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NMR properties of a one-dimensional Cu-O model
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We obtain the Knight shifts and the relaxation rates related to the Fermi contact interaction term for a
one-dimensional Cu-O model using bosonization technique. We consider the small interaction limit at half-
filling and away from half-filling. In this framework we predict that the antiferromagnetic contribution to the
relaxation rate of the nuclear oxygen spin is completely suppressed even away from half-filling, when the
temperature is low enough. In the strong interaction limit at half-filling we compute the effective Fermi contact
interaction, performing a Gutzwiller projection. Both limits suggest that the one-dimensional versions of the
Mila-Rice and Shastry scenarios of transferred hyperfine couplings, which were proposed to explain the NMR
measurements for highz cuprates, fail in a one-dimensional situation.

I. INTRODUCTION Fermi liquid like? Can one treat interactions perturbatively,
or is it more appropriate to treat kinetic terms as corrections
One of the challenging characteristics of the cuprate main the strongly interacting limit? In the latter category, work-
terials is the importance of magnetic fluctuations and theiing out a consistent treatment of the nondouble occupancy
effect on normal state transport and on superconductivityconstraint is still an open issue.
This feature is naturally present in theoretical approaches By contrast, one-dimensional systems offer a perfect test-
emphasizing strong interactions in 2D. The role of magneing ground for the study of magnetic fluctuations. Since in
tism can also be assessed in other scenarios promoting majre dimension it is possible to treat correlation effects prop-
ginal or nearly antiferromagnetic Fermi liquidNAFL) be-  erly both in the limit of weak and strong interactions, such
havior. The NAFL framework has been used by Millis, models allow to compute explicitly the dependence of the
Monien, and Pinésto discuss NMR experiments: on the relaxation. This allows to get some feeling for the effects of
basis of the Mila-Riceand Shastrylocal terms describing doping. In addition to the insight that such study allows to
spin fluctuations induced by the hyperfine interactions, thesgain for higher dimensional models, there are explicit real-
authors were able to compute various Knight shifts andzations of one-dimensional systems, such as the Bechgaard
nuclear relaxation times. However, there are critical remarksalts or copper germanate compoufidfs.
and further details to this theofy/ and also other theories For these reasons, we choose to investigate hyperfine in-
introduced in order to interpret the behavior of the variousteractions in the one-dimensional version of the Cu-O model.
Knight shifts and nuclear relaxation times in higlh-super-  This allows us to extract form factors both in the insulating
conductors, which we do not discuss h&re. and in the doped regime, without assuming a specific form of
In this paper, we will follow the basic assumption of Mila the Fermi contact interaction term. We can then compare the
and Rice that it is necessary to include a sizeable isotropiexact results with the predictions that the standard approxi-
hyperfine interaction term to fit the data of NMR experi- mation schemes used in two dimensions would give in the
ments in highT. cuprates. Thus in the following we will one-dimensional situation.
focus our interest on this contribution which comes mainly  The paper is organized as follows. In Sec. II, we introduce
from the Fermi contact interaction between a nucleus and itthe model in one dimension, as well as the three different
surrounding partially filleds orbitals, namely the g orbital  approximations used to describe the magnetic relaxation pro-
for copper and the $orbital for oxygen. Experiments have cesses related to the Fermi contact interaction term, namely
shown that the magnetic properties are described by a singléhat due to Mila-Ricé&,to Shastry’ and to Bulut! In Sec. IlI,
spin component model. In the weak interaction limit, thiswe solve the full model for weak interactions as compared to
single-spin degree of freedom could be associated with théhe bandwidth. We obtain spin-spin correlation functions and
strongly hybridized Cu 8-O 2p antibonding band/ discuss the Knight shifi and the relaxation rate 1{ in
whereas in the strong interaction limit it is associated withdetail. We compare our results with the prediction of the
the nearly localized Cu@spin?37 Within the local picture, Bulut model, which is applicable for weak interactions. Sec-
the contrasting NMR behavior seen on the Cu and O sitefon IV solves the problem in the opposite limit of very
arises from their different hyperfine form factors. These arestrong interactions using a Gutzwiller projection eliminating
nothing but the Fourier transforms of the Fermi contact in-double occupation on the copper sites. We again compare
teraction terms approximated by a sum over surrounding loeur results with the one-dimensional extrapolation of the
calized next-neighbor Cudspins. Mila-Rice and of the Shastry approximations. A general dis-
One of the(many complications concerning the physics cussion of our results is presented in Sec. V. Since NMR
of cuprate materials is that there is still no consensus abowtata on organi¢ and inorganic quasi-1D compounds seem
what should be the correct theoretical approach to treat cote give an essentially isotropic relaxation rate, the body of
relations in 2D: Is the ground state Fermi liquid or non-the paper mostly focuses on the isotropic contribution to the
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FIG. 2. Cu 3 and Cu 4 orbitals as well as the ORand O 3
orbitals in the unit cells. The chosen signs of the wave functions
€1 + Cu-4s determine the phase convention for the Hamiltonian and the signs
of the various tight-binding parameters, .
eyt 1 0-3s
HU:; Uana”na”‘F; Ubnb”nb”. (24)

FIG. 1. Energies of the various orbitals. The Cd 8nd O D

(respectivelya andb) orbitals are the relevant ones to describe the . .
electronic degrees of freedom. The Csiahd O 3 (respectivelyA Heret,, describes the hopping between the Glid the O

andB) should be kept to describe the coupling to the nuclear spirtP Orbitals with the phase conventions shown in FigUg.
via a Fermi contact interaction. and U, are the local repulsions on the copper and oxygen

sites as shown in Fig. 1. The Coulomb repulsithsandUg

hyperfine interaction. Yet, for the sake of completeness anf@n be ignored assuming that energy cost considerations dis-
in view of the fact thatk can be anisotropi¢see below in ~courage processes in which two holes are excited insone
Sec. \J we discuss the effect of anisotropic hyperfine termsorbital. A nearest neighbor interactidd,, could also be

in Appendix A: these terms only modify prefactors in the @dded to the model to generate a phase transition to a super-

expressions of T, and of K. Appendixes B and C offer conducting phas¥. but here our study deals with the vicinity
details of our calculations. of the half-filled case, i.e., near the antiferromagnetic phase,
and we will ignoreU 4.
L. DEFINITION OF THE MODELS The coupling between the orbitadsb and A,B reads

A. The four-band model
, , ) . Hs:z_ €aNpjt GBnBjJFZ tBa[BJTa-(aj-%—l,O'_aj(r)—’—H'C']
We consider a system with two different atoms per unit i jo

cell (Cu and Q. In order to describe the ground state prop-
erties, we take into account thel &nd 2p orbitals on Cu and +> tAb[AjTa_(bngr bj_1,)+H.c]
O, respectively. The related hole states are represented in io

Fig. 1 and denoted by andb in the following. Since the

coupling to the nuclear spin via the Fermi contact interaction +E tAa[AjTg(aj+l,o+ aj_1,)+H.c] (2.5
occurs only for partially filleds orbitals, we also have to io

retain the Cu 4 and O 3 shells(denoted byA and B) to
correctly obtain the desired NMR properties. The Hamil-
tonian describing the system can thus be written as

H:HO+HS+HN1 (21) n,,j=z nm‘U:E 77;(07]]0, (26)

whereH, contains the electronically relevant orbitasand
b. Hg describes the coupling of orbitadsandb to orbitalsA ~ wherenp=a,b,A,B.
andB. As indicated in Fig. 1, the orbitals andB are basi- Finally, the isotropic coupling to the nuclear spirisf¢r
cally filled and produce only small corrections to the elec-the copper atom and for the oxygen atomis given by
tronic term represented Iy, so that we will treaHg as a

erturbation. FinallyHy describes the coupling of the orbit- _
gls A andB to theynul\::lear spins and WiIFI) bg treated as a HN_; CaliSait CediSs;. @7
small—time dependent—perturbation in linear response.

with the phase conventions of Fig. 2. The density operators
n,; in Egs.(2.3), (2.4), and(2.5 are the standard ones

The main contributionH, is given by where similarly to Eq(2.6) the spin operators are given by
Ho=Hr+Hy, (2.2 1 !
’ ! ’ S’/l _E (; 7; u—lo.o'l(rz 7j oy (28)
where 192

The coupling constant for the electron-nuclear interaction is
. _ 2 . .
Ho— N+ enn—S tfal (b +b_; )+Hcl, given by C,=(87/3)[4,(0)|*yngueh, which is propor-
T 2,: €allaj™ €bTlbj % abl 8jo(bjo +bj-1,) 1 tional to the local hole density for the respectiverbitals at
(2.3  the origin.a(,l(,2 are the Pauli matrices.
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B. Reduced models 3d and Cu 4 orbitals is ignored. In Ref. 2 Mila and Rice

