that is driven by the VHS. The ond feature(open circley is a gap close t&Eg with larger
figure illustrates that one can distinguish different instabili-doping dependence. Qualitatively, these features are similar
ties, but one must carefully analyze secondary characterise the hump and peak features in BSCCO, but with larger
tics, since the opening of the pseudogap nea) is com-  binding energies. These two features can be correlated with
mon to a variety of instabilities. In the present instance, awo prominent gaplike features in the calculations: the mag-
ferromagnetic instability does not double the unit cell, so thenetic gap associated with the lower Hubbard band on the
ghost dispersion beyondm(0) is absent, in contrast to ex- magnetic stripes, and the charge stripe gap, associated with
periment[see Fig. 1) below]. Moreover, the splitting of the miniband closest to the Fermi level. The calculated gaps
the spin-up and spin-down bands should lead to extra stru@re larger, since the energy scale has been chosen to agree
ture most clearly seefbelow the Fermi levglnearl’, which  with the magnetic gap in SCOC, yielding a valuel.2 eV
is not found experimentally. at half filling, but the overall doping dependences are quite
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'0"‘§_ compared to calculated Mott gddiamond$ and minigap(suns;
‘°~6:: _“,., the calculated values are reduced by a factor of 2. At the highest
-08 doping, the Mott gap does not show much intensity neaOy;
-1.0 what is plotted is energy of the corresponding dispersion nearest to
0.00F
; 0.000 (7,0).
-0.25F
050 In Fig. 12 the low-temperature photoemission p&ksé
—075F BSCCO are compared to those of LSCO. The peaks
: 3 (squares are in reasonable agreement with the riear-
-100 __/'\M ) ] pseudogap in LSCQxircles, and with the calculated mini-
—1.25p XY S g gaps. On the other hand, the humpis’§) are considerably

closer to the Fermi level than the magnetic stripe feature in
FIG. 11. Superposition ok andY dispersions for, from bottom | gco (x's); compared to theory, the overall offset is dif-
to top,x = 0, 0.0625(6,2 structurg, 0.125(2,2), and 0.18782,6..  ferent, but the doping dependence is similar. Nevertheless,
identification of the hump with the antiferromagnetic Mott
gap feature is compelling. Laughfifrclearly showed that the
photoemission data evolve with doping to match the SCOC
spectrum at half filling. In the Appendix it is shown that the
o complete doping dependence of the hump is well described
B. Photoemission in BSCCO by simply doping into the lower Hubbard band of the anti-
1. Below T, ferromagnet.

similar to LSCO. This similarity is brought out most clearly
by plotting the calculated gap values divided by tycha-
monds and suns

In BSCCO, there is a remarkable evolution of the photo-
emission with temperature, particularly on passing through 2. Above T
T.. Above T, the spectra are very broad, with a single In LSCO, the photoemission spectra were obsetienly
broad peak near 7,0) representing the normal-state in the superconducting state, due to surface degradation at
pseudogap. Below,, the spectra sharpen and split into two higher temperatures. However, the stripes are clearly better
features, commonly referred to as a “peak” n&r, with a  defined in LSCQthe two gap features are more clearly sepa-
“hump” at lower energies, close to the normal-state rated even thoughT. is considerably lower, so it is quite
pseudogap; between the peak and hump, there is a clepossible that the split spectral peaks persist abive
“dip” in intensity, below the level in the normal state. Re- In BSCCO, there is a sudden change of the photoemission
cently, systematic studies of these features in bottspectrum afl.: a single broad feature aboilg splits into a
tunneling® and photoemissiéfi were presented. Most strik- peak-dip-hump structure belo®, . This is here assumed to
ingly, photoemission finds these two peaks in the same dibe mainly a fluctuation effect: abovE., both features are
rection of k space, a feature which is very suggestive ofassumed to be present, but the line broadening is so large
phase separation. that they strongly overlap. BeloW,, fluctuations are greatly

