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NMR properties of a one-dimensional Cu-O model

T. Becker, M. Gabay, and T. Giamarchi
Laboratoire de Physique des Solides, CNRS UMR 85002, Universite´ Paris-Sud, 91405 Orsay, France

~Received 6 April 2000!

We obtain the Knight shifts and the relaxation rates related to the Fermi contact interaction term for a
one-dimensional Cu-O model using bosonization technique. We consider the small interaction limit at half-
filling and away from half-filling. In this framework we predict that the antiferromagnetic contribution to the
relaxation rate of the nuclear oxygen spin is completely suppressed even away from half-filling, when the
temperature is low enough. In the strong interaction limit at half-filling we compute the effective Fermi contact
interaction, performing a Gutzwiller projection. Both limits suggest that the one-dimensional versions of the
Mila-Rice and Shastry scenarios of transferred hyperfine couplings, which were proposed to explain the NMR
measurements for high-Tc cuprates, fail in a one-dimensional situation.
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I. INTRODUCTION

One of the challenging characteristics of the cuprate m
terials is the importance of magnetic fluctuations and th
effect on normal state transport and on superconductiv
This feature is naturally present in theoretical approac
emphasizing strong interactions in 2D. The role of mag
tism can also be assessed in other scenarios promoting
ginal or nearly antiferromagnetic Fermi liquid~NAFL! be-
havior. The NAFL framework has been used by Milli
Monien, and Pines1 to discuss NMR experiments: on th
basis of the Mila-Rice2 and Shastry3 local terms describing
spin fluctuations induced by the hyperfine interactions, th
authors were able to compute various Knight shifts a
nuclear relaxation times. However, there are critical rema
and further details to this theory,4–7 and also other theorie
introduced in order to interpret the behavior of the vario
Knight shifts and nuclear relaxation times in high-Tc super-
conductors, which we do not discuss here.8

In this paper, we will follow the basic assumption of Mi
and Rice that it is necessary to include a sizeable isotro
hyperfine interaction term to fit the data of NMR expe
ments in high-Tc cuprates. Thus in the following we wil
focus our interest on this contribution which comes mai
from the Fermi contact interaction between a nucleus and
surrounding partially filleds orbitals, namely the 4s orbital
for copper and the 3s orbital for oxygen. Experiments hav
shown that the magnetic properties are described by a sin
spin component model. In the weak interaction limit, th
single-spin degree of freedom could be associated with
strongly hybridized Cu 3d–O 2p antibonding band,6,7

whereas in the strong interaction limit it is associated w
the nearly localized Cu 3d spin.2,3,7 Within the local picture,
the contrasting NMR behavior seen on the Cu and O s
arises from their different hyperfine form factors. These
nothing but the Fourier transforms of the Fermi contact
teraction terms approximated by a sum over surrounding
calized next-neighbor Cu 3d spins.

One of the~many! complications concerning the physic
of cuprate materials is that there is still no consensus ab
what should be the correct theoretical approach to treat
relations in 2D: Is the ground state Fermi liquid or no
PRB 620163-1829/2000/62~18!/12489~16!/$15.00
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Fermi liquid like? Can one treat interactions perturbative
or is it more appropriate to treat kinetic terms as correctio
in the strongly interacting limit? In the latter category, wor
ing out a consistent treatment of the nondouble occupa
constraint is still an open issue.

By contrast, one-dimensional systems offer a perfect t
ing ground for the study of magnetic fluctuations. Since
one dimension it is possible to treat correlation effects pr
erly both in the limit of weak and strong interactions, su
models allow to compute explicitly the dependence of
relaxation. This allows to get some feeling for the effects
doping. In addition to the insight that such study allows
gain for higher dimensional models, there are explicit re
izations of one-dimensional systems, such as the Bechg
salts or copper germanate compounds.9,10

For these reasons, we choose to investigate hyperfine
teractions in the one-dimensional version of the Cu-O mod
This allows us to extract form factors both in the insulati
and in the doped regime, without assuming a specific form
the Fermi contact interaction term. We can then compare
exact results with the predictions that the standard appr
mation schemes used in two dimensions would give in
one-dimensional situation.

The paper is organized as follows. In Sec. II, we introdu
the model in one dimension, as well as the three differ
approximations used to describe the magnetic relaxation
cesses related to the Fermi contact interaction term, nam
that due to Mila-Rice,2 to Shastry,3 and to Bulut.7 In Sec. III,
we solve the full model for weak interactions as compared
the bandwidth. We obtain spin-spin correlation functions a
discuss the Knight shiftK and the relaxation rate 1/T1 in
detail. We compare our results with the prediction of t
Bulut model, which is applicable for weak interactions. Se
tion IV solves the problem in the opposite limit of ver
strong interactions using a Gutzwiller projection eliminati
double occupation on the copper sites. We again comp
our results with the one-dimensional extrapolation of t
Mila-Rice and of the Shastry approximations. A general d
cussion of our results is presented in Sec. V. Since NM
data on organic11 and inorganic quasi-1D compounds see
to give an essentially isotropic relaxation rate, the body
the paper mostly focuses on the isotropic contribution to
12 489 ©2000 The American Physical Society
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12 490 PRB 62T. BECKER, M. GABAY, AND T. GIAMARCHI
hyperfine interaction. Yet, for the sake of completeness
in view of the fact thatK can be anisotropic~see below in
Sec. V! we discuss the effect of anisotropic hyperfine ter
in Appendix A: these terms only modify prefactors in th
expressions of 1/T1 and of K. Appendixes B and C offer
details of our calculations.

II. DEFINITION OF THE MODELS

A. The four-band model

We consider a system with two different atoms per u
cell ~Cu and O!. In order to describe the ground state pro
erties, we take into account the 3d and 2p orbitals on Cu and
O, respectively. The related hole states are represente
Fig. 1 and denoted bya and b in the following. Since the
coupling to the nuclear spin via the Fermi contact interact
occurs only for partially filleds orbitals, we also have to
retain the Cu 4s and O 3s shells ~denoted byA and B) to
correctly obtain the desired NMR properties. The Ham
tonian describing the system can thus be written as

H5H01HS1HN , ~2.1!

whereH0 contains the electronically relevant orbitalsa and
b. HS describes the coupling of orbitalsa andb to orbitalsA
andB. As indicated in Fig. 1, the orbitalsA andB are basi-
cally filled and produce only small corrections to the ele
tronic term represented byH0, so that we will treatHS as a
perturbation. Finally,HN describes the coupling of the orbi
als A and B to the nuclear spins and will be treated as
small—time dependent—perturbation in linear response.

The main contribution,H0, is given by

H05HT1HU , ~2.2!

where

HT5(
j

eana j1ebnb j2(
j s

tab@aj s
† ~bj s1bj 21,s!1H.c.#,

~2.3!

FIG. 1. Energies of the various orbitals. The Cu 3d and O 2p
~respectivelya andb) orbitals are the relevant ones to describe
electronic degrees of freedom. The Cu 4s and O 3s ~respectivelyA
andB) should be kept to describe the coupling to the nuclear s
via a Fermi contact interaction.
d

s

t
-

in

n

-

-

HU5(
j

Uana j↑na j↓1(
j

Ubnb j↑nb j↓ . ~2.4!

Heretab describes the hopping between the Cu 3d and the O
2p orbitals with the phase conventions shown in Fig. 2.Ua
and Ub are the local repulsions on the copper and oxyg
sites as shown in Fig. 1. The Coulomb repulsionsUA andUB
can be ignored assuming that energy cost considerations
courage processes in which two holes are excited in ons
orbital. A nearest neighbor interactionUab could also be
added to the model to generate a phase transition to a su
conducting phase,12 but here our study deals with the vicinit
of the half-filled case, i.e., near the antiferromagnetic pha
and we will ignoreUab .

The coupling between the orbitalsa,b andA,B reads

HS5(
j

eAnA j1eBnB j1(
j s

tBa@Bj s
† ~aj 11,s2aj s!1H.c.#

1(
j s

tAb@Aj s
† ~bj s1bj 21,s!1H.c.#

1(
j s

tAa@Aj s
† ~aj 11,s1aj 21,s!1H.c.# ~2.5!

with the phase conventions of Fig. 2. The density opera
nh j in Eqs.~2.3!, ~2.4!, and~2.5! are the standard ones

nh j5(
s

nh j s5(
s

h j s
† h j s , ~2.6!

whereh5a,b,A,B.
Finally, the isotropic coupling to the nuclear spins (I for

the copper atom andJ for the oxygen atom! is given by

HN5(
j

CAI jSA j1CBJjSB j , ~2.7!

where similarly to Eq.~2.6! the spin operators are given b

Sh j5
1

2 (
s1s2

h j s1

† ss1s2
h j s2

. ~2.8!