In 1D, the Hamiltonian2.1) can explicitly be expressed perfor'm a quantum chemical analysis without including in-
in terms of bose fields. This allows for a full treatment, in {€raction effects, so we will do the same and propose for the

which Ho,Hs, andHy are all treated on an equal footing. a@mPplitudes

This is the route we follow in Sec. Ill. In higher dimension tot

there is still no solution of the fully interacting problem. So AMI= — Aa’ab _ (2.14
various approximation schemes have been devised and ap- (€a—€n)(€a—€p)

plied to each of the pieces ¢1 separately. These lead t0 Thjs result is obtained by a projection in real space of a Cu

effective “nuclear” Hamiltonians: the Mila-Rice and the 45 orbital onto a neighboring CudBorbital for U,=0. The
Shastry model for strong interactions and the Bulut modefqrier transform of Eq(2.13 is given by

for weak interactions. Typically, the analysis by Mila-Rice

and Shastry starts from a partially projected Hamiltonian sk"ri)z F%;(D)Sap (2.15
H= ﬁ)HOﬁ)+ Hs+Hy. (29) with the Mila-Rice form factor

The first part gives the-J model or at half-filling the FXa(P)=2F )3 cog pa). (2.1

Heisenberg model, which contains the dynamics related to

the Cu 3 and O 2 orbitals. The second part contains the 2. The Shastry model for strong interaction

unprOJ(_acted degrees of freedom related to the @W.‘d 0O The approximation proposed by Shastry in Ref. 3 is given
3s orbitals, as well as the electron-nuclear interaction partby
Further approximations fdfg andHy lead to the Mila-Rice
model or to the Shastry modétee below. In the weak H=HS"H, (2.17
interaction limit, Bulutet al. have proposed an RPA treat-
ment of H, in combination with the effective electron- Where
nuclear interaction term of Mila-Rice and Shastry. sh_ e -
Before we turn to the full solution of the model, let us Hg =P[Ho(Up=0U,=)]P (2.18

re_view the main fgature_s of such approx.imat_ions when 8Pfeads to the Heisenberg model at half-filing and to thé
plied to our one-dimensional system. This will allow us to

h dicti fh . tth h odel for a doped system with strong repulsion on the cop-
contrast the pre |ct|onsc_) the 1D version of these three m?fer sites. The electron-nuclear interaction part reads
els and the results obtained for the four-band model, whic

may provide some clue to the validity of these approaches

for strongly correlated systems. HR"= ; CAIJSEP+ CB\]jgh, (2.19
1. The Mila-Rice model for strong interaction where the spin§f'“-h are approximated by a linear combina-
The model defined in Eq2.1) is approximated by tion of unprojected Cu @ orbitals

H=HY +HY' (2.10 = FAa(Sa, -1 Saj+1) T FRN(Soj+ Shj-1)
HM' is the approximation for Eq2.2) and denotes, at half- =Fan(Saj-1+Saj+1) (2.20
filling, a Heisenberg model for local Cud3spins generated and
by

h_ =Sh
P e . N FEN(S,+Sa it 1) 2.2
HM'=P[Ho(Up=0)]P, (2.12) %1 Ba(Saj T Saj+1) (2.21

R with the coefficients
whereP is the Gutzwiller projection operator which prohib-

its doubly occupied Cu @ states. The additional unprojected sh Shiz taa |2
part (2.5) with t,,=tg,=0 and the electron-nuclear interac- Fra=I\aal“= ey I (2.22
tion part(2.7) are approximated by
t 2
. 4 Sh_ |y Shj2_ Ab
HMIZZ CAIJS,’XIjla (2.12 FRo=IN2b (EA— Gb) ; (2.23
]
where sh_ i sha | tea |2
Fea=INgal*= Py (2.24
. . a
S =FRa(Saj -1t Sajr)- (213

_ For finite doping, it is assumed in Ref. 3 that the spin degrees
Thus SX']-' is the Mila-Rice approximation for the original of freedom related tdS,; are quenched in a Zhang-Rice
Spin Saj used to explain the NMR experiments measured orsinglet® This assumption justifies the second approximation
the copper sitesE M =|\M!|2 denotes the effective overlap done in Eq.(2.20. Further, Shastry includes only the direct
between one Cugspin with a neighboring Cu@spin. In  couplings(2.22 up to second order proportional tg§, for

the Mila-Rice model only hopping processes via the @ 2 the relaxation of the nuclear copper spin and ignores the
orbitals are included, whereas the direct hopping between Clourth order contributions proportional tgta, via the O 2
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orbital as proposed by Mila and Rice. The Fourier transformthe bosonization technique for treating interactions in the

of the approximated spinSf,jh reads undoped as well as in the doped case.
h_ oSh
Sflp_ZFna(p)Sap' (2.29 A. NMR properties of the four-band model
with 1. Reduction to an effective single-band Hamiltonian
Fig(p)=2F,§200£{pa), (2.26 _ Insteaq of worklng with the pasa,b_ it is more conve-
nient to diagonalize Eq2.3) within a unit cell, and to intro-
ESh(p)=2ESh cog pa/2). 292 duce the bonding and antibonding bands. Using the transfor-
Ba(P) BaCOYpa/2) (2.27) mation
For the uniform contribution f~0) all form factors are fi- . _
nite, but for the antiferromagnetic wave vectpr{ /a) the a,=[ oK i) e SIN(¥i) Bro & K2,
form factor vanishes for the oxygen sites, whereas it stays
finite for the copper sites. Thus Eq&.16, (2.26), and by, = SiN( v) @i+ o< Yi) Bro » (3.1
(2.27 are the one-dimensional analogs of the NMR Mila- .
Rice and Shastry form factors for high-cuprates. with
; ; 2t T
3. The Bulut model for weak interaction tan(2y,) = —abcos{ kal2), e O’Z[’ (3.2
In Ref. 7, Bulutet al. used a weak interaction RPA cal- €

culation combined with an electron-nuclear interaction ashe kinetic energy2.3) becomes
proposed by Mila-Rice and Shastry to compute NMR related
guantities for the highiF, cuprates. The one-dimensional ; ;
analog reads Hr= kE [€a(K) g, arsT €5(K) BioBrol, (3.3

__1yBu Bu
H=Hg +Hy". (2.28 where the statéo,,,) refers to the lower Hubbard band with

In two dimensionsHB is obtained by applying the RPA €nergye, (k)= —e/cos(2y), and the statggy,) to the upper
method to the 2D version of Eq2.2) with U,=0. In one  On€ with energye(k) = e/cos(2yy). In the absence of inter-
dimension, we can treat all the interaction terr, (U,) of ~ &ctions the chemical potential lies in thea-band both for
the original HamiltoniarH , by means of bosonization and of the undoped and for the doped system, and one can ignore
renormalization-group theory. Finally, the electron-nucleartN® 8-band, which is at least,— e,=2e higher in energy.

interaction ternHﬁ“ is given in analogy to Eq2.19 replac- The same property holds when the interaction tef2¥) are
ing the approximated spins by added to Eq.2.3), given that in the weak coupling limit

Ub,Ua<2t§b/e. Correlation effects in 1D will strongly af-

A}J:F/Eig(sa,j—l"' Saj+1)s (2.29 fect thea-ban(_j states, thus in the following we ignore the
terms containingB-operators when substituting E@3.1)
) = Faa(Saj Sajs1)- (2.30  Into Eq.(2.4.

