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Theory of the de Haas–van Alphen effect in two-dimensional superconductors

S. H. Curnoe
University of Toronto, Department of Physics, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 12 May 2000!

The experimentally observed damping of magnetic oscillations in superconductors belowBc2 is qualitatively
explained by application of the Lifshitz-Kosevich formula with the superconducting gap playing the role of the
self-energy. In two dimensions this formula omits a leading order term proportional to oscillations of the
self-energy. We apply a recently proposed formalism to derive the magnetization oscillation amplitude of
two-dimensional superconductors in the~mixed! superconducting state. We find a significant correction to the
LK formula, which leads to a sign reversal of the oscillations belowBc2.
-
ia
of
lla

I
an

er
an

lu

or
-
e
is
y

x

e
p

th
o
t

on

d

to

r-
r

the

f

eed
eted
ng

by

ua-
f

ce
nt
n-
lf-
of

low

ic
a

an
ed
I. INTRODUCTION

Quantum oscillations of the magnetization@de Haas–van
Alphen ~dHvA! oscillations# have provided a wealth of in
formation about Fermi surface structure of many mater
for more than three decades.1 This achievement makes use
the quantization condition such that the frequency of osci
tions ~which are periodic in the inverse magnetic field! is
proportional to an extremal area of the Fermi surface.
addition to the frequency spectrum, there is also useful
important information contained in theamplitudeof oscilla-
tions, which depends on interactions in the system.

The first observation of magnetic oscillations in the sup
conducting state was reported in 1976 by Graebner
Robbins2 for the vortex state of NbSe2 . Since then a wide
range of superconducting materials has been studied, inc
ing V3Si,3,4 NbSe2,5,6 CeRu2,7 YNi2B2C,8 and Nb3Sn ~Ref.
9! and the organic superconduct
k-(BEDT-TTF)2Cu(NCS)2.10 One goal of all such experi
ments is to achieve an explicit measurement of the shap
the Fermi surface. A noteworthy example
k-(BEDT-TTF)2Cu(NCS)2, which was shown to be nearl
two dimensional.11

The fact that dHvA oscillations persist into the vorte
state is a matter that requires careful consideration. NearBc2
the cyclotron radius encloses many vortex lines, therefor
is appropriate to average the field strength across the sam
Estimates of the effect of the field inhomogeneity across
flux lattice indicate that it causes a negligible reduction
the oscillation amplitude.12 All measurements concur tha
there is no shift of the dHvA frequency at the transiti
between the superconducting and normal states.

The conventional Lifshitz-Kosevich~LK ! formalism13 for
describing magnetic oscillations inthree dimensionsgives
the amplitude of thekth harmonic as

A;
T exp~21/vct!

sinhX
, ~1!

where T is the temperature,X52p2kT/vc* , vc5eB/m is
the cyclotron frequency,B is the applied magnetic field, an
m is the band mass. The scattering timet incorporates ef-
fects such as disorder. The effective massm* which appears
in vc* may be determined from the self-energyS(x),
m* /m5@12]S(x)/]x#21, and the general form of the LK
formula is
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A;exp~21/vct!
1

b (
v l

expS 22pk

vc
@v l2j~ iv l !# D , ~2!

wherej( iv l) is the analytic extension of the self-energy
the imaginary axis. The inverse temperature isb51/T and
iv l5 i (p/b)(2l 11) are Matsubara frequencies. This fo
mula is based on an approximation given by Luttinge14

which neglects oscillations in the self-energy.
Treating the gap as a self-energy that appears with

onset of the superconducting state, Maki,15 Stephen,16 and
Springford and Wasserman17 predicted a drastic reduction o
dHvA oscillations upon entering the superconducting~vor-
tex! state from the normal state. Such a reduction has ind
been observed and all recent experiments have interpr
their data in terms of an additional damping factor arisi
from the gap12

j52
D2

2
A p

mvc
. ~3!

The strictly two-dimensional case has been studied
Maniv et al.18 and by Bruunet al.19 Both groups considered
the expansion of the thermodynamic potential beyond q
dratic order inD. In this paper we follow the approach o
Maki and Stephen; however, Eqs.~1! and~2! are not a com-
plete description of magnetization oscillations in 2D, sin
oscillations of the self-energy give rise to importa
corrections.20 We calculate the magnetization oscillations i
cluding contributions coming from oscillations of the se
energy and find a significant contribution that is 180° out
phase, leading to a sign reversal of the oscillations be
Bc2.

