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Theory of the de Haas-van Alphen effect in two-dimensional superconductors
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The experimentally observed damping of magnetic oscillations in superconductorsBigl@qualitatively
explained by application of the Lifshitz-Kosevich formula with the superconducting gap playing the role of the
self-energy. In two dimensions this formula omits a leading order term proportional to oscillations of the
self-energy. We apply a recently proposed formalism to derive the magnetization oscillation amplitude of
two-dimensional superconductors in tfmixed) superconducting state. We find a significant correction to the
LK formula, which leads to a sign reversal of the oscillations beRw.
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Quantum oscillations of the magnetizatipge Haas—van “l

Alphen (dHvA) oscillationd have provided a wealth of in- h . is th v tensi f th i ;
formation about Fermi surface structure of many materialg" ere{(iw) is the analytic extension of the self-energy to

for more than three decad&%his achievement makes use of the imaginary axis. The inverse temperaturgsis 1/T and

the quantization condition such that the frequency of oscillal @ =1(7/B)(2] +1) are Matsubara frequencies. This for-
tions (which are periodic in the inverse magnetic fieid

mula is based on an approximation given by Luttifger

proportional to an extremal area of the Fermi surface. In\’vh_'lf:h nt_aglecr:s oscillations mlfthe self-eﬂergy. ith th

addition to the frequency spectrum, there is also useful and rteat]:ntgk]] the gap asda ts.e —e?etrgy'vtlhﬁa:t f‘p%e"ﬁg ng the

important information contained in themplitudeof oscilla- onset of the superconducting state, B ephert,” an

tions, which depends on interactions in the system. Springford and WassermHrpredicted a drastic reduction of
The first observation of magnetic oscillations in the super

dHVA oscillations upon entering the superconductimgr-
conducting state was reported in 1976 by Graebner anéex) state from the normal state. Such a reduction has indeed
Robbing for the vortex state of NbSe Since then a wide

een observed and all recent experiments have interpreted
range of superconducting materials has been studied, inclu@JjEIr data in 2terms of an additional damping factor arising
ing VSi,>* NbSe, > CeRy,” YNi,B,C,% and NhSn (Ref.  Tom the gap
9) and the organic superconductor
k-(BEDT-TTF),Cu(NCS),.%° One goal of all such experi-
ments is to achieve an explicit measurement of the shape of
the Fermi surface. A noteworthy example is

x-(BEDT-TTF),Cu(NCS), which was shown to be nearly  The strictly two-dimensional case has been studied by

two dimensionat. o o Maniv et al!® and by Bruunet al!® Both groups considered
The fact that dHVA oscillations persist into the VOreX {he expansion of the thermodynamic potential beyond qua-

state is a matter that requires careful consideration. Bear  yratic order inA. In this paper we follow the approach of

the cyclotron radius encloses many vortex lines, therefore i{;5ki and Stephen: however, Eq4) and(2) are not a com-

is appropriate to average the field strength across the samplﬁqete description of magnetization oscillations in 2D, since

Estimates of the effect of the field inhomogeneity across theyscijjations of the self-energy give rise to important

flux lattice indicate t.hatéi;[ causes a negligible reduction Of¢qrection® We calculate the magnetization oscillations in-
the oscillation amplitude: All measurements concur that ¢),qing contributions coming from oscillations of the self-
there is no shift of the dHvA frequency at the transition gnergy and find a significant contribution that is 180° out of

between the superconducting and normal states. 5 phase, leading to a sign reversal of the oscillations below
The conventional Lifshitz-Kosevict_LK ) formalism' for B,
o

describing magnetic oscillations ithree dimensiongives
the amplitude of thé&th harmonic as