Substituting Eq(3.2) into Eq. (2.5 and performing a first
In Ref. 7, the parameter§}; are undefined and could in order perturbation theory with respectta, all operators in
general include all possible overlaps of the Guahd O & Eqg. (2.1) can be written as
orbitals with the Cu 8 orbitals in the sense of Mila-Rice and

Shastry. The coefficient for the oxygen will be Mo =N ya(K) g (3.9
Fea=INgal”=Ingal% (2.3)  with
and is thus the same as that proposed by Shastry, whereas the N 1o(K) =cog y, e I(ka2),

coefficient for copper
Apa(K)=sin(yy),

FRa=INRH?=INR5+ A REl? (232
includes additional combined terms of third order propor- (k)= 2tpacogka) cog e ka2
tional to tataptan, Which are absent in the Mila-Rice and Aa €,(K)—€p Yk
the Shastry model. The form factors correspond to
N 2tp,coq ka/2) sin( y,)e- (ke
Faa(p)=2Fg4cogpa), (2.33 e (K)—€n Yk ’
Fha(p)=2Fp5cogpal2). (2.34 2itg, sin(ka/2)
) ) Nea(K) = — (15— ot %) (35
601( ) €B
IIl. THE WEAK INTERACTION LIMIT
Here we have assumed an unperturbed ground kaatd)
Let us now solve the full model.1) when interactions =|a). Thus Eq.(3.4) implies that Eq.(2.1) reduces to an

are weak compared to the bandwidth. This allows us to useffective single-band Hamiltonian.
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whereU,, is the short notation for the projected Coulomb
energiesU |\, 4(Kg)| .

g, (k) As usual for interacting one-dimensional systems, it is
useful to introduce a boson representation of the fermion
operators, related to the charge and spin density fluctuations.
Since the technique is standard, we only recall the main steps
and refer the reader to the literatdfel” We rewrite the

e (k) original density operators in terms of a linear combination of

@ charge ¢=c) and spin ¢=s) density operators for each
branch

Pra:(Prc+0'prs)/\/§- (3.10
These density operators define the phase fields
i

® (X):__W > Eefa\qllkiqxp
v L r&to q rvs

i r .
0.00="1 3 ce ¥, 31

FIG. 3. Linearization of the spectrum close to the Fermi points
The momentunk is replaced bykg+q, wherer =+ denotes the
two possible directions\ >|q| is an ultraviolet cutoff of the order
of the bandwidth and the Fermi velocityzbszzakea(k)|kF.

‘All operators can be expressed in terms of the boson fields
(3.11), and the fermion operator reads

_ o a, ,(X) = eirk,:x—i[r(tbc+(r<1)s)—(®C+(r®s)]/V‘E.
2. The continuum limit 2ra

We can now use the standard techniques in order to treat (3.12
interacting one-dimensional systems. Restricting ourselves tphe complete Hamiltonian becomes
the low energy physics regime we make the usual approxi-
mation valid for 1D systems, i.e., we linearize the spectrum H=(Hg+H{)+(Hg+HE) +Hy, (3.13
close to the Fermi points, as shown in Fig. 3. Then the,, ..

Hamiltonian(2.2) is reduced to

X u
H”=f— (uyKV><wHV>2+(—”)<<9 ®,)% (3.14
HT:er rv,:qa;rqaarqg, (3.6 0 2m K, %
S is a quadratic part containing only charge or spin degrees of
u(r) freedom (with v=c,s). In Eq. (3.14), the variablellI,
- T T — i i i
HU—E TN Er1at s Y0, Frg 0l Xy =0d,0 , is the momentum denslty conjugate@q,, and t’hus
"a they respect the commutation relatidnb ,(x),IT,(x")]
(3.7 =i8(x—x"). The interaction terms are given by
wherer=(ry,r,,rs,ry) andq=(d,dz,qs). U(r) param- aU
e_trlzes_ the repulsive interaction in th_e continuum limit and is HE = _f dx aa cog \/§‘Dc— S(x—al2)]
given in terms of the standard notations as (27a)?
U(iiiniui)EUOI Zana
+f dx > cog V8D, — 6x] (3.19
U(=,%,7,+)=U,, (2ma)
— _ 2aUu
U(+,7,*,%)=Us, Hazfdx > cog 8] (3.16
(27ra)
U(x,=,5,7)=U.. (3.9

Here 6=4kr—2m/a is proportional to the doping of the
U, refers to the two forward scattering procesdggto the ~ System with respect to the half-filled case shown in Fig. 1
backward scattering, anid,, to the umklapp scattering pro- (for which ke=/2a). Using this representation we suppose
cess that occurs at half-filling. The relation to the local re-to work with a fixed number of particles, sinke is directly
pulsions defined in E¢(2.4) is given by related to the filling. Finally, the isotropic electron-nuclear
interaction part could be written as
UO: Uba+ Uaa>07

HN:fdX[CAl(X)SA(X)+CB\](X)SB(X)]1 (3.17

where Hy is the projection of Eq(2.7) onto the «-band
U.=Up,—U,,<0, (3.9  using Egs.(2.8) and(3.4). The projected spin operatos;,

US=Uba+ Uaa>0’
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are expressed in terms of E¢3.12. For example, the Because of the doping dependence in the cosine terms in
z-component of the spin operaty, can be represented as a Eq. (3.19, the behavior of the system will quite clearly be
sum ofp~0 andp~ 2k components as different for zero and for finite doping. At half-filling, one
. 5 sees from Eq93.21), (B2), and(B3) that charge excitations
S, ()= |)\W(kF)|2[sa(x)+s,7a(x)], (3.18  are massived,,), whereas spin excitations are in the mass-

less regime §,). One recovers the standard Mott or charge-

transfer insulator with the massless excitations correspond-

1 ing to a Heisenberg-like exchange. In the doped case, the

Ea(x): — ——(8,Dy) (3.19 term (3.19 is irrelevant because of the oscillatory factix.

V2w However, at short distances or for short times this term is
still small, and the cosine term will influence the behavior of
the system. We thus distinguish between two different re-

_ 1 gimes for the doped case: we assume that for intermediate
Sﬂa(x):ESir{\/E(DS]Sir[ZkF(X_Xn)_\/E(I)C]- distances &<x<l;) the system remains in thecf,s,)
(3.20 phase as mentioned before for the half-filled case, and when
) "7 distances are larger thap, the system will be in theq(, ,s,)

The difference between the copper and the oxygen sites ishase because the umklapp process becomes ineffective. The

reflected in the value of, and affects the oscillatory part; characteristic length separating these two regimes denotes

indeed, for coppek,=xx=a/2 and for oxygenx,=Xg=0  essentially the distance between two charge domain walls

as a consequence of the different phase factors in(E§). and is given byl =2/ 4.

In Eqg. (3.14, the u, are the new velocities for the  pue to the spin-charge separation in E813, each part
v-excitation and the<, are the Luttinger liquid parameters of the correlation functiorf3.23 will factorize into indepen-
controlling the anomalous exponents in the correlation funcgent averages over the spis,] and the charge sectoc or
fcions. For weak coupling, they are related to the interactions;m), and will only depend on the characteristic distange
in Eq. (3.7) by =[(u,7)%+x?]¥2 between two points in Euclidean space-
time (with v=s,c). Details about the correlation functions in
the various regimesc(,s;) are explained in Appendix B.
Substituting Egs(3.18—(3.20 in Eq. (3.22), the nonoscilla-
tory contribution to the correlation function is given by

where the nonoscillatory part is given by

and the oscillatory part by

UsKs=ucKe=vg,
us/Ks=veg—aly/m,

Uc/Ke=ve+al, /. (3.21

Since the Luttinger liquid representation is more general than

the perturbative result for small interactions, it is also appli-whereR,(r) = (27 ) ~2 depends only on the spin degrees
cable when the interactions are strong. The quadratic Hamilof freedom and is thus completely independent of the coex-
tonian can be viewed in this case as an effective Hamiltoniaisting charge phase. Notice that this function is also indepen-
describing the low-energy properties of the system, providedent of the orbitalsy and %', and thus there is no fundamen-
that the correct Luttinger liquid parameters are used. Such g difference between copper and oxygen contributions.
smooth connection between weak and strong coupling has For the oscillatory part of the spin-spin correlation func-
been proven for single-band modéts;? and a similar Lut-  tions, the situation will be quite different. We restrict our-
tinger representation has been shown to work for the case @klves to the calculation of correlation functions between
the two-band modef-*° Equations(3.13—(3.17 define the identical orbitals = 7'). Using averages over the charge
four-band model, and the NMR properties can be computednd spin sectors of the HamiltonidB.13, these functions

R,y =N el 2N ol 2Ra(r), (3.24)

throughHy . can be reexpressed as
3. Correlation functions at zero temperature |)\ |4
. . . . ~Cm'SO— na ~Cm ~SO
We focus here on the spin-spin correlation functions rel- o (Zwa)ZR””(rC)R”‘ (rs) (3.29
evant for NMR and for neutron scattering experiments. The
general form of these functions is in the massive charge regime and as
R, (x,7)=(T,S, ,(x,7)S;(0,0) (S, )}(S}), o
(3.22 R0 So— — T _R%(r )R>(r) (3.26

: . . . . ™o (2ma)? ¢
and it describes correlations between different orbitaénd

7' at different points in Euclidean space-time. Here we in-in the massless charge regime. The newly defined correlation
troduce the decomposition of this function into a nonoscilla-fynctions in the massless phases)(are given by
tory and an oscillatory part

J— ~p _ K*

R, (X,7) =R, (X, 7) + COL 2KeX) R,/ (X, 7), R(r)=(@lr,)"vF(r,). (3.27

(323 The functionF(r,) describes the corrections to the Luttinger
since the behavior of these functions will be very differentliquid behavior which come from the flow to the fixed
for one-dimensional systems. point?! To lowest orderF(r,) can be approximated by 1.
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The renormalized Luttinger liquid parameté¢3 for a spin

symmetric model with repulsive interaction are restricted to

K:=1,

S

(3.28

The value of the renormalized Luttinger liquid paramé<ér
depends on the interactions. For weak interacti, is

OsK!=<1.

close to 1, and it decreases as interactions become more re-

pulsive.
The correlation functions in Eq3.25 which are charac-
terized by the massive charge phase are given by

RI™(re) =2 cosliK Ko(mer o) J(mea)Xe,

RE™(ro) =2 sinfKKo(mer o) J(mea)e  (3.29

and depend on the chosen orbital Thus, the behavior for
copper and oxygen will be quite different. It depends on th
distancer ., the masan;, and the stiffness constaKt;. In
general, for distances larger thamc=1/mc, the function

R;™ for copper tends to a finite constant, wher&g for
oxygen tends exponentially to zero.