Here, it will be assumed that the photoemission is domisuppressed, and the linewidth broadenIngs reduced by
nated by stripe effects, and the main role of superconductivever an order of magnitudé,so the individual spectral fea-
ity is to suppress fluctuation§The clear sharpening of the tures are resolved. Model calculations along these lines have
spectra belowl;, even in a range away from any gaps, is been presented, see Ref. (Fg. 19 and Ref. 73. Supercon-
demonstrated in Ref. 70The analysis will be in two parts. ductivity will also renormalize the gap on the charged
First, the lowT spectra will be compared with those of stripes, but this is a secondary efféet?
LSCO. Then the role of fluctuations in producing the high- A long-standing puzzle has been why the Fermi level in
smeared spectra will be discussed. optimally-doped BSCCO is so much further from the VHS
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(35 me\) than in most other cuprates. However, thatdomains proposed in a number of theorig$iowever, for
estimaté® was based on the normal-state dispersion, while idoping greater than 1/8 there are charged domains with mag-
is now clear that the appropriate comparison is with the disnetic domain walls, a situation not envisaged in these theo-
persion of the peak feature beldly. In this case, the VHS ries.

is estimated to be only 5 meV from the Fermi le?2l. An important aspect of stripe phase theory is the develop-
ment of a microscopic model for these domain walls. A num-
C. Summary: Magnetic vs charged pseudogaps ber of groups have suggested a connection between magnetic

stripes and even-leg ladders. Here, the magnetic domain
Ralls in the higher-doping regime are modeled as two-leg

ration from the Fermi level, from SCOC to LSCO to : :
o o ) ; ladders, which develop a spin gap as they move further apart,
BSCCO. It is likely that this is due to stripe fluctuation ef- with reduced interladder coupling.

fects, since as more holes fluctuate onto the magnetic stripes
the band moves closer # (similar to enhanced charging,
Fig. 7). Further evidence for this interpretation lies in the
high-T BSCCO spectra, where the peak and hump collapse In a stripe model, the magnetic neutron scattering near
into a single feature, which continues to resemble the magt,7) should be reflective of the properties of the magnetic
netic dispersioriAppendix and is even closer tAg than the  stripes. For LSCO, the incommensurability has been dis-
hump. The conclusion that fluctuations are strongest irtussed above, Fig. 8, and is further discussed in the follow-
BSCCO is consistent with the fact that incommensuraténg subsection. In YBCO, incommensurability has only been
magnetic modulations have not yet been clearly seen imesolved at one dopirfty but the doping dependence of the
BSCCO. peak width is consistent with a similar underlying, but unre-
On the other hand, the charge pseudogap, being fixed bsolved incommensurabiliif. In YBCO, the stripe model can
guantum size effects, EQ), is much less sensitive to fluc- also explain the doping dependence of the intensity of the
tuations. Results in LSCO and BSCCO are quite similar, and@nagnetic neutron scattering near,¢r), as well as the open-
in agreement with the present calculatidfy. 12). The idea  ing of aspin gap
that the pseudogap is associated with stripe minigaps has The doping dependence of the net intensity of the mag-
been proposed previousfyithe present calculation provides netic neutron scattering should reflect the relative density of
a systematic doping dependence and a connection with theagnetic stripes. For YBCQ,, the intensity was numeri-
VHS. Since the greatest energy lowering corresponds to hawally integrated from Fig. 2 of Ref. 79, and the result plotted
ing Eg centered on the miniband closest to the Ve8gest  in Fig. 13. While the relation betwegnand hole doping in
DOS, Fig. 15, this is a form ofstripe-induced van Hove YBCO is not completely settled, the straight line illustrates a
splitting. modified Tokur&® expression, with the doping of the planes
The present result improves on an earlier model for thestarting aty=0.2, and varying linearly witly. The results are
pseudogaf® That calculation, based on the photoemissionconsistent with the picture that all magnetic scattering is as-
studies of BSCCO in theormalstate, explained the opening sociated with the magnetic stripes, and the stripe phase
of the pseudogap in terms of a direct crossover from thevould terminate at arinaccessibledopingy=1.095. This
charged stripe gap to the larger gap on the magnetic stripgvould place the percolation crossoveryat 0.65, close to
The recent systematic studies in BSCORefs. 68 and 609 the plateau regime. Since the plateau has been interpreted as
and LSCO(Ref. 66 suggest that the low-temperature dataa 1/8 effecf'!® this suggests that the plateau doping is
are more representative of the stripe phase, and that the0.125. This fixes the constant of proportionality:
pseudogapor peak featureis associated with the charged =0.27(y—0.2), so the charged stripe doping, corresponding