B A? T
=~ PR (3

Il. MAGNETIZATION OSCILLATIONS

Texp — lwT)
~%, (1) The magnetization is derived from the thermodynamic

potential, M=—0Q/dB. In Ref. 20 it was argued that a
where T is the temperature),(szZkT/w;‘ . w.=eB/m is suitable approximation t6) for an interacting system is
the cyclotron frequencyB is the applied magnetic field, and
m is the band mass. The scattering timéncorporates ef- Q
fects such as disorder. The effective magswhich appears
in 0w may be determined from the self-energy(x),
m*/m=[1—d3(x)/dx] "1, and the general form of the LK whereG contains the self-consistent self-energy. This is an
formula is approximation which neglects the contribution of crossed
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graphs. For a two-dimensional system in a magnetic field the ) ) o ) o .
trace is a sum over Landau levels Gliwg,r,r")=G (iwy,r,r )—J dr'G-(iwy,r,r")
1 me Tt "o
Q=-7 3 loglioy—(n+U2oc- (o], (6) XA(F (g, r"r), (12
®p N
Tri 1y — nH0_; ”
which is converted to an integral using the Poisson sum for- Fiion,r.r) fdr Gl(—iwn,r"r)
mula XA*(I"G(iwg r"r'). (13
Q:_E 2 jw %Iog[iw —e—S(iwy)] The bare Green’s functio® (iw,,r,r') is expressed in
B ey J-poc " " terms of the solutions for a single particle in a magnetic field,;
in 2D this is

27k(e+ w)
X S———

. (6)

1+2> (-1)%co
k=1

G%iw, ,r,r’)ZE ¢n»q(r)¢n,q(r )

n,q Iwn—(l’H—l/Z)wc’ (14)

C

According to Ref. 20, the important contributions to the
magnetization oscillations are

1 1/2
én, (X,Y)=(n—>
Mosc=My+M; @ L2

Y
eiqy—(x—q|2)2/2|2Hn<X Iql )

(15

Ay ! —27k _ wherel = 1/\/eB is the magnetic length and,, is a Hermite
My=— > (-1 B > ex o L= &(iw)] polynomial. Substituting Eq13) into Eq. (12) we find

M2 k=1 0>0
G(iwy,r,r")=G%iw,,rr

X sin

8

27Tk/.L)

We

—J drydroGo(iwn,r,r1)A(ry)
2w d&(1w))

M,=—
2 wB o0 B

9 XGo(—iwn,r,r)A*(ry)Gliwy,rp,r').
(16)

In Eq. (16) we see thatA(r;)A(r,) serves as an effective

. . o apotential. Stephéfi argued that the potential may be ob-
given above Eq(2). M, comes from the first term inside the tained by averaging over vortex lines.

square brackets and is the contribution originating from os- .

cillations in the self-energy which was first introduced in V(r—ry)=(e"PU1DA(r)A*(r,)), a7

Ref. 20. Generally M, leads M, by a factor of ;

(we/p)@=272, whergd is the dimensizon; ?/n two dimensions where(ry rp) = (X;+X;)(y2~ya)/1” in the Landau gauge,

) .and the gap function

these two terms are formally of the same order. This result is

valid for any interacting system in two dimensions. In the _ 1 nql?\?

case of superconductors, Maki and Stephen justified a simple A(r)=2, C.e9exg — —2( X— T) :

substitution of the expressiof8) for the self-energy. We " !

begin the next section by reviewing their arguments. Stephen calculate¥(r) using both a square vortex lattice
(C,=1) and a disordered vortex lattice. It is not difficult to

Ill. SUPERCONDUCTOR IN A MAGNETIC FIELD show that a triangular vortex latticeC{=Cy,,C1=iCy)

) _ o yields the same result. In all of these cases one finds
The properties of a superconductor in a magnetic field are

(18

governed by the Gorkov equatidhs V(r)=A%"2% (19
1 where A is the magnitude of the gap. The potentiglr,
iop+ =—[V,—ieAr)]?+ u |Glio,,r,r') —r,) satisfies the self-consistent equation derived from Eq.
2m . L -
(13) by setting r=r"=r,, multiplying both sides by
+AOF 0y, r)=8r—r"), (100 A(ry)e'?"12 and averaging
A
1 _ - _ .
(—iwn+ﬁ[vr+ieA(r)]2+,u FT(iwn,r,r’) V(rl r2) ;ﬂ fdrv(r rl)G(lwnur,rZ)

XGO(—iwy,r,rpy)e¢lradelery (20)