4. The asymptotic expressions at finite temperature

In order to obtain the temperature dependent correlatio

function ﬁnn(x,r,ﬁ), we will only use the asymptotic ex-
pressions of Eq(3.29. We recover a Luttinger liquid behav-
ior, and the temperature dependence can easily be obtain
with the help of the conformal symmetfg;indeed, we only
need to replace,(x,7) by r (X,7,8) where

u,B X—iu,r
r,(X,7,B)= T\/sin)—{ o Bl }sin)’{

X+iu,r
u,Blm

(3.30

The relevant asymptotic expressions at half-filling and away

from half-filling depend on the relative magnitudes of the

various characteristic lengths of the system, namely the

lengths related to the masls,,,c, and to the dopingls, as
well as the thermal length;=min{(u,8) ~*,(us8) 1.

For half-filling (y=0) at low temperature, we are in the
regime wherd g>r.>Iy, andl;=, thus we can approxi-
mate the oscillatory charge contribution in E§.25, and
the functions are simplified to

0

ﬁg]ﬂzcnp\na“ﬁg(rs): (3.3)

where the amplitude of the oscillatory part at half-filling is
given byC(,’?:FQ;rg(ooc). The remaining correlation function

is independent of the orbitaly and given by R®
=(2ma) %(alry).

The large distance limit of the corresponding expression

for small doping fy=46) and low temperature, wherk;
>re>15>1n , looks like

(3.32

In the doped regimeC? is the amplitudeR’ (1 ;) obtained
in the massive phase at the crossover, as shown in Fig.
Like before, the remaining correlation functioR®

ﬁfm: C(;|)\,7a|4ﬁg(l’c s
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Rﬁ& cm-phase ¢, -phase
o

Cs

a lmc 18

FIG. 4. Crossover for the charge contribution to the spin-spin
correlation function~RC‘a from the massive charge regime(

éohasee to the massless charge regingg phase at low temperature

and for small doping. The behavior for copger=A) and oxygen
(n=B) is quite different: For copper the amplitude remains finite for
long distance, whereas the amplitude for oxygen vanishes.

=(2ma) Halr)(alr)¢ is also independent of but shows
dependence on spin and charge degrees of freedom. For
larger doping ratesl g<|mc), the difference between copper

@and oxygen sites vanishes.

5. Knight shifts and relaxation rates

ed The standard expressions for the Knight shifts and for the
relaxation rates resulting from a hyperfine coupling term like
Eq. (2.7) are

K?= Cy
Ty, veh?

> X, (@=0p—0), (3.33

7' =a,b

2
1 c?

Ty, ¥,veh’B P
where y=0 refers to the half-filled case ang=4 to the
doped casew, denotes the electronic Zeeman frequency in
orbital %, which is very small as compared to the energy
scale of the purely electronic system fixed by the cuiaff
For the Knight shifts the sum is restricted to the active orbit-
alsa andh. We can split up the susceptibilii;yjm, into the

nonoscillatory}fm, and the oscillatory contributior}fm,
just like for the correlation functions in E¢3.23. Finally,
the Knight shifts for the linearized four-band model in units
of C,/(v,yeh?) are given by

Im[x},(®,,p)]

Wy

. (339

K?=F yaXol @=09—0) (3.39

and the relaxation rates in units 66,/(7,,3/9%%,7) by

1

Y

1 = T ~ ~
B |q;<“x IM[(F ,0)°Xa(@,,0)+(F))%xw,,q)].
(3.36

The susceptibilities,, andy? in space-time can be obtained
from

4.

Xa)=20)IM[R (X, 7.8) ] ,—itse, (337
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TABLE |. The lowest order temperature dependence of the ZBU/ Bu2 e =
= +
Knight shifts and of the relaxation rates measured on the copper site Sa () =2 Mgl N aal TSa(X) + cOL 2KeR) Saa(X) .
(A) or the oxygen sitgB) at half-filling (0) and for finite doping 2BU Bul2 or— als (3.40
(8). Within a line, the undefined constaritonst) are the same for Sg (%) =2\ gl “|Naul “[Sa(X) + cOgkpa)Sa,(X) ]
copper and oxygen. Temperature dependences are given up to '09@'noring all gradient terms of the fiel@.. The spin opera-

fithmic corrections. tors s, and ~s,,a are defined as before in Eg&3.19 and
(3.20. The NMR properties for a hyperfine coupling like Eq.

Copper Oxygen (3.39 are given by Eqs(3.35 and (3.36 by the replace-
K5 F aqX CONSL. Fgq X CONst. mentsF ,,,— Fou andF?,—F 78", The values for the differ-
K F o X CONSL. Fgq X const. ent form factors are shown in Table Ill. At this level of
approximation, both the four-band and the Bulut model show
UFL, (Fas)2X constx T (Fa,)?x constx T exgctly the same temperature dependenqe for the Knight
170 (B2 12 const. £9 )25 const, s_hlfts as well as fqr the relaxgtlop rates; this depen'dence is
1n Aa Ba different for the uniform contribution and for the oscillatory
— -, -, one (see Table )| as is well known for interacting one-
1Ty, (Faq)*> constxT (Fga) "X constxT dimensional systems. This effect has nothing to do with the
173, (F2 )2x constx TX: (F3.)2x constx T various orbitals where the Knight shifts and the relaxation

rates are measured.

X2(x,1)=20)IM[RYUX, 7, 8) s it (3.38 C. Comparing the four-band model and the 1D Bulut model

performing the continuation to real time. Theordered tem- First we focus on the coefficients of the Bulut and of the
perature dependent Green’s functions on the right-hand sideur-band modelcompare Tables Il and lirelated to the

are the same as in Eq&8.24), (3.31) and(3.32, using Eq. different projection procedures of the orbitals onto the
(3.30. Thus, in general we can calculate E¢3.35 and ground state. For comparing both models, we investigate the
(3.36 by performing the Fourier transform of Eg&.37)  limit t,,<(e,— €,). Then, for the four-band model the pro-
and (3.39. Here we restrict ourselves to the solutions ob-jection of thes orbitals (A,B) onto the lowest band«) is
tained by the so called power counting method. The tempersstrictly done ink-space and results in

ture dependences of the Knight shifts and of the relaxation

—- - 2 Shy2

rates are shown in Table | and the form factbrg, andF 7, INgo(ke)[*—2(N52) (3.41
are given in Table II. 5 coikpa)()\gg)z (3.42

B. NMR properties of the Bulut model INa (kF)|2_>2()\§h+ )\Xli)Z (3.43

o a a "
In order to obtain the NMR properties of the 1D version _

of the Bulut model we perform the same procedure as before +4ONH? (3.49
for the four-band model. The bosonized version of the Bulut o )
model(2.28 is given by Eq.(3.13 replacingHy by +2 cog2kea)(Nan+AN2  (3.45

HE'= [ IXCAI(0 K00+ Col0 001, (3:39 +8 ootk (AR AN s (349

whereas for the Bulut model it is a combination of real space
where S2 is the projection onto ther-band using Egs. andk-space projection yielding

(2.29, (2.30, (2.8), and (3.4). For thez-component of the Bu2 5 Shi

spin S} we get 2|Ngal N aa(kp) [P —2(N52)%, (3.47)

TABLE Il. F,, anleZZ]a are the nonoscillatory and the oscillatory contributions to the form factors of the
four-band model in the weak interaction limit at half-filling€ 0) and for small doping = 6) for copper
(A) and oxygen B). The coefficients\,, come from the projection onto the lowest band) (for small
Coulomb interactionl s andlmC denote the characteristic lengths related to the doping and the mass for a
charge-gap system arn€l. is the Luttinger liquid parameter which controls the anomalous exponents of the
correlation functions. FinallyK, is the Bessel function of zero order.