There is a clear progression in the magnetic stripe sep

A. Spin gap

stripes only. to y=1.095, would be~0.25, in excellent agreement with
our other estimates. At optimal doping;~0.925, the hole
VI. ISOLATED MAGNETIC STRIPE doping would be~0.2. These estimates are also consistent

o , with Tokura et al,?® who found x=0.125 for y=0.75,
Coulomb repulsion inhibits long-range electronic phase,_ 25 fory=1, andx=.21 for optimal doping. The inset

separation, resulting in some form of nanoscale phasg, e figure shows thak,(x) follows the familiar parabolic

separatiort>* For a two-dimensional charge distribution, ;52

the low-energy phases are found to be domain-wall phases,

with the minority phase plating out as minimal-width domain T. X— X 2

walls separating domains of the macroscopic pase this T = 1‘( X ) : (10

situation, there will be a percolation crossover when the mi-

nority phase becomes the majority phase. with T¢ max=92 K, x,=0.2, andx,=0.16. Note that the
The present stripe phases share this domain-wall strudip in T, near the 60-K plateau is closexe- 1/8. The falloff

ture, in that the minority phase always appears as minimadf intensity is likely to be even steeper than illustrated in Fig.

width stripes. Strictly speaking, one-dimensional objects ddl3, since the data were presented only up to about 60 meV,

not have a percolation crossover, but at 1/8 doping there is while at the lower doping levels, there is considerable inten-

duality crossover, from dominant magnetic to dominantsity at higher frequencies.

charged stripes, which should be reflected in many properties The spectrum of the excitations near,¢r) has a compli-

of the stripes. cated evolution with doping, and below the superconducting
For doping less than 1/8, these minimum width chargeTl,, the intensity is suppressed below a doping dependent

stripes resemble the domain walls between antiferromagnetienergy, called the “spin gap’® This gap is distinct from the
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BSCCO photoemission. Strong fluctuations at high tempera-
Bires prevent any long-range stripe order or true spin gap.
The superconducting transition leads to three-dimensional
coherence, and hence greatly suppresses charge and spin
fluctuations in the stripes. Hence a long-range spin gap can
open on the magnetic stripes beldy. Consistent with this

. . : . . anterpretation, it should be noted that the spectrum in the
interpreted simply in terms of coupled magnetic laddéig. normal state in heavily doped YBCO has been

14()j.tthlow the 1/8 croﬂsﬂsovgtrr,] Bhe _magnﬁylic tshtrmm:dfbdd interpreted’84 in terms of a formula derived for spin-1
width decreases smoothly with doping, while the Interladder hains®® and hence expected to approximately hold for spin
coupling is approximately constant, since the hole-dope 12, two-leg ladders

stripe has fi'xed Widt.h' Theoretically, the Spin gap is found to é)ne should note the duality between the charge stripe
be (approximately inversely proportional to the ladder minigap, which grows as hole doping is redud@ig. 12,

width,®° so in this regime the spin gap scales linearly with ; : . L S
I~ . , which th in-
doping,A;= BJ/M, wherelJ is the exchange constam, the 2peda;?neg rﬂglgengg;iﬁgi?ge ig;n gap, which Increases with In