(see the Appendix

—A*(r)G(iwp,r,r')=0. (11

G(iwp,r,r') andF(iw, ,r,r_’) are the ordinar_y and anoma-  The solution forG(i w,,,n) is of the form
lous Green’s functions, respectively, A(r)

=(NB)2,, F(iw,,r,r) is the gap function anl is the cou- i NS Gn,g(1) Pnq(r")

pling strength. The solutions to these equations may be writ- (on.r.r)= g o= (N+12)w.—2(iw,,n)’

ten in integral form (21
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One may find3 by substituting Eqs(19) and (21) into Eq. O L B S B/
(16) and performing the required integrations L /A
Lo 05 [ .

S (iwn,n) =422 - o @) e : )

n' Iwn+(n'+1/2)wcy

(n+n")!
Inn/_nln/|2n+n/+l- (23) -1lllillllll\||l1\||_

4.2 4.3 4.4 4.5 4.6

This result indicates that the self-energy has very large os-
cillations and is actually singular at the energy of each Lan- B (T)
dau level. For this reason it is better to improve the calcula-

tion by solving for the self-energy self-consistently, by FIG- 1. The amplitude of the first harmonic of magnetization
substituting the full Green’s functioB(—iw,,r»,r) in Eq. OSC'”‘;"t'ons_ forKT(%ED:'TtT_';LZCU(:\.'dSF)Z k.’el?rVKABCZ UZ':E’ tze tpt)a(-j
(16) ThenE SatiSﬁeS rameters given in the text. e Soll |neM:l o an e dotte

line is the Maki-Stephen resuliM; only).

lnr
S(iw,,n)=A2 o . *
(Ton.n) nZ i, + (N + 12w +3(—iw,,n’) Ml:_z_”iiz (—1)
(24) M w B =1
Assuming that the largest contributions to the sum aver exq—ZfrrzkAzlngﬂwv) C 2mku
come near the pole &t one finds forn’~n~v that |, X sin . (28

H 2
~1/\J4mwv. Here v is the number of filled Landau levels. sinh(27k T/ wc) @e

Now write 3 =3+3 .. and solve Eq.24) under the as- The second term is
sumption thai, ,;<3. The left hand side of Eq24) can be

3 2 *©
expanded using the Poisson sum formula Mzzi Atelt > (—1)k
my4my wg wg B k=1
S (iwp) + 2 gsd i 0p) A dee ! 2KA2/ w2 \A7rp
iw iwp)=—| — — -
n os n \/m a0 ot e+ 3 (=i wp) ><eX}Z( 2mKA wiNATY) - 27Tk,U,. 29
sin( 272k T/ w.) Wc

- 2mk(e+ ) _ _ _ _
x[1+2>, (-1)kcos———. Equation (29) is the main result of this paper. The most
k=1 ¢ important feature oM, is that the coefficient is of the same
(25) order in u/w. as in M4, a result which is unique to two
dimension€? The remaining coefficients may be considered
The second term in the square brackets shows oscillationg be the coupling constant of the self-energy, and in many
explicitly in terms of the cosine® is found by omitting all  systems this constant is small, providing a justification for

of the oscillatory parts and taking both limits of the integral the LK formula even in 2D. However here the effective cou-

to infinity, pling may be rather large; using estimates given in Ref. 10
for k-(BEDT-TTF),Cu(NSC), in the regime belowB, we
—. i A? haveA~1 meV, w.~0.1meV andv=F/B~100 (whereF
2(iwn)=— \/4—77—1%39““’”)' (260 is the dHVA frequency resulting in a coefficient foM , that

is the same order of magnitude as thatvbf. However, it is
This result was obtained by Steph’éﬁrhe Osci"atory part is difficult to make a detailed comparison between this result
obtained by splitting the cosine and expressingdtiepen- ~and experiments, since the quantitiés, and A(0) which
dent parts as exponentials, and then integrating over the togppear _in the expression for the gapA(B)
bottom half planes as dictated by the signs of the exponer=A(0)y1—B/B., are not known exactly.
tials The amplitude ofMsc/My (which is calledRg in Ref.