Copper Oxygen
e 2 2
na |)\Aa| |}\Ba|
KC
T0 2 2, |4 i 0
(Frja) | Aa| I
M

= I a \Ke | a\Ke
(Ff]a)2 2|)\Aa|4cosV{KCKo(|—§”(l—) 2|7\Ba|45im‘{KcKo(l—§ (l_)
me me m, m,
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TABLE lll. The nonoscillatory and oscillatory form factors at half-filling/4€0) and for small doping
(y= o) for copper and oxygel’F-.E‘,“ andF 37'2“ denote the form factors obtained for the weak interaction Bulut

model with a Mila-Rice and Shastry like isotropic electron nuclear interaction term. The coefficigntse
given by Eqs(3.4) and(3.5. By contrast)\ig is the characteristic coefficient of the Bulut model related to
the overlap between the Cs4rbitals(A) the Cu 3 orbitals(a) or respectively between the G ®rbitals

(B) and the Cu 8 orbitals(a) performed in real space. The other parameters were explained in Table II.

Copper Oxygen
FBu 2INRE N aal? 2INgel N aal?
K
~ a\re
F S :
Me

KC
T oBuy2 8|)\BU4|)\ |4 all »)? K K |_5 i Bu4 4ei 2 l5
(F3a) Ad 1Nad| ‘cOgmall 5)°COShK, i i BINE INaal*sin(ma/2! 5) *coshK Kol ==
m

2INBY2 N au(kp) 2= 2(A 3P+ A M2, (3.48 Note that the four-band model leads to a very small con-

tribution on the oxygen even at finite doping, because the

The general solution for the projected @ 8rbital includes  contribution is exponentially suppressed in a way which de-
one more term(3.42 than the solution proposed by Bulut pends on the ratio betweekmc andl 5, whereas the oscilla-

(3.47). This term corresponds to a dynamic contributionyory contribution on the copper atom is nearly independent of

which includes a charge displacement. However, for a halfyhe doping rate for long distances or times. For the ratio

filled system the additional term vanishes and the two solupetween copper and oxygen we distinguish between two re-
tions become identical. By contrast, the projection procedurgmes:

for the Cu 4 orbital produces a completely different behav-
ior in the two models. For a half-filled system, the hopping | 1 for ls<lp,
processes via5u=\3"+\M contribute only in the Bulut tanr{KcKo(—&”H[ © (3.49
model (3.48), whereas they are exactly canceled by the re-
lated dynamic term&3.45) in the four-band model. Thus, for ] ] o
the four-band model at half-filling, only an additional local " th? former regime, we recover the Luttinger Ilqgld_behav-
term (3.44 as well as a dynamic combined teri@®.46 re-  0r, since the infinite length., stems from the vanishing of
main. The term(3.44) is the local analog to the transferred the umklapp process whad,,=U,,; in that case there is
terms proposed by Mila-Rice, and the te(&46) is a com- no fundamental difference between copper and oxygen
bination of Mila-Rice and Shastry terms which includes aanymore. Only the overlaps with the ground state remain
charge displacement. It should be clear that our projectioulifferent. The latter regime, where the fundamental
procedure is the right one for a system with small Coulomkdifference occurs, will be reached exponentially as
interactions: First we diagonalize the tight-binding Hamil- K¢/l /21 sexp(~ls/ly), and thus the oxygen does not
tonian dealing with extended wave functions, and then W&ee the antiferromagnetic fluctuations in this limit. Instead,
treat the Coulomb energy approximately within this nonlocalfor the Bulut model everything depends on the same corre-
basis. The approximation proposed by Bulut suffers from gation function, and the difference between copper and oxy-
mismatch between the local and the nonlocal point of viewgen comes from the filtering factors. Thus the oscillating
The second part of the oscillatory contribution to the formeontributions to the relaxation rates for the oxygen is always
factors(compare Tables Il and Il which contains the de- proportional to[ 0+ (wa/2l 5)2], whereas the contributions
pendence on the characteristic lengths related to the dopirg, copper are reduced by a facfdr— (ma/l 5)2]. The ratio
rate,l ;, as well as to the charge makg,, is the crucial one.  of the oscillating contribution to the relaxation rates is ap-
Away from half-filling, the four-band model shows a differ- proximately given by ¢a/2l 5)2, and is completely indepen-
ent behavior on the copper and on the oxygen, despite théent of the details of the projected local Coulomb repulsions
fact that umklapp processes only contribute on short or inU,, and U, . It only depends on the doping rate and is
termediate scales. Indeed, the different hyperbolic dependeproportional to ¢a/4)?. By contrast, the four-band model
cies of the two characteristic Iength,gC andl ; for copper includes the effect of the Coulomb interactions through its
and for oxygen(see Table Il affect measured quantities re- dependence ofy, . In Table IV we show the ratios of the
lated to long distance or long time behavior. Instead, for thedifferent Knight shifts and relaxation rates contributions.
Bulut model the difference between copper and oxygen
comes in only because of the special choice of a Mila-Rice-
Shastry type electron-nuclear interaction tgB8r89 and the
related unconventional projection procedure which results in  For strong interactions the four-band system in g&g1)
the different trigonometric form factorsee Table Ill. The is much more difficult to solve. Yet, it is still possible to
influence of the charge mass; is the same for copper and highlight the qualitative features of the transferred hyperfine
for oxygen, a fact which manifests itself by the same depeneoupling interaction, specifically for the half-filled case. To
dence on the characteristic lendth. obtain the strong interaction limit of this model we can per-

I, 0 for s>y

IV. THE STRONG INTERACTION LIMIT
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TABLE IV. The ratios of the oscillating and nonoscillating con- (@ ®
tributions to the oxygen #=B) and the copper =A) Knight & S5 g % 0-2p
shifts and relaxation rates at half-filling (0) and away from half- o Ai/ L
filling ( 8) calculated for the Bulut and the four-band model in the ~ * 6‘@ PO =10 \V\ é_@ Cu-3d
low interaction limit. The ratios are measured in units of their char- ¢, M e, 4%/ 0.3
3.

acteristic overlaps with the ground statﬁig||)\aa| or|\,.l). Here 2
the oscillating contributions do depend on the characteristic length

Im, @andl s, whereas the nonoscillating contributions do not. FIG. 6. Possible spin flip processes of the nuclear oxygen spin

via a Fermi contact interaction at half-filling. Figui@ is present in
the 1D version of the Shastry model, wheréasis another possible

Bulut model Four-band model process which includes some superexchange contributions. At half-

KO filling there are only transferred contributio§); local processes
B 1 1 (L) are absent. The numbe(s., 2., 3., 4., and 5.denote the se-
K%‘s guence of the intermediate steps.

0,6
ﬂ_cl)i 1 1 let us restrict our analysis to the half-filled case where only
1TiA virtual double occupancies of the copper site are allowed and
1/70 where electron-nuclear interaction processes require that the

~;B 0 0 initial and the final charge distribution be the same. We deal
1UTia with electron-nuclear interaction processes where effectively
172, sin(ma/2l 5)2 ls one local Cu 31 spin will pe reversed and_ then relaxed by the

= — tanh KKy i thermodynamic fluctuations of the Heisenberg model. We
T cogmall ;) Me

decomposeHl,+Hg+Hy) into (L+K). L includes all local
andK all kinetic contributions of the complete Hamiltonian

_ o H introduced in Eq(2.1). Then we can expangHP on the
form the Gutzwiller projection basis of the unperturbed eigenstatesLofnd compute the

_ g A projected locak-orbital spin operators lik&€S»jP. For the
H=P(Ho+HstHy)P, 4D Getails we refer to Appendix C and discuss only the final
which eliminates doubly occupied states in the Gud@bit-  results.

als from the Fock space. The projection is effectively per- First we analyze some relaxation processes for the oxygen
formed on all three terms of E@4.1), which are treated on atom. The process shown in Figapis a transferredT)
equal footing. As far as the first paRtH,P is concerned, ~contribution proportional to

two possible superexchange processes are generated, as
shown in Fig. 5. In the strong interaction limitUg
>le,—€,|,U>t,,,) the superexchange process in Figa)5
is much more effective than the process in Figh)5For the

2

e . (4.2)