lfdder Wi,fj/th’ aqdﬁ ?, cr(:rrecti(t)]n for interIzT_ddel; couplin@d. Two final points should be notedi) After the present
=(1—-4J"1J), with J" the exchange coupling between a Ja'manuscript was first submitted, Tallon, Loram, and

cent ladderS? The solid line in Fig. 14 corresponds 8 \yjjiqms® provided considerable additional evidence that
=0.21. L the stripe phase terminates at a doping closg,taand that
Above the crossovenx=>Xo/2=0.125, M is fixed at 2 yemains large, even when the stripe phase is ab&grin
while B increases with doping, sinc’ decreases as the o regime where magnetic stripes are widely separated,
ho!e-doped stripes W'd.en' Since the Cu in the hOIe'd.OpeEEere may be an additional contribution to the magnetic scat-
stripes can be magnetized, the falloff should be relatlvely[ermg associated with Fermi-surface nesting efféas the

slow. Details are model_ sensitive, but qualitativel;_/ th‘? Ob'charged stripes. It is an outstanding task to combine the two
served behavior is readily reproduced. The curve in Fig. 14 ontributions.

follows from assuming a fallof”~N~1, whereN is the
hole-doped stripe width, inset to Fig. 1@t should be noted
that the falloff is sensitive to the hole-densky, here taken
as 0.25. Inelastic magnetic neutron diffraction finds a saturation of
The model predict§ that for an isolated stripe, the spin the incommensurability in LSCO at approximatedy= 1/8.
gap equalsl/2, at least when the exchange constant is thenithin the present framework, there are actually several pos-
same on all rungs and links. From Fig. 14, this implies asible explanations for the saturation. One was discussed
limiting value J~80 meV atx=0.25, considerably smaller above(Fig. 8): strong Coulomb interactions arrest the phase
than thex=0 value J=130 meV. Such a doping depen- separation at thé2,2) stripe, and higher doping causes these
dence forJd is not unexpected. For simplicity, however, the stripes to gradually fill in.
model assumes a constant value forthis value must be On this interpretation, the Coulomb effects are much
taken as)]=80 meV, to successfully model the single stripe stronger in LSCO than in YBCO, and the isolated spin gap
limit. The value is less critical near zero doping, where theregime(right-hand side of Fig. J4would not exist in LSCO.
gap is small. The Coulomb effects would indeed be expected to be stron-
In this model, the spin gap should already exist in theger in LSCO, since interlayer screening is weaker. In Nd-
normal state. The striking change observed atan be ex- substituted LSCO, due to the low-temperature tetragonal
plained as a fluctuation effect, similar to those seen in théLTT) phase structural distortions, stripes in alternate layers

pseudogap, and has a strikingly different doping dependen
(Fig. 14). A similar gap is seen in LSC&;3*but so far only
near x=0.15. There it is found that the spin gap is
isotropic®* further evidence that it is distinct from supercon-
ductivity or the pseudogap.

The doping dependence of this spin gap in YBCO can b

B. Incommensurability saturation
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are rotated by 90°; a similar situation may arise in LSCO fixed at that for 1/8 throughout the coexistence regime, but
perhaps due to LTT fluctuations. On the other hand, irshould disappear when a commensurate 2,4 phase is stable,
YBCO the magnetic correlations have a strangxis modu- ~ at X=2X¢/3=0.17. In LSCO, the 1/8 stripes are actually
lation, suggesting that stripes in both Cuplanes of a bi- found"?to persist up toc=0.25. Hence the need to postulate
layer run parallel, with the charged stripes offset laterally tolock-in effects at 1/8 doping, the exact analog of the stability
provide stronger interlayer screening. of the x=1/3 and 1/2 striped phases in nickelates. In this
However, there are other plausible explanations for in€ase, the heavily doped phases would have no magnetic scat-

commensurability saturation. Even before the discovery of€/ing, while the 1/8 stripes would have a scattering of fixed
stripes, it was found that low-temperature orthorhombic'ncommensurab'“ty’ but decreasing intensity and increasing