The coupling constant for the electron-nuclear interaction
given by Ch5(8p/3)uch(0)u2gngmB\, which is propor-
tional to the local hole density for the respectives orbitals at
the origin.ss1s2

are the Pauli matrices.

in

FIG. 2. Cu 3d and Cu 4s orbitals as well as the O 2p and O 3s
orbitals in the unit cells. The chosen signs of the wave functio
determine the phase convention for the Hamiltonian and the s
of the various tight-binding parametersthh8 .
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B. Reduced models

In 1D, the Hamiltonian~2.1! can explicitly be expresse
in terms of bose fields. This allows for a full treatment,
which H0 ,HS , andHN are all treated on an equal footing
This is the route we follow in Sec. III. In higher dimensio
there is still no solution of the fully interacting problem. S
various approximation schemes have been devised and
plied to each of the pieces ofH separately. These lead t
effective ‘‘nuclear’’ Hamiltonians: the Mila-Rice and th
Shastry model for strong interactions and the Bulut mo
for weak interactions. Typically, the analysis by Mila-Ric
and Shastry starts from a partially projected Hamiltonian

H5 P̂H0P̂1HS1HN . ~2.9!

The first part gives thet-J model or at half-filling the
Heisenberg model, which contains the dynamics related
the Cu 3d and O 2p orbitals. The second part contains th
unprojected degrees of freedom related to the Cu 4s and O
3s orbitals, as well as the electron-nuclear interaction p
Further approximations forHS andHN lead to the Mila-Rice
model or to the Shastry model~see below!. In the weak
interaction limit, Bulutet al. have proposed an RPA trea
ment of H0 in combination with the effective electron
nuclear interaction term of Mila-Rice and Shastry.

Before we turn to the full solution of the model, let u
review the main features of such approximations when
plied to our one-dimensional system. This will allow us
contrast the predictions of the 1D version of these three m
els and the results obtained for the four-band model, wh
may provide some clue to the validity of these approac
for strongly correlated systems.

1. The Mila-Rice model for strong interaction

The model defined in Eq.~2.1! is approximated by

H.H0
Mi1HN

Mi . ~2.10!

H0
Mi is the approximation for Eq.~2.2! and denotes, at half

filling, a Heisenberg model for local Cu 3d spins generated
by

H0
Mi5 P̂@H0~Ub50!# P̂, ~2.11!

whereP̂ is the Gutzwiller projection operator which prohib
its doubly occupied Cu 3d states. The additional unprojecte
part ~2.5! with tAa5tBa50 and the electron-nuclear intera
tion part ~2.7! are approximated by

HN
Mi5(

j
CAI jSA j

Mi , ~2.12!

where

SA j
Mi5FAa

Mi~Sa, j 211Sa, j 11!. ~2.13!

Thus SA j
Mi is the Mila-Rice approximation for the origina

spin SA j used to explain the NMR experiments measured
the copper sites.FAa

Mi5ulAa
Mi u2 denotes the effective overla

between one Cu 4s spin with a neighboring Cu 3d spin. In
the Mila-Rice model only hopping processes via the Op
orbitals are included, whereas the direct hopping between
p-

l

to

t.

-

d-
h
s

n

u

3d and Cu 4s orbitals is ignored. In Ref. 2 Mila and Ric
perform a quantum chemical analysis without including
teraction effects, so we will do the same and propose for
amplitudes

lAa
Mi52

tAatab

~ea2eA!~ea2eb!
. ~2.14!

This result is obtained by a projection in real space of a
4s orbital onto a neighboring Cu 3d orbital for Ua50. The
Fourier transform of Eq.~2.13! is given by

SAp
Mi5FAa

Mi~p!Sap ~2.15!

with the Mila-Rice form factor

FAa
Mi~p!52FAa

Mi cos~pa!. ~2.16!

2. The Shastry model for strong interaction

The approximation proposed by Shastry in Ref. 3 is giv
by

H.H0
Sh1HN

Sh, ~2.17!

where

H0
Sh5 P̂@H0~Ub50,Ua5`!# P̂ ~2.18!

leads to the Heisenberg model at half-filling and to thet-J
model for a doped system with strong repulsion on the c
per sites. The electron-nuclear interaction part reads

HN
Sh5(

j
CAI jSA j

Sh1CBJjSB j
Sh, ~2.19!

where the spinsSh j
Sh are approximated by a linear combin

tion of unprojected Cu 3d orbitals

SA j
Sh5FAa

Sh~Sa, j 211Sa, j 11!1FAb
Sh~Sb j1Sb, j 21!

>FAa
Sh~Sa, j 211Sa, j 11! ~2.20!

and

SB j
Sh5FBa

Sh~Sa j1Sa, j 11!, ~2.21!

with the coefficients

FAa
Sh5ulAa

Shu25S tAa

eA2ea
D 2

, ~2.22!

FAb
Sh5ulAb

Shu25S tAb

eA2eb
D 2

, ~2.23!

FBa
Sh5ulBa

Shu25S tBa

eB2ea
D 2

. ~2.24!

For finite doping, it is assumed in Ref. 3 that the spin degr
of freedom related toSb j are quenched in a Zhang-Ric
singlet.13 This assumption justifies the second approximat
done in Eq.~2.20!. Further, Shastry includes only the dire
couplings~2.22! up to second order proportional totAa

2 for
the relaxation of the nuclear copper spin and ignores
fourth order contributions proportional totab

2 tAb
2 via the O 2p
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orbital as proposed by Mila and Rice. The Fourier transfo
of the approximated spinsSh j

Sh reads

Shp
Sh52Fha

Sh~p!Sap , ~2.25!

with

FAa
Sh~p!52FAa

Sh cos~pa!, ~2.26!

FBa
Sh~p!52FBa

Sh cos~pa/2!. ~2.27!

For the uniform contribution (p;0) all form factors are fi-
nite, but for the antiferromagnetic wave vector (p;p/a) the
form factor vanishes for the oxygen sites, whereas it st
finite for the copper sites. Thus Eqs.~2.16!, ~2.26!, and
~2.27! are the one-dimensional analogs of the NMR Mi
Rice and Shastry form factors for high-Tc cuprates.

3. The Bulut model for weak interaction

In Ref. 7, Bulutet al. used a weak interaction RPA ca
culation combined with an electron-nuclear interaction
proposed by Mila-Rice and Shastry to compute NMR rela
quantities for the high-Tc cuprates. The one-dimension
analog reads

H.H0
Bu1HN

Bu. ~2.28!

In two dimensions,H0
Bu is obtained by applying the RPA

method to the 2D version of Eq.~2.2! with Ub50. In one
dimension, we can treat all the interaction terms (Ua ,Ub) of
the original HamiltonianH0 by means of bosonization and o
renormalization-group theory. Finally, the electron-nucle
interaction termHN

Bu is given in analogy to Eq.~2.19! replac-
ing the approximated spins by

SA j
Bu5FAa

Bu~Sa, j 211Sa, j 11!, ~2.29!

SB j
Bu5FBa

Bu~Sa j1Sa, j 11!. ~2.30!

In Ref. 7, the parametersFha
Bu are undefined and could i

general include all possible overlaps of the Cu 4s and O 3s
orbitals with the Cu 3d orbitals in the sense of Mila-Rice an
Shastry. The coefficient for the oxygen will be

FBa
Bu5ulBa

Buu25ulBa
Shu2, ~2.31!

and is thus the same as that proposed by Shastry, wherea
coefficient for copper

FAa
Bu5ulAa

Buu25ulAa
Sh1lAa

Mi u2 ~2.32!

includes additional combined terms of third order prop
tional to tAatAbtab , which are absent in the Mila-Rice an
the Shastry model. The form factors correspond to

FAa
Bu~p!52FAa

Bu cos~pa!, ~2.33!

FBa
Bu~p!52FBa

Bu cos~pa/2!. ~2.34!

III. THE WEAK INTERACTION LIMIT

Let us now solve the full model~2.1! when interactions
are weak compared to the bandwidth. This allows us to
s

s
d

r

the

-

e

the bosonization technique for treating interactions in
undoped as well as in the doped case.

A. NMR properties of the four-band model

1. Reduction to an effective single-band Hamiltonian

Instead of working with the basisa,b it is more conve-
nient to diagonalize Eq.~2.3! within a unit cell, and to intro-
duce the bonding and antibonding bands. Using the trans
mation

aks5@cos~gk!aks2sin~gk!bks#e2 i (ka/2),

bks5sin~gk!aks1cos~gk!bks , ~3.1!

with

tan~2gk!5
2tab

e
cos~ka/2!, gkPF0,

p

4 F , ~3.2!

the kinetic energy~2.3! becomes

HT5(
ks

@ea~k!aks
† aks1eb~k!bks

† bks#, ~3.3!

where the stateuaks& refers to the lower Hubbard band wit
energyea(k)52e/cos(2gk), and the stateubks& to the upper
one with energyeb(k)5e/cos(2gk). In the absence of inter
actions the chemical potentialm lies in thea-band both for
the undoped and for the doped system, and one can ig
the b-band, which is at leasteb2ea52e higher in energy.
The same property holds when the interaction terms~2.4! are
added to Eq.~2.3!, given that in the weak coupling limi
Ub ,Ua!2tab

2 /e. Correlation effects in 1D will strongly af-
fect thea-band states, thus in the following we ignore th
terms containingb-operators when substituting Eq.~3.1!
into Eq. ~2.4!.