F =l —
BT@ 7| cg—(eat U

For the process shown in Fig(l§, we include a part of the

\t/)visf systferrrh-tlﬁ, V\:‘e Ort]tlay Eg\ﬁ tcc)j élze%p SVStatﬁj perVL\J/irm cell, superexchange process to avoid double occupation of the
ereas for the four-ba odet..), we end up a chper site, and the contribution is proportional to

system where we have to keep 27 spin-degenerate loca
states per unit ce|l with 4 tight-binding parameters,, for taptsa
a half-filled systeniexcluding doubly excited,B states; see Fa1.0)~ — —
Appendix Q. For a doped system the number of states as (€a—€p)(€g— €p)
well as the number of possible transitions increases very fasthen the lowest order contribution to the general form factor
as has been shown for a two-band mdde\ correct projec-  for the oxygen is given by

tion procedure such as E¢4.1) becomes very difficult to

handle, and one must resort to some approximations. In any Fe(p)=2Fg | +2Fg tcogpa/2), (4.9
event, in the vicinity of the half-filled case where the projec- .

tion can be explicitly used for the full Hamiltonian, we will Wit

analyze the differences between the predictions of the four-

2
. 4.3

band model and those of the approximated Hamiltonians. So FgL=0 (4.5
@ Ui (®) Fepr=ngrFerwtrerwlfsremt . (4.6
N /y\\ & U i/\gs\ 02 projected Shastry
sl Y e - M ot @—$ Cu-3d

ng,T,) denotes the combinatorial factor associated with all

FIG. 5. Superexchange processes generating antiferromagnef@SSible processes yielding a contributieg r ) . The fac-
couplings between localized copper spins at half-filing. In contrastor 2 for the left-right symmetry is not included img 1 gy -
to the superexchange path process(b) is suppressed, because it Like for the superexchange procesd€sg. 5 some pro-
includes an intermediate state where it is necessary to pay the locaesses are forbidden due to the Pauli principle. However,
Coulomb repulsiorJ, . The numberg1., 2., 3., and 4.denote the ~ since all energy levels are assumed to be spin-independent
sequence of the intermediate steps. the related amplitudeBg 1,y are the same.
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(a)s Fa(p)=2F4 | +2F, tcogpa) (4.14
e 1L f?\ ﬁI/
1-P-O
" A\/ ' FaL=NaL,@FaL@tTNaLmFaLwm
€1
\f ¥ 0oL oF ALt (4.19

Faor=narFar@trarmlfare

g 1 f?\ N 1 . ~ projected Mila-Rice
TP :
> g Trarof arotrarwfarmt .
N > e e
Bl \V hd \‘y 1 3 projected Shastry
2.

(4.16
FIG. 7. Possible transferred spin flip processes of the nucleaket us now compare the predictions of the four-band model
copper spin likePS;;P via a Fermi contact interaction at half- and those of the 1D Mila-Rice or Shastry models.

filling. Figures(a) and (b) appear in the 1D Mila-Rice mode(s) Using the projected expression for the oxygen instead of
pertains to the 1D Shastry model, wherédsis a combination of ~ the unprojected on€.24), only procesgb) in Eqg. (4.6) con-
both. tributes in the strong interaction limitU,—«), whereas

processa) in Eq. (4.6) proposed by Shastry becomes negli-
For copper we also distinguish between the transferregible
(Fig. 7) and the local contributiong=ig. 8). The transferred

contributions are proportional to Fg1.@—0. (4.17
2 The form factor for the characteristic wave vectops=0 or
tabtan _ -
FaT (@)= , (4.7 p=mla) is then reduced to
” (ea—€p)(eat €a—2€p—Uy)
) Fe(0)=2ng 1,m)F8,T,0) - (4.1
F _ tabtan 4.8
A,T,(b) (en—€p)(ea—€a—Uy) | : Fg(m/a)=0. (4.19
¢ 2 Since only the relaxation process of the oxygen nuclear spin
Fat(= Aa} , (4.9  contributes, which correspondspie-0, we recover the basic
o ea— €3~ U, structure of the form factor of Shastry with modified ampli-
tudes. Thus at half-filling, there is no fundamental difference
B tabtabtaa for the oxygen between the general form fadi#) and the
Fat@= N2\ (410 torm factor proposed by Shast(g.27).
(epn—€p)“(€a—€p) - o - .
In the strong coupling limit at half filling, the following
whereas the local contributions are given by contributions to the form factor for copper are suppressed for
) U,—oe:
. _ tabtan 4.11)
AL@ | (ea—ep)(ent €a—26p—Up)| © FaLm Farw Fat—0. (4.20
o Thus the projected Shastry contributi@) in Eq. (4.16) and
FaLm= Labtab } (412 one of the projected Mila-Rice contributiofty) in Eq. (4.16
ALO ] (ep—ep)(ep—€a—Uq) | as well as one of the projected local contributighsin Eq.
) (4.195 become negligible, and we end up with
F _ taptan (413
AL© 7| (en—ep)(eat €a—2€p) | ' Far=MaL@Fat@tMaLeFaLet - (42D
Then, the general form factor for copper reads Fat=Nat.@Fat@tNat@Far @t - (422
(@)
g+ _6_@_ 0-2p

, ' . 4/
el d 4 4 . @-@ ) Cu-3d

&t -( % Cu-4s

FIG. 8. Possible local spin flip processes of the nuclear copper spirﬁﬂﬁqﬁ’ via a Fermi contact interaction at half-filling. All
processes include the (2rbital as an intermediate state and are of the same order as the transferred hyperfine coupling processes proposed
by Mila and Rice.
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for the local and for the transferred contributions to the gencontributions, since the antiferromagnetic contributions are
eral form facton(4.14), respectively. Thus the uniform part of exponentially suppressed depending on the ratio of the char-

the form factor is given by acteristic length related to the charge gap and the doping. In
contrast, the copper nuclei always see both contributions, the
Fa(0)=4n4 a)Fa @1 2Na L (FAL(© Korringa-like contribution as well as the antiferromagnetic

(4.23  one. This fundamental difference between copper and oxy-

+2n F +oe
AT@OTATED gen vanishes gradually when the characteristic doping length

whereas the oscillating part reads or the characteristic thermal length becomes shorter than the
Ja)=2 5 E length related to the charge gé&ihe difference goes away
Fa(mla)=2na FaL©~ 20T @FaT@® abruptly when the system develops a gap in the spin Sector