; ; . : «_ width, as the stripe domains shrink in size. The special sta-
E.LTO.) ﬁngl LTd'I_'ffdon:_ams of fkawly Ia_rg:e se:;@rﬁgug?gndls_n bility of the 1/8 phase may be associated with the finite re-
Inguishable difiraction peakscoexist near PING N~ giqual exchange coupling across the two-cell-wide charged

%tripes, which is responsible for the antiphase boundaries,

commensurability effect, similar to that found in the nick- 54 \yhich may be lost in wider charged stripes, or with the
elates, and that a similar effect arises, at least incipiently iBeqyced Coulomb energy.

LSCO. In this case, the residual magnetic scattering would At this stage, there is not enough information to judge
be due to regions that have not yet been doped beyond 1/8etween the two models for incommensurability saturation.
In the more highly doped domains, the magnetic stripesthe former, strong Coulomb effect, has the advantage that it
would have a spin gap: since the ground state of a two-legould simultaneously explain why, in LSCO is so low—
ladder is a spin singlet, it does not contribute to the magnetiéhe local hole density is forced away from optimal. However,
scattering. A related problem has been studied by Kinthere is considerable evidence that stripe phase order is better
et al,® who showed that in a random mix of weakly coupled developed in LSCO than in other cuprates, and this could
three-leg(magneti¢ ladders and two-leggeéspin-gapped, provide reason enough for a low&g.
and hence nonmagnetiladders, the magnetic incommensu-  In many ways, optimally doped LSCO resembles an un-
rability remains unchanged from that of the pure array ofderdoped YBCO. We have here suggested that this is be-
three-legged ladders. cause stripes and pseudogaps in both materials persist up to
Even without commensurability effects, one would expectx=0.25, wheread ; is optimal near 0.16 in LSCO, 0.2 in
1/8 lock-in over a finite doping range, when the 2,2 stripesyBCO. Satoet al®! have recently provided additional evi-
coexist with 2,4 stripes, which have a well defined spin gapdence that the pseudogap opens well abbyén optimally
In this case, the magnetic incommensurability should beloped LSCO.
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VII. DISCUSSION to properly include this averaging: it is a question of how the
A. Improvements for the stripe model system responds locally on different time scales.

The present model provides a significant advance in the
understanding of the stripe phase. Earlier calculaffbils
found that the stripes produce minigaps, but that an average, Figure 15 shows the calculated densities of states for a
smeared dispersion and Fermi surface could still be definediumber of stripe configurations, illustrating how the charged
The present calculation studies how holes redistribute in th&triPes gradually fill in the Mott-Hubbard gap. Within the
presence of a competition between a doping dependeﬁparged stripe dispersion, there_ is a single prominent mini-
chemical potential, which favors phase separation, and Colfiar shown on exp_anded scale in Fig. 18, close to hal_f flll]ng
lomb repulsion, which favors a uniform density distribution. of the é:hdarggd stripe, W.h'Ch gﬁdu"?‘”y clor?es uPh W't?]. In-
The full doping dependence of the dispersion is calculate r:easg_ opllng. Ctotmﬁ)r?rls\;)gsw::t) F.'g' 7f tsh OWE t atdt t'sf IS
with the striking result that the resulting dispersion re- € minigap closest o the - 2opIng ot Ie charged stripe

) - . . moves the Fermi level into the miniband below this gap,
sembles a weighted superposition of the dispersions of thgpproximately centered between two flat band states.
two end phases, with the addition of some superlattice mini-
gaps. This is very encouraging, in providing an explanation
for the photoemission results. Moreover, it shows that the C. Fermi surface and remnant Fermi surface
mechanisms responsible for the special stability of the end Figure 17 shows the Fermi surfaces corresponding to the
phases can continue to operate on these nanoscopic lengfime dopings as in Fig. 7. As expected from the “projected”
scales. dispersions in that figure, in all cases the wave functions are