Substituting Eq.~3.1! into Eq.~2.5! and performing a first
order perturbation theory with respect toHS , all operators in
Eq. ~2.1! can be written as

hks>lha~k!aks , ~3.4!

with

laa~k!5cos~gk!e
2 i (ka/2),

lba~k!5sin~gk!,

lAa~k!5
2tAa cos~ka!

ea~k!2eA
cos~gk!e

2 i (ka/2)

1
2tAb cos~ka/2!

ea~k!2eA
sin~gk!e

2 i (ka/2),

lBa~k!5
2i t Ba sin~ka/2!

ea~k!2eB
cos~gk!. ~3.5!

Here we have assumed an unperturbed ground stateua (1)&
>ua&. Thus Eq.~3.4! implies that Eq.~2.1! reduces to an
effective single-band Hamiltonian.
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2. The continuum limit

We can now use the standard techniques in order to t
interacting one-dimensional systems. Restricting ourselve
the low energy physics regime we make the usual appr
mation valid for 1D systems, i.e., we linearize the spectr
close to the Fermi points, as shown in Fig. 3. Then
Hamiltonian~2.2! is reduced to

HT5 (
r 56,q,s

rvFqa rqs
† a rqs , ~3.6!

HU5(
r ,q

U~r !

N
a r 1 ,q11q3↑

† a r 2 ,q22q3↓
† a r 3 ,q2↓a r 4 ,q1↑ ,

~3.7!

where r5(r 1 ,r 2 ,r 3 ,r 4) and q5(q1 ,q2 ,q3). U(r ) param-
etrizes the repulsive interaction in the continuum limit and
given in terms of the standard notations as

U~6,6,6,6 ![Uo ,

U~6,7,7,6 ![Uo ,

U~6,7,6,7 ![Us ,

U~6,6,7,7 ![Uc . ~3.8!

Uo refers to the two forward scattering processes,Us to the
backward scattering, andUc to the umklapp scattering pro
cess that occurs at half-filling. The relation to the local
pulsions defined in Eq.~2.4! is given by

Uo5Uba1Uaa.0,

Us5Uba1Uaa.0,

Uc5Uba2Uaa,0, ~3.9!

FIG. 3. Linearization of the spectrum close to the Fermi poin
The momentumk is replaced byrkF1q, wherer 56 denotes the
two possible directions.l.uqu is an ultraviolet cutoff of the order
of the bandwidth and the Fermi velocity isvF5]kea(k)ukF

.

at
to
i-

e

s

-

whereUha is the short notation for the projected Coulom
energiesUhulha(kF)u4.

As usual for interacting one-dimensional systems, it
useful to introduce a boson representation of the ferm
operators, related to the charge and spin density fluctuati
Since the technique is standard, we only recall the main s
and refer the reader to the literature.14–17 We rewrite the
original density operators in terms of a linear combination
charge (n5c) and spin (n5s) density operators for eac
branch

r rs5~r rc1sr rs!/A2. ~3.10!

These density operators define the phase fields

Fn~x!52
ip

L (
r ,qÞ0

1

q
e2auqu/22 iqxr rn ,

Qn~x!5
ip

L (
r ,qÞ0

r

q
e2auqu/22 iqxr rn . ~3.11!

All operators can be expressed in terms of the boson fie
~3.11!, and the fermion operator reads

a rs~x!5
1

A2pa
eirk Fx2 i [ r (Fc1sFs)2(Qc1sQs)]/A2.

~3.12!

The complete Hamiltonian becomes

H5~H0
c1HU

c !1~H0
s1HU

s !1HN , ~3.13!

where

H0
n5E dx

2p F ~unKn!~pPn!21S un

Kn
D ~]xFn!2G ~3.14!

is a quadratic part containing only charge or spin degree
freedom ~with n5c,s). In Eq. ~3.14!, the variable Pn

5]xQn is the momentum density conjugate toFn , and thus
they respect the commutation relation@Fn(x),Pn(x8)#
5 id(x2x8). The interaction terms are given by

HU
c 52E dx

2aUaa

~2pa!2
cos@A8Fc2d~x2a/2!#

1E dx
2aUba

~2pa!2
cos@A8Fc2dx# ~3.15!

HU
s 5E dx

2aUs

~2pa!2
cos@A8Fs#. ~3.16!

Here d54kF22p/a is proportional to the doping of the
system with respect to the half-filled case shown in Fig
~for which kF5p/2a). Using this representation we suppo
to work with a fixed number of particles, sincekF is directly
related to the filling. Finally, the isotropic electron-nucle
interaction part could be written as

HN5E dx@CAI ~x!SA~x!1CBJ~x!SB~x!#, ~3.17!

where HN is the projection of Eq.~2.7! onto the a-band
using Eqs.~2.8! and ~3.4!. The projected spin operatorsSh

.
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are expressed in terms of Eq.~3.12!. For example, the
z-component of the spin operatorSh can be represented as
sum ofp;0 andp;2kF components as

Sh
z ~x!5ulha~kF!u2@ s̄a~x!1 s̃ha~x!#, ~3.18!

where the nonoscillatory part is given by

s̄a~x!52
1

A2p
~]xFs! ~3.19!

and the oscillatory part by

s̃ha~x!5
1

pa
sin@A2Fs#sin@2kF~x2xh!2A2Fc#.

~3.20!

The difference between the copper and the oxygen site
reflected in the value ofxh and affects the oscillatory par
indeed, for copperxa5xA5a/2 and for oxygenxb5xB50
as a consequence of the different phase factors in Eq.~3.5!.

In Eq. ~3.14!, the un are the new velocities for the
n-excitation and theKn are the Luttinger liquid parameter
controlling the anomalous exponents in the correlation fu
tions. For weak coupling, they are related to the interacti
in Eq. ~3.7! by

usKs5ucKc5vF ,

us /Ks5vF2aUo /p,

uc /Kc5vF1aUo /p. ~3.21!

Since the Luttinger liquid representation is more general t
the perturbative result for small interactions, it is also app
cable when the interactions are strong. The quadratic Ha
tonian can be viewed in this case as an effective Hamilton
describing the low-energy properties of the system, provi
that the correct Luttinger liquid parameters are used. Su
smooth connection between weak and strong coupling
been proven for single-band models,18,19 and a similar Lut-
tinger representation has been shown to work for the cas
the two-band model.12,20 Equations~3.13!–~3.17! define the
four-band model, and the NMR properties can be compu
throughHN .

3. Correlation functions at zero temperature

We focus here on the spin-spin correlation functions r
evant for NMR and for neutron scattering experiments. T
general form of these functions is

Rhh8~x,t!5^TtSh8
z

~x,t!Sh
z ~0,0!&2^Sh8

z &^Sh
z &,

~3.22!

and it describes correlations between different orbitalsh and
h8 at different points in Euclidean space-time. Here we
troduce the decomposition of this function into a nonosci
tory and an oscillatory part

Rhh8~x,t!5R̄hh8~x,t!1cos~2kFx!R̃hh8~x,t!,
~3.23!

since the behavior of these functions will be very differe
for one-dimensional systems.
is

-
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Because of the doping dependence in the cosine term
Eq. ~3.15!, the behavior of the system will quite clearly b
different for zero and for finite doping. At half-filling, one
sees from Eqs.~3.21!, ~B2!, and~B3! that charge excitations
are massive (cm), whereas spin excitations are in the mas
less regime (so). One recovers the standard Mott or charg
transfer insulator with the massless excitations correspo
ing to a Heisenberg-like exchange. In the doped case,
term ~3.15! is irrelevant because of the oscillatory factordx.
However, at short distances or for short times this term
still small, and the cosine term will influence the behavior
the system. We thus distinguish between two different
gimes for the doped case: we assume that for intermed
distances (a!x! l d) the system remains in the (cm ,so)
phase as mentioned before for the half-filled case, and w
distances are larger thanl d , the system will be in the (co ,so)
phase because the umklapp process becomes ineffective
characteristic length separating these two regimes den
essentially the distance between two charge domain w
and is given byl d52p/d.