(4.24 This solution is at variance with the prediction of the related
We used the fact thaip | 3y=NaT,(2)=Na@ andFa o  approximate model, where for oxygen the _antiferromagnetic
=FaT.(=Fa(a- The uniform part includes contributions contributions to I, increase with doping like??, whereas
which are absent in the 1D version of the Mila-Rice and offor copper they decrease proportionally&a Thus, the sce-
the Shastry model. Furthermore, some terms proposed byario where oxygen does not see the antiferromagnetic fluc-
Shastry turn out to be zero in the strongly interacting limit.tuations is realized much more effectively in the four-band
For the oscillatory part the effects are much more drasticmodel than in the 1D version of the models proposed for the
The transferred terms proposed by Shastry vanish in thbigh-T. materials. In 1D, such an unconventional scenario
strong coupling regime, whereas other transferred termsyorks, since even small interactions generate strong antifer-
which come from a combination of Mila-Rice and Shastryromagnetic correlations due to the drastic reduction of the
processes, contribute. Besides, the transferred terms pr&ermi surface.
posed by Mila and Rice are canceled by the equivalent local We have also considered the strong interaction limit. Per-
terms. Hence, in 1D, the general form factor differs bothforming a Gutzwiller projection onto the four-band model
qualitatively and quantitatively from the form factors one without further approximations for the electron-nuclear inter-
would derive from the Mila-Rice or from the Shastry mod- action term, we computed the various processes contributing
els. to NMR. Our analysis was limited to the insulating phase
(Heisenberg modgl since even in 1D a full solution of the
V. DISCUSSION AND PERSPECTIVES model for a doped systent-J model with four orbitals per
unit cell) is unavailable. In the strong interaction limit of the
In this paper, we have analyzed the 1D analogs of thgD Cu-O model, we were able to compare the form factors
hyperfine form factors proposed for NMR measurements obbtained for the four-band model with the predictions ob-
high-T. materials in the antiferromagnetic phase. We haveaained for the approximate mode(#ila-Rice model and
focused on the situation where one deals with an antiferroShastry modgl investigating the different relaxation pro-
magnet generated by a superexchange process via an oxygessses for the copper and oxygen nuclear spins. In this con-
atom located at the midpoint between two copper atoms antéxt, we have shown that neither the 1D analog of the Mila-
where the Fermi contact interaction is one of the main conRice model nor the 1D analog of the Shastry model could
tributions to the possible electron-nuclear interaction termsdescribe the strong interaction limit at half-filling. In contrast
We have investigated a 1D Cu-O model including four or-to the usual assumption that only transferred contributions
bitals per unit cell, namely the Cud3and the O D orbitals  are relevant, we predict that both local and transferred con-
governing the ground state properties, as well as the €u 4tributions should be taken into account for describing the
and O 3 orbitals describing the isotropic Fermi contact in- relaxation of the nuclear copper spin via an Csietbital.
teraction. In 1D, we were able to solve this model using onlyFurthermore, we have shown that for infinite local repulsions
standard techniques without having to introduce any addien the copper sites and small local repulsions on the oxygen
tional approximations for the hyperfine interaction term assites, the contributions proposed by Mila-Rice and Shastry
proposed by Mila-Rice and by Shastry. Thus, we were abl&anish. For the relaxation of the nuclear oxygen spin we
to compare our solutions of the four-band model with therecover the basic idea of transferred hyperfine couplings with
predictions of the approximative models. slightly modified amplitudes, but once again the contribution
In the low interaction limit, we have calculated the result- proposed by Shastry vanishes for infinite repulsion on the
ing temperature dependence of the Knight sh{ftsnd of the  copper site.
relaxation rates T/, for an undoped and for a doped system; Both the strong and the weak coupling limits underscore
in that limit the ground state is well described by the stronglythe importance of keeping the full four-band model, at least
hybridized Cu 3-O 2p antibonding band the width of in one dimension, in order to give an accurate description of
which is large as compared to all Coulomb interactions. Fothe NMR properties. The method we used in the present
both models, the four-band and the approximative @wdut  paper to tackle such a model can thus be extended in various
mode), the temperature dependences are the same and shalivections. First, it can be applied to study specific models
the typical power law behavior of one-dimensional interact-which have a structure similar to the model Cu-O chain ana-
ing systemgsee Table)l Within this scope we have shown lyzed here. This is for example the case for ladder materials
for the four-band model that for an undoped and a slightlysuch as Si_,Ca,Cuw,,04,. Analyses of the NMR material
doped system copper and oxygen behave completely diffehave so far been performed in terms of Mila-Rice-Shastry
ent for long distances or long times, when the temperature iapproximations. An analysis retaining the full four-band
low enough. The oxygen nuclei see only the Korringa-likemodel, with the specific symmetries of these ladder systems,
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is currently in progres$* Other systems for which our analy- will end up with the bosonized expressit$13, where now
sis can be relevant are TMTSF and TMTTF alldyét  the electron-nuclear interaction is given by
stoichiometric composition they form an alternate stack.
Let us now comment on anisotropic contributionsko _ f 2 s 216 S L BS
and to 1T,; these can be produced by a dipolar hyperfine Hy g dX(CalMaal“+ Cilhadl I3(S;+ S5,)
coupling(see Appendix A They also stem from the specific
structural details of a given compound which may lead to an f 2 s N
: . T e + + + )
anisotropic form for the susceptibility: in that situation the Z dX(Cg|Ngal“+ CE|Apa 2 I3(S;+ S,)
anisotropy of thep=0 component(3.37) will usually be A2
different from that of thep=2kg part (3.38. In both the (A2)
weak and the strong interaction limits, we find that—for low Here we used the fact th&, =S5, andS;, =S, . In gen-
?;glé)gh gempzr(a?ure—'ll{ tI'S mIOtStl)lé ?gtg%m'_lr_‘ﬁd by EQ. eral the explicit bosonized expressions for the spin part of
.38, whereaX is proportional to .37. The experi- % < : <z .
mental observation Ft)hafw is essentiglly isotropic anF()j that Sy« andS), differ from S7, in Eq. (3.20, but finally for a
K is anisotronic suagest that anisotropic effects are not tc)spln—symmetnc model there will be no influence on the cor-
P 99 P Pelation functions. Thus only the coefficients are slightly

important for thep=2k contributions but do affect the modified and vary for the different directioss=x,y,z. For-

=0 terms, mally the contributions to the-directions of the Knight

Another possible extension of our work concerns of hifts K¢, andK¢, as well as the contributions to the relax-
course the two-dimensional systems. Although it is uncleaP "> "Cu 0 s .
ation timesTjc, and T], are given by Egs(3.35 and

how much of the weak coupling approach remains valid in ;
higher dimension, our strong coupling analysis can straight(3-36 performing the replacements
forwardly be applied to higher dimensional structures. The cs
main difference in that case between the @D highe) and M acd 2= N aal 2+ =N aal? (A3)
the 1D study presented here comes from the symmetry of the Ca
various orbitals. In the case of a Cu-O plane, in the presence
of a Coulomb repulsion on the oxygen sitddd,,#0),?°
the related amplitudes for the local proces$ésll) and
(4.13 are not equal anymore, and a cancellation of these . i )
terms by symmetry arguments as assumed by Mila-Rice dod@ the expressions of the form factors defined in Table II.
not occur. Only the contribution like Eg4.12 will vanish [N the strong interaction limit of the four-band model the
by symmetry arguments. The transferred Mila-Rice contripuinclusion of anisotropic hyperfine interactions results in
tions (4.7) via the O 2 orbital, which always cost the Cou-
lomb energyUo ,,, and the local process¢4.11) have ex-  HY =, (2CAFA,L+CZFa,L)|fSZj+jE Fatli(S5 1

S

Ch
|)\Ba|2_)|)\Ba|2+C_B|)\ba|2 (A4)

actly the same combinatorial factor and the same amplitude; Is

thus the term4.11) cancels out the ternd.7) for the anti-

ferroma_gnetic wave yector. Thi; suggeststiey, W= that + SZ,j+1) + E (CgFp 1+ C;Fb'T)J]?(SZ1j + S;'j 1)
the antiferromagnetic contribution to the relaxation of the Is

copper nuclei via an isotropic interaction comes from local (A5)

terms[see Eq.(4.13] and from new transferred combined . . ) .
terms of third ordefsee Eq.(4.10], while the transferred Here the new defined parameters which describe the addi-

contributions proposed up to now are absaee Eqs(4.8) tional couplings to the local Cudspins are given by, |

and(4.9)]. =1 and Fy 1=t4,/(ea— €p)% Whereas all the others were
defined in Sec. IV. For the copper atom the local contribu-
ACKNOWLEDGMENTS tion is modified, whereas for the oxygen atom it is the trans-
ferred one.
This work was initiated by a suggestion from the late H.J.
Schulz whom we wish to acknowledge here. APPENDIX B: THE SINE-GORDON MODEL
APPENDIX A: ANISOTROPIC HYPERFINE COUPLINGS At half-filling the spin part as well as the charge part of

the Hamiltonian (3.13 are described by a sine-Gordon
Taking into account anisotropic hyperfine couplings re-modelH¢g=Hg+H{, where
lated to the orbitals Cu@and O 2 we have to replace Eq.
(2.7) by 2au, (L
HY = Zf dxcog \8®,]. (B1)
(2ma)“Jo

H = CAlS, +CiISS +CpiSh: + CLIS .
N % AljSat Cal 1S CadiSe; + Codi Sy, For this model two different regimes exist depending on the

(A1)  value of the parametdf,. A massive regime,,) for

The sum ors is over components of the diagonal hyperfine 2mu,(K,—1)<|U,], (B2)
tensorsC? .

In the weak interaction limit of the four-band model we where the perturbation ¢ is relevant, and a massless)
can perform the same calculations as done before, and wer
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27u,(K,—1)>|U,|, (B3) TABLE V. Possible local states per unit cell of the four band
Hubbard model. The degeneracy is related to the possible spin con-
where the perturbation is irrelevant. figurations for a local state labeled hy;).
_ ) Degeneracy Local energies State
1. Massive regime(v,)
. . 2 T=€ept2 7.
When the cosine term is relevant, the conformal symme- TmeaTece I75)
try is lost and the elementary excitations become massive 2 €6=2€at €3 16;)
particles. To compute the correlation functions we can ap- 1 €5=2ept 2ep 5;)
proximate the cosine term by 4 €= €pt2epte, |4;)
4 e3=€ept2egt €, |§J>
2 2
m, [t 4 >=2ep+egt .
Hin=—" f dx(®,—(P,))?, (B4) Tt 12))
2 Jo 4 €1=2ept+ egt € [1;)
. i 2 60:26A+26'B+ €y |0]>
wherg the mass can b'e obtained from the exact solution of 2 €1=2€p+2eg+ € [1;)
the sine-Gordon equation. For sméll|, one has 8 €= ept2eg+ €t €p 12,)
2 €3= ept2eg+2€,+ U, 3;)
1/(2—-2K
m. = M ( V)a71 (BS) 8 €4=2€A+ egt ezt € |4]>
v mu, ' 2 es=2ep+ egt+2€,+ Uy [5;)
4 €g=2€p+2eg+ €5t €, [6;)
This Hamiltonian describes the fluctuatiof® , of ®, about 4 €;=€pt2eg+ €+ 26+ Uy [7;)
its mean valug® ,y=0. For such a system the Green'’s func- 1 €g=2ep+2eg+2ey+ U, 8;)
tion (T,®,(r,)®,(0)),_ of the Laplace operator defined on 4 €9=2ep+ egt+ €+ 26, Uy 19;)
the domainA ,=[0<u,7<u,B,0<x<L] is given by 2 €10=2€ep+2€g+ €.+ 2ep+ Uy 110;)
2 €= ept2egt2e,+U, |111>
K, 2 €1,=2ept+egt+2€,+ U, 112))
G'm(r,) = 5 Kolm,(r,+a)]. (B6) 1 €15=2€p+2ep+2€,+U, 113)
4 €1a=€pt2eg+2e,+ U+ €, |14))
K, is the Bessel function of zero order. 4 €15=26pt g 26, Uat 6 115)
2 €16=2€p+2eg+2€,+U,+ €, |16;)
. 2 €17= ept+2eg+2e,+ U+ 26+ Uy, 117;)
2. MaSSIGSS regldeO) 2 618:26A+ €B+ 263+ Ua+ 2€b+Ub |18‘>
In this regime, the bare parameters are renormalized up to 1 €10=2€ep+2€g+2€,+ U+ 26, + Uy 119))