A number of improvements still need to be made in the>909 associated with the charged stripes. Note the impor-
model. The next step would be to make the calculation fullytant role of the structure factors: while there is a well-defined
self-consistent, deriving the chemical potential by directlysyperlattice in each case, and hence each Fermi-surface seg-
calculating and minimizing the free energy of the stripedment is periodically repeated, the weight is highly nonuni-
phase. Since the dispersion is not greatly changed, it is uformly distributed, being concentrated predominantly near
likely that this additional step will greatly modify the present the |imiting x=0.25 Fermi surfacésolid line in the figures
results. The most ||ke|y Change would be that the densities The |arge flat sections of the 1/8 Stripe pattern, F|gb]_7
could adjust slightly to take advantage of the minigaps, betmay have been seen experimentally, both in Nd-substituted
ter centering them at the Fermi level. This could lead to § SCO at the 1/8 anomal§ and in BSCCG? although the
more systematic growth of the pseudogap with underdopingatter result is disputetf:
since the minigaps are associated with the charged stripes, Ronning et al®’ introduced an alternative, well-defined
and get larger as these stripes get narrower. energy surface, which they refer to as a “remnant Fermi

A complete understanding of the stripe phase, particularlysyrface” (rFs). This is the locus of points where the inte-
in BSCCO, lies in the correct inclusion of fluctuation effects.grated photoemission intensity, taken as proportiona| to
These effects can broadly be separated into two categoriegk), falls to one half its maximal value. While the intensity
depending on whether the fluctuation preserves the localpes fall to half at the Fermi level, it can also fall to half at
density distribution or not. In the former Category fall fluc- an energy away from the Fermi |ev@u_B_, the rFs is not a
tuations in the local stripe spacing, either static or slowlysyrface of constant energyindeed, a rFs was found for the
varying in time, and long-wavelength bending of the stripesjnsylating CaCuO,Cl,. We have show® that in this case
It is likely that the energy dispersion is a fairly localized the rFs(the locus of points where the coherence factor equals
function in space, and that these fluctuations can be calcqme_haﬁ maps out the superlattice zone boundé8ince the
lated as weighted averages over the present solutions. In thigodel does not include fluctuations, there is only one band
case, the dispersion would still be a superposition of the tWye|ow E-, and hence no photoemission distribution to inte-
end phases, and the main effect of the fluctuations would b@rate over.
to smear out the minigaps. Since there is always a gap near | the case of a stripe array, there are several complica-
the Fermi level, a residual pseudogap should survive. Moretions, First, there are several subbands, and one will get dif-
over, since the split-off LHB is well defined, particularly at ferent results depending on whether one calculates an rFs for
lower doping, it should persist as a distinguishable featurgach subband, or a single rFs for the whole valence band.
after averaging. This would resemble the photoemission ifrhe structure factor provides an additional complication,
LSCO. . . _since the intensity is almost never the full possible value.
which are fast enough, or disordered on a sufficiently shortyhere the net spectral function equals 1/2—actually, falls
wavelength scale so that the local density does not lie neggithin a range 0.48—0.52. Comparison of Fig. 17 and 18
the two potential minima. These fluctuations act to wipe ouishows that the true Fermi surface and the rFs are quite dis-

the stripe fluctuations on a local level, and the question isginct features, and that the rFs tends to follow the superlattice
can they describe the experimental results in BSCCO, whergsyillouin-zone boundaries.

for T>T., the two valence bands appear to collapse into a
single reconstructed band. This is a plausible result: as a line
of holes fluctuates back and forth in an antiferromagnetic
background, the background will have to adjust to some While there have been a number of suggestions that a
time-averaged hole density. The theoretical problem is hovgquantum critical point(QCP exists in the cuprate®, the

B. Density of states

D. QCP’s?
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present model suggests rather a series of preferred dopingpproach half filling from belowx—0~; the same band-
corresponding to commensurate stripes—much as found iwidth collapse occurs, but at a different ener@y,, with

the nickelates. The most prominent special dopings are thE™—E™" being the(renormalizedl charge transfer energy.