Due to the spin-charge separation in Eq.~3.13!, each part
of the correlation function~3.23! will factorize into indepen-
dent averages over the spin (so) and the charge sector (co or
cm), and will only depend on the characteristic distancer n

5@(unt)21x2#1/2 between two points in Euclidean spac
time ~with n5s,c). Details about the correlation functions i
the various regimes (ci ,si) are explained in Appendix B
Substituting Eqs.~3.18!–~3.20! in Eq. ~3.22!, the nonoscilla-
tory contribution to the correlation function is given by

R̄hh85ulhau2ulh8au2R̄a~r s!, ~3.24!

whereR̄a(r s)5(2pr s)
22 depends only on the spin degre

of freedom and is thus completely independent of the co
isting charge phase. Notice that this function is also indep
dent of the orbitalsh andh8, and thus there is no fundamen
tal difference between copper and oxygen contributions.

For the oscillatory part of the spin-spin correlation fun
tions, the situation will be quite different. We restrict ou
selves to the calculation of correlation functions betwe
identical orbitals (h5h8). Using averages over the charg
and spin sectors of the Hamiltonian~3.13!, these functions
can be reexpressed as

R̃hh
cm ,so5

ulhau4

~2pa!2
R̃ha

cm~r c!R̃a
so~r s! ~3.25!

in the massive charge regime and as

R̃hh
co ,so5

ulhau4

~2pa!2
R̃a

co~r c!R̃a
so~r s! ~3.26!

in the massless charge regime. The newly defined correla
functions in the massless phases (no) are given by

R̃a
no~r n!5~a/r n!Kn* F~r n!. ~3.27!

The functionF(r n) describes the corrections to the Lutting
liquid behavior which come from the flow to the fixe
point.21 To lowest order,F(r n) can be approximated by 1
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The renormalized Luttinger liquid parametersKn* for a spin
symmetric model with repulsive interaction are restricted

Ks* 51, 0<Kc* <1. ~3.28!

The value of the renormalized Luttinger liquid parameterKc*
depends on the interactions. For weak interaction,Kc* is
close to 1, and it decreases as interactions become mor
pulsive.

The correlation functions in Eq.~3.25! which are charac-
terized by the massive charge phase are given by

R̃Aa
cm~r c!52 cosh@KcK0~mcr c!#~mca!Kc,

R̃Ba
cm~r c!52 sinh@KcK0~mcr c!#~mca!Kc ~3.29!

and depend on the chosen orbitalh. Thus, the behavior for
copper and oxygen will be quite different. It depends on
distancer c , the massmc , and the stiffness constantKc . In
general, for distances larger thanl mc

51/mc , the function

R̃Aa
cm for copper tends to a finite constant, whereasR̃Ba

cm for
oxygen tends exponentially to zero.

4. The asymptotic expressions at finite temperature

In order to obtain the temperature dependent correla
function R̃hh(x,t,b), we will only use the asymptotic ex
pressions of Eq.~3.29!. We recover a Luttinger liquid behav
ior, and the temperature dependence can easily be obta
with the help of the conformal symmetry;22 indeed, we only
need to replacer n(x,t) by r n(x,t,b) where

r n~x,t,b!5
unb

p
AsinhFx2 iunt

unb/p
GsinhFx1 iunt

unb/p
G .

~3.30!

The relevant asymptotic expressions at half-filling and aw
from half-filling depend on the relative magnitudes of t
various characteristic lengths of the system, namely
lengths related to the mass,l mc

, and to the doping,l d , as

well as the thermal lengthl b5min$(ucb)21,(usb)21%.
For half-filling (g50) at low temperature, we are in th

regime wherel b@r c@ l mc
and l d5`, thus we can approxi-

mate the oscillatory charge contribution in Eq.~3.25!, and
the functions are simplified to

R̃hh
0 5Ch

0 ulhau4R̃a
0~r s!, ~3.31!

where the amplitude of the oscillatory part at half-filling
given byCh

05R̃ha
cm (`c). The remaining correlation function

is independent of the orbitalh and given by R̃a
0

5(2pa)22(a/r s).
The large distance limit of the corresponding express

for small doping (g5d) and low temperature, wherel b
@r c@ l d@ l mc

, looks like

R̃hh
d 5Ch

d ulhau4R̃a
d ~r c ,r s!. ~3.32!

In the doped regime,Ch
d is the amplitudeR̃ha

cm ( l d) obtained
in the massive phase at the crossover, as shown in Fig
Like before, the remaining correlation functionR̃a

d

re-

e

n

ed

y

e

n

4.

5(2pa)22(a/rs)(a/rc)
Kc* is also independent ofh but shows

dependence on spin and charge degrees of freedom.
larger doping rates (l d, l mc

), the difference between coppe
and oxygen sites vanishes.

5. Knight shifts and relaxation rates

The standard expressions for the Knight shifts and for
relaxation rates resulting from a hyperfine coupling term l
Eq. ~2.7! are

Kh
g5

Ch

ghge\
2 (

h85a,b

xhh8
g

~v50,p→0!, ~3.33!

1

T1h
g

5
Ch

2

ghge\
2b

(
p

Im@xhh
g ~vh ,p!#

vh
, ~3.34!

where g50 refers to the half-filled case andg5d to the
doped case.vh denotes the electronic Zeeman frequency
orbital h, which is very small as compared to the ener
scale of the purely electronic system fixed by the cutoffl.
For the Knight shifts the sum is restricted to the active orb
als a andb. We can split up the susceptibilityxhh8

g into the

nonoscillatory x̄hh8
g and the oscillatory contributionx̃hh8

g

just like for the correlation functions in Eq.~3.23!. Finally,
the Knight shifts for the linearized four-band model in un
of Ch /(ghge\

2) are given by

Kh
g5F̄hax̄a~v50,q→0! ~3.35!

and the relaxation rates in units ofCh
2/(ghge\

2vh) by

1

T1h
g

5
1

b (
uqu,l

Im@~ F̄ha!2x̄a~vh ,q!1~ F̃ha
g !2x̃a

g~vh ,q!#.

~3.36!

The susceptibilitiesx̄a andx̃a
g in space-time can be obtaine

from

x̄a~x,t !52u~ t !Im@R̄a~x,t,b!#t5 i t 1e , ~3.37!

FIG. 4. Crossover for the charge contribution to the spin-s

correlation functionR̃ha
ci from the massive charge regime (cm

phase! to the massless charge regime (co phase! at low temperature
and for small doping. The behavior for copper~h5A! and oxygen
~h5B! is quite different: For copper the amplitude remains finite
long distance, whereas the amplitude for oxygen vanishes.
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x̃a
g~x,t !52u~ t !Im@R̃a

g~x,t,b!#t5 i t 1e ~3.38!

performing the continuation to real time. Thet-ordered tem-
perature dependent Green’s functions on the right-hand
are the same as in Eqs.~3.24!, ~3.31! and ~3.32!, using Eq.
~3.30!. Thus, in general we can calculate Eqs.~3.35! and
~3.36! by performing the Fourier transform of Eqs.~3.37!
and ~3.38!. Here we restrict ourselves to the solutions o
tained by the so called power counting method. The temp
ture dependences of the Knight shifts and of the relaxa
rates are shown in Table I and the form factorsF̄ha andF̃ha

g

are given in Table II.

B. NMR properties of the Bulut model

In order to obtain the NMR properties of the 1D versi
of the Bulut model we perform the same procedure as be
for the four-band model. The bosonized version of the Bu
model ~2.28! is given by Eq.~3.13! replacingHN by

HN
Bu5E dx@CAI ~x!SA

Bu~x!1CBJ~x!SB
Bu~x!#, ~3.39!

where Sh
Bu is the projection onto thea-band using Eqs.

~2.29!, ~2.30!, ~2.8!, and ~3.4!. For thez-component of the
spin Sh

Bu we get

TABLE I. The lowest order temperature dependence of
Knight shifts and of the relaxation rates measured on the copper
~A! or the oxygen site~B! at half-filling ~0! and for finite doping
(d). Within a line, the undefined constants~const.! are the same for
copper and oxygen. Temperature dependences are given up to
rithmic corrections.

Copper Oxygen

Kh
0

F̄Aa3const. F̄Ba3const.
Kh

d
F̄Aa3const. F̄Ba3const.

1/T̄1h
0 (F̄Aa)23const.3T (F̄Ba)23const.3T

1/T̃1h
0 (F̃Aa

0 )23const. (F̃Ba
0 )23const.

1/T̄1h
d (F̄Aa)23const.3T (F̄Ba)23const.3T

1/T̃1h
d (F̃Aa

d )23const.3TKc* (F̃Ba
d )23const.3TKc*
de

-
a-
n

re
t

SA
zBu~x!52ulAa

Buu2ulaau2@ s̄a~x!1cos~2kFa!s̃aa~x!#,
~3.40!