II. MAGNETIZATION OSCILLATIONS

The magnetization is derived from the thermodynam
potential, M52]V/]B. In Ref. 20 it was argued that
suitable approximation toV for an interacting system is

V52
1

b
Tr@ logG21#, ~4!

whereG contains the self-consistent self-energy. This is
approximation which neglects the contribution of cross
12 413 ©2000 The American Physical Society



th

fo

he

ul
e
os
in

s
lt
e
p

a

-

r

ld;

b-

,

e
o

Eq.

12 414 PRB 62S. H. CURNOE
graphs. For a two-dimensional system in a magnetic field
trace is a sum over Landau levels

V52
1

b (
vm ,n

log@ ivm2~n11/2!vc2S~ ivm!#, ~5!

which is converted to an integral using the Poisson sum
mula

V52
1

b (
vn

E
2m

` de

vc
log@ ivn2e2S~ ivn!#

3F112(
k51

`

~21!k cos
2pk~e1m!

vc
G . ~6!

According to Ref. 20, the important contributions to t
magnetization oscillations are

Mosc5M11M2 ~7!

M152
4pm

mvc
2 (

k51

`

~21!k
1

b (
v l.0

expS 22pk

vc
@v l2j~ iv l !# D

3sinS 2pkm

vc
D ~8!

M252
2p

vcb
(

v l.0

]j~ iv l !

]B
~9!

wherej( ivm)5Im S( ivm). M1 is derived from the cosine
term inside the square brackets and is just the LK form
given above Eq.~2!. M2 comes from the first term inside th
square brackets and is the contribution originating from
cillations in the self-energy which was first introduced
Ref. 20. Generally M1 leads M2 by a factor of
(vc /m)(d22)/2, whered is the dimension; in two dimension
these two terms are formally of the same order. This resu
valid for any interacting system in two dimensions. In th
case of superconductors, Maki and Stephen justified a sim
substitution of the expression~3! for the self-energy. We
begin the next section by reviewing their arguments.

III. SUPERCONDUCTOR IN A MAGNETIC FIELD

The properties of a superconductor in a magnetic field
governed by the Gorkov equations21

S ivn1
1

2m
@¹ r2 ieA~r !#21m DG~ ivn ,r ,r 8!

1D~r !F†~ ivn ,r ,r 8!5d~r 2r 8!, ~10!

S 2 ivn1
1

2m
@¹ r1 ieA~r !#21m DF†~ ivn ,r ,r 8!

2D* ~r !G~ ivn ,r ,r 8!50. ~11!

G( ivn ,r ,r 8) andF( ivn ,r ,r 8) are the ordinary and anoma
lous Green’s functions, respectively, D(r )
5(l/b)(vn

F( ivn ,r ,r ) is the gap function andl is the cou-
pling strength. The solutions to these equations may be w
ten in integral form
e

r-

a

-

is
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it-

G~ ivn ,r ,r 8!5G0~ ivn ,r ,r 8!2E dr9G0~ ivn ,r ,r 9!

3D~r 9!F†~ ivn ,r 9,r 8!, ~12!

F†~ ivn ,r ,r 8!5E dr9G0~2 ivn ,r 9,r !

3D* ~r 9!G~ ivn ,r 9,r 8!. ~13!

The bare Green’s functionG0( ivn ,r ,r 8) is expressed in
terms of the solutions for a single particle in a magnetic fie
in 2D this is

G0~ ivn ,r ,r 8!5(
n,q

fn,q~r !fn,q* ~r 8!

ivn2~n11/2!vc
, ~14!

fn,q~x,y!5S 1

Ll2nn!Ap
D 1/2

eiqy2(x2ql2)2/2l 2HnS x2ql2

l D ,

~15!

wherel 51/AeB is the magnetic length andHn is a Hermite
polynomial. Substituting Eq.~13! into Eq. ~12! we find

G~ ivn ,r ,r 8!5G0~ ivn ,r ,r 8!

2E dr1dr2G0~ ivn ,r ,r 1!D~r 1!

3G0~2 ivn ,r 2 ,r 1!D* ~r 2!G~ ivn ,r 2 ,r 8!.

~16!

In Eq. ~16! we see thatD(r 1)D(r 2) serves as an effective
potential. Stephen16 argued that the potential may be o
tained by averaging over vortex lines.

V~r 12r 2!5^eif(r 1 ,r 2)D~r 1!D* ~r 2!&, ~17!

wheref(r 1 ,r 2)5(x21x1)(y22y1)/ l 2 in the Landau gauge
and the gap function is22

D~r !5(
n

Cneiqny expF2
1

l 2 S x2
nql2

2 D 2G . ~18!

Stephen calculatedV(r ) using both a square vortex lattic
(Cn51) and a disordered vortex lattice. It is not difficult t
show that a triangular vortex lattice (Cn5Cn12 ,C15 iC0)
yields the same result. In all of these cases one finds

V~r !5D2e2r 2/2l 2, ~19!

where D is the magnitude of the gap. The potentialV(r 1
2r 2) satisfies the self-consistent equation derived from
~13! by setting r 5r 85r 2, multiplying both sides by
D(r 1)eif(r 1 ,r 2) and averaging

V~r 12r 2!5
l

b (
vn

E drV~r 2r 1!G~ ivn ,r ,r 2!