1/8 anomaly, corresponding to the duality crossover from Is there any way to reconcile the present results with slave
magnetic-dominated to charge-dominated stripes, and thisoson theory? | suggest the following possibility. When a
termination of the stripe phas&Sat approximately twice hole is doped into the Mott insulator, there is phase separa-
that density,xo=0.25. However, there are hints that othertion, and locally the dispersion is restorad:t,. At a dop-
special dopings also play a role. Thus the high-field localizaing x, a fractionx/x, of the electrons have hoppingt, the

tion transition in LSCQRef. 97 occurs atx=0.17, close to rest~0. But in the mean-field slave boson calculation the
the first appearance of two-leg-wide charged stripex at effect of the hole is uniformly spread out over the entire
=2x./3=0.167. Again, the superconducting transition termi-lattice, leading to an effective—xty. This is just what is
nates(and the horizontal-vertical stripes are replaced by difound in the present stripe calculation. As the material is
agonal stripeg® at x=0.058, close to the doping/4 where  doped, the magnetic band persists with little change, while a
the charged stripes first separate by more than four magnetiew band appears, characteristic of the hole-doped stripes,
cells. with full bandwidth,t~t, (neglecting superlattice gapbut

with relative intensity proportional ta, (Fig. 7). If this in-
terpretation is correct, it suggests that the slave boson calcu-

o _ _ _ lation may underestimate the tendency for phase separation.
It is instructive to compare the present results with earlier

slave boson calculations. In the simplest version, there is no

magnetic couplingJ=0, and the band structure near the VIIl. CONCLUSIONS
Mott transition is highly anomalous. There is a single band,
but as the doping approaches half filling:=0™", the band-
width vanishes, with both andt’ renormalized to zero. In
the three-band model, even after settithg- oo, there is still
a charge transfer energ, In this case, it is also possible to

E. Comparisons with slave boson results

This has been a long manuscript, which presents a coher-
ent view of the stripe phases in the cuprates. A number of
principal results of the calculations are here summarized.
Most of the results argenerig and would be expected in any
model where the stripes result from two-phase coexistence,
while a few are specific to a van Hove scenario.

(i) The stripes arise from a frustrated phase separation,
(2 (b) (c) i.e., there are two preferred hole dopings with independent
dispersions, one characteristic of antiferromagnetism.

(i) This allows a study of the evolution of the dispersion
as a function of hole doping.

(iii ) It is found that, even at this nanoscale level, the dis-
persion can be characterized asuperposition of two com-
ponents leading to a picture of magnetic stripe bands and

FIG. 17. Fermi surfaces for dopings= 0.0625(a), 0.125(b),  hole-doped(*‘charged”) stripe bands. This allows a natural
and 0.1875(c), and e=15. Solid line in each is the Fermi surface interpretation of the photoemission spectra in LSCO, and
for x=0.25. suggests a unified picture with BSCCO and SCOC.
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(iv) The calculations suggest that an important role of the // . L/ \
superconducting transition is to freeze out fluctuations of the
stripes. This freezeout manifests itself in three wagsthe S X p e o= s -