SB
zBu~x!52ulBa

Buu2ulaau2@ s̄a~x!1cos~kFa!s̃aa~x!#

ignoring all gradient terms of the fieldfc . The spin opera-
tors s̄a and s̃ha are defined as before in Eqs.~3.19! and
~3.20!. The NMR properties for a hyperfine coupling like E
~3.39! are given by Eqs.~3.35! and ~3.36! by the replace-
mentsF̄ha→F̄ha

Bu andF̃ha
g →F̃ha

gBu . The values for the differ-
ent form factors are shown in Table III. At this level o
approximation, both the four-band and the Bulut model sh
exactly the same temperature dependence for the Kn
shifts as well as for the relaxation rates; this dependenc
different for the uniform contribution and for the oscillator
one ~see Table I!, as is well known for interacting one
dimensional systems. This effect has nothing to do with
various orbitals where the Knight shifts and the relaxat
rates are measured.

C. Comparing the four-band model and the 1D Bulut model

First we focus on the coefficients of the Bulut and of t
four-band model~compare Tables II and III! related to the
different projection procedures of thes orbitals onto the
ground state. For comparing both models, we investigate
limit tab!(eb2ea). Then, for the four-band model the pro
jection of thes orbitals (A,B) onto the lowest band (a) is
strictly done ink-space and results in

ulBa~kF!u2→2~lBa
Sh!2 ~3.41!

22 cos~kFa!~lBa
Sh!2, ~3.42!

ulAa~kF!u2→2~lAa
Sh1lAa

Mi !2 ~3.43!

14~lAa
Mi !2 ~3.44!

12 cos~2kFa!~lAa
Sh1lAa

Mi !2 ~3.45!

18 cos~kFa!~lAa
Sh1lAa

Mi !lAa
Mi , ~3.46!

whereas for the Bulut model it is a combination of real spa
andk-space projection yielding

2ulBa
Buu2ulaa~kF!u2→2~lBa

Sh!2, ~3.47!

e
ite

ga-
the

for a
f the
TABLE II. F̄ha andF̃ha
g are the nonoscillatory and the oscillatory contributions to the form factors of

four-band model in the weak interaction limit at half-filling (g50) and for small doping (g5d) for copper
~A! and oxygen (B). The coefficientslha come from the projection onto the lowest band (a) for small
Coulomb interaction.l d and l mc

denote the characteristic lengths related to the doping and the mass
charge-gap system andKc is the Luttinger liquid parameter which controls the anomalous exponents o
correlation functions. Finally,K0 is the Bessel function of zero order.

Copper Oxygen

F̄ha
ulAau2 ulBau2

(F̃ha
0 )2 2ulAau4S a

lmc
DKc

0

(F̃ha
d )2 2ulAau4coshFKcK0S ld

lmc
DGS a

lmc
DKc

2ulBau4sinhFKcK0S ld
lmc

DGS a

lmc
DKc
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TABLE III. The nonoscillatory and oscillatory form factors at half-filling (g50) and for small doping

(g5d) for copper and oxygen.F̄ha
Bu andF̃ha

gBu denote the form factors obtained for the weak interaction Bu
model with a Mila-Rice and Shastry like isotropic electron nuclear interaction term. The coefficientslha are
given by Eqs.~3.4! and~3.5!. By contrast,lha

Bu is the characteristic coefficient of the Bulut model related
the overlap between the Cu 4s orbitals~A! the Cu 3d orbitals~a! or respectively between the O 3s orbitals
~B! and the Cu 3d orbitals ~a! performed in real space. The other parameters were explained in Table

Copper Oxygen

F̄ha
Bu 2ulAa

Buu2ulaau2 2ulBa
Buu2ulaau2

(F̃ha
0Bu)2 8ulAa

Buu4ulaau4S a

lmc
DKc

0

(F̃ha
dBu)2 8ulAa

Buu4ulaau4cos~pa/ld!
2coshFKcK0S ld

lmc
DGS a

lmc
DKc

8ulBa
Buu4ulaau4sin~pa/2l d!2coshFKcK0S ld

lmc
DGS a

lmc
DKc
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2ulAa
Buu2ulaa~kF!u2→2~lAa

Sh1lAa
Mi !2. ~3.48!

The general solution for the projected O 3s orbital includes
one more term~3.42! than the solution proposed by Bulu
~3.47!. This term corresponds to a dynamic contributi
which includes a charge displacement. However, for a h
filled system the additional term vanishes and the two so
tions become identical. By contrast, the projection proced
for the Cu 4s orbital produces a completely different beha
ior in the two models. For a half-filled system, the hoppi
processes vialAa

Bu5lAa
Sh1lAa

Mi contribute only in the Bulut
model ~3.48!, whereas they are exactly canceled by the
lated dynamic terms~3.45! in the four-band model. Thus, fo
the four-band model at half-filling, only an additional loc
term ~3.44! as well as a dynamic combined term~3.46! re-
main. The term~3.44! is the local analog to the transferre
terms proposed by Mila-Rice, and the term~3.46! is a com-
bination of Mila-Rice and Shastry terms which includes
charge displacement. It should be clear that our projec
procedure is the right one for a system with small Coulo
interactions: First we diagonalize the tight-binding Ham
tonian dealing with extended wave functions, and then
treat the Coulomb energy approximately within this nonlo
basis. The approximation proposed by Bulut suffers from
mismatch between the local and the nonlocal point of vie

The second part of the oscillatory contribution to the fo
factors ~compare Tables II and III!, which contains the de
pendence on the characteristic lengths related to the do
rate,l d , as well as to the charge mass,l mc

, is the crucial one.
Away from half-filling, the four-band model shows a diffe
ent behavior on the copper and on the oxygen, despite
fact that umklapp processes only contribute on short or
termediate scales. Indeed, the different hyperbolic depen
cies of the two characteristic lengthsl mc

and l d for copper
and for oxygen~see Table II! affect measured quantities re
lated to long distance or long time behavior. Instead, for
Bulut model the difference between copper and oxyg
comes in only because of the special choice of a Mila-Ri
Shastry type electron-nuclear interaction term~3.39! and the
related unconventional projection procedure which result
the different trigonometric form factors~see Table III!. The
influence of the charge massmc is the same for copper an
for oxygen, a fact which manifests itself by the same dep
dence on the characteristic lengthl mc

.
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Note that the four-band model leads to a very small c
tribution on the oxygen even at finite doping, because
contribution is exponentially suppressed in a way which
pends on the ratio betweenl mc

and l d , whereas the oscilla-
tory contribution on the copper atom is nearly independen
the doping rate for long distances or times. For the ra
between copper and oxygen we distinguish between two
gimes:

tanhFKcK0S l d

l mc
D G→H 1 for l d! l mc

,

0 for l d@ l mc
.

~3.49!

In the former regime, we recover the Luttinger liquid beha
ior, since the infinite lengthl mc

stems from the vanishing o

the umklapp process whenUaa5Uba ; in that case there is
no fundamental difference between copper and oxy
anymore. Only the overlaps with the ground state rem
different. The latter regime, where the fundamen
difference occurs, will be reached exponentially
KcAp l mc

/2l d exp(2ld /lmc
), and thus the oxygen does no

see the antiferromagnetic fluctuations in this limit. Inste
for the Bulut model everything depends on the same co
lation function, and the difference between copper and o
gen comes from the filtering factors. Thus the oscillati
contributions to the relaxation rates for the oxygen is alwa
proportional to@01(pa/2l d)2#, whereas the contribution
on copper are reduced by a factor@12(pa/ l d)2#. The ratio
of the oscillating contribution to the relaxation rates is a
proximately given by (pa/2l d)2, and is completely indepen
dent of the details of the projected local Coulomb repulsio
Uaa and Uba . It only depends on the doping rate and
proportional to (da/4)2. By contrast, the four-band mode
includes the effect of the Coulomb interactions through
dependence onl mc

. In Table IV we show the ratios of the
different Knight shifts and relaxation rates contributions.

IV. THE STRONG INTERACTION LIMIT

For strong interactions the four-band system in Eq.~2.1!
is much more difficult to solve. Yet, it is still possible t
highlight the qualitative features of the transferred hyperfi
coupling interaction, specifically for the half-filled case. T
obtain the strong interaction limit of this model we can pe
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form the Gutzwiller projection

H5 P̂~H01HS1HN!P̂, ~4.1!

which eliminates doubly occupied states in the Cu 3d orbit-
als from the Fock space. The projection is effectively p
formed on all three terms of Eq.~4.1!, which are treated on
equal footing. As far as the first partP̂H0P̂ is concerned,
two possible superexchange processes are generate
shown in Fig. 5. In the strong interaction limit (Ua
@ueh2eh8u,Ub@thh8) the superexchange process in Fig. 5~a!
is much more effective than the process in Fig. 5~b!. For the
basic systemH0, we only have to keep 3 states per unit ce
whereas for the four-band model~4.1!, we end up with a
system where we have to keep 27 spin-degenerate l
states per unit cellj with 4 tight-binding parametersthh8 for
a half-filled system~excluding doubly excitedA,B states; see
Appendix C!. For a doped system the number of states
well as the number of possible transitions increases very
as has been shown for a two-band model.23 A correct projec-
tion procedure such as Eq.~4.1! becomes very difficult to
handle, and one must resort to some approximations. In
event, in the vicinity of the half-filled case where the proje
tion can be explicitly used for the full Hamiltonian, we wi
analyze the differences between the predictions of the fo
band model and those of the approximated Hamiltonians

TABLE IV. The ratios of the oscillating and nonoscillating con
tributions to the oxygen (h5B) and the copper (h5A) Knight
shifts and relaxation rates at half-filling (0) and away from ha
filling ( d) calculated for the Bulut and the four-band model in t
low interaction limit. The ratios are measured in units of their ch
acteristic overlaps with the ground state (ulha

Buuulaau or ulhau). Here
the oscillating contributions do depend on the characteristic len
l mc

and l d , whereas the nonoscillating contributions do not.