the fixed point valuesi,—u* ,K,—K%* , andU,—0 with-
out changing the basic Luttinger liquid behavior of the un-
perturbed parHg . For this model, the Green’s functions for APPENDIX C: LOCAL STATES IN THE STRONG
the unperturbed part regularized for large distanceRby INTERACTION LIMIT

and for short distances by the lattice constardan be ex- The projected Hamiltoniaf2.1) is expressed as
pressed as
PHP=P(L+K)P, (C1)
GYo(r,)= &In[va(rﬁ a)] (B7)  WhereL denotes the local system, wheregsincludes all
2 possible hopping terms d¢i. The eigenstates df are given
b
or as the following limit: y
N
Go(r,)= lim G"m(r ). (B8) gz, ...onj, . ’nN>:j1;[1 In;), (C2
m,—0

wheren; labels the local states on sitej. The local states
and energies are shown in Table V. For simplicity we use the

. . . . , o short notation
Typical spin-spin correlation functions of the original fer-

mions defined in Eq(3.12 are combinations of exponentials 101,00, ....nj, ..M, ... Oy_1,00)=|n;,m;) (C3

of &,. For a Gaussian model these functions can be ex:

pressed in terms of the Green’s functia(s) or (B7) de- (local ground state configurations are labeled|@y). The
pending on the phase energy of such a state is given by

3. Correlation functions

Enm=(N—2)eg+ en+ €. (Co
(exdiy,®,(1)]---exdiyn®,(N)]), .
N e N Now, we can expand the projection operaPronto the
— e Znem G (g~ 0 76 (2, (B9)  unperturbed eigenstateslofHere for the half-filled case, we
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are only interested in the projectid?\ onto the statd0)
I1},]0;) with the energyEq=Ne,, thus we get

p= PO,

(CH
where the first orders are given by
PO=p,,
ﬁ)(l): ﬁ)pQ‘i‘ ﬁ)Qp,

l’:\)(z): ﬁ)PQQ+ ﬁ’QPQ+ I’:\)QQP_ (ﬁ)pr2+ ﬁ’pQZp"’ l’:\)QZPP),
(Co)
with

o
o
Il
o
o

“ A 1 .
PPQ: POKQOEO—_LQOa

Por=Qog 1 QoKPo,

1 .
PPQQ—POKQOE QoKQoE LQ'

1 .
PQPQ Qo QoKPoKQoE I_Qo,

1
PQQP QoE QOKQOE QoKPO,

lSPPsz PoKPoKQo Qo

(Eo—L)?

“ A 1 A A
Ppg2p=PoKQq —L)onKPo ,

(Eo—

n n 1 A A A
Po2pp= QO—L)ZQOK PoKPg. (C7

(Eo—

The projection operata®, denotes P,

We can compute the projected electron-nuclear interac-

tion term PHyP. The projection affects only the electronic
spins, and we have to evaluate projected local s orbital spin
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S =(PO+pM)s (PO +pM), (C8)
Introducing Eqs(C6) and(C7) in Eqg. (C8) only
S =PraSaiPorp (C9

will contribute to the Cu 4 spinS,j, because in a half-filled
system the first hopping process brings the system out of the
ground staté0) and the second one brings it back to a pos-
sible ground state configuratid®). Here only the projec-
tions

taa _
T|0><4j,1?ml. (C10

I’f)pQ:
EO_ 4,13

14,13 .1)(0| (C11)

Pop= =
0~ E413

could generate finite matrix elements for second order con-
tributions. For the O 8 spin Sg; it will be

~ _tBa
Ppo==—=—10)(12], C12
PQ EO_E12| ){(12] (C12
a —1ga
PQP—EO_—EH|121'><0| (C13
or
X tg _
PPQ:+|O><2j11%+1|1 (C14
EO_E2,13
R thy
PQP=+|2j11%+l><O|' (C1H
Eo—Ez213
Finally, the projected spinS{; are given by
S,(Azj):|)\Aa|2|50(5a,j—1+5a,j+1)|50, (C16
S5=1\gal*Po(Sa,j + Saj+1)Po, (C17)
with
tAa
)\Aa_ €r— €, Ua, (C18)
tga
Aga==* (C19

eg— €~ Uy’

operators such aﬁa,s,?jﬁ. For example, the second order pro- Higher order contributions could be computed using the

cessegsee Figs. @) and 7c)] are given by

same procedure as for the above examples.

1A.J. Millis, H. Monien, and D. Pines, Phys. Rev. 8, 167
(1990.

2F. Mila and T.M. Rice, Physica @57, 561(1989.

3B.S. Shastry, Phys. Rev. Le&3, 1288(1989.

4P.W. Anderson, Adv. Phygl6, 3 (1997.

5Y. Zha, V. Barzykin, and D. Pines, Phys. Rev58 7561(1996.

5A.J. Millis and H. Monien, Phys. Rev. B5, 3059(1992.

“N. Bulut, D.W. Hone, D.J. Scalapino, and N.E. Bickers, Phys.
Rev. B41, 1797(1990.

8C.M. Varma, Phys. Rev. Let7, 3431(1996.

9D. Jeome and H.J. Schulz, Adv. Phy31, 299 (1982.

10C. Bourbonnais and D. Jerome, Amlvances in Synthetic Metals,



12 504 T. BECKER, M. GABAY,
Twenty Years of Progress in Science and Technolediyed by
P. Bernier, S. Lefrant, and G. Bid&Blsevier, New York, 1999
pp. 206—-301.

1we wish to thank D. Jerome and P. Wzietek for helpful discus-
sions on this issue.

12E B. Stechel, A. SudhoT. Giamarchi, and C.M. Varma, Phys.
Rev. B51, 553(1995.

13F.C. zhang and T.M. Rice, Phys. Rev.38, 3759(1989.

¥D.C. Mattis, J. Math. Physl5, 609 (1974).

ISA. Luther and I. Peschel, Phys. Rev.982911(1974).

18E D.M. Haldane, J. Phys. €4, 2585(198)).

R. Heidenreich, R. Seiler, and D.A. Uhlenbrock, J. Stat. PRgs.
27 (1980.

AND T. GIAMARCHI PRB 62

18F D.M. Haldane, Phys. Rev. Le#t5, 1358(1980.

19H.J. Schulz, Phys. Rev. Lef4, 2831(1990.

20A. Sudbg C.M. Varma, T. Giamarchi, E.B. Stechel, and R.T.
Scalettar, Phys. Rev. Leff0, 978 (1993.

21T, Giamarchi and H.J. Schulz, Phys. Rev38 4620(1989.

227 M. Tsvelik, Quantum Field Theory in Condensed Matter Phys-
ics (Cambridge University Press, Cambridge, England, 1995

233, Zaanen and A. Ole®hys. Rev. B37, 9423(1988.

24T, Becker, M. Gabay, and T. Giamarchinpublishel

25y, llakovac, S. Ravy, J.P. Pouget, C. Lenoir, K. Boubekeur, P.
Batail, S. Dolanski Babic, N. Biskup, B. Korin-Hamzic, S.
Tomic, and C. Bourbonnais, Phys. Rev5B, 7136(1994).

26T, Becker, M. Gabay, and T. Giamarchinpublishel