12) is plotted in Fig. 1, usingn=3.5m,, F=600 T, A(0)
27ku =1.6 meV, andB.,=4.6 T. The amplitude rapidly becomes
negligible belowB;, and changes sign within a few periods
of oscillation. The ratioM gc/My contains a factor which
) equals one aB., of the form

s ] B 27A2 i _1k<_
°5°('w”)_\/4_w—ywck:1( ) sgn w,)Ccos

) _2’7Tk,LL> [{ 27k
+1 sin exp — o

We c

We

wn_g(i wp)

1 2%k A?
(27 Vémy wg'
Finally we substitute the result®6) and (27) into the  The vanishing of this factor marks a 180° change of phase of

equations for the magnetizati¢8) and(9), and calculate the the oscillations. Reference 18 found a similar effect in a
sum overw, . The first term is the Maki-Stephen result slightly different form. In contrast, the numerical work of

(30
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Norman and MacDona?d found that no such phase change Expressmgfln terms of A2 with Eq. (26) leads to a cutoff

diagonal calculation. In the Appendix we have shown tharsquare brackets of onAZ) may be integrated and then ex-
Eq. (27) satisfies the self-consistent equation Aqrtherefore panded as

there are no corrections to E¢R0), at least to within the
diagonal approximation.

In summary, we present straightforward, yet hitherto ne- 1
glected, extension of Luttinger's formalism for interacting —
systems in two dimensions. We find that oscillations in the
self-energy yield an important contribution to the amplitude
of magnetization oscillations in the vortex state of two- X - i i :
dimensional superconductors which leads to a change in sign oy~ €e—2(iw,) iwp+e—2(iwp)
of the oscillations belovB..,.

1 N i sgn w,)
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Substituting Eq(A4) into Eq. (A2) we find that
APPENDIX

In this appendix we show that oscillations which appear )
in the self-consistent equation for the potentigt ,—r,) are inS 2osc("”ﬂsg’(‘“n)
fully accounted for by the oscillations in the self-energy, on [lwy—3(iwy)]?
provided that the gap function satisfies a gap equation. We
begin by noting that the usual BCS gap equation is obtained 1 1
from the self-consistent equation fa(r;—r,) (20) using —E o e S imtesS
the simplest forrtf of 3 [Eq. (22)]. However, the main part e L
of this article prescribes a more complicated calculation o 27k(e+ p)
which uses two full Green'’s functions in EO) and the X2, (—1)*cos——. (A5)
self-consistent self-energi24). In Eq. (20) we expand the k=1 @e

Green’s functions ing,,g,,n,,Nn, and integrate over,q,

andg; to get Extending the limits of the integral ttr o0 the right hand side

Y . _ of Eq. (A5) is
1=— > G(iog,n)G(—iwy,np)lpn. (Al)
I B wp,Ny,Np
One of the sums over Landau levels is dropped using the : g @n) < . 27Ku
—i2 - —1)“cos
diagonal approximatiori,nln2~ On n, V4TV and then the re- I szn lop—2 IZl (=1 O
maining sum is replaced by an integral using the Poisson 2k
sum formula Xex;{ 7 wn_ﬂ)_
We
= B f w0, (uw )
ton J =@ @n n The left hand side of Eq(A5) is found using Eqs(27) and
® 26)
1 2mk(e+ ) (26),
Xe————————| 1+ —1)*cos———|.
ot e Sliag) | 122, (TVes—
S(w - 27k
(A2) 20 E | ( n)|22 (—1)kCOS M
Note that (—iw,) = —Z(iw,). The self-energy is split into on (Ton—X)%k @e
oscillatory and nonoscillatory parl8=3 +3 ., whereX, 27k
satisfies X exp( wn—i‘ ) .
We
ks [ )
'3 o n0c iw,—e— 2('wn) Equality of both sides of Eq(A5) is obtained whens
1 >w,, or A%/ w.>T. This result shows that there are no ad-
e (A3) ditional oscillations in the gap; within the approximations

iwn+e—2(iw,) used all oscillatory effects are accounted for witRin
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