Bulut model Four-band model

KB
0,d

KA
0,d

1 1

1/T̄1B
0,d

1/T̄1A
0,d

1 1

1/T̃1B
0

1/T̃1A
0

0 0

1/T̃1B
d

1/T̃1A
d

sin~pa/2l d!2

cos~pa/ld!
2

tanhFKcK0S ld
lmc

DG

FIG. 5. Superexchange processes generating antiferromag
couplings between localized copper spins at half-filling. In contr
to the superexchange path~a! process~b! is suppressed, because
includes an intermediate state where it is necessary to pay the
Coulomb repulsionUa . The numbers~1., 2., 3., and 4.! denote the
sequence of the intermediate steps.
-
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let us restrict our analysis to the half-filled case where o
virtual double occupancies of the copper site are allowed
where electron-nuclear interaction processes require tha
initial and the final charge distribution be the same. We d
with electron-nuclear interaction processes where effectiv
one local Cu 3d spin will be reversed and then relaxed by t
thermodynamic fluctuations of the Heisenberg model. W
decompose (H01HS1HN) into (L1K). L includes all local
andK all kinetic contributions of the complete Hamiltonia
H introduced in Eq.~2.1!. Then we can expandP̂HP̂ on the
basis of the unperturbed eigenstates ofL and compute the
projected locals-orbital spin operators likeP̂Sh j P̂. For the
details we refer to Appendix C and discuss only the fin
results.

First we analyze some relaxation processes for the oxy
atom. The process shown in Fig. 6~a! is a transferred~T!
contribution proportional to

FB,T,(a)5F tBa

eB2~ea1Ua!G
2

. ~4.2!

For the process shown in Fig. 6~b!, we include a part of the
superexchange process to avoid double occupation of
copper site, and the contribution is proportional to

FB,T,(b)5F tabtBa

~ea2eb!~eB2eb!G
2

. ~4.3!

Then the lowest order contribution to the general form fac
for the oxygen is given by

FB~p!52FB,L12FB,T cos~pa/2!, ~4.4!

with

FB,L50 ~4.5!

~4.6!

nB,T,(i ) denotes the combinatorial factor associated with
possible processes yielding a contributionFB,T,(i ) . The fac-
tor 2 for the left-right symmetry is not included innB,T,(i ) .
Like for the superexchange processes~Fig. 5! some pro-
cesses are forbidden due to the Pauli principle. Howe
since all energy levels are assumed to be spin-indepen
the related amplitudesFB,T,(i ) are the same.

-

th

tic
t

cal

FIG. 6. Possible spin flip processes of the nuclear oxygen s
via a Fermi contact interaction at half-filling. Figure~a! is present in
the 1D version of the Shastry model, whereas~b! is another possible
process which includes some superexchange contributions. At
filling there are only transferred contributions~T!; local processes
~L! are absent. The numbers~1., 2., 3., 4., and 5.! denote the se-
quence of the intermediate steps.
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For copper we also distinguish between the transfer
~Fig. 7! and the local contributions~Fig. 8!. The transferred
contributions are proportional to

FA,T,(a)5F tAbtab

~eA2eb!~eA1ea22eb2Ub!G
2

, ~4.7!

FA,T,(b)5F tAbtab

~eA2eb!~eA2ea2Ua!G
2

, ~4.8!

FA,T,(c)5F tAa

eA2ea2Ua
G2

, ~4.9!

FA,T,(d)5
tAbtabtAa

~eA2eb!2~ea2eb!
, ~4.10!

whereas the local contributions are given by

FA,L,(a)5F tAbtab

~eA2eb!~eA1ea22eb2Ub!G
2

, ~4.11!

FA,L,(b)5F tAbtab

~eA2eb!~eA2ea2Ua!G
2

, ~4.12!

FA,L,(c)5F tAbtab

~eA2eb!~eA1ea22eb!G
2

. ~4.13!

Then, the general form factor for copper reads

FIG. 7. Possible transferred spin flip processes of the nuc

copper spin likeP̂SA j
1 P̂ via a Fermi contact interaction at hal

filling. Figures ~a! and ~b! appear in the 1D Mila-Rice model,~c!
pertains to the 1D Shastry model, whereas~d! is a combination of
both.
d

FA~p!52FA,L12FA,Tcos~pa! ~4.14!

with

FA,L5nA,L,(a)FA,L,(a)1nA,L,(b)FA,L,(b)

1nA,L,(c)FA,L,(c)1••• ~4.15!

~4.16!
Let us now compare the predictions of the four-band mo
and those of the 1D Mila-Rice or Shastry models.

Using the projected expression for the oxygen instead
the unprojected one~2.24!, only process~b! in Eq. ~4.6! con-
tributes in the strong interaction limit (Ua→`), whereas
process~a! in Eq. ~4.6! proposed by Shastry becomes neg
gible

FB,T,(a)→0. ~4.17!

The form factor for the characteristic wave vectors (p50 or
p5p/a) is then reduced to

FB~0!52nB,T,(b)FB,T,(b) , ~4.18!

FB~p/a!50. ~4.19!

Since only the relaxation process of the oxygen nuclear s
contributes, which corresponds top;0, we recover the basic
structure of the form factor of Shastry with modified amp
tudes. Thus at half-filling, there is no fundamental differen
for the oxygen between the general form factor~4.4! and the
form factor proposed by Shastry~2.27!.

In the strong coupling limit at half filling, the following
contributions to the form factor for copper are suppressed
Ua→`:

FA,L,(b) ,FA,T,(b) ,FA,T,(c)→0. ~4.20!

Thus the projected Shastry contribution~c! in Eq. ~4.16! and
one of the projected Mila-Rice contributions~b! in Eq. ~4.16!
as well as one of the projected local contributions~b! in Eq.
~4.15! become negligible, and we end up with

FA,L5nA,L,(a)FA,L,(a)1nA,L,(c)FA,L,(c)1•••, ~4.21!

FA,T5nA,T,(a)FA,T,(a)1nA,T,(d)FA,T,(d)1••• ~4.22!

ar
l
proposed
FIG. 8. Possible local spin flip processes of the nuclear copper spin likeP̂SA j
1 P̂ via a Fermi contact interaction at half-filling. Al

processes include the O 2p orbital as an intermediate state and are of the same order as the transferred hyperfine coupling processes
by Mila and Rice.
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for the local and for the transferred contributions to the g
eral form factor~4.14!, respectively. Thus the uniform part o
the form factor is given by

FA~0!54nA,(a)FA,(a)12nA,L,(c)FA,L,(c)

12nA,T(d)FA,T(d)1•••, ~4.23!

whereas the oscillating part reads

FA~p/a!52nA,L,(c)FA,L,(c)22nA,T,(d)FA,T,(d)1•••.
~4.24!

We used the fact thatnA,L,(a)5nA,T,(a)[nA,(a) and FA,L,(a)
5FA,T,(a)[FA,(a) . The uniform part includes contribution
which are absent in the 1D version of the Mila-Rice and
the Shastry model. Furthermore, some terms proposed
Shastry turn out to be zero in the strongly interacting lim
For the oscillatory part the effects are much more dras
The transferred terms proposed by Shastry vanish in
strong coupling regime, whereas other transferred ter
which come from a combination of Mila-Rice and Shas
processes, contribute. Besides, the transferred terms
posed by Mila and Rice are canceled by the equivalent lo
terms. Hence, in 1D, the general form factor differs bo
qualitatively and quantitatively from the form factors on
would derive from the Mila-Rice or from the Shastry mo
els.