3G0~2 ivn ,r ,r 2!eif(r 1 ,r 2)eif(r ,r 1) ~20!

~see the Appendix!.
The solution forG( ivn ,n) is of the form

G~ ivn ,r ,r 8!5(
n,q

fn,q~r !fn,q* ~r 8!

ivn2~n11/2!vc2S~ ivn ,n!
.

~21!
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One may findS by substituting Eqs.~19! and ~21! into Eq.
~16! and performing the required integrations23

S~ ivn ,n!5D2(
n8

I nn8

ivn1~n811/2!vc

, ~22!

I nn85
~n1n8!!

n!n8!2n1n811
. ~23!

This result indicates that the self-energy has very large
cillations and is actually singular at the energy of each L
dau level. For this reason it is better to improve the calcu
tion by solving for the self-energy self-consistently, b
substituting the full Green’s functionG(2 ivn ,r 2 ,r 1) in Eq.
~16!. ThenS satisfies

S~ ivn ,n!5D2(
n8

I nn8

ivn1~n811/2!vc1S~2 ivn ,n8!
.

~24!

Assuming that the largest contributions to the sum overn8
come near the pole ofS one finds forn8'n'n that I nn8
'1/A4pn. Here n is the number of filled Landau levels
Now write S5S̄1Sosc and solve Eq.~24! under the as-
sumption thatSosc!S̄. The left hand side of Eq.~24! can be
expanded using the Poisson sum formula

S̄~ ivn!1Sosc~ ivn!5
D2

A4pn
E

2m

` de

vc

1

ivm1e1S̄~2 ivn!

3F112(
k51

`

~21!k cos
2pk~e1m!

vc
G .

~25!

The second term in the square brackets shows oscillat
explicitly in terms of the cosine.S̄ is found by omitting all
of the oscillatory parts and taking both limits of the integ
to infinity,

S̄~ ivn!52
ipD2

A4pnvc

sgn~vn!. ~26!

This result was obtained by Stephen.16 The oscillatory part is
obtained by splitting the cosine and expressing thee depen-
dent parts as exponentials, and then integrating over the
bottom half planes as dictated by the signs of the expon
tials

Sosc~ ivn!5
i2pD2

A4pnvc
(
k51

`

~21!kS 2sgn~vn!cos
2pkm

vc

1 i sin
2pkm

vc
DexpS 2

2pk

vc
Uvn2 j̄~ ivn!U D .

~27!

Finally we substitute the results~26! and ~27! into the
equations for the magnetization~8! and~9!, and calculate the
sum overv l . The first term is the Maki-Stephen result
s-
-
-

ns

l

p/
n-

M152
2p

m

m

vc
2

1

b (
k51

`

~21!k

3
exp~22p2kD2/vc

2A4pn!

sinh~2p2kT/vc!
sin

2pkm

vc
. ~28!

The second term is

M25
4p3

mA4pn

D2

vc
2

m

vc
2

1

b (
k51

`

~21!kk

3
exp~22p2kD2/vc

2A4pn!

sinh~2p2kT/vc!
sin

2pkm

vc
. ~29!

Equation ~29! is the main result of this paper. The mo
important feature ofM2 is that the coefficient is of the sam
order in m/vc as in M1, a result which is unique to two
dimensions.20 The remaining coefficients may be consider
to be the coupling constant of the self-energy, and in ma
systems this constant is small, providing a justification
the LK formula even in 2D. However here the effective co
pling may be rather large; using estimates given in Ref.
for k-(BEDT-TTF)2Cu(NSC)2 in the regime belowBc2 we
haveD'1 meV, vc'0.1meV andn5F/B'100 ~whereF
is the dHvA frequency!, resulting in a coefficient forM2 that
is the same order of magnitude as that ofM1. However, it is
difficult to make a detailed comparison between this res
and experiments, since the quantitiesBc2 and D(0) which
appear in the expression for the gap,D(B)
5D(0)A12B/Bc2 are not known exactly.

The amplitude ofMSC/MN ~which is calledRs in Ref.
12! is plotted in Fig. 1, usingm53.5me , F5600 T, D(0)
51.6 meV, andBc254.6 T. The amplitude rapidly become
negligible belowBc2 and changes sign within a few period
of oscillation. The ratioMSC/MN contains a factor which
equals one atBc2 of the form

12
2p2k

A4pn

D2

vc
2

. ~30!