electron-electron scattering rate drops by several orders of
magnitude be|OWTC;71 (b) the photoemission dispersion FIG. 19. Dispersion of the doped antiferromagnet in mean-field
splits in BSCCO into a characteristic peak-dip-hump struc-model, forx=0 (a), 0.169(b), 0.356(c), and 0.392d). Data of Ref.
ture; (c) the (7,7) magnetic neutron scattering in YBCO 56=diamondS(SCOQ; Ref. 98=square§BSCCO(b) underdoped,
sharpens belowW ., revealing a characteristic spin gap. Tc=67 K; (c) overdoped,T.=85 KJ; and Ref. 68: BSCCO, tri-
(v) The doping dependence naturally leads to a picture of"9les (underdoped, T,=52 K) and circles (overdoped, T,
a series ofguantum critical pointSQCP'S or magic dop- =72 K). Solid lines: coherence_ factor-0.8; dashed lines:
ings, at which the stripe pattern is commensurate with thd-8>coherence factor0.2; dotted lines: coherence facter0.2.
crystalline lattice. The most prominent one is the famous 1/ orizontal fines=Fermi level.
effect, but the metal-insulator transition in LSCO and the _ _ )
onset of superconductivity are close to two other magic numeXplain the Uemura relation for underdoped cuprates in
bers. terms of flux phase physics, as long as the flux phase disper-
(vi) The percolation crossover at 1/8 doping provides &Sion is independent of doping. The paradox is that many
simple model of the spin gap in YBCO, showing that a two-Strong-coupling models expect the dispersion to renormalize

stripe. Sec. VIIE, for stripes this renormalization is taken as indi-

(vii) As a result of point(iii), the model has aatural ~ cating that thefraction of materialassociated with charged
VHS pinningto the Fermi level: if the VHS is at the Fermi Stripes renormalizes to zero at half filling, wherehe dis-
level in the charged stripe end phages it must be, if this Persion on a single stripés less sensitive to doping. Thus,
phase is stabilized by van Hove nestinthen the VHS re- the paradox is explained if the flux phase exists on the

mains close tdE over the entire doping range. charged stripes. Indeed, the flux phase is a form of dynamic
(viii) This provides a new explanation of the pseudogapcharge-density wave, closely related to the CDW and LTT
stripe-induced Van Hove splitting phases®? and hence could well live on charged stripes.

(ix) More speculatively, since superconductivity in
YBCO is strongest well beyond the percolation crossover
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where the charged stripes are stabilized by superconductiv-
ity. Moreover, a connection with CDW’s would naturally APPENDIX: MORE ON THE SDW DISPERSION
explain the experimental observation that the stripe phases the spw model, Sec. Il A, gives a good description of
are dominated by charge order rather than spin order, a resyf{e magnetic photoemission dispersion for insulating SCOC,
difficult to understand in a pure Hubbard @r model. for the hump feature in superconducting BSCCO, and for

Note added in proofSection VIB: Recent work by Bih- — omgstate BSCC@Fig. 19. For all curves, the band pa-
ner et al.”™ suggests that in RE-substituted LSCO there is;zmeters given below Ed4), are used, withM(x) found

phase separation betwegranomaly domainsx=0.125) self-consistently. The spectral weight is proportional to the
and fully doped domainsx(=0.25) . Thus “bulk supercon-  oherence factor

ductivity” is found only for x>0.18, close to the percola-
tion crossover0.125+0.25/2.

Section VII E: Orenstein and Mill#8° recently posed the [ - 1 ( 1+f_—) (A1)
Lee-Wen paradoX®! Lee and Wen showed that they could * ’
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with the subscript- (—) referring to the uppeflower) Hub-  consistent hole dopings are quite large, and are very different
bard band. for the hump and normal-state features. As discussed in Sec.

The results are qualitatively consistent with the insulating- the shift of the lower Hubbard band is presumably due to
oxycloride§®5” and both the hump pseudogdgiamonds fluctuation-induced hole filling of the magnetic stripes.

The first-order transition to the paramagnetic phase evi-
8
and squares® and the normal-state pseudogap)( (Refs. dent in Fig. 1 is a topological transition, arising when the

98 and 68 in BSCCO. The fact that the normal-state Fermi level crosses the band dispersion né&Fig. (19)d].
pseudogap has the dispersion of the lower Hubbard band has is rather striking, since topological transitions are typi-
been noted by a number of groups, including Schmaliancally rather weak—of order 2.5. A similar result was found
Pines, and Stojkovit® and Misraet al>* Note that the self- in the Hubbard modelt(=0) by Guineaet al>®
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