V. DISCUSSION AND PERSPECTIVES

In this paper, we have analyzed the 1D analogs of
hyperfine form factors proposed for NMR measurements
high-Tc materials in the antiferromagnetic phase. We ha
focused on the situation where one deals with an antife
magnet generated by a superexchange process via an ox
atom located at the midpoint between two copper atoms
where the Fermi contact interaction is one of the main c
tributions to the possible electron-nuclear interaction ter
We have investigated a 1D Cu-O model including four
bitals per unit cell, namely the Cu 3d and the O 2p orbitals
governing the ground state properties, as well as the Cus
and O 3s orbitals describing the isotropic Fermi contact i
teraction. In 1D, we were able to solve this model using o
standard techniques without having to introduce any ad
tional approximations for the hyperfine interaction term
proposed by Mila-Rice and by Shastry. Thus, we were a
to compare our solutions of the four-band model with t
predictions of the approximative models.

In the low interaction limit, we have calculated the resu
ing temperature dependence of the Knight shiftsK and of the
relaxation rates 1/T1 for an undoped and for a doped syste
in that limit the ground state is well described by the stron
hybridized Cu 3d–O 2p antibonding band the width o
which is large as compared to all Coulomb interactions.
both models, the four-band and the approximative one~Bulut
model!, the temperature dependences are the same and
the typical power law behavior of one-dimensional intera
ing systems~see Table I!. Within this scope we have show
for the four-band model that for an undoped and a sligh
doped system copper and oxygen behave completely di
ent for long distances or long times, when the temperatur
low enough. The oxygen nuclei see only the Korringa-li
-

f
by
.
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contributions, since the antiferromagnetic contributions
exponentially suppressed depending on the ratio of the c
acteristic length related to the charge gap and the doping
contrast, the copper nuclei always see both contributions,
Korringa-like contribution as well as the antiferromagne
one. This fundamental difference between copper and o
gen vanishes gradually when the characteristic doping len
or the characteristic thermal length becomes shorter than
length related to the charge gap~the difference goes awa
abruptly when the system develops a gap in the spin sec!.
This solution is at variance with the prediction of the relat
approximate model, where for oxygen the antiferromagne
contributions to 1/T1 increase with doping liked2, whereas
for copper they decrease proportionally tod2. Thus, the sce-
nario where oxygen does not see the antiferromagnetic fl
tuations is realized much more effectively in the four-ba
model than in the 1D version of the models proposed for
high-Tc materials. In 1D, such an unconventional scena
works, since even small interactions generate strong ant
romagnetic correlations due to the drastic reduction of
Fermi surface.

We have also considered the strong interaction limit. P
forming a Gutzwiller projection onto the four-band mod
without further approximations for the electron-nuclear int
action term, we computed the various processes contribu
to NMR. Our analysis was limited to the insulating pha
~Heisenberg model!, since even in 1D a full solution of the
model for a doped system (t-J model with four orbitals per
unit cell! is unavailable. In the strong interaction limit of th
1D Cu-O model, we were able to compare the form fact
obtained for the four-band model with the predictions o
tained for the approximate models~Mila-Rice model and
Shastry model! investigating the different relaxation pro
cesses for the copper and oxygen nuclear spins. In this
text, we have shown that neither the 1D analog of the M
Rice model nor the 1D analog of the Shastry model co
describe the strong interaction limit at half-filling. In contra
to the usual assumption that only transferred contributi
are relevant, we predict that both local and transferred c
tributions should be taken into account for describing
relaxation of the nuclear copper spin via an Cu 4s orbital.
Furthermore, we have shown that for infinite local repulsio
on the copper sites and small local repulsions on the oxy
sites, the contributions proposed by Mila-Rice and Shas
vanish. For the relaxation of the nuclear oxygen spin
recover the basic idea of transferred hyperfine couplings w
slightly modified amplitudes, but once again the contributi
proposed by Shastry vanishes for infinite repulsion on
copper site.

Both the strong and the weak coupling limits undersc
the importance of keeping the full four-band model, at le
in one dimension, in order to give an accurate description
the NMR properties. The method we used in the pres
paper to tackle such a model can thus be extended in var
directions. First, it can be applied to study specific mod
which have a structure similar to the model Cu-O chain a
lyzed here. This is for example the case for ladder mater
such as Sr142xCaxCu24O41. Analyses of the NMR materia
have so far been performed in terms of Mila-Rice-Shas
approximations. An analysis retaining the full four-ban
model, with the specific symmetries of these ladder syste
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is currently in progress.24 Other systems for which our analy
sis can be relevant are TMTSF and TMTTF alloys.9 At
stoichiometric composition they form an alternate stack.25

Let us now comment on anisotropic contributions toK
and to 1/T1; these can be produced by a dipolar hyperfi
coupling~see Appendix A!. They also stem from the specifi
structural details of a given compound which may lead to
anisotropic form for the susceptibility: in that situation th
anisotropy of thep50 component~3.37! will usually be
different from that of thep52kF part ~3.38!. In both the
weak and the strong interaction limits, we find that—for lo
enough temperature—1/T1 is mostly determined by Eq
~3.38!, whereasK is proportional to Eq.~3.37!. The experi-
mental observation that 1/T1 is essentially isotropic and tha
K is anisotropic suggest that anisotropic effects are not
important for thep52kF contributions but do affect thep
50 terms.

Another possible extension of our work concerns
course the two-dimensional systems. Although it is uncl
how much of the weak coupling approach remains valid
higher dimension, our strong coupling analysis can straig
forwardly be applied to higher dimensional structures. T
main difference in that case between the 2D~or higher! and
the 1D study presented here comes from the symmetry o
various orbitals. In the case of a Cu-O plane, in the prese
of a Coulomb repulsion on the oxygen sites (UO 2pÞ0),26

the related amplitudes for the local processes~4.11! and
~4.13! are not equal anymore, and a cancellation of th
terms by symmetry arguments as assumed by Mila-Rice d
not occur. Only the contribution like Eq.~4.12! will vanish
by symmetry arguments. The transferred Mila-Rice contri
tions ~4.7! via the O 2p orbital, which always cost the Cou
lomb energyUO 2p , and the local processes~4.11! have ex-
actly the same combinatorial factor and the same amplitu
thus the term~4.11! cancels out the term~4.7! for the anti-
ferromagnetic wave vector. This suggests forUCu 3d→` that
the antiferromagnetic contribution to the relaxation of t
copper nuclei via an isotropic interaction comes from lo
terms @see Eq.~4.13!# and from new transferred combine
terms of third order@see Eq.~4.10!#, while the transferred
contributions proposed up to now are absent@see Eqs.~4.8!
and ~4.9!#.
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APPENDIX A: ANISOTROPIC HYPERFINE COUPLINGS

Taking into account anisotropic hyperfine couplings
lated to the orbitals Cu 3d and O 2p we have to replace Eq
~2.7! by

HN8 5(
j §

CAI j
§SA j

§ 1Ca
§ I j

§Sa j
§ 1CBJj

§SB j
§ 1Cb

§Jj
§Sb j

§ .

~A1!

The sum on§ is over components of the diagonal hyperfi
tensorsCh

§ .
In the weak interaction limit of the four-band model w

can perform the same calculations as done before, and
e

n

o

f
r

n
t-
e

he
ce

e
es

-

e;

l

.

-

we

will end up with the bosonized expression~3.13!, where now
the electron-nuclear interaction is given by

HN5(
§
E dx~CAulAau21Ca

§ ulaau2!I §~S̄a
§ 1S̃aa

§ !

1(
§
E dx~CBulBau21Cb

§ ulbau2!J§~S̄a
§ 1S̃ba

§ !.

~A2!

Here we used the fact thatS̃Aa
§ 5S̃aa

§ andS̃Ba
§ 5S̃ba

§ . In gen-
eral the explicit bosonized expressions for the spin part
S̃ha

x and S̃ha
y differ from S̃ha

z in Eq. ~3.20!, but finally for a
spin-symmetric model there will be no influence on the c
relation functions. Thus only the coefficients are sligh
modified and vary for the different directions§5x,y,z. For-
mally the contributions to the§-directions of the Knight
shifts KCu

§ andKO
§ , as well as the contributions to the rela

ation timesT1,Cu
§ and T1,O

§ are given by Eqs.~3.35! and
~3.36! performing the replacements

ulAau2→ulAau21
Ca

§

CA
ulaau2, ~A3!

ulBau2→ulBau21
Cb

§

CB
ulbau2 ~A4!

in the expressions of the form factors defined in Table II
In the strong interaction limit of the four-band model th

inclusion of anisotropic hyperfine interactions results in

HN9 5(
j §

~2CAFA,L1Ca
§Fa,L!I j

§Sa j
§ 1(

j §
FA,TI j

§~Sa, j 21
§

1Sa, j 11
§ !1(

j §
~CBFB,T1Cb

§Fb,T!Jj
§~Sa j

§ 1Sa, j 11
§ !.

~A5!

Here the new defined parameters which describe the a
tional couplings to the local Cu 3d spins are given byFa,L

51 and Fb,T5tab
2 /(ea2eb)2, whereas all the others wer

defined in Sec. IV. For the copper atom the local contrib
tion is modified, whereas for the oxygen atom it is the tra
ferred one.