The vanishing of this factor marks a 180° change of phas
the oscillations. Reference 18 found a similar effect in
slightly different form. In contrast, the numerical work o

FIG. 1. The amplitude of the first harmonic of magnetizati
oscillations fork-(BEDT-TTF)2Cu(NSC)2 belowBc2 using the pa-
rameters given in the text. The solid line isM11M2 and the dotted
line is the Maki-Stephen result (M1 only!.
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Norman and MacDonald24 found that no such phase chan
occurs if D is determined self-consistently in a full off
diagonal calculation. In the Appendix we have shown t
Eq. ~27! satisfies the self-consistent equation forD, therefore
there are no corrections to Eq.~30!, at least to within the
diagonal approximation.

In summary, we present straightforward, yet hitherto
glected, extension of Luttinger’s formalism for interactin
systems in two dimensions. We find that oscillations in
self-energy yield an important contribution to the amplitu
of magnetization oscillations in the vortex state of tw
dimensional superconductors which leads to a change in
of the oscillations belowBc2.
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APPENDIX

In this appendix we show that oscillations which appe
in the self-consistent equation for the potentialV(r 12r 2) are
fully accounted for by the oscillations in the self-energ
provided that the gap function satisfies a gap equation.
begin by noting that the usual BCS gap equation is obtai
from the self-consistent equation forV(r 12r 2) ~20! using
the simplest form16 of S @Eq. ~22!#. However, the main par
of this article prescribes a more complicated calculat
which uses two full Green’s functions in Eq.~20! and the
self-consistent self-energy~24!. In Eq. ~20! we expand the
Green’s functions inq1 ,q2 ,n1 ,n2 and integrate overr ,q1
andq2 to get

15
l

l 2b
(

vn ,n1 ,n2

G~ ivn ,n1!G~2 ivn ,n2!I n1n2
. ~A1!

One of the sums over Landau levels is dropped using
diagonal approximation,I n1n2

'dn1n2
A4pn and then the re-

maining sum is replaced by an integral using the Pois
sum formula

152
1

l 2A4pn

l

b (
ivn

E
2m

` de

vc

1

vn2e2S~ ivn!

3
1

ivn1e2S~ ivn! F112(
k51

`

~21!k cos
2pk~e1m!

vc
G .

~A2!

Note thatS(2 ivn)52S( ivn). The self-energy is split into
oscillatory and nonoscillatory partsS5S̄1Sosc, where S̄
satisfies

152
1

l 2A4pn

l

b (
vn

E
2m

` de

vc

1

ivn2e2S̄~ ivn!

3
1

ivn1e2S̄~ ivn!
. ~A3!
t

-

e

gn

l-
is
f

r

,
e
d

n

e

n

ExpressingS̄ in terms ofD2 with Eq. ~26! leads to a cutoff
dependent solution forD. Then, the first term inside the
square brackets of Eq.~A2! may be integrated and then ex
panded as

2
1

l 2A4pn

l

b (
vn

E
2m

` de

vc

3
1

ivn2e2S~ ivn!

1

ivn1e2S~ ivn!

5
1

l 2A4pn

l

b (
vn

ip

vc

sgn~vn!

ivn2S̄~ ivn!2Sosc~ ivn!

'11
1

l 2A4pn

l

b (
vn

ip

vc

Sosc~ ivn!sgn~vn!

@ ivn2S̄~ ivn!#2
. ~A4!

Substituting Eq.~A4! into Eq. ~A2! we find that

ip(
vn

Sosc~ ivn!sgn~vn!

@ ivn2S̄~ ivn!#2

5(
vn

E
2m

` de

vc

1

ivn2e2S̄

1

ivn1e2S̄

32(
k51

`

~21!k cos
2pk~e1m!

vc
. ~A5!

Extending the limits of the integral to6` the right hand side
of Eq. ~A5! is

2 i2p(
vn

sgn~vn!

ivn2S (
k51

`

~21!k cos
2pkm

vc

3expS 2
2pk

vc
Uvn2S̄U D .

The left hand side of Eq.~A5! is found using Eqs.~27! and
~26!,

i2p(
vn

uS̄~vn!u

~ ivn2S̄ !2 (
k51

`

~21!k cos
2pkm

vc

3expS 2
2pk

vc
Uvn2S̄U D .

Equality of both sides of Eq.~A5! is obtained whenS̄
@vn , or D2/vc@T. This result shows that there are no a
ditional oscillations in the gap; within the approximation
used all oscillatory effects are accounted for withinS.
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