APPENDIX B: THE SINE-GORDON MODEL

At half-filling the spin part as well as the charge part
the Hamiltonian ~3.13! are described by a sine-Gordo
modelHSG

n 5H0
n1HU

n where

HU
n 5

2aUn

~2pa!2E0

L

dx cos@A8Fn#. ~B1!

For this model two different regimes exist depending on
value of the parameterKn . A massive regime (nm) for

2pun~Kn21!,uUnu, ~B2!

where the perturbation ofHn
U is relevant, and a massless (no)

for
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2pun~Kn21!.uUnu, ~B3!

where the perturbation is irrelevant.

1. Massive regime„nm…

When the cosine term is relevant, the conformal symm
try is lost and the elementary excitations become mas
particles. To compute the correlation functions we can
proximate the cosine term by

Hm
n 5

mn
2

2 E
0

L

dx~Fn2^Fn&!2, ~B4!

where the mass can be obtained from the exact solutio
the sine-Gordon equation. For smallUn one has

mn5S 4KnuUnua
pun

D 1/(222Kn)

a21. ~B5!

This Hamiltonian describes the fluctuationsdFn of Fn about
its mean valuêFn&50. For such a system the Green’s fun
tion ^TtFn(r n)Fn(0)&nm

of the Laplace operator defined o

the domainAn5@0,unt,unb,0,x,L# is given by

Gnm~r n!5
Kn

2
K0@mn~r n1a!#. ~B6!

K0 is the Bessel function of zero order.

2. Massless regime„no…

In this regime, the bare parameters are renormalized u
the fixed point valuesun→un* ,Kn→Kn* , andUn→0 with-
out changing the basic Luttinger liquid behavior of the u
perturbed partH0

n . For this model, the Green’s functions fo
the unperturbed part regularized for large distances byRn

and for short distances by the lattice constanta can be ex-
pressed as

Gno~r n!5
Kn

2
ln@Rn /~r n1a!# ~B7!

or as the following limit:

Gno~r n!5 lim
mn→0

Gnm~r n!. ~B8!

3. Correlation functions

Typical spin-spin correlation functions of the original fe
mions defined in Eq.~3.12! are combinations of exponentia
of Fn . For a Gaussian model these functions can be
pressed in terms of the Green’s functions~B6! or ~B7! de-
pending on the phasen i ,

^exp@ ig1Fn~1!#•••exp@ igNFn~N!#&n i

5e2(n.m
N gngmGn i(r n

nm)e2(n
Ngn

2Gn i(r n
nn)/2. ~B9!
-
e
-

of

to

-

x-

APPENDIX C: LOCAL STATES IN THE STRONG
INTERACTION LIMIT

The projected Hamiltonian~2.1! is expressed as

P̂HP̂5 P̂~L1K !P̂, ~C1!

where L denotes the local system, whereasK includes all
possible hopping terms ofH. The eigenstates ofL are given
by

un1 ,n2 , . . . ,nj , . . . ,nN&5)
j 51

N

unj&, ~C2!

wherenj labels the local statesn on site j. The local states
and energies are shown in Table V. For simplicity we use
short notation

u01,02 , . . . ,nj , . . . ,mi , . . . 0N21,0N&[unj ,mi& ~C3!

~local ground state configurations are labeled byu0 j&). The
energy of such a state is given by

En,m5~N22!e01en1em . ~C4!

Now, we can expand the projection operatorP̂ onto the
unperturbed eigenstates ofL. Here for the half-filled case, we

TABLE V. Possible local states per unit cell of the four ban
Hubbard model. The degeneracy is related to the possible spin
figurations for a local state labeled byunj&.

Degeneracy Local energies State

2 e 7̄5eA12eB u7̄ j&
2 e 6̄52eA1eB u6̄ j&
1 e 5̄52eA12eB u5̄ j&
4 e 4̄5eA12eB1ea u4̄ j&
4 e 3̄5eA12eB1eb u3̄ j&
4 e 2̄52eA1eB1ea u2̄ j&
4 e 1̄52eA1eB1eb u1̄ j&
2 e052eA12eB1ea u0 j&
2 e152eA12eB1eb u1 j&
8 e25eA12eB1ea1eb u2 j&
2 e35eA12eB12eb1Ub u3 j&
8 e452eA1eB1ea1eb u4 j&
2 e552eA1eB12eb1Ub u5 j&
4 e652eA12eB1ea1eb u6 j&
4 e75eA12eB1ea12eb1Ub u7 j&
1 e852eA12eB12eb1Ub u8 j&
4 e952eA1eB1ea12eb1Ub u9 j&
2 e1052eA12eB1ea12eb1Ub u10j&
2 e115eA12eB12ea1Ua u11j&
2 e1252eA1eB12ea1Ua u12j&
1 e1352eA12eB12ea1Ua u13j&
4 e145eA12eB12ea1Ua1eb u14j&
4 e1552eA1eB12ea1Ua1eb u15j&
2 e1652eA12eB12ea1Ua1eb u16j&
2 e175eA12eB12ea1Ua12eb1Ub u17j&
2 e1852eA1eB12ea1Ua12eb1Ub u18j&
1 e1952eA12eB12ea1Ua12eb1Ub u19j&



ra
ic
p

o-

the
s-

on-

the

PRB 62 12 503NMR PROPERTIES OF A ONE-DIMENSIONAL Cu-O MODEL
are only interested in the projectionP̂ onto the stateu0&
5) j 51

N u0 j& with the energyE05Ne0, thus we get

P̂5(
i

P̂( i ), ~C5!

where the first orders are given by

P̂(0)5 P̂P ,

P̂(1)5 P̂PQ1 P̂QP ,

P̂(2)5 P̂PQQ1 P̂QPQ1 P̂QQP2~ P̂PPQ21 P̂PQ2P1 P̂Q2PP!,

~C6!
with

P̂P5 P̂0 ,

P̂PQ5 P̂0KQ̂0

1

E02L
Q̂0 ,

P̂QP5Q̂0

1

E02L
Q̂0KP̂0 ,

P̂PQQ5 P̂0KQ̂0

1

E02L
Q̂0KQ̂0

1

E02L
Q̂0 ,

P̂QPQ5Q̂0

1

E02L
Q̂0KP̂0KQ̂0

1

E02L
Q̂0 ,

P̂QQP5Q̂0

1

E02L
Q̂0KQ̂0

1

E02L
Q̂0KP̂0 ,

P̂PPQ25 P̂0KP̂0KQ̂0

1

~E02L !2
Q̂0 ,

P̂PQ2P5 P̂0KQ̂0

1

~E02L !2
Q̂0KP̂0 ,

P̂Q2PP5Q̂0

1

~E02L !2
Q̂0KP̂0KP̂0 . ~C7!

The projection operatorQ̂0 denotes 12 P̂0.
We can compute the projected electron-nuclear inte

tion term P̂HNP̂. The projection affects only the electron
spins, and we have to evaluate projected local s orbital s
operators such asP̂Sh j P̂. For example, the second order pr
cesses@see Figs. 6~a! and 7~c!# are given by
c-

in

Sh j
(2)5~ P̂(0)1 P̂(1)!Sh j~ P̂(0)1 P̂(1)!. ~C8!

Introducing Eqs.~C6! and ~C7! in Eq. ~C8! only

SA j
(2)5 P̂PQSA jP̂QP ~C9!

will contribute to the Cu 4s spinSA j , because in a half-filled
system the first hopping process brings the system out of
ground stateu0& and the second one brings it back to a po
sible ground state configurationu0&. Here only the projec-
tions

P̂PQ5
tAa

E02E4̄,13

u0&^4̄ j ,13j 61u, ~C10!

P̂QP5
tAa

E02E4̄,13

u4̄ j ,13j 61&^0u ~C11!

could generate finite matrix elements for second order c
tributions. For the O 3s spin SB j it will be

P̂PQ5
2tBa

E02E12
u0&^12j u, ~C12!

P̂QP5
2tBa

E02E12
u12j&^0u ~C13!

or

P̂PQ5
tBa

E02E2̄,13

u0&^2̄ j ,13j 11u, ~C14!

P̂QP5
tBa

E02E2̄,13

u2̄ j ,13j 11&^0u. ~C15!

Finally, the projected spinsSh j
(2) are given by

SA j
(2)5ulAau2P̂0~Sa, j 211Sa, j 11!P̂0 , ~C16!

SB j
(2)5ulBau2P̂0~Sa, j1Sa, j 11!P̂0 , ~C17!

with

lAa5
tAa

eA2ea2Ua
, ~C18!

lBa56
tBa

eB2ea2Ua
. ~C19!

Higher order contributions could be computed using
same procedure as for the above examples.
ys